paddlex 3.0.0b2__py3-none-any.whl → 3.0.0rc1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1211) hide show
  1. paddlex/.version +1 -1
  2. paddlex/__init__.py +17 -33
  3. paddlex/__main__.py +4 -5
  4. paddlex/configs/modules/3d_bev_detection/BEVFusion.yaml +38 -0
  5. paddlex/configs/modules/doc_vlm/PP-DocBee-2B.yaml +14 -0
  6. paddlex/configs/modules/doc_vlm/PP-DocBee-7B.yaml +14 -0
  7. paddlex/configs/modules/face_feature/MobileFaceNet.yaml +41 -0
  8. paddlex/configs/modules/face_feature/ResNet50_face.yaml +41 -0
  9. paddlex/configs/modules/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
  10. paddlex/configs/modules/formula_recognition/PP-FormulaNet-L.yaml +40 -0
  11. paddlex/configs/modules/formula_recognition/PP-FormulaNet-S.yaml +40 -0
  12. paddlex/configs/modules/formula_recognition/UniMERNet.yaml +40 -0
  13. paddlex/configs/modules/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
  14. paddlex/configs/modules/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
  15. paddlex/configs/modules/image_classification/ConvNeXt_large_384.yaml +41 -0
  16. paddlex/configs/modules/keypoint_detection/PP-TinyPose_128x96.yaml +40 -0
  17. paddlex/configs/modules/keypoint_detection/PP-TinyPose_256x192.yaml +40 -0
  18. paddlex/configs/modules/layout_detection/PP-DocLayout-L.yaml +40 -0
  19. paddlex/configs/modules/layout_detection/PP-DocLayout-M.yaml +40 -0
  20. paddlex/configs/modules/layout_detection/PP-DocLayout-S.yaml +40 -0
  21. paddlex/configs/modules/multilingual_speech_recognition/whisper_base.yaml +12 -0
  22. paddlex/configs/modules/multilingual_speech_recognition/whisper_large.yaml +12 -0
  23. paddlex/configs/modules/multilingual_speech_recognition/whisper_medium.yaml +12 -0
  24. paddlex/configs/modules/multilingual_speech_recognition/whisper_small.yaml +12 -0
  25. paddlex/configs/modules/multilingual_speech_recognition/whisper_tiny.yaml +12 -0
  26. paddlex/configs/modules/object_detection/Co-DINO-R50.yaml +40 -0
  27. paddlex/configs/modules/object_detection/Co-DINO-Swin-L.yaml +40 -0
  28. paddlex/configs/modules/object_detection/Co-Deformable-DETR-R50.yaml +40 -0
  29. paddlex/configs/modules/object_detection/Co-Deformable-DETR-Swin-T.yaml +40 -0
  30. paddlex/configs/modules/object_detection/YOLOX-X.yaml +40 -0
  31. paddlex/configs/modules/open_vocabulary_detection/GroundingDINO-T.yaml +13 -0
  32. paddlex/configs/modules/open_vocabulary_detection/YOLO-Worldv2-L.yaml +13 -0
  33. paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_box.yaml +17 -0
  34. paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_point.yaml +15 -0
  35. paddlex/configs/modules/rotated_object_detection/PP-YOLOE-R-L.yaml +40 -0
  36. paddlex/configs/modules/semantic_segmentation/MaskFormer_small.yaml +42 -0
  37. paddlex/configs/modules/semantic_segmentation/MaskFormer_tiny.yaml +42 -0
  38. paddlex/configs/modules/semantic_segmentation/SeaFormer_base.yaml +40 -0
  39. paddlex/configs/modules/semantic_segmentation/SeaFormer_large.yaml +40 -0
  40. paddlex/configs/modules/semantic_segmentation/SeaFormer_small.yaml +40 -0
  41. paddlex/configs/modules/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
  42. paddlex/configs/modules/table_cells_detection/RT-DETR-L_wired_table_cell_det.yaml +40 -0
  43. paddlex/configs/modules/table_cells_detection/RT-DETR-L_wireless_table_cell_det.yaml +40 -0
  44. paddlex/configs/modules/table_classification/PP-LCNet_x1_0_table_cls.yaml +41 -0
  45. paddlex/configs/modules/table_structure_recognition/SLANeXt_wired.yaml +39 -0
  46. paddlex/configs/modules/table_structure_recognition/SLANeXt_wireless.yaml +39 -0
  47. paddlex/configs/modules/text_detection/PP-OCRv3_mobile_det.yaml +40 -0
  48. paddlex/configs/modules/text_detection/PP-OCRv3_server_det.yaml +40 -0
  49. paddlex/configs/modules/text_recognition/PP-OCRv3_mobile_rec.yaml +39 -0
  50. paddlex/configs/modules/text_recognition/PP-OCRv4_server_rec_doc.yaml +39 -0
  51. paddlex/configs/modules/text_recognition/arabic_PP-OCRv3_mobile_rec.yaml +39 -0
  52. paddlex/configs/modules/text_recognition/chinese_cht_PP-OCRv3_mobile_rec.yaml +39 -0
  53. paddlex/configs/modules/text_recognition/cyrillic_PP-OCRv3_mobile_rec.yaml +39 -0
  54. paddlex/configs/modules/text_recognition/devanagari_PP-OCRv3_mobile_rec.yaml +39 -0
  55. paddlex/configs/modules/text_recognition/en_PP-OCRv3_mobile_rec.yaml +39 -0
  56. paddlex/configs/modules/text_recognition/en_PP-OCRv4_mobile_rec.yaml +39 -0
  57. paddlex/configs/modules/text_recognition/japan_PP-OCRv3_mobile_rec.yaml +39 -0
