paddlex 3.0.0rc1__py3-none-any.whl → 3.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- paddlex/.version +1 -1
- paddlex/__init__.py +1 -1
- paddlex/configs/modules/chart_parsing/PP-Chart2Table.yaml +13 -0
- paddlex/configs/modules/doc_vlm/PP-DocBee2-3B.yaml +14 -0
- paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-L.yaml +40 -0
- paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-M.yaml +40 -0
- paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-S.yaml +40 -0
- paddlex/configs/modules/layout_detection/PP-DocBlockLayout.yaml +40 -0
- paddlex/configs/modules/layout_detection/PP-DocLayout-L.yaml +2 -2
- paddlex/configs/modules/layout_detection/PP-DocLayout-M.yaml +2 -2
- paddlex/configs/modules/layout_detection/PP-DocLayout-S.yaml +2 -2
- paddlex/configs/modules/layout_detection/PP-DocLayout_plus-L.yaml +40 -0
- paddlex/configs/modules/text_detection/PP-OCRv5_mobile_det.yaml +40 -0
- paddlex/configs/modules/text_detection/PP-OCRv5_server_det.yaml +40 -0
- paddlex/configs/modules/text_recognition/PP-OCRv5_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/PP-OCRv5_server_rec.yaml +39 -0
- paddlex/configs/modules/textline_orientation/PP-LCNet_x1_0_textline_ori.yaml +41 -0
- paddlex/configs/pipelines/OCR.yaml +7 -6
- paddlex/configs/pipelines/PP-ChatOCRv3-doc.yaml +3 -1
- paddlex/configs/pipelines/PP-ChatOCRv4-doc.yaml +91 -34
- paddlex/configs/pipelines/PP-StructureV3.yaml +72 -72
- paddlex/configs/pipelines/doc_understanding.yaml +1 -1
- paddlex/configs/pipelines/formula_recognition.yaml +2 -2
- paddlex/configs/pipelines/layout_parsing.yaml +3 -2
- paddlex/configs/pipelines/seal_recognition.yaml +1 -0
- paddlex/configs/pipelines/table_recognition.yaml +2 -1
- paddlex/configs/pipelines/table_recognition_v2.yaml +7 -1
- paddlex/hpip_links.html +20 -20
- paddlex/inference/common/batch_sampler/doc_vlm_batch_sampler.py +33 -10
- paddlex/inference/common/batch_sampler/image_batch_sampler.py +34 -25
- paddlex/inference/common/result/mixin.py +19 -12
- paddlex/inference/models/base/predictor/base_predictor.py +2 -8
- paddlex/inference/models/common/static_infer.py +29 -73
- paddlex/inference/models/common/tokenizer/__init__.py +2 -0
- paddlex/inference/models/common/tokenizer/clip_tokenizer.py +1 -1
- paddlex/inference/models/common/tokenizer/gpt_tokenizer.py +2 -2
- paddlex/inference/models/common/tokenizer/qwen2_5_tokenizer.py +112 -0
- paddlex/inference/models/common/tokenizer/qwen2_tokenizer.py +7 -1
- paddlex/inference/models/common/tokenizer/qwen_tokenizer.py +288 -0
- paddlex/inference/models/common/tokenizer/tokenizer_utils.py +13 -13
- paddlex/inference/models/common/tokenizer/tokenizer_utils_base.py +3 -3
- paddlex/inference/models/common/tokenizer/vocab.py +7 -7
- paddlex/inference/models/common/ts/funcs.py +19 -8
- paddlex/inference/models/common/vlm/conversion_utils.py +99 -0
- paddlex/inference/models/common/vlm/fusion_ops.py +205 -0
- paddlex/inference/models/common/vlm/generation/configuration_utils.py +1 -1
- paddlex/inference/models/common/vlm/generation/logits_process.py +1 -1
- paddlex/inference/models/common/vlm/generation/utils.py +1 -1
- paddlex/inference/models/common/vlm/transformers/configuration_utils.py +3 -3
- paddlex/inference/models/common/vlm/transformers/conversion_utils.py +3 -3
- paddlex/inference/models/common/vlm/transformers/model_outputs.py +2 -2
- paddlex/inference/models/common/vlm/transformers/model_utils.py +7 -31
- paddlex/inference/models/doc_vlm/modeling/GOT_ocr_2_0.py +830 -0
- paddlex/inference/models/doc_vlm/modeling/__init__.py +2 -0
- paddlex/inference/models/doc_vlm/modeling/qwen2.py +1606 -0
- paddlex/inference/models/doc_vlm/modeling/qwen2_5_vl.py +3006 -0
- paddlex/inference/models/doc_vlm/modeling/qwen2_vl.py +0 -105
- paddlex/inference/models/doc_vlm/predictor.py +79 -24
- paddlex/inference/models/doc_vlm/processors/GOT_ocr_2_0.py +97 -0
- paddlex/inference/models/doc_vlm/processors/__init__.py +2 -0
- paddlex/inference/models/doc_vlm/processors/common.py +189 -0
- paddlex/inference/models/doc_vlm/processors/qwen2_5_vl.py +548 -0
- paddlex/inference/models/doc_vlm/processors/qwen2_vl.py +21 -176
- paddlex/inference/models/formula_recognition/predictor.py +8 -2
- paddlex/inference/models/formula_recognition/processors.py +90 -77
- paddlex/inference/models/formula_recognition/result.py +28 -27
- paddlex/inference/models/image_feature/processors.py +3 -4
- paddlex/inference/models/keypoint_detection/predictor.py +3 -0
- paddlex/inference/models/object_detection/predictor.py +2 -0
- paddlex/inference/models/object_detection/processors.py +28 -3
- paddlex/inference/models/object_detection/utils.py +2 -0
- paddlex/inference/models/table_structure_recognition/result.py +0 -10
- paddlex/inference/models/text_detection/predictor.py +8 -0
- paddlex/inference/models/text_detection/processors.py +44 -10
- paddlex/inference/models/text_detection/result.py +0 -10
- paddlex/inference/models/text_recognition/result.py +1 -1
- paddlex/inference/pipelines/__init__.py +9 -5
- paddlex/inference/pipelines/_parallel.py +172 -0
- paddlex/inference/pipelines/anomaly_detection/pipeline.py +16 -6
- paddlex/inference/pipelines/attribute_recognition/pipeline.py +11 -1
- paddlex/inference/pipelines/base.py +14 -4
- paddlex/inference/pipelines/components/faisser.py +1 -1
- paddlex/inference/pipelines/doc_preprocessor/pipeline.py +53 -27
- paddlex/inference/pipelines/formula_recognition/pipeline.py +120 -82
- paddlex/inference/pipelines/formula_recognition/result.py +1 -11
- paddlex/inference/pipelines/image_classification/pipeline.py +16 -6
- paddlex/inference/pipelines/image_multilabel_classification/pipeline.py +16 -6
- paddlex/inference/pipelines/instance_segmentation/pipeline.py +16 -6
- paddlex/inference/pipelines/keypoint_detection/pipeline.py +16 -6
- paddlex/inference/pipelines/layout_parsing/layout_objects.py +859 -0
