pandas-market-calendars 4.3.1__py3-none-any.whl → 4.3.3__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- pandas_market_calendars/__init__.py +38 -37
- pandas_market_calendars/calendar_registry.py +53 -48
- pandas_market_calendars/calendar_utils.py +261 -225
- pandas_market_calendars/calendars/asx.py +66 -63
- pandas_market_calendars/calendars/bmf.py +206 -227
- pandas_market_calendars/calendars/bse.py +407 -409
- pandas_market_calendars/calendars/cboe.py +145 -115
- pandas_market_calendars/calendars/cme.py +402 -240
- pandas_market_calendars/calendars/cme_globex_agriculture.py +126 -103
- pandas_market_calendars/calendars/cme_globex_base.py +119 -103
- pandas_market_calendars/calendars/cme_globex_crypto.py +160 -147
- pandas_market_calendars/calendars/cme_globex_energy_and_metals.py +216 -138
- pandas_market_calendars/calendars/cme_globex_equities.py +123 -104
- pandas_market_calendars/calendars/cme_globex_fixed_income.py +136 -113
- pandas_market_calendars/calendars/cme_globex_fx.py +101 -78
- pandas_market_calendars/calendars/eurex.py +139 -119
- pandas_market_calendars/calendars/eurex_fixed_income.py +98 -0
- pandas_market_calendars/calendars/hkex.py +426 -408
- pandas_market_calendars/calendars/ice.py +81 -65
- pandas_market_calendars/calendars/iex.py +112 -98
- pandas_market_calendars/calendars/jpx.py +109 -103
- pandas_market_calendars/calendars/lse.py +114 -91
- pandas_market_calendars/calendars/mirror.py +130 -114
- pandas_market_calendars/calendars/nyse.py +1324 -1127
- pandas_market_calendars/calendars/ose.py +116 -150
- pandas_market_calendars/calendars/sifma.py +350 -297
- pandas_market_calendars/calendars/six.py +132 -114
- pandas_market_calendars/calendars/sse.py +311 -290
- pandas_market_calendars/calendars/tase.py +197 -195
- pandas_market_calendars/calendars/tsx.py +181 -159
- pandas_market_calendars/class_registry.py +22 -16
- pandas_market_calendars/holidays/cme.py +385 -340
- pandas_market_calendars/holidays/cme_globex.py +214 -198
- pandas_market_calendars/holidays/cn.py +1455 -1436
- pandas_market_calendars/holidays/jp.py +398 -396
- pandas_market_calendars/holidays/jpx_equinox.py +453 -95
- pandas_market_calendars/holidays/nyse.py +1531 -1472
- pandas_market_calendars/holidays/oz.py +63 -65
- pandas_market_calendars/holidays/sifma.py +338 -321
- pandas_market_calendars/holidays/uk.py +32 -26
- pandas_market_calendars/holidays/us.py +376 -360
- pandas_market_calendars/market_calendar.py +895 -789
- {pandas_market_calendars-4.3.1.dist-info → pandas_market_calendars-4.3.3.dist-info}/METADATA +7 -5
- pandas_market_calendars-4.3.3.dist-info/RECORD +50 -0
- {pandas_market_calendars-4.3.1.dist-info → pandas_market_calendars-4.3.3.dist-info}/WHEEL +1 -1
- pandas_market_calendars-4.3.1.dist-info/RECORD +0 -49
- {pandas_market_calendars-4.3.1.dist-info → pandas_market_calendars-4.3.3.dist-info}/LICENSE +0 -0
- {pandas_market_calendars-4.3.1.dist-info → pandas_market_calendars-4.3.3.dist-info}/NOTICE +0 -0
- {pandas_market_calendars-4.3.1.dist-info → pandas_market_calendars-4.3.3.dist-info}/top_level.txt +0 -0
@@ -1,225 +1,261 @@
|
|
1
|
-
"""
|
2
|
-
Utilities to use with market_calendars
|
3
|
-
"""
|
4
|
-
import itertools
|
5
|
-
import warnings
|
6
|
-
|
7
|
-
import
|
8
|
-
import
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
*
|
18
|
-
|
19
|
-
|
20
|
-
:param
|
21
|
-
:
|
22
|
-
|
23
|
-
|
24
|
-
all_cols =
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
result[
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
return
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
:
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
141
|
-
|
142
|
-
|
143
|
-
|
144
|
-
if
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
|
160
|
-
def
|
161
|
-
"""
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
196
|
-
|
197
|
-
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
1
|
+
"""
|
2
|
+
Utilities to use with market_calendars
|
3
|
+
"""
|
4
|
+
import itertools
|
5
|
+
import warnings
|
6
|
+
|
7
|
+
import numpy as np
|
8
|
+
import pandas as pd
|
9
|
+
|
10
|
+
|
11
|
+
def merge_schedules(schedules, how="outer"):
|
12
|
+
"""
|
13
|
+
Given a list of schedules will return a merged schedule. The merge method (how) will either return the superset
|
14
|
+
of any datetime when any schedule is open (outer) or only the datetime where all markets are open (inner)
|
15
|
+
|
16
|
+
CAVEATS:
|
17
|
+
* This does not work for schedules with breaks, the break information will be lost.