  58. paddlex/configs/modules/text_recognition/ka_PP-OCRv3_mobile_rec.yaml +39 -0
  59. paddlex/configs/modules/text_recognition/korean_PP-OCRv3_mobile_rec.yaml +39 -0
  60. paddlex/configs/modules/text_recognition/latin_PP-OCRv3_mobile_rec.yaml +39 -0
  61. paddlex/configs/modules/text_recognition/ta_PP-OCRv3_mobile_rec.yaml +39 -0
  62. paddlex/configs/modules/text_recognition/te_PP-OCRv3_mobile_rec.yaml +39 -0
  63. paddlex/configs/modules/textline_orientation/PP-LCNet_x0_25_textline_ori.yaml +41 -0
  64. paddlex/configs/modules/video_classification/PP-TSM-R50_8frames_uniform.yaml +42 -0
  65. paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_16frames_uniform.yaml +42 -0
  66. paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_8frames_uniform.yaml +42 -0
  67. paddlex/configs/modules/video_detection/YOWO.yaml +40 -0
  68. paddlex/configs/pipelines/3d_bev_detection.yaml +9 -0
  69. paddlex/configs/pipelines/OCR.yaml +44 -0
  70. paddlex/configs/pipelines/PP-ChatOCRv3-doc.yaml +149 -0
  71. paddlex/configs/pipelines/PP-ChatOCRv4-doc.yaml +184 -0
  72. paddlex/configs/pipelines/PP-ShiTuV2.yaml +18 -0
  73. paddlex/configs/pipelines/PP-StructureV3.yaml +226 -0
  74. paddlex/configs/pipelines/anomaly_detection.yaml +8 -0
  75. paddlex/configs/pipelines/doc_preprocessor.yaml +15 -0
  76. paddlex/configs/pipelines/doc_understanding.yaml +9 -0
  77. paddlex/configs/pipelines/face_recognition.yaml +18 -0
  78. paddlex/configs/pipelines/formula_recognition.yaml +39 -0
  79. paddlex/configs/pipelines/human_keypoint_detection.yaml +17 -0
  80. paddlex/configs/pipelines/image_classification.yaml +10 -0
  81. paddlex/configs/pipelines/image_multilabel_classification.yaml +9 -0
  82. paddlex/configs/pipelines/instance_segmentation.yaml +10 -0
  83. paddlex/configs/pipelines/layout_parsing.yaml +101 -0
  84. paddlex/configs/pipelines/multilingual_speech_recognition.yaml +9 -0
  85. paddlex/configs/pipelines/object_detection.yaml +10 -0
  86. paddlex/configs/pipelines/open_vocabulary_detection.yaml +12 -0
  87. paddlex/configs/pipelines/open_vocabulary_segmentation.yaml +13 -0
  88. paddlex/configs/pipelines/pedestrian_attribute_recognition.yaml +15 -0
  89. paddlex/configs/pipelines/rotated_object_detection.yaml +10 -0
  90. paddlex/configs/pipelines/seal_recognition.yaml +51 -0
  91. paddlex/configs/pipelines/semantic_segmentation.yaml +10 -0
  92. paddlex/configs/pipelines/small_object_detection.yaml +10 -0
  93. paddlex/configs/pipelines/table_recognition.yaml +56 -0
  94. paddlex/configs/pipelines/table_recognition_v2.yaml +76 -0
  95. paddlex/configs/pipelines/ts_anomaly_detection.yaml +8 -0
  96. paddlex/configs/pipelines/ts_classification.yaml +8 -0
  97. paddlex/configs/pipelines/ts_forecast.yaml +8 -0
  98. paddlex/configs/pipelines/vehicle_attribute_recognition.yaml +15 -0
  99. paddlex/configs/pipelines/video_classification.yaml +9 -0
  100. paddlex/configs/pipelines/video_detection.yaml +10 -0
  101. paddlex/constants.py +17 -0
  102. paddlex/engine.py +8 -6
  103. paddlex/hpip_links.html +31 -0
  104. paddlex/inference/__init__.py +4 -2
  105. paddlex/inference/common/__init__.py +13 -0
  106. paddlex/inference/common/batch_sampler/__init__.py +21 -0
  107. paddlex/inference/common/batch_sampler/audio_batch_sampler.py +83 -0
  108. paddlex/inference/common/batch_sampler/base_batch_sampler.py +94 -0
  109. paddlex/inference/common/batch_sampler/det_3d_batch_sampler.py +144 -0
  110. paddlex/inference/common/batch_sampler/doc_vlm_batch_sampler.py +64 -0
  111. paddlex/inference/common/batch_sampler/image_batch_sampler.py +112 -0
  112. paddlex/inference/common/batch_sampler/ts_batch_sampler.py +109 -0
  113. paddlex/inference/common/batch_sampler/video_batch_sampler.py +74 -0
  114. paddlex/inference/common/reader/__init__.py +19 -0
  115. paddlex/inference/common/reader/audio_reader.py +46 -0
  116. paddlex/inference/common/reader/det_3d_reader.py +241 -0
  117. paddlex/inference/common/reader/image_reader.py +73 -0
  118. paddlex/inference/common/reader/ts_reader.py +46 -0
  119. paddlex/inference/common/reader/video_reader.py +42 -0
  120. paddlex/inference/common/result/__init__.py +29 -0
  121. paddlex/inference/common/result/base_cv_result.py +41 -0
  122. paddlex/inference/common/result/base_result.py +72 -0
  123. paddlex/inference/common/result/base_ts_result.py +41 -0
  124. paddlex/inference/common/result/base_video_result.py +36 -0
  125. paddlex/inference/common/result/mixin.py +702 -0
  126. paddlex/inference/models/__init__.py +55 -75