- paddlex/inference/pipelines/layout_parsing/pipeline.py +34 -47
- paddlex/inference/pipelines/layout_parsing/pipeline_v2.py +832 -260
- paddlex/inference/pipelines/layout_parsing/result.py +4 -17
- paddlex/inference/pipelines/layout_parsing/result_v2.py +259 -245
- paddlex/inference/pipelines/layout_parsing/setting.py +88 -0
- paddlex/inference/pipelines/layout_parsing/utils.py +391 -2028
- paddlex/inference/pipelines/layout_parsing/xycut_enhanced/__init__.py +16 -0
- paddlex/inference/pipelines/layout_parsing/xycut_enhanced/utils.py +1199 -0
- paddlex/inference/pipelines/layout_parsing/xycut_enhanced/xycuts.py +615 -0
- paddlex/inference/pipelines/m_3d_bev_detection/pipeline.py +2 -2
- paddlex/inference/pipelines/multilingual_speech_recognition/pipeline.py +2 -2
- paddlex/inference/pipelines/object_detection/pipeline.py +16 -6
- paddlex/inference/pipelines/ocr/pipeline.py +127 -70
- paddlex/inference/pipelines/ocr/result.py +21 -18
- paddlex/inference/pipelines/open_vocabulary_detection/pipeline.py +2 -2
- paddlex/inference/pipelines/open_vocabulary_segmentation/pipeline.py +2 -2
- paddlex/inference/pipelines/pp_chatocr/pipeline_base.py +2 -2
- paddlex/inference/pipelines/pp_chatocr/pipeline_v3.py +2 -5
- paddlex/inference/pipelines/pp_chatocr/pipeline_v4.py +6 -6
- paddlex/inference/pipelines/rotated_object_detection/pipeline.py +16 -6
- paddlex/inference/pipelines/seal_recognition/pipeline.py +109 -53
- paddlex/inference/pipelines/semantic_segmentation/pipeline.py +16 -6
- paddlex/inference/pipelines/small_object_detection/pipeline.py +16 -6
- paddlex/inference/pipelines/table_recognition/pipeline.py +26 -18
- paddlex/inference/pipelines/table_recognition/pipeline_v2.py +624 -53
- paddlex/inference/pipelines/table_recognition/result.py +1 -1
- paddlex/inference/pipelines/table_recognition/table_recognition_post_processing_v2.py +9 -5
- paddlex/inference/pipelines/ts_anomaly_detection/pipeline.py +2 -2
- paddlex/inference/pipelines/ts_classification/pipeline.py +2 -2
- paddlex/inference/pipelines/ts_forecasting/pipeline.py +2 -2
- paddlex/inference/pipelines/video_classification/pipeline.py +2 -2
- paddlex/inference/pipelines/video_detection/pipeline.py +2 -2
- paddlex/inference/serving/basic_serving/_app.py +46 -13
- paddlex/inference/serving/basic_serving/_pipeline_apps/_common/common.py +5 -1
- paddlex/inference/serving/basic_serving/_pipeline_apps/layout_parsing.py +0 -1
- paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv3_doc.py +0 -1
- paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv4_doc.py +1 -1
- paddlex/inference/serving/basic_serving/_pipeline_apps/pp_structurev3.py +6 -2
- paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition.py +1 -5
- paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition_v2.py +4 -5
- paddlex/inference/serving/infra/utils.py +20 -22
- paddlex/inference/serving/schemas/formula_recognition.py +1 -1
- paddlex/inference/serving/schemas/layout_parsing.py +1 -2
- paddlex/inference/serving/schemas/pp_chatocrv3_doc.py +1 -2
- paddlex/inference/serving/schemas/pp_chatocrv4_doc.py +2 -2
- paddlex/inference/serving/schemas/pp_structurev3.py +10 -6
- paddlex/inference/serving/schemas/seal_recognition.py +1 -1
- paddlex/inference/serving/schemas/table_recognition.py +2 -6
- paddlex/inference/serving/schemas/table_recognition_v2.py +5 -6
- paddlex/inference/utils/hpi.py +30 -16
- paddlex/inference/utils/hpi_model_info_collection.json +666 -162
- paddlex/inference/utils/io/readers.py +12 -12
- paddlex/inference/utils/misc.py +20 -0
- paddlex/inference/utils/mkldnn_blocklist.py +59 -0
- paddlex/inference/utils/official_models.py +140 -5
- paddlex/inference/utils/pp_option.py +74 -9
- paddlex/model.py +2 -2
- paddlex/modules/__init__.py +1 -1
- paddlex/modules/anomaly_detection/evaluator.py +2 -2
- paddlex/modules/base/__init__.py +1 -1
- paddlex/modules/base/evaluator.py +5 -5
- paddlex/modules/base/trainer.py +1 -1
- paddlex/modules/doc_vlm/dataset_checker.py +2 -2
- paddlex/modules/doc_vlm/evaluator.py +2 -2
- paddlex/modules/doc_vlm/exportor.py +2 -2
- paddlex/modules/doc_vlm/model_list.py +1 -1
- paddlex/modules/doc_vlm/trainer.py +2 -2
- paddlex/modules/face_recognition/evaluator.py +2 -2
- paddlex/modules/formula_recognition/evaluator.py +5 -2
- paddlex/modules/formula_recognition/model_list.py +3 -0
- paddlex/modules/formula_recognition/trainer.py +3 -0
- paddlex/modules/general_recognition/evaluator.py +1 -1
- paddlex/modules/image_classification/evaluator.py +2 -2
- paddlex/modules/image_classification/model_list.py +1 -0
- paddlex/modules/instance_segmentation/evaluator.py +1 -1
- paddlex/modules/keypoint_detection/evaluator.py +1 -1
- paddlex/modules/m_3d_bev_detection/evaluator.py +2 -2
- paddlex/modules/multilabel_classification/evaluator.py +2 -2
- paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +4 -4
- paddlex/modules/object_detection/evaluator.py +2 -2
- paddlex/modules/object_detection/model_list.py +2 -0
- paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +12 -2
- paddlex/modules/semantic_segmentation/evaluator.py +2 -2
- paddlex/modules/table_recognition/evaluator.py +2 -2
- paddlex/modules/text_detection/evaluator.py +2 -2
- paddlex/modules/text_detection/model_list.py +2 -0
- paddlex/modules/text_recognition/evaluator.py +2 -2
- paddlex/modules/text_recognition/model_list.py +2 -0
- paddlex/modules/ts_anomaly_detection/evaluator.py +2 -2
- paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +1 -1
- paddlex/modules/ts_classification/evaluator.py +2 -2
- paddlex/modules/ts_forecast/evaluator.py +2 -2
- paddlex/modules/video_classification/evaluator.py +2 -2
- paddlex/modules/video_detection/evaluator.py +2 -2
- paddlex/ops/__init__.py +8 -5
- paddlex/paddlex_cli.py +19 -13
- paddlex/repo_apis/Paddle3D_api/bev_fusion/model.py +2 -2
- paddlex/repo_apis/PaddleClas_api/cls/config.py +1 -1