|
18
|
+
* Only "market_open" and "market_close" are considered, other market times are not yet supported.
|
19
|
+
|
20
|
+
:param schedules: list of schedules
|
21
|
+
:param how: outer or inner
|
22
|
+
:return: schedule DataFrame
|
23
|
+
"""
|
24
|
+
all_cols = [x.columns for x in schedules]
|
25
|
+
all_cols = list(itertools.chain(*all_cols))
|
26
|
+
if ("break_start" in all_cols) or ("break_end" in all_cols):
|
27
|
+
warnings.warn(
|
28
|
+
"Merge schedules will drop the break_start and break_end from result."
|
29
|
+
)
|
30
|
+
|
31
|
+
result = schedules[0]
|
32
|
+
for schedule in schedules[1:]:
|
33
|
+
result = result.merge(schedule, how=how, right_index=True, left_index=True)
|
34
|
+
if how == "outer":
|
35
|
+
result["market_open"] = result.apply(
|
36
|
+
lambda x: min(x.market_open_x, x.market_open_y), axis=1
|
37
|
+
)
|
38
|
+
result["market_close"] = result.apply(
|
39
|
+
lambda x: max(x.market_close_x, x.market_close_y), axis=1
|
40
|
+
)
|
41
|
+
elif how == "inner":
|
42
|
+
result["market_open"] = result.apply(
|
43
|
+
lambda x: max(x.market_open_x, x.market_open_y), axis=1
|
44
|
+
)
|
45
|
+
result["market_close"] = result.apply(
|
46
|
+
lambda x: min(x.market_close_x, x.market_close_y), axis=1
|
47
|
+
)
|
48
|
+
else:
|
49
|
+
raise ValueError('how argument must be "inner" or "outer"')
|
50
|
+
result = result[["market_open", "market_close"]]
|
51
|
+
return result
|
52
|
+
|
53
|
+
|
54
|
+
def convert_freq(index, frequency):
|
55
|
+
"""
|
56
|
+
Converts a DateTimeIndex to a new lower frequency
|
57
|
+
|
58
|
+
:param index: DateTimeIndex
|
59
|
+
:param frequency: frequency string
|
60
|
+
:return: DateTimeIndex
|
61
|
+
"""
|
62
|
+
return pd.DataFrame(index=index).asfreq(frequency).index
|
63
|
+
|
64
|
+
|
65
|
+
class _date_range:
|
66
|
+
"""
|
67
|
+
This is a callable class that should be used by calling the already initiated instance: `date_range`.
|
68
|
+
Given a schedule, it will return a DatetimeIndex with all of the valid datetimes at the frequency given.
|
69
|
+
|
70
|
+
The schedule columns should all have the same time zone.
|
71
|
+
|
72
|
+
The calculations will be made for each trading session. If the passed schedule-DataFrame doesn't have
|
73
|
+
breaks, there is one trading session per day going from market_open to market_close, otherwise there are two,
|
74
|
+
the first one going from market_open to break_start and the second one from break_end to market_close.
|
75
|
+
|
76
|
+
*Any trading session where start == end is considered a 'no-trading session' and will always be dropped*
|
77
|
+
|
78
|
+
CAVEATS:
|
79
|
+
* Only "market_open", "market_close" (and, optionally, "breaak_start" and "break_end")
|
80
|
+
are considered, other market times are not yet supported by this class.
|
81
|
+
|
82
|
+
* If the difference between start and end of a trading session is smaller than an interval of the
|
83
|
+
frequency, and closed= "right" and force_close = False, the whole session will disappear.
|
84
|
+
This will also raise a warning.