  127. paddlex/inference/models/anomaly_detection/__init__.py +15 -0
  128. paddlex/inference/models/anomaly_detection/predictor.py +135 -0
  129. paddlex/inference/models/anomaly_detection/processors.py +53 -0
  130. paddlex/inference/models/anomaly_detection/result.py +71 -0
  131. paddlex/inference/models/base/__init__.py +2 -3
  132. paddlex/inference/models/base/predictor/__init__.py +15 -0
  133. paddlex/inference/models/base/predictor/base_predictor.py +420 -0
  134. paddlex/inference/models/common/__init__.py +26 -0
  135. paddlex/inference/models/common/static_infer.py +850 -0
  136. paddlex/inference/models/common/tokenizer/__init__.py +19 -0
  137. paddlex/inference/models/common/tokenizer/bert_tokenizer.py +655 -0
  138. paddlex/inference/models/common/tokenizer/clip_tokenizer.py +609 -0
  139. paddlex/inference/models/common/tokenizer/gpt_tokenizer.py +453 -0
  140. paddlex/inference/models/common/tokenizer/qwen2_tokenizer.py +432 -0
  141. paddlex/inference/models/common/tokenizer/tokenizer_utils.py +2149 -0
  142. paddlex/inference/models/common/tokenizer/tokenizer_utils_base.py +3720 -0
  143. paddlex/inference/models/common/tokenizer/utils.py +66 -0
  144. paddlex/inference/models/common/tokenizer/vocab.py +647 -0
  145. paddlex/inference/models/common/ts/__init__.py +15 -0
  146. paddlex/inference/models/common/ts/funcs.py +540 -0
  147. paddlex/inference/models/common/ts/processors.py +322 -0
  148. paddlex/inference/models/common/vision/__init__.py +23 -0
  149. paddlex/inference/models/common/vision/funcs.py +98 -0
  150. paddlex/inference/models/common/vision/processors.py +285 -0
  151. paddlex/inference/models/common/vlm/__init__.py +13 -0
  152. paddlex/inference/models/common/vlm/activations.py +189 -0
  153. paddlex/inference/models/common/vlm/bert_padding.py +127 -0
  154. paddlex/inference/models/common/vlm/distributed.py +229 -0
  155. paddlex/inference/models/common/vlm/flash_attn_utils.py +119 -0
  156. paddlex/inference/models/common/vlm/generation/__init__.py +34 -0
  157. paddlex/inference/models/common/vlm/generation/configuration_utils.py +533 -0
  158. paddlex/inference/models/common/vlm/generation/logits_process.py +730 -0
  159. paddlex/inference/models/common/vlm/generation/stopping_criteria.py +106 -0
  160. paddlex/inference/models/common/vlm/generation/utils.py +2162 -0
  161. paddlex/inference/models/common/vlm/transformers/__init__.py +16 -0
  162. paddlex/inference/models/common/vlm/transformers/configuration_utils.py +1037 -0
  163. paddlex/inference/models/common/vlm/transformers/conversion_utils.py +408 -0
  164. paddlex/inference/models/common/vlm/transformers/model_outputs.py +1612 -0
  165. paddlex/inference/models/common/vlm/transformers/model_utils.py +2038 -0
  166. paddlex/inference/models/common/vlm/transformers/utils.py +178 -0
  167. paddlex/inference/models/common/vlm/utils.py +109 -0
  168. paddlex/inference/models/doc_vlm/__init__.py +15 -0
  169. paddlex/inference/models/doc_vlm/modeling/__init__.py +15 -0
  170. paddlex/inference/models/doc_vlm/modeling/qwen2_vl.py +2600 -0
  171. paddlex/inference/models/doc_vlm/predictor.py +198 -0
  172. paddlex/inference/models/doc_vlm/processors/__init__.py +15 -0
  173. paddlex/inference/models/doc_vlm/processors/common.py +372 -0
  174. paddlex/inference/models/doc_vlm/processors/qwen2_vl.py +698 -0
  175. paddlex/inference/models/doc_vlm/result.py +21 -0
  176. paddlex/inference/models/face_feature/__init__.py +15 -0
  177. paddlex/inference/models/face_feature/predictor.py +66 -0
  178. paddlex/inference/models/formula_recognition/__init__.py +15 -0
  179. paddlex/inference/models/formula_recognition/predictor.py +187 -0
  180. paddlex/inference/models/formula_recognition/processors.py +1002 -0
  181. paddlex/inference/models/formula_recognition/result.py +410 -0
  182. paddlex/inference/models/image_classification/__init__.py +15 -0
  183. paddlex/inference/models/image_classification/predictor.py +172 -0
  184. paddlex/inference/models/image_classification/processors.py +89 -0
  185. paddlex/inference/models/image_classification/result.py +93 -0
  186. paddlex/inference/models/image_feature/__init__.py +15 -0
  187. paddlex/inference/models/image_feature/predictor.py +146 -0
  188. paddlex/inference/models/image_feature/processors.py +32 -0
  189. paddlex/inference/models/image_feature/result.py +32 -0
  190. paddlex/inference/models/image_multilabel_classification/__init__.py +15 -0
  191. paddlex/inference/models/image_multilabel_classification/predictor.py +95 -0