- paddlex/repo_apis/PaddleClas_api/cls/model.py +1 -1
- paddlex/repo_apis/PaddleClas_api/cls/register.py +10 -0
- paddlex/repo_apis/PaddleClas_api/cls/runner.py +1 -1
- paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +1 -1
- paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +1 -1
- paddlex/repo_apis/PaddleDetection_api/object_det/config.py +1 -1
- paddlex/repo_apis/PaddleDetection_api/object_det/model.py +1 -1
- paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +25 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/register.py +30 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +1 -1
- paddlex/repo_apis/PaddleOCR_api/formula_rec/config.py +3 -3
- paddlex/repo_apis/PaddleOCR_api/formula_rec/model.py +5 -9
- paddlex/repo_apis/PaddleOCR_api/formula_rec/register.py +27 -0
- paddlex/repo_apis/PaddleOCR_api/formula_rec/runner.py +1 -1
- paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +1 -1
- paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +1 -1
- paddlex/repo_apis/PaddleOCR_api/text_det/model.py +1 -1
- paddlex/repo_apis/PaddleOCR_api/text_det/register.py +18 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +1 -1
- paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +3 -3
- paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +5 -9
- paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +18 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +1 -1
- paddlex/repo_apis/PaddleSeg_api/seg/model.py +1 -1
- paddlex/repo_apis/PaddleSeg_api/seg/runner.py +1 -1
- paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +3 -3
- paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +2 -2
- paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +4 -4
- paddlex/repo_apis/PaddleVideo_api/video_cls/config.py +1 -1
- paddlex/repo_apis/PaddleVideo_api/video_cls/model.py +1 -1
- paddlex/repo_apis/PaddleVideo_api/video_cls/runner.py +1 -1
- paddlex/repo_apis/PaddleVideo_api/video_det/config.py +1 -1
- paddlex/repo_apis/PaddleVideo_api/video_det/model.py +1 -1
- paddlex/repo_apis/PaddleVideo_api/video_det/runner.py +1 -1
- paddlex/repo_apis/base/config.py +1 -1
- paddlex/repo_manager/core.py +3 -3
- paddlex/repo_manager/meta.py +6 -2
- paddlex/repo_manager/repo.py +17 -16
- paddlex/utils/custom_device_list.py +26 -2
- paddlex/utils/deps.py +3 -3
- paddlex/utils/device.py +5 -13
- paddlex/utils/env.py +4 -0
- paddlex/utils/flags.py +11 -4
- paddlex/utils/fonts/__init__.py +34 -4
- paddlex/utils/misc.py +1 -1
- paddlex/utils/subclass_register.py +2 -2
- {paddlex-3.0.0rc1.dist-info → paddlex-3.0.2.dist-info}/METADATA +349 -208
- {paddlex-3.0.0rc1.dist-info → paddlex-3.0.2.dist-info}/RECORD +240 -211
- {paddlex-3.0.0rc1.dist-info → paddlex-3.0.2.dist-info}/WHEEL +1 -1
- {paddlex-3.0.0rc1.dist-info → paddlex-3.0.2.dist-info}/entry_points.txt +1 -0
- {paddlex-3.0.0rc1.dist-info/licenses → paddlex-3.0.2.dist-info}/LICENSE +0 -0
- {paddlex-3.0.0rc1.dist-info → paddlex-3.0.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,830 @@
|
|
1
|
+
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from functools import partial
|
16
|
+
from typing import List, Optional, Tuple, Type
|
17
|
+
|
18
|
+
import paddle
|
19
|
+
import paddle.nn as nn
|
20
|
+
import paddle.nn.functional as F
|
21
|
+
|
22
|
+
from ...common.vlm.transformers.model_outputs import CausalLMOutputWithPast
|
23
|
+
from .qwen2 import Qwen2Config, Qwen2ForCausalLM, Qwen2Model
|
24
|
+
|
25
|
+
|
26
|
+
class MLPBlock(paddle.nn.Layer):
|
27
|
+
def __init__(
|
28
|
+
self,
|
29
|
+
embedding_dim: int,
|
30
|
+
mlp_dim: int,
|
31
|
+
act: Type[paddle.nn.Layer] = paddle.nn.GELU,
|
32
|
+
) -> None:
|
33
|
+
super().__init__()
|
34
|
+
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
35
|
+
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
36
|
+
self.act = act()
|
37
|
+
|
38
|
+
def forward(self, x: paddle.Tensor) -> paddle.Tensor:
|
39
|
+
return self.lin2(self.act(self.lin1(x)))
|
40
|
+
|
41
|
+
|
42
|
+
class LayerNorm2d(paddle.nn.Layer):
|
43
|
+
def __init__(self, num_channels: int, epsilon: float = 1e-06) -> None:
|
44
|
+
super().__init__()
|
45
|
+
self.weight = paddle.base.framework.EagerParamBase.from_tensor(
|
46
|
+
tensor=paddle.ones(shape=num_channels)
|
47
|
+
)
|
48
|
+
self.bias = paddle.base.framework.EagerParamBase.from_tensor(
|
49
|
+
tensor=paddle.zeros(shape=num_channels)
|
50
|
+
)
|
51
|
+
self.epsilon = epsilon
|
52
|
+
|
53
|
+
def forward(self, x: paddle.Tensor) -> paddle.Tensor:
|
54
|
+
u = x.mean(axis=1, keepdim=True)
|
55
|
+
s = (x - u).pow(y=2).mean(axis=1, keepdim=True)
|
56
|
+
x = (x - u) / paddle.sqrt(x=s + self.epsilon)
|
57
|
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
58
|
+
return x
|
59
|
+
|
60
|
+
|
61
|
+
class ImageEncoderViT(paddle.nn.Layer):
|
62
|
+
def __init__(
|
63
|
+
self,
|
64
|
+
img_size: int = 1024,
|
65
|
+
patch_size: int = 16,
|
66
|
+
in_chans: int = 3,
|
67
|
+
embed_dim: int = 768,
|
68
|
+
depth: int = 12,
|
69
|
+
num_heads: int = 12,
|
70
|
+
mlp_ratio: float = 4.0,
|
71
|
+
out_chans: int = 256,
|
72
|
+
qkv_bias: bool = True,
|
73
|
+
norm_layer: Type[nn.Layer] = nn.LayerNorm,
|
74
|
+
act_layer: Type[nn.Layer] = nn.GELU,
|
75
|
+
use_abs_pos: bool = True,
|
76
|
+
use_rel_pos: bool = False,
|
77
|
+
rel_pos_zero_init: bool = True,
|
78
|
+
window_size: int = 0,
|
79
|
+
global_attn_indexes: Tuple[int, ...] = (),
|
80
|
+
) -> None:
|
81
|
+
"""
|
82
|
+
Args:
|
83
|
+
img_size (int): Input image size.
|
84
|
+
patch_size (int): Patch size.
|
85
|
+
in_chans (int): Number of input image channels.
|
86
|
+
embed_dim (int): Patch embedding dimension.
|
87
|
+
depth (int): Depth of ViT.
|
88
|
+
num_heads (int): Number of attention heads in each ViT block.
|
89
|
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
90
|
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
91
|
+
norm_layer (nn.Layer): Normalization layer.