|
85
|
+
|
86
|
+
|
87
|
+
Signature:
|
88
|
+
.__call__(self, schedule, frequency, closed='right', force_close=True, **kwargs)
|
89
|
+
|
90
|
+
:param schedule: schedule of a calendar, which may or may not include break_start and break_end columns
|
91
|
+
:param frequency: frequency string that is used by pd.Timedelta to calculate the timestamps
|
92
|
+
this must be "1D" or higher frequency
|
93
|
+
:param closed: the way the intervals are labeled
|
94
|
+
'right': use the end of the interval
|
95
|
+
'left': use the start of the interval
|
96
|
+
None: (or 'both') use the end of the interval but include the start of the first interval (the open)
|
97
|
+
:param force_close: how the last value of a trading session is handled
|
98
|
+
True: guarantee that the close of the trading session is the last value
|
99
|
+
False: guarantee that there is no value greater than the close of the trading session
|
100
|
+
None: leave the last value as it is calculated based on the closed parameter
|
101
|
+
:param kwargs: unused. Solely for compatibility.
|
102
|
+
|
103
|
+
|
104
|
+
"""
|
105
|
+
|
106
|
+
def __init__(self, schedule=None, frequency=None, closed="right", force_close=True):
|
107
|
+
if closed not in ("left", "right", "both", None):
|
108
|
+
raise ValueError("closed must be 'left', 'right', 'both' or None.")
|
109
|
+
elif force_close not in (True, False, None):
|
110
|
+
raise ValueError("force_close must be True, False or None.")
|
111
|
+
|
112
|
+
self.closed = closed
|
113
|
+
self.force_close = force_close
|
114
|
+
self.has_breaks = False
|
115
|
+
if frequency is None:
|
116
|
+
self.frequency = None
|
117
|
+
else:
|
118
|
+
self.frequency = pd.Timedelta(frequency)
|
119
|
+
if self.frequency > pd.Timedelta("1D"):
|
120
|
+
raise ValueError("Frequency must be 1D or higher frequency.")
|
121
|
+
|
122
|
+
elif schedule.market_close.lt(schedule.market_open).any():
|
123
|
+
raise ValueError(
|
124
|
+
"Schedule contains rows where market_close < market_open,"
|
125
|
+
" please correct the schedule"
|
126
|
+
)
|
127
|
+
|
128
|
+
if "break_start" in schedule:
|
129
|
+
if not all(
|
130
|
+
[
|
131
|
+
schedule.market_open.le(schedule.break_start).all(),
|
132
|
+
schedule.break_start.le(schedule.break_end).all(),
|
133
|
+
schedule.break_end.le(schedule.market_close).all(),
|
134
|
+
]
|
135
|
+
):
|
136
|
+
raise ValueError(
|
137
|
+
"Not all rows match the condition: "
|
138
|
+
"market_open <= break_start <= break_end <= market_close, "
|
139
|
+
"please correct the schedule"
|
140
|
+
)
|
141
|
+
self.has_breaks = True
|
142
|
+
|
143
|
+
def _check_overlap(self, schedule):
|
144
|
+
"""checks if calculated end times would overlap with the next start times.
|
145
|
+
Only an issue when force_close is None and closed != left.
|
146
|
+
|
147
|
+
:param schedule: pd.DataFrame with first column: 'start' and second column: 'end'
|
148
|
+
:raises ValueError:"""
|
149
|
+
if self.force_close is None and self.closed != "left":
|
150
|
+
num_bars = self._calc_num_bars(schedule)
|
151
|
+
end_times = schedule.start + num_bars * self.frequency
|
152
|
+
|
153
|
+
if end_times.gt(schedule.start.shift(-1)).any():
|
154
|
+
raise ValueError(
|
155
|
+
"The chosen frequency will lead to overlaps in the calculated index. "
|
156
|
+
"Either choose a higher frequency or avoid setting force_close to None "
|
157
|
+
"when setting closed to 'right', 'both' or None."
|
158
|
+
)
|
159
|
+
|
160
|
+
def _check_disappearing_session(self, schedule):
|
161
|
+
"""checks if requested frequency and schedule would lead to lost trading sessions.
|
162
|
+
Only necessary when force_close = False and closed = "right".