  192. paddlex/inference/models/image_multilabel_classification/processors.py +89 -0
  193. paddlex/inference/models/image_multilabel_classification/result.py +96 -0
  194. paddlex/inference/models/image_unwarping/__init__.py +15 -0
  195. paddlex/inference/models/image_unwarping/predictor.py +97 -0
  196. paddlex/inference/models/image_unwarping/processors.py +92 -0
  197. paddlex/inference/models/image_unwarping/result.py +47 -0
  198. paddlex/inference/models/instance_segmentation/__init__.py +15 -0
  199. paddlex/inference/models/instance_segmentation/predictor.py +202 -0
  200. paddlex/inference/models/instance_segmentation/processors.py +102 -0
  201. paddlex/inference/models/instance_segmentation/result.py +162 -0
  202. paddlex/inference/models/keypoint_detection/__init__.py +15 -0
  203. paddlex/inference/models/keypoint_detection/predictor.py +187 -0
  204. paddlex/inference/models/keypoint_detection/processors.py +367 -0
  205. paddlex/inference/models/keypoint_detection/result.py +197 -0
  206. paddlex/inference/models/m_3d_bev_detection/__init__.py +15 -0
  207. paddlex/inference/models/m_3d_bev_detection/predictor.py +303 -0
  208. paddlex/inference/models/m_3d_bev_detection/processors.py +990 -0
  209. paddlex/inference/models/m_3d_bev_detection/result.py +68 -0
  210. paddlex/inference/models/m_3d_bev_detection/visualizer_3d.py +169 -0
  211. paddlex/inference/models/multilingual_speech_recognition/__init__.py +15 -0
  212. paddlex/inference/models/multilingual_speech_recognition/predictor.py +137 -0
  213. paddlex/inference/models/multilingual_speech_recognition/processors.py +1933 -0
  214. paddlex/inference/models/multilingual_speech_recognition/result.py +21 -0
  215. paddlex/inference/models/object_detection/__init__.py +15 -0
  216. paddlex/inference/models/object_detection/predictor.py +342 -0
  217. paddlex/inference/models/object_detection/processors.py +860 -0
  218. paddlex/inference/models/object_detection/result.py +114 -0
  219. paddlex/inference/models/object_detection/utils.py +68 -0
  220. paddlex/inference/models/open_vocabulary_detection/__init__.py +15 -0
  221. paddlex/inference/models/open_vocabulary_detection/predictor.py +172 -0
  222. paddlex/inference/models/open_vocabulary_detection/processors/__init__.py +16 -0
  223. paddlex/inference/models/open_vocabulary_detection/processors/common.py +114 -0
  224. paddlex/inference/models/open_vocabulary_detection/processors/groundingdino_processors.py +496 -0
  225. paddlex/inference/models/open_vocabulary_detection/processors/yoloworld_processors.py +209 -0
  226. paddlex/inference/models/open_vocabulary_segmentation/__init__.py +15 -0
  227. paddlex/inference/models/open_vocabulary_segmentation/predictor.py +113 -0
  228. paddlex/inference/models/open_vocabulary_segmentation/processors/__init__.py +15 -0
  229. paddlex/inference/models/open_vocabulary_segmentation/processors/sam_processer.py +249 -0
  230. paddlex/inference/models/open_vocabulary_segmentation/results/__init__.py +15 -0
  231. paddlex/inference/models/open_vocabulary_segmentation/results/sam_result.py +149 -0
  232. paddlex/inference/models/semantic_segmentation/__init__.py +15 -0
  233. paddlex/inference/models/semantic_segmentation/predictor.py +158 -0
  234. paddlex/inference/models/semantic_segmentation/processors.py +117 -0
  235. paddlex/inference/models/semantic_segmentation/result.py +73 -0
  236. paddlex/inference/models/table_structure_recognition/__init__.py +15 -0
  237. paddlex/inference/models/table_structure_recognition/predictor.py +161 -0
  238. paddlex/inference/models/table_structure_recognition/processors.py +229 -0
  239. paddlex/inference/models/table_structure_recognition/result.py +73 -0
  240. paddlex/inference/models/text_detection/__init__.py +15 -0
  241. paddlex/inference/models/text_detection/predictor.py +183 -0
  242. paddlex/inference/models/text_detection/processors.py +504 -0
  243. paddlex/inference/models/text_detection/result.py +56 -0
  244. paddlex/inference/models/text_recognition/__init__.py +15 -0
  245. paddlex/inference/models/text_recognition/predictor.py +98 -0
  246. paddlex/inference/models/text_recognition/processors.py +245 -0
  247. paddlex/inference/models/text_recognition/result.py +76 -0
  248. paddlex/inference/models/ts_anomaly_detection/__init__.py +15 -0
  249. paddlex/inference/models/ts_anomaly_detection/predictor.py +141 -0
  250. paddlex/inference/models/ts_anomaly_detection/processors.py +98 -0
  251. paddlex/inference/models/ts_anomaly_detection/result.py +83 -0