|
92
|
+
act_layer (nn.Layer): Activation layer.
|
93
|
+
use_abs_pos (bool): If True, use absolute positional embeddings.
|
94
|
+
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
95
|
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
96
|
+
window_size (int): Window size for window attention blocks.
|
97
|
+
global_attn_indexes (list): Indexes for blocks using global attention.
|
98
|
+
"""
|
99
|
+
super().__init__()
|
100
|
+
self.img_size = img_size
|
101
|
+
|
102
|
+
self.patch_embed = PatchEmbed(
|
103
|
+
kernel_size=(patch_size, patch_size),
|
104
|
+
stride=(patch_size, patch_size),
|
105
|
+
in_chans=in_chans,
|
106
|
+
embed_dim=embed_dim,
|
107
|
+
)
|
108
|
+
|
109
|
+
self.pos_embed: Optional[paddle.base.framework.EagerParamBase.from_tensor] = (
|
110
|
+
None
|
111
|
+
)
|
112
|
+
if use_abs_pos:
|
113
|
+
self.pos_embed = paddle.base.framework.EagerParamBase.from_tensor(
|
114
|
+
tensor=paddle.zeros(
|
115
|
+
shape=[1, img_size // patch_size, img_size // patch_size, embed_dim]
|
116
|
+
)
|
117
|
+
)
|
118
|
+
|
119
|
+
self.blocks = paddle.nn.LayerList()
|
120
|
+
for i in range(depth):
|
121
|
+
block = Block(
|
122
|
+
dim=embed_dim,
|
123
|
+
num_heads=num_heads,
|
124
|
+
mlp_ratio=mlp_ratio,
|
125
|
+
qkv_bias=qkv_bias,
|
126
|
+
norm_layer=norm_layer,
|
127
|
+
act_layer=act_layer,
|
128
|
+
use_rel_pos=use_rel_pos,
|
129
|
+
rel_pos_zero_init=rel_pos_zero_init,
|
130
|
+
window_size=window_size if i not in global_attn_indexes else 0,
|
131
|
+
input_size=(img_size // patch_size, img_size // patch_size),
|
132
|
+
)
|
133
|
+
self.blocks.append(block)
|
134
|
+
|
135
|
+
self.neck = nn.Sequential(
|
136
|
+
nn.Conv2D(
|
137
|
+
embed_dim,
|
138
|
+
out_chans,
|
139
|
+
kernel_size=1,
|
140
|
+
bias_attr=False,
|
141
|
+
),
|
142
|
+
LayerNorm2d(out_chans),
|
143
|
+
nn.Conv2D(
|
144
|
+
out_chans,
|
145
|
+
out_chans,
|
146
|
+
kernel_size=3,
|
147
|
+
padding=1,
|
148
|
+
bias_attr=False,
|
149
|
+
),
|
150
|
+
LayerNorm2d(out_chans),
|
151
|
+
)
|
152
|
+
|
153
|
+
self.net_2 = nn.Conv2D(
|
154
|
+
256, 512, kernel_size=3, stride=2, padding=1, bias_attr=False
|
155
|
+
)
|
156
|
+
self.net_3 = nn.Conv2D(
|
157
|
+
512, 1024, kernel_size=3, stride=2, padding=1, bias_attr=False
|
158
|
+
)
|
159
|
+
|
160
|
+
def forward(self, x: paddle.Tensor) -> paddle.Tensor:
|
161
|
+
x = self.patch_embed(x)
|
162
|
+
if self.pos_embed is not None:
|
163
|
+
x = x + self.pos_embed
|
164
|
+
for blk in self.blocks:
|
165
|
+
x = blk(x)
|
166
|
+
x = self.neck(x.transpose([0, 3, 1, 2]))
|
167
|
+
x = self.net_2(x)
|
168
|
+
x = self.net_3(x)
|
169
|
+
return x
|
170
|
+
|
171
|
+
|
172
|
+
class Block(paddle.nn.Layer):
|
173
|
+
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
174
|
+
|
175
|
+
def __init__(
|
176
|
+
self,
|
177
|
+
dim: int,
|
178
|
+
num_heads: int,
|
179
|
+
mlp_ratio: float = 4.0,
|
180
|
+
qkv_bias: bool = True,
|
181
|
+
norm_layer: Type[nn.Layer] = nn.LayerNorm,
|
182
|
+
act_layer: Type[nn.Layer] = nn.GELU,
|
183
|
+
use_rel_pos: bool = False,
|
184
|
+
rel_pos_zero_init: bool = True,
|
185
|
+
window_size: int = 0,
|
186
|
+
input_size: Optional[Tuple[int, int]] = None,
|
187
|
+
) -> None:
|
188
|
+
"""
|
189
|
+
Args:
|
190
|
+
dim (int): Number of input channels.
|
191
|
+
num_heads (int): Number of attention heads in each ViT block.
|
192
|
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
193
|
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
194
|
+
norm_layer (nn.Layer): Normalization layer.
|
195
|
+
act_layer (nn.Layer): Activation layer.
|
196
|
+
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
197
|
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
198
|
+
window_size (int): Window size for window attention blocks. If it equals 0, then
|
199
|
+
use global attention.
|
200
|
+
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
201
|
+
positional parameter size.
|
202
|
+
"""
|
203
|
+
super().__init__()
|
204
|
+
self.norm1 = norm_layer(dim)
|
205
|
+
self.attn = Attention(
|
206
|
+
dim,
|
207
|
+
num_heads=num_heads,
|
208
|
+
qkv_bias=qkv_bias,
|
209
|
+
use_rel_pos=use_rel_pos,
|
210
|
+
rel_pos_zero_init=rel_pos_zero_init,
|
211
|
+
input_size=input_size if window_size == 0 else (window_size, window_size),
|
212
|
+
)
|
213
|
+
|
214
|
+
self.norm2 = norm_layer(dim)
|
215
|
+
self.mlp = MLPBlock(
|
216
|
+
embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer
|
217
|
+
)
|
218
|
+
|
219
|
+
self.window_size = window_size
|
220
|
+
|
221
|
+
def forward(self, x: paddle.Tensor) -> paddle.Tensor:
|
222
|
+
shortcut = x
|
223
|
+
x = self.norm1(x)
|
224
|
+
# Window partition
|
225
|
+
if self.window_size > 0:
|
226
|
+
H, W = x.shape[1], x.shape[2]
|
227
|
+
x, pad_hw = window_partition(x, self.window_size)
|
228
|
+
|
229
|
+
x = self.attn(x)
|
230
|
+
# Reverse window partition
|
231
|
+
if self.window_size > 0:
|
232
|
+
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
233
|
+
|
234
|
+
x = shortcut + x
|
235
|
+
x = x + self.mlp(self.norm2(x))
|
236
|
+
|
237
|
+
return x
|
238
|
+
|
239
|
+
|
240
|
+
class Attention(paddle.nn.Layer):
|
241
|
+
"""Multi-head Attention block with relative position embeddings."""