|
163
|
+
|
164
|
+
:param schedule: pd.DataFrame with first column: 'start' and second column: 'end'
|
165
|
+
:raises UserWarning:"""
|
166
|
+
if self.force_close is False and self.closed == "right":
|
167
|
+
if (schedule.end - schedule.start).lt(self.frequency).any():
|
168
|
+
warnings.warn(
|
169
|
+
"An interval of the chosen frequency is larger than some of the trading sessions, "
|
170
|
+
"while closed== 'right' and force_close is False. This will make those trading sessions "
|
171
|
+
"disappear. Use a higher frequency or change the values of closed/force_close, to "
|
172
|
+
"keep this from happening."
|
173
|
+
)
|
174
|
+
|
175
|
+
def _calc_num_bars(self, schedule):
|
176
|
+
"""calculate the number of timestamps needed for each trading session.
|
177
|
+
|
178
|
+
:param schedule: pd.DataFrame with first column: 'start' and second column: 'end'
|
179
|
+
:return: pd.Series of float64"""
|
180
|
+
return np.ceil((schedule.end - schedule.start) / self.frequency)
|
181
|
+
|
182
|
+
def _calc_time_series(self, schedule):
|
183
|
+
"""Method used by date_range to calculate the trading index.
|
184
|
+
|
185
|
+
:param schedule: pd.DataFrame with first column: 'start' and second column: 'end'
|
186
|
+
:return: pd.Series of datetime64[ns, UTC]"""
|
187
|
+
num_bars = self._calc_num_bars(schedule)
|
188
|
+
|
189
|
+
# ---> calculate the desired timeseries:
|
190
|
+
if self.closed == "left":
|
191
|
+
opens = schedule.start.repeat(num_bars) # keep as is
|
192
|
+
time_series = (
|
193
|
+
opens.groupby(opens.index).cumcount()
|
194
|
+
) * self.frequency + opens
|
195
|
+
elif self.closed == "right":
|
196
|
+
opens = schedule.start.repeat(num_bars) # dont add row but shift up
|
197
|
+
time_series = (
|
198
|
+
opens.groupby(opens.index).cumcount() + 1
|
199
|
+
) * self.frequency + opens
|
200
|
+
else:
|
201
|
+
num_bars += 1
|
202
|
+
opens = schedule.start.repeat(num_bars) # add row but dont shift up
|
203
|
+
time_series = (
|
204
|
+
opens.groupby(opens.index).cumcount()
|
205
|
+
) * self.frequency + opens
|
206
|
+
|
207
|
+
if self.force_close is not None:
|
208
|
+
time_series = time_series[time_series.le(schedule.end.repeat(num_bars))]
|
209
|
+
if self.force_close:
|
210
|
+
time_series = pd.concat([time_series, schedule.end]).sort_values()
|
211
|
+
|
212
|
+
return time_series
|
213
|
+
|
214
|
+
def __call__(self, schedule, frequency, closed="right", force_close=True, **kwargs):
|
215
|
+
"""
|
216
|
+
See class docstring for more information.
|
217
|
+
|
218
|
+
:param schedule: schedule of a calendar, which may or may not include break_start and break_end columns
|
219
|
+
:param frequency: frequency string that is used by pd.Timedelta to calculate the timestamps
|
220
|
+
this must be "1D" or higher frequency
|
221
|
+
:param closed: the way the intervals are labeled
|
222
|
+
'right': use the end of the interval
|
223
|
+
'left': use the start of the interval
|
224
|
+
None: (or 'both') use the end of the interval but include the start of the first interval
|
225
|
+
:param force_close: how the last value of a trading session is handled
|
226
|
+
True: guarantee that the close of the trading session is the last value
|
227
|
+
False: guarantee that there is no value greater than the close of the trading session
|
228
|
+
None: leave the last value as it is calculated based on the closed parameter
|
229
|
+
:param kwargs: unused. Solely for compatibility.