  252. paddlex/inference/models/ts_classification/__init__.py +15 -0
  253. paddlex/inference/models/ts_classification/predictor.py +122 -0
  254. paddlex/inference/models/ts_classification/processors.py +122 -0
  255. paddlex/inference/models/ts_classification/result.py +87 -0
  256. paddlex/inference/models/ts_forecasting/__init__.py +15 -0
  257. paddlex/inference/models/ts_forecasting/predictor.py +154 -0
  258. paddlex/inference/models/ts_forecasting/processors.py +158 -0
  259. paddlex/inference/models/ts_forecasting/result.py +96 -0
  260. paddlex/inference/models/video_classification/__init__.py +15 -0
  261. paddlex/inference/models/video_classification/predictor.py +141 -0
  262. paddlex/inference/models/video_classification/processors.py +409 -0
  263. paddlex/inference/models/video_classification/result.py +96 -0
  264. paddlex/inference/models/video_detection/__init__.py +15 -0
  265. paddlex/inference/models/video_detection/predictor.py +129 -0
  266. paddlex/inference/models/video_detection/processors.py +463 -0
  267. paddlex/inference/models/video_detection/result.py +109 -0
  268. paddlex/inference/pipelines/__init__.py +186 -78
  269. paddlex/inference/pipelines/anomaly_detection/__init__.py +15 -0
  270. paddlex/inference/pipelines/anomaly_detection/pipeline.py +72 -0
  271. paddlex/inference/pipelines/attribute_recognition/__init__.py +15 -0
  272. paddlex/inference/pipelines/attribute_recognition/pipeline.py +110 -0
  273. paddlex/inference/pipelines/attribute_recognition/result.py +102 -0
  274. paddlex/inference/pipelines/base.py +125 -59
  275. paddlex/inference/pipelines/components/__init__.py +29 -0
  276. paddlex/inference/pipelines/components/chat_server/__init__.py +16 -0
  277. paddlex/inference/pipelines/components/chat_server/base.py +39 -0
  278. paddlex/inference/pipelines/components/chat_server/openai_bot_chat.py +236 -0
  279. paddlex/inference/pipelines/components/common/__init__.py +19 -0
  280. paddlex/inference/pipelines/components/common/base_operator.py +37 -0
  281. paddlex/inference/pipelines/components/common/base_result.py +66 -0
  282. paddlex/inference/pipelines/components/common/convert_points_and_boxes.py +45 -0
  283. paddlex/inference/pipelines/components/common/crop_image_regions.py +556 -0
  284. paddlex/inference/pipelines/components/common/seal_det_warp.py +972 -0
  285. paddlex/inference/pipelines/components/common/sort_boxes.py +85 -0
  286. paddlex/inference/pipelines/components/common/warp_image.py +50 -0
  287. paddlex/inference/pipelines/components/faisser.py +357 -0
  288. paddlex/inference/pipelines/components/prompt_engineering/__init__.py +16 -0
  289. paddlex/inference/pipelines/components/prompt_engineering/base.py +35 -0
  290. paddlex/inference/pipelines/components/prompt_engineering/generate_ensemble_prompt.py +128 -0
  291. paddlex/inference/pipelines/components/prompt_engineering/generate_kie_prompt.py +148 -0
  292. paddlex/inference/pipelines/components/retriever/__init__.py +16 -0
  293. paddlex/inference/pipelines/components/retriever/base.py +228 -0
  294. paddlex/inference/pipelines/components/retriever/openai_bot_retriever.py +70 -0
  295. paddlex/inference/pipelines/components/retriever/qianfan_bot_retriever.py +166 -0
  296. paddlex/inference/pipelines/components/utils/__init__.py +13 -0
  297. paddlex/inference/pipelines/components/utils/mixin.py +206 -0
  298. paddlex/inference/pipelines/doc_preprocessor/__init__.py +15 -0
  299. paddlex/inference/pipelines/doc_preprocessor/pipeline.py +183 -0
  300. paddlex/inference/pipelines/doc_preprocessor/result.py +98 -0
  301. paddlex/inference/pipelines/doc_understanding/__init__.py +15 -0
  302. paddlex/inference/pipelines/doc_understanding/pipeline.py +71 -0
  303. paddlex/inference/pipelines/face_recognition/__init__.py +15 -0
  304. paddlex/inference/pipelines/face_recognition/pipeline.py +63 -0
  305. paddlex/inference/pipelines/face_recognition/result.py +44 -0
  306. paddlex/inference/pipelines/formula_recognition/__init__.py +15 -0
  307. paddlex/inference/pipelines/formula_recognition/pipeline.py +309 -0
  308. paddlex/inference/pipelines/formula_recognition/result.py +292 -0
  309. paddlex/inference/pipelines/image_classification/__init__.py +15 -0
  310. paddlex/inference/pipelines/image_classification/pipeline.py +80 -0
  311. paddlex/inference/pipelines/image_multilabel_classification/__init__.py +15 -0
  312. paddlex/inference/pipelines/image_multilabel_classification/pipeline.py +87 -0