|
242
|
+
|
243
|
+
def __init__(
|
244
|
+
self,
|
245
|
+
dim: int,
|
246
|
+
num_heads: int = 8,
|
247
|
+
qkv_bias: bool = True,
|
248
|
+
use_rel_pos: bool = False,
|
249
|
+
rel_pos_zero_init: bool = True,
|
250
|
+
input_size: Optional[Tuple[int, int]] = None,
|
251
|
+
) -> None:
|
252
|
+
"""
|
253
|
+
Args:
|
254
|
+
dim (int): Number of input channels.
|
255
|
+
num_heads (int): Number of attention heads.
|
256
|
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
257
|
+
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
258
|
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
259
|
+
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
260
|
+
positional parameter size.
|
261
|
+
"""
|
262
|
+
super().__init__()
|
263
|
+
self.num_heads = num_heads
|
264
|
+
head_dim = dim // num_heads
|
265
|
+
self.scale = head_dim**-0.5
|
266
|
+
|
267
|
+
self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias)
|
268
|
+
self.proj = nn.Linear(dim, dim)
|
269
|
+
|
270
|
+
self.use_rel_pos = use_rel_pos
|
271
|
+
if self.use_rel_pos:
|
272
|
+
assert (
|
273
|
+
input_size is not None
|
274
|
+
), "Input size must be provided if using relative positional encoding."
|
275
|
+
self.rel_pos_h = paddle.base.framework.EagerParamBase.from_tensor(
|
276
|
+
tensor=paddle.zeros(shape=[2 * input_size[0] - 1, head_dim])
|
277
|
+
)
|
278
|
+
self.rel_pos_w = paddle.base.framework.EagerParamBase.from_tensor(
|
279
|
+
tensor=paddle.zeros(shape=[2 * input_size[1] - 1, head_dim])
|
280
|
+
)
|
281
|
+
|
282
|
+
def forward(self, x: paddle.Tensor) -> paddle.Tensor:
|
283
|
+
B, H, W, _ = tuple(x.shape)
|
284
|
+
qkv = (
|
285
|
+
self.qkv(x)
|
286
|
+
.reshape([B, H * W, 3, self.num_heads, -1])
|
287
|
+
.transpose([2, 0, 3, 1, 4])
|
288
|
+
)
|
289
|
+
q, k, v = qkv.reshape([3, B * self.num_heads, H * W, -1]).unbind(axis=0)
|
290
|
+
|
291
|
+
attn = (q * self.scale) @ k.transpose([0, 2, 1])
|
292
|
+
|
293
|
+
if self.use_rel_pos:
|
294
|
+
attn = add_decomposed_rel_pos(
|
295
|
+
attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)
|
296
|
+
)
|
297
|
+
|
298
|
+
attn = F.softmax(attn, axis=-1)
|
299
|
+
x = (
|
300
|
+
(attn @ v)
|
301
|
+
.reshape([B, self.num_heads, H, W, -1])
|
302
|
+
.transpose([0, 2, 3, 1, 4])
|
303
|
+
.reshape([B, H, W, -1])
|
304
|
+
)
|
305
|
+
x = self.proj(x)
|
306
|
+
|
307
|
+
return x
|
308
|
+
|
309
|
+
|
310
|
+
def window_partition(
|
311
|
+
x: paddle.Tensor, window_size: int
|
312
|
+
) -> Tuple[paddle.Tensor, Tuple[int, int]]:
|
313
|
+
"""
|
314
|
+
Partition into non-overlapping windows with padding if needed.
|
315
|
+
Args:
|
316
|
+
x (tensor): input tokens with [B, H, W, C].
|
317
|
+
window_size (int): window size.
|
318
|
+
|
319
|
+
Returns:
|
320
|
+
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
321
|
+
(Hp, Wp): padded height and width before partition
|
322
|
+
"""
|
323
|
+
B, H, W, C = tuple(x.shape)
|
324
|
+
|
325
|
+
pad_h = (window_size - H % window_size) % window_size
|
326
|
+
pad_w = (window_size - W % window_size) % window_size
|
327
|
+
if pad_h > 0 or pad_w > 0:
|
328
|
+
x = F.pad(x, pad=(0, pad_w, 0, pad_h), data_format="NHWC")
|
329
|
+
Hp, Wp = H + pad_h, W + pad_w
|
330
|
+
|
331
|
+
x = x.reshape(
|
332
|
+
[B, Hp // window_size, window_size, Wp // window_size, window_size, C]
|
333
|
+
)
|
334
|
+
windows = x.transpose([0, 1, 3, 2, 4, 5]).reshape([-1, window_size, window_size, C])
|
335
|
+
return windows, (Hp, Wp)
|
336
|
+
|
337
|
+
|
338
|
+
def window_unpartition(
|
339
|
+
windows: paddle.Tensor,
|
340
|
+
window_size: int,
|
341
|
+
pad_hw: Tuple[int, int],
|
342
|
+
hw: Tuple[int, int],
|
343
|
+
) -> paddle.Tensor:
|
344
|
+
"""
|
345
|
+
Window unpartition into original sequences and removing padding.
|
346
|
+
Args:
|
347
|
+
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
348
|
+
window_size (int): window size.
|
349
|
+
pad_hw (Tuple): padded height and width (Hp, Wp).
|
350
|
+
hw (Tuple): original height and width (H, W) before padding.
|
351
|
+
|
352
|
+
Returns:
|
353
|
+
x: unpartitioned sequences with [B, H, W, C].
|
354
|
+
"""
|
355
|
+
Hp, Wp = pad_hw
|
356
|
+
H, W = hw
|
357
|
+
B = tuple(windows.shape)[0] // (Hp * Wp // window_size // window_size)
|
358
|
+
x = windows.reshape(
|
359
|
+
[B, Hp // window_size, Wp // window_size, window_size, window_size, -1]
|
360
|
+
)
|
361
|
+
x = x.transpose([0, 1, 3, 2, 4, 5]).reshape([B, Hp, Wp, -1])
|
362
|
+
if Hp > H or Wp > W:
|
363
|
+
x = x[:, :H, :W, :]
|
364
|
+
return x
|
365
|
+
|
366
|
+
|
367
|
+
def get_rel_pos(q_size: int, k_size: int, rel_pos: paddle.Tensor) -> paddle.Tensor:
|
368
|
+
"""
|
369
|
+
Get relative positional embeddings according to the relative positions of
|
370
|
+
query and key sizes.
|
371
|
+
Args:
|
372
|
+
q_size (int): size of query q.
|
373
|
+
k_size (int): size of key k.
|
374
|
+
rel_pos (Tensor): relative position embeddings (L, C).
|
375
|
+
|
376
|
+
Returns:
|
377
|
+
Extracted positional embeddings according to relative positions.