|
230
|
+
:return: pd.DatetimeIndex of datetime64[ns, UTC]
|
231
|
+
"""
|
232
|
+
self.__init__(schedule, frequency, closed, force_close)
|
233
|
+
if self.has_breaks:
|
234
|
+
# rearrange the schedule, to make every row one session
|
235
|
+
before = schedule[["market_open", "break_start"]].set_index(
|
236
|
+
schedule["market_open"]
|
237
|
+
)
|
238
|
+
after = schedule[["break_end", "market_close"]].set_index(
|
239
|
+
schedule["break_end"]
|
240
|
+
)
|
241
|
+
before.columns = after.columns = ["start", "end"]
|
242
|
+
schedule = pd.concat([before, after]).sort_index()
|
243
|
+
|
244
|
+
else:
|
245
|
+
schedule = schedule.rename(
|
246
|
+
columns={"market_open": "start", "market_close": "end"}
|
247
|
+
)
|
248
|
+
|
249
|
+
schedule = schedule[
|
250
|
+
schedule.start.ne(schedule.end)
|
251
|
+
] # drop the 'no-trading sessions'
|
252
|
+
self._check_overlap(schedule)
|
253
|
+
self._check_disappearing_session(schedule)
|
254
|
+
|
255
|
+
time_series = self._calc_time_series(schedule)
|
256
|
+
|
257
|
+
time_series.name = None
|
258
|
+
return pd.DatetimeIndex(time_series.drop_duplicates())
|
259
|
+
|
260
|
+
|
261
|
+
date_range = _date_range()
|
@@ -1,63 +1,66 @@
|
|
1
|
-
from datetime import time
|
2
|
-
|
3
|
-
from pandas.tseries.holiday import AbstractHolidayCalendar, GoodFriday, EasterMonday
|
4
|
-
from pytz import timezone
|
5
|
-
|
6
|
-
from pandas_market_calendars.holidays.oz import *
|
7
|
-
from pandas_market_calendars.market_calendar import MarketCalendar
|
8
|
-
|
9
|
-
AbstractHolidayCalendar.start_date =
|
10
|
-
|
11
|
-
|
12
|
-
class ASXExchangeCalendar(MarketCalendar):
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
1
|
+
from datetime import time
|
2
|
+
|
3
|
+
from pandas.tseries.holiday import AbstractHolidayCalendar, GoodFriday, EasterMonday
|
4
|
+
from pytz import timezone
|
5
|
+
|
6
|
+
from pandas_market_calendars.holidays.oz import *
|
7
|
+
from pandas_market_calendars.market_calendar import MarketCalendar
|
8
|
+
|
9
|
+
AbstractHolidayCalendar.start_date = "2011-01-01"
|
10
|
+
|
11
|
+
|
12
|
+
class ASXExchangeCalendar(MarketCalendar):
|
13
|
+
"""
|
14
|
+
Open Time: 10:00 AM, Australia/Sydney
|
15
|
+
Close Time: 4:10 PM, Australia/Sydney
|
16
|
+
|
17
|
+
|
18
|
+
Regularly-Observed Holidays:
|
19
|
+
- New Year's Day (observed on Monday when Jan 1 is a Saturday or Sunday)
|
20
|
+
- Australia Day (observed on Monday when Jan 26 is a Saturday or Sunday)
|
21
|
+
- Good Friday (two days before Easter Sunday)
|
22
|
+
- Easter Monday (the Monday after Easter Sunday)
|
23
|
+
- ANZAC Day (April 25)
|
24
|
+
- Queen's Birthday (second Monday in June)
|
25
|
+
- Christmas Day (December 25, Saturday/Sunday to Monday)
|
26
|
+
- Boxing Day (December 26, Saturday to Monday, Sunday to Tuesday)
|
27
|
+
|
28
|
+
|
29
|
+
Regularly-Observed Early Closes:
|
30
|
+
- Last Business Day before Christmas Day
|
31
|
+
- Last Business Day of the Year
|
32
|
+
|
33
|
+
"""
|
34
|
+
|
35
|
+
aliases = ["ASX"]
|
36
|
+
regular_market_times = {
|
37
|
+
"market_open": ((None, time(10)),),
|
38
|
+
"market_close": ((None, time(16, 10)),),
|
39
|
+
}
|
40
|
+
|
41
|
+
@property
|
42
|
+
def name(self):
|
43
|
+
return "ASX"
|
44
|
+
|
45
|
+
@property
|
46
|
+
def tz(self):
|
47
|
+
return timezone("Australia/Sydney")
|
48
|
+
|
49
|
+
@property
|
50
|
+
def regular_holidays(self):
|
51
|
+
return AbstractHolidayCalendar(
|
52
|
+
rules=[
|
53
|
+
OZNewYearsDay,
|
54
|
+
AustraliaDay,
|
55
|
+
AnzacDay,
|
56
|
+
QueensBirthday,
|
57
|
+
Christmas,
|
58
|
+
BoxingDay,
|
59
|
+
GoodFriday,
|
60
|
+
EasterMonday,
|
61
|
+
]
|
62
|
+
)
|
63
|
+
|
64
|
+
@property
|
65
|
+
def adhoc_holidays(self):
|
66
|
+
return UniqueCloses
|