  313. paddlex/inference/pipelines/instance_segmentation/__init__.py +15 -0
  314. paddlex/inference/pipelines/instance_segmentation/pipeline.py +81 -0
  315. paddlex/inference/pipelines/keypoint_detection/__init__.py +15 -0
  316. paddlex/inference/pipelines/keypoint_detection/pipeline.py +148 -0
  317. paddlex/inference/pipelines/layout_parsing/__init__.py +3 -2
  318. paddlex/inference/pipelines/layout_parsing/pipeline.py +581 -0
  319. paddlex/inference/pipelines/layout_parsing/pipeline_v2.py +749 -0
  320. paddlex/inference/pipelines/layout_parsing/result.py +204 -0
  321. paddlex/inference/pipelines/layout_parsing/result_v2.py +467 -0
  322. paddlex/inference/pipelines/layout_parsing/utils.py +2384 -0
  323. paddlex/inference/pipelines/m_3d_bev_detection/__init__.py +15 -0
  324. paddlex/inference/pipelines/m_3d_bev_detection/pipeline.py +74 -0
  325. paddlex/inference/pipelines/multilingual_speech_recognition/__init__.py +15 -0
  326. paddlex/inference/pipelines/multilingual_speech_recognition/pipeline.py +78 -0
  327. paddlex/inference/pipelines/object_detection/__init__.py +15 -0
  328. paddlex/inference/pipelines/object_detection/pipeline.py +105 -0
  329. paddlex/inference/pipelines/ocr/__init__.py +15 -0
  330. paddlex/inference/pipelines/ocr/pipeline.py +406 -0
  331. paddlex/inference/pipelines/ocr/result.py +252 -0
  332. paddlex/inference/pipelines/open_vocabulary_detection/__init__.py +15 -0
  333. paddlex/inference/pipelines/open_vocabulary_detection/pipeline.py +86 -0
  334. paddlex/inference/pipelines/open_vocabulary_segmentation/__init__.py +15 -0
  335. paddlex/inference/pipelines/open_vocabulary_segmentation/pipeline.py +100 -0
  336. paddlex/inference/pipelines/pp_chatocr/__init__.py +16 -0
  337. paddlex/inference/pipelines/pp_chatocr/pipeline_base.py +111 -0
  338. paddlex/inference/pipelines/pp_chatocr/pipeline_v3.py +784 -0
  339. paddlex/inference/pipelines/pp_chatocr/pipeline_v4.py +995 -0
  340. paddlex/inference/pipelines/pp_shitu_v2/__init__.py +15 -0
  341. paddlex/inference/pipelines/pp_shitu_v2/pipeline.py +156 -0
  342. paddlex/inference/pipelines/pp_shitu_v2/result.py +126 -0
  343. paddlex/inference/pipelines/rotated_object_detection/__init__.py +15 -0
  344. paddlex/inference/pipelines/rotated_object_detection/pipeline.py +85 -0
  345. paddlex/inference/pipelines/seal_recognition/__init__.py +15 -0
  346. paddlex/inference/pipelines/seal_recognition/pipeline.py +279 -0
  347. paddlex/inference/pipelines/seal_recognition/result.py +89 -0
  348. paddlex/inference/pipelines/semantic_segmentation/__init__.py +15 -0
  349. paddlex/inference/pipelines/semantic_segmentation/pipeline.py +85 -0
  350. paddlex/inference/pipelines/small_object_detection/__init__.py +15 -0
  351. paddlex/inference/pipelines/small_object_detection/pipeline.py +85 -0
  352. paddlex/inference/pipelines/table_recognition/__init__.py +3 -2
  353. paddlex/inference/pipelines/table_recognition/pipeline.py +478 -0
  354. paddlex/inference/pipelines/table_recognition/pipeline_v2.py +824 -0
  355. paddlex/inference/pipelines/table_recognition/result.py +218 -0
  356. paddlex/inference/pipelines/table_recognition/table_recognition_post_processing.py +366 -0
  357. paddlex/inference/pipelines/table_recognition/table_recognition_post_processing_v2.py +484 -0
  358. paddlex/inference/pipelines/table_recognition/utils.py +24 -437
  359. paddlex/inference/pipelines/ts_anomaly_detection/__init__.py +15 -0
  360. paddlex/inference/pipelines/ts_anomaly_detection/pipeline.py +72 -0
  361. paddlex/inference/pipelines/ts_classification/__init__.py +15 -0
  362. paddlex/inference/pipelines/ts_classification/pipeline.py +72 -0
  363. paddlex/inference/pipelines/ts_forecasting/__init__.py +15 -0
  364. paddlex/inference/pipelines/ts_forecasting/pipeline.py +72 -0
  365. paddlex/inference/pipelines/video_classification/__init__.py +15 -0
  366. paddlex/inference/pipelines/video_classification/pipeline.py +79 -0
  367. paddlex/inference/pipelines/video_detection/__init__.py +15 -0
  368. paddlex/inference/pipelines/video_detection/pipeline.py +86 -0
  369. paddlex/inference/serving/__init__.py +17 -0
  370. paddlex/inference/serving/basic_serving/__init__.py +18 -0
  371. paddlex/inference/serving/basic_serving/_app.py +221 -0
  372. paddlex/inference/serving/basic_serving/_pipeline_apps/__init__.py +44 -0
  373. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/__init__.py +13 -0
  374. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/common.py +100 -0