|
378
|
+
"""
|
379
|
+
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
380
|
+
if tuple(rel_pos.shape)[0] != max_rel_dist:
|
381
|
+
rel_pos_resized = paddle.nn.functional.interpolate(
|
382
|
+
rel_pos.reshape([1, tuple(rel_pos.shape)[0], -1]).transpose([0, 2, 1]),
|
383
|
+
size=max_rel_dist,
|
384
|
+
mode="linear",
|
385
|
+
)
|
386
|
+
rel_pos_resized = rel_pos_resized.reshape([-1, max_rel_dist]).transpose([1, 0])
|
387
|
+
else:
|
388
|
+
rel_pos_resized = rel_pos
|
389
|
+
|
390
|
+
q_coords = paddle.arange(end=q_size)[:, None] * max(k_size / q_size, 1.0)
|
391
|
+
k_coords = paddle.arange(end=k_size)[None, :] * max(q_size / k_size, 1.0)
|
392
|
+
relative_coords = q_coords - k_coords + (k_size - 1) * max(q_size / k_size, 1.0)
|
393
|
+
return rel_pos_resized[relative_coords.astype(dtype="int64")]
|
394
|
+
|
395
|
+
|
396
|
+
def add_decomposed_rel_pos(
|
397
|
+
attn: paddle.Tensor,
|
398
|
+
q: paddle.Tensor,
|
399
|
+
rel_pos_h: paddle.Tensor,
|
400
|
+
rel_pos_w: paddle.Tensor,
|
401
|
+
q_size: Tuple[int, int],
|
402
|
+
k_size: Tuple[int, int],
|
403
|
+
) -> paddle.Tensor:
|
404
|
+
"""
|
405
|
+
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
|
406
|
+
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
|
407
|
+
Args:
|
408
|
+
attn (Tensor): attention map.
|
409
|
+
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
|
410
|
+
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
|
411
|
+
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
|
412
|
+
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
|
413
|
+
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
|
414
|
+
|
415
|
+
Returns:
|
416
|
+
attn (Tensor): attention map with added relative positional embeddings.
|
417
|
+
"""
|
418
|
+
q_h, q_w = q_size
|
419
|
+
k_h, k_w = k_size
|
420
|
+
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
|
421
|
+
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
|
422
|
+
|
423
|
+
B, _, dim = tuple(q.shape)
|
424
|
+
r_q = q.reshape([B, q_h, q_w, dim])
|
425
|
+
rel_h = paddle.einsum("bhwc,hkc->bhwk", r_q, Rh)
|
426
|
+
rel_w = paddle.einsum("bhwc,wkc->bhwk", r_q, Rw)
|
427
|
+
|
428
|
+
attn = (
|
429
|
+
attn.reshape([B, q_h, q_w, k_h, k_w])
|
430
|
+
+ rel_h[:, :, :, :, None]
|
431
|
+
+ rel_w[:, :, :, None, :]
|
432
|
+
).reshape([B, q_h * q_w, k_h * k_w])
|
433
|
+
|
434
|
+
return attn
|
435
|
+
|
436
|
+
|
437
|
+
class PatchEmbed(paddle.nn.Layer):
|
438
|
+
"""
|
439
|
+
Image to Patch Embedding.
|
440
|
+
"""
|
441
|
+
|
442
|
+
def __init__(
|
443
|
+
self,
|
444
|
+
kernel_size: Tuple[int, int] = (16, 16),
|
445
|
+
stride: Tuple[int, int] = (16, 16),
|
446
|
+
padding: Tuple[int, int] = (0, 0),
|
447
|
+
in_chans: int = 3,
|
448
|
+
embed_dim: int = 768,
|
449
|
+
) -> None:
|
450
|
+
"""
|
451
|
+
Args:
|
452
|
+
kernel_size (Tuple): kernel size of the projection layer.
|
453
|
+
stride (Tuple): stride of the projection layer.
|
454
|
+
padding (Tuple): padding size of the projection layer.
|
455
|
+
in_chans (int): Number of input image channels.
|
456
|
+
embed_dim (int): Patch embedding dimension.
|
457
|
+
"""
|
458
|
+
super().__init__()
|
459
|
+
self.proj = nn.Conv2D(
|
460
|
+
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
461
|
+
)
|
462
|
+
|
463
|
+
def forward(self, x: paddle.Tensor) -> paddle.Tensor:
|
464
|
+
x = self.proj(x)
|
465
|
+
# B C H W -> B H W C
|
466
|
+
x = x.transpose([0, 2, 3, 1])
|
467
|
+
return x
|
468
|
+
|
469
|
+
|
470
|
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
471
|
+
DEFAULT_IMAGE_PATCH_TOKEN = "<imgpad>"
|
472
|
+
DEFAULT_IM_START_TOKEN = "<img>"
|
473
|
+
DEFAULT_IM_END_TOKEN = "</img>"
|
474
|
+
|
475
|
+
|
476
|
+
class Qwen2LMHead(nn.Layer):
|
477
|
+
def __init__(
|
478
|
+
self,
|
479
|
+
config,
|
480
|
+
embedding_weights=None,
|
481
|
+
transpose_y=False,
|
482
|
+
tensor_parallel_output=1,
|
483
|
+
):
|
484
|
+
super(Qwen2LMHead, self).__init__()
|
485
|
+
self.config = config
|
486
|
+
vocab_size = config.vocab_size
|
487
|
+
|
488
|
+
self.transpose_y = transpose_y
|
489
|
+
if transpose_y:
|
490
|
+
# only for weight from embedding_weights
|
491
|
+
if embedding_weights is not None:
|
492
|
+
self.weight = embedding_weights
|
493
|
+
else:
|
494
|
+
self.weight = self.create_parameter(
|
495
|
+
shape=[vocab_size, config.hidden_size],
|
496
|
+
dtype=paddle.get_default_dtype(),
|
497
|
+
)
|
498
|
+
else:
|
499
|
+
# for weight from model init
|
500
|
+
self.weight = self.create_parameter(
|
501
|
+
shape=[config.hidden_size, vocab_size],
|
502
|
+
dtype=paddle.get_default_dtype(),
|
503
|
+
)
|
504
|
+
|
505
|
+
def forward(self, hidden_states, tensor_parallel_output=1):
|
506
|
+
logits = paddle.matmul(hidden_states, self.weight, transpose_y=self.transpose_y)
|
507
|
+
return logits
|
508
|
+
|
509
|
+
|
510
|
+
class GOTConfig(Qwen2Config):
|
511
|
+
model_type = "GOT"
|
512
|
+
|
513
|
+
|
514
|
+
class GOTQwenModel(Qwen2Model):
|
515