  375. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/image_recognition.py +36 -0
  376. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/ocr.py +95 -0
  377. paddlex/inference/serving/basic_serving/_pipeline_apps/anomaly_detection.py +67 -0
  378. paddlex/inference/serving/basic_serving/_pipeline_apps/doc_preprocessor.py +100 -0
  379. paddlex/inference/serving/basic_serving/_pipeline_apps/doc_understanding.py +153 -0
  380. paddlex/inference/serving/basic_serving/_pipeline_apps/face_recognition.py +226 -0
  381. paddlex/inference/serving/basic_serving/_pipeline_apps/formula_recognition.py +100 -0
  382. paddlex/inference/serving/basic_serving/_pipeline_apps/human_keypoint_detection.py +81 -0
  383. paddlex/inference/serving/basic_serving/_pipeline_apps/image_classification.py +69 -0
  384. paddlex/inference/serving/basic_serving/_pipeline_apps/image_multilabel_classification.py +73 -0
  385. paddlex/inference/serving/basic_serving/_pipeline_apps/instance_segmentation.py +87 -0
  386. paddlex/inference/serving/basic_serving/_pipeline_apps/layout_parsing.py +118 -0
  387. paddlex/inference/serving/basic_serving/_pipeline_apps/m_3d_bev_detection.py +79 -0
  388. paddlex/inference/serving/basic_serving/_pipeline_apps/multilingual_speech_recognition.py +92 -0
  389. paddlex/inference/serving/basic_serving/_pipeline_apps/object_detection.py +77 -0
  390. paddlex/inference/serving/basic_serving/_pipeline_apps/ocr.py +102 -0
  391. paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_detection.py +81 -0
  392. paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_segmentation.py +91 -0
  393. paddlex/inference/serving/basic_serving/_pipeline_apps/pedestrian_attribute_recognition.py +84 -0
  394. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv3_doc.py +194 -0
  395. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv4_doc.py +224 -0
  396. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_shituv2.py +221 -0
  397. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_structurev3.py +139 -0
  398. paddlex/inference/serving/basic_serving/_pipeline_apps/rotated_object_detection.py +81 -0
  399. paddlex/inference/serving/basic_serving/_pipeline_apps/seal_recognition.py +106 -0
  400. paddlex/inference/serving/basic_serving/_pipeline_apps/semantic_segmentation.py +67 -0
  401. paddlex/inference/serving/basic_serving/_pipeline_apps/small_object_detection.py +72 -0
  402. paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition.py +108 -0
  403. paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition_v2.py +110 -0
  404. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_anomaly_detection.py +65 -0
  405. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_classification.py +64 -0
  406. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_forecast.py +65 -0
  407. paddlex/inference/serving/basic_serving/_pipeline_apps/vehicle_attribute_recognition.py +84 -0
  408. paddlex/inference/serving/basic_serving/_pipeline_apps/video_classification.py +76 -0
  409. paddlex/inference/serving/basic_serving/_pipeline_apps/video_detection.py +92 -0
  410. paddlex/inference/serving/basic_serving/_server.py +40 -0
  411. paddlex/inference/serving/infra/__init__.py +13 -0
  412. paddlex/inference/serving/infra/config.py +36 -0
  413. paddlex/inference/serving/infra/models.py +79 -0
  414. paddlex/inference/serving/infra/storage.py +180 -0
  415. paddlex/inference/serving/infra/utils.py +287 -0
  416. paddlex/inference/serving/schemas/__init__.py +13 -0
  417. paddlex/inference/serving/schemas/anomaly_detection.py +39 -0
  418. paddlex/inference/serving/schemas/doc_preprocessor.py +54 -0
  419. paddlex/inference/serving/schemas/doc_understanding.py +78 -0
  420. paddlex/inference/serving/schemas/face_recognition.py +124 -0
  421. paddlex/inference/serving/schemas/formula_recognition.py +56 -0
  422. paddlex/inference/serving/schemas/human_keypoint_detection.py +55 -0
  423. paddlex/inference/serving/schemas/image_classification.py +45 -0
  424. paddlex/inference/serving/schemas/image_multilabel_classification.py +47 -0
  425. paddlex/inference/serving/schemas/instance_segmentation.py +53 -0
  426. paddlex/inference/serving/schemas/layout_parsing.py +72 -0
  427. paddlex/inference/serving/schemas/m_3d_bev_detection.py +48 -0
  428. paddlex/inference/serving/schemas/multilingual_speech_recognition.py +57 -0
  429. paddlex/inference/serving/schemas/object_detection.py +52 -0
  430. paddlex/inference/serving/schemas/ocr.py +60 -0
  431. paddlex/inference/serving/schemas/open_vocabulary_detection.py +52 -0