|
+
config_class = GOTConfig
|
516
|
+
|
517
|
+
def __init__(self, config: Qwen2Config):
|
518
|
+
super(GOTQwenModel, self).__init__(config)
|
519
|
+
self.vision_tower_high = ImageEncoderViT(
|
520
|
+
depth=12,
|
521
|
+
embed_dim=768,
|
522
|
+
img_size=1024,
|
523
|
+
mlp_ratio=4,
|
524
|
+
norm_layer=partial(paddle.nn.LayerNorm, epsilon=1e-6),
|
525
|
+
num_heads=12,
|
526
|
+
patch_size=16,
|
527
|
+
qkv_bias=True,
|
528
|
+
use_rel_pos=True,
|
529
|
+
global_attn_indexes=[2, 5, 8, 11],
|
530
|
+
window_size=14,
|
531
|
+
out_chans=256,
|
532
|
+
)
|
533
|
+
self.mm_projector_vary = nn.Linear(1024, 1024)
|
534
|
+
|
535
|
+
def forward(
|
536
|
+
self,
|
537
|
+
input_ids: paddle.Tensor = None,
|
538
|
+
attention_mask: Optional[paddle.Tensor] = None,
|
539
|
+
position_ids: Optional[paddle.Tensor] = None,
|
540
|
+
past_key_values: Optional[List[paddle.Tensor]] = None,
|
541
|
+
inputs_embeds: Optional[paddle.Tensor] = None,
|
542
|
+
use_cache: Optional[bool] = None,
|
543
|
+
output_attentions: Optional[bool] = None,
|
544
|
+
output_hidden_states: Optional[bool] = None,
|
545
|
+
images: Optional[paddle.Tensor] = None,
|
546
|
+
return_dict: Optional[bool] = None,
|
547
|
+
):
|
548
|
+
# HACK: replace back original embeddings for LLaVA pretraining
|
549
|
+
orig_embeds_params = getattr(self, "orig_embeds_params", None)
|
550
|
+
if orig_embeds_params is not None:
|
551
|
+
with paddle.no_grad():
|
552
|
+
self.get_input_embeddings().weight[: -self.num_new_tokens] = (
|
553
|
+
orig_embeds_params[: -self.num_new_tokens].data
|
554
|
+
)
|
555
|
+
|
556
|
+
if inputs_embeds is None:
|
557
|
+
inputs_embeds = self.embed_tokens(input_ids)
|
558
|
+
|
559
|
+
vision_tower_high = getattr(self, "vision_tower_high", None)
|
560
|
+
|
561
|
+
if (
|
562
|
+
vision_tower_high is not None
|
563
|
+
and (input_ids.shape[1] != 1 or self.training)
|
564
|
+
and images is not None
|
565
|
+
):
|
566
|
+
use_im_start_end = getattr(self.config, "use_im_start_end", -1)
|
567
|
+
|
568
|
+
im_patch_token = getattr(self.config, "im_patch_token", -1)
|
569
|
+
im_start_token = getattr(self.config, "im_start_token", -1)
|
570
|
+
im_end_token = getattr(self.config, "im_end_token", -1)
|
571
|
+
|
572
|
+
im_patch_token = 151859
|
573
|
+
im_start_token = 151857
|
574
|
+
im_end_token = 151858
|
575
|
+
|
576
|
+
image_features = []
|
577
|
+
|
578
|
+
for image in images:
|
579
|
+
if self.training:
|
580
|
+
image = image[1]
|
581
|
+
P, C, H, W = image.shape
|
582
|
+
if P == 1:
|
583
|
+
with paddle.set_grad_enabled(False):
|
584
|
+
cnn_feature = vision_tower_high(image)
|
585
|
+
cnn_feature = cnn_feature.flatten(2).transpose(
|
586
|
+
[0, 2, 1]
|
587
|
+
) # 256*1024
|
588
|
+
image_feature = self.mm_projector_vary(cnn_feature)
|
589
|
+
image_features.append(image_feature)
|
590
|
+
|
591
|
+
else:
|
592
|
+
image_patches = paddle.unbind(image)
|
593
|
+
image_patches_features = []
|
594
|
+
for image_patch in image_patches:
|
595
|
+
image_p = paddle.stack([image_patch])
|
596
|
+
with paddle.set_grad_enabled(False):
|
597
|
+
cnn_feature_p = vision_tower_high(image_p)
|
598
|
+
cnn_feature_p = cnn_feature_p.flatten(2).transpose(
|
599
|
+
[0, 2, 1]
|
600
|
+
)
|
601
|
+
image_feature_p = self.mm_projector_vary(cnn_feature_p)
|
602
|
+
image_patches_features.append(image_feature_p)
|
603
|
+
image_feature = paddle.concat(image_patches_features, axis=1)
|
604
|
+
image_features.append(image_feature)
|
605
|
+
|
606
|
+
dummy_image_features_2 = paddle.zeros(
|
607
|
+
[256, 1024], dtype=inputs_embeds.dtype
|
608
|
+
)
|
609
|
+
dummy_image_features = dummy_image_features_2
|
610
|
+
use_im_start_end = True
|
611
|
+
new_input_embeds = []
|
612
|
+
for cur_input_ids, cur_input_embeds, cur_image_features in zip(
|
613
|
+
input_ids, inputs_embeds, image_features
|
614
|
+
):
|
615
|
+
if (cur_input_ids == im_patch_token).sum() == 0:
|
616
|
+
# multimodal LLM, but the current sample is not multimodal
|
617
|
+
cur_input_embeds = (
|
618
|
+
cur_input_embeds + (0.0 * dummy_image_features).sum()
|
619
|
+
)
|
620
|
+
new_input_embeds.append(cur_input_embeds)
|
621
|
+
continue
|
622
|
+
|
623
|
+
if use_im_start_end:
|
624
|
+
if (cur_input_ids == im_start_token).sum() != (
|
625
|
+
cur_input_ids == im_end_token
|
626
|
+
).sum():
|
627
|
+
raise ValueError(
|
628
|
+
"The number of image start tokens and image end tokens should be the same."
|
629
|
+
)
|
630
|
+
|
631
|
+
image_start_tokens = paddle.where(cur_input_ids == im_start_token)[
|
632
|
+
0
|
633
|
+
]
|
634
|
+
for image_start_token_pos, per_cur_image_features in zip(
|
635
|
+
image_start_tokens, cur_image_features
|
636
|
+
):
|
637
|
+
num_patches = per_cur_image_features.shape[0]
|
638
|
+
|
639
|
+
if (
|
640
|
+
cur_input_ids[image_start_token_pos + num_patches + 1]
|
641
|
+
!= im_end_token
|
642
|
+
):
|
643
|
+
raise ValueError(
|
644
|
+
"The image end token should follow the image start token."
|
645
|
+
)
|
646
|
+
|
647
|
+
cur_input_embeds = paddle.concat(
|
648
|
+
(
|
649
|
+
cur_input_embeds[: image_start_token_pos + 1],
|
650
|
+
per_cur_image_features,
|
651
|
+
cur_input_embeds[
|
652
|
+
image_start_token_pos + num_patches + 1 :
|
653
|
+
],
|
654
|
+
),
|
655
|
+
axis=0,
|
656
|
+
)
|
657
|
+
|
658
|
+
new_input_embeds.append(cur_input_embeds)
|
659
|
+
else:
|
660
|
+
raise NotImplementedError
|
661
|
+
|
662
|
+
inputs_embeds = paddle.stack(new_input_embeds, axis=0)
|
663
|
+
|
664
|
+
return super().forward(
|
665
|
+
input_ids=None,
|
666
|
+
attention_mask=attention_mask,
|
667
|
+
past_key_values=past_key_values,
|
668
|
+
inputs_embeds=inputs_embeds,
|
669
|
+
use_cache=use_cache,
|
670
|
+
position_ids=position_ids,
|
671
|
+
output_attentions=output_attentions,
|
672
|
+
output_hidden_states=output_hidden_states,
|
673
|
+
return_dict=return_dict,
|
674
|
+
)
|
675
|
+
|
676
|
+
|
677
|
+
class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
678
|
+
config_class = GOTConfig
|
679
|
+
|
680
|
+
def __init__(self, config):
|
681
|
+
super(Qwen2ForCausalLM, self).__init__(config)
|
682
|
+
self.qwen2 = GOTQwenModel(config)
|
683
|
+
|
684
|
+
self.vocab_size = config.vocab_size
|
685
|
+
|
686
|
+
if config.tie_word_embeddings:
|
687
|
+
self.lm_head = Qwen2LMHead(
|
688
|
+
config,
|
689
|
+
embedding_weights=self.qwen2.embed_tokens.weight,
|
690
|
+
transpose_y=True,
|
691
|
+
)
|
692
|
+
self.tie_weights()
|
693
|
+
else:
|
694
|
+
self.lm_head = Qwen2LMHead(config)
|
695
|
+
|
696
|
+
self.eval()
|
697
|
+
|
698
|
+
def get_model(self):
|
699
|
+
return self.qwen2
|
700
|
+
|
701
|
+
def forward(
|
702
|
+
self,
|
703
|
+
input_ids: paddle.Tensor = None,
|
704
|
+
attention_mask: Optional[paddle.Tensor] = None,
|
705
|
+
position_ids: Optional[paddle.Tensor] = None,
|
706
|
+
past_key_values: Optional[List[paddle.Tensor]] = None,
|
707
|
+
inputs_embeds: Optional[paddle.Tensor] = None,
|
708
|
+
labels: Optional[paddle.Tensor] = None,
|
709
|
+
use_cache: Optional[bool] = None,
|
710
|
+
output_attentions: Optional[bool] = None,
|
711
|
+
output_hidden_states: Optional[bool] = None,
|
712
|
+
images: Optional[paddle.Tensor] = None,
|
713
|
+
return_dict: Optional[bool] = None,
|
714
|
+
):
|
715
|
+
output_attentions = (
|
716
|
+
output_attentions
|
717
|
+
if output_attentions is not None
|
718
|
+
else self.config.output_attentions
|
719
|
+
)
|
720
|
+
output_hidden_states = (
|
721
|
+
output_hidden_states
|
722
|
+
if output_hidden_states is not None
|
723
|
+
else self.config.output_hidden_states
|
724
|
+
)
|
725
|
+
return_dict = (
|
726
|
+
return_dict if return_dict is not None else self.config.use_return_dict
|
727
|
+
)
|
728
|
+
|
729
|
+
outputs = self.qwen2(
|
730
|
+
input_ids=input_ids,
|
731
|
+
past_key_values=past_key_values,
|
732
|
+
attention_mask=attention_mask,
|
733
|
+
position_ids=position_ids,
|
734
|
+
inputs_embeds=inputs_embeds,
|
735
|
+
use_cache=use_cache,
|
736
|
+
output_attentions=output_attentions,
|
737
|
+
output_hidden_states=output_hidden_states,
|
738
|
+
images=images,
|
739
|
+
return_dict=return_dict,
|
740
|
+
)
|
741
|
+
|
742
|
+
hidden_states = outputs[0]
|
743
|
+
logits = self.lm_head(hidden_states)
|
744
|
+
logits = logits.astype(dtype="float32")
|
745
|
+
|
746
|
+
loss = None
|
747
|
+
if labels is not None:
|
748
|
+
# Shift so that tokens < n predict n
|
749
|
+
shift_logits = logits[..., :-1, :]
|
750
|
+
shift_labels = labels[..., 1:]
|
751
|
+
loss_fct = nn.CrossEntropyLoss(reduction="sum")
|
752
|
+
shift_logits = shift_logits.reshape([-1, self.config.vocab_size])
|
753
|
+
shift_labels = shift_labels.reshape([-1])
|
754
|
+
|
755
|
+
loss = loss_fct(shift_logits, shift_labels)
|
756
|
+
label_sum = paddle.sum(shift_labels != -100)
|
757
|
+
loss = loss / label_sum
|
758
|
+
|
759
|
+
if not return_dict:
|
760
|
+
output = (logits,) + outputs[1:]
|
761
|
+
return (loss,) + output if loss is not None else output
|
762
|
+
|
763
|
+
return CausalLMOutputWithPast(
|
764
|
+
loss=loss,
|
765
|
+
logits=logits,
|
766
|
+
past_key_values=outputs.past_key_values,
|
767
|
+
hidden_states=outputs.hidden_states,
|
768
|
+
attentions=outputs.attentions,
|
769
|
+
)
|
770
|
+
|
771
|
+
def prepare_inputs_for_generation(
|
772
|
+
self,
|
773
|
+
input_ids,
|
774
|
+
past_key_values=None,
|
775
|
+
attention_mask=None,
|
776
|
+
inputs_embeds=None,
|
777
|
+
**kwargs
|
778
|
+
):
|
779
|
+
batch_size, seq_length = input_ids.shape
|
780
|
+
attention_mask = paddle.ones((batch_size, seq_length), dtype=paddle.bool)
|
781
|
+
|
782
|
+
# Omit tokens covered by past_key_values
|
783
|
+
if past_key_values is not None:
|
784
|
+
past_length = past_key_values[0][0].shape[1]
|
785
|
+
if past_length < input_ids.shape[1]:
|
786
|
+
input_ids = input_ids[:, past_length:]
|
787
|
+
|
788
|
+
position_ids = kwargs.get("position_ids", None)
|
789
|
+
if attention_mask is not None and position_ids is None:
|
790
|
+
# create position_ids on the fly for batch generation
|
791
|
+
position_ids = attention_mask.astype(dtype="int64").cumsum(-1) - 1
|
792
|
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
793
|
+
if past_key_values:
|
794
|
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
795
|
+
|
796
|
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
797
|
+
if inputs_embeds is not None and past_key_values is None:
|
798
|
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
799
|
+
else:
|
800
|
+
model_inputs = {"input_ids": input_ids}
|
801
|
+
|
802
|
+
model_inputs.update(
|
803
|
+
{
|
804
|
+
"position_ids": position_ids,
|
805
|
+
"past_key_values": past_key_values,
|
806
|
+
"use_cache": kwargs.get("use_cache"),
|
807
|
+
"attention_mask": attention_mask,
|
808
|
+
"images": kwargs.get("images", None),
|
809
|
+
}
|
810
|
+
)
|
811
|
+
return model_inputs
|
812
|
+
|
813
|
+
|
814
|
+
class PPChart2TableInference(GOTQwenForCausalLM):
|
815
|
+
|
816
|
+
def generate(self, inputs, **kwargs):
|
817
|
+
max_new_tokens = kwargs.get("max_new_tokens", 1024)
|
818
|
+
no_repeat_ngram_size = kwargs.get("no_repeat_ngram_size", 20)
|
819
|
+
|
820
|
+
with paddle.no_grad():
|
821
|
+
generated_ids = super().generate(
|
822
|
+
inputs["input_ids"],
|
823
|
+
images=inputs["images"],
|
824
|
+
do_sample=False,
|
825
|
+
num_beams=1,
|
826
|
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
827
|
+
max_new_tokens=max_new_tokens,
|
828
|
+
)
|
829
|
+
|
830
|
+
return generated_ids
|