  432. paddlex/inference/serving/schemas/open_vocabulary_segmentation.py +52 -0
  433. paddlex/inference/serving/schemas/pedestrian_attribute_recognition.py +61 -0
  434. paddlex/inference/serving/schemas/pp_chatocrv3_doc.py +134 -0
  435. paddlex/inference/serving/schemas/pp_chatocrv4_doc.py +151 -0
  436. paddlex/inference/serving/schemas/pp_shituv2.py +124 -0
  437. paddlex/inference/serving/schemas/pp_structurev3.py +84 -0
  438. paddlex/inference/serving/schemas/rotated_object_detection.py +52 -0
  439. paddlex/inference/serving/schemas/seal_recognition.py +62 -0
  440. paddlex/inference/serving/schemas/semantic_segmentation.py +45 -0
  441. paddlex/inference/serving/schemas/shared/__init__.py +13 -0
  442. paddlex/inference/serving/schemas/shared/classification.py +23 -0
  443. paddlex/inference/serving/schemas/shared/image_segmentation.py +28 -0
  444. paddlex/inference/serving/schemas/shared/object_detection.py +24 -0
  445. paddlex/inference/serving/schemas/shared/ocr.py +25 -0
  446. paddlex/inference/serving/schemas/small_object_detection.py +52 -0
  447. paddlex/inference/serving/schemas/table_recognition.py +64 -0
  448. paddlex/inference/serving/schemas/table_recognition_v2.py +66 -0
  449. paddlex/inference/serving/schemas/ts_anomaly_detection.py +37 -0
  450. paddlex/inference/serving/schemas/ts_classification.py +38 -0
  451. paddlex/inference/serving/schemas/ts_forecast.py +37 -0
  452. paddlex/inference/serving/schemas/vehicle_attribute_recognition.py +61 -0
  453. paddlex/inference/serving/schemas/video_classification.py +44 -0
  454. paddlex/inference/serving/schemas/video_detection.py +56 -0
  455. paddlex/inference/utils/__init__.py +1 -1
  456. paddlex/inference/utils/benchmark.py +333 -168
  457. paddlex/inference/utils/color_map.py +1 -1
  458. paddlex/inference/utils/get_pipeline_path.py +3 -2
  459. paddlex/inference/utils/hpi.py +251 -0
  460. paddlex/inference/utils/hpi_model_info_collection.json +2252 -0
  461. paddlex/inference/utils/io/__init__.py +11 -8
  462. paddlex/inference/utils/io/readers.py +178 -27
  463. paddlex/inference/utils/io/style.py +21 -14
  464. paddlex/inference/utils/io/tablepyxl.py +13 -5
  465. paddlex/inference/utils/io/writers.py +92 -10
  466. paddlex/inference/utils/model_paths.py +48 -0
  467. paddlex/inference/utils/new_ir_blocklist.py +27 -0
  468. paddlex/inference/utils/official_models.py +281 -213
  469. paddlex/inference/utils/pp_option.py +168 -77
  470. paddlex/inference/utils/trt_blocklist.py +43 -0
  471. paddlex/inference/utils/trt_config.py +420 -0
  472. paddlex/model.py +39 -14
  473. paddlex/modules/__init__.py +67 -57
  474. paddlex/modules/anomaly_detection/__init__.py +2 -2
  475. paddlex/modules/anomaly_detection/dataset_checker/__init__.py +2 -3
  476. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +2 -2
  477. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +6 -3
  478. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +8 -4
  479. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +7 -4
  480. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +2 -2
  481. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +1 -1
  482. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +7 -2
  483. paddlex/modules/anomaly_detection/evaluator.py +1 -1
  484. paddlex/modules/anomaly_detection/exportor.py +1 -1
  485. paddlex/modules/anomaly_detection/model_list.py +1 -1
  486. paddlex/modules/anomaly_detection/trainer.py +3 -4
  487. paddlex/modules/base/__init__.py +5 -5
  488. paddlex/modules/base/build_model.py +2 -3
  489. paddlex/modules/base/dataset_checker/__init__.py +2 -2
  490. paddlex/modules/base/dataset_checker/dataset_checker.py +9 -4
  491. paddlex/modules/base/dataset_checker/utils.py +1 -3
  492. paddlex/modules/base/evaluator.py +24 -8
  493. paddlex/modules/base/exportor.py +36 -12
  494. paddlex/modules/base/trainer.py +43 -10
  495. paddlex/modules/base/utils/__init__.py +13 -0
  496. paddlex/modules/base/utils/cinn_setting.py +89 -0
  497. paddlex/modules/base/utils/coco_eval.py +94 -0
  498. paddlex/modules/base/utils/topk_eval.py +118 -0
  499. paddlex/modules/doc_vlm/__init__.py +18 -0
  500. paddlex/modules/doc_vlm/dataset_checker.py +29 -0
  501. paddlex/modules/doc_vlm/evaluator.py +29 -0
  502. paddlex/modules/doc_vlm/exportor.py +29 -0
  503. paddlex/modules/doc_vlm/model_list.py +16 -0
  504. paddlex/modules/doc_vlm/trainer.py +41 -0
  505. paddlex/modules/face_recognition/__init__.py +2 -2
  506. paddlex/modules/face_recognition/dataset_checker/__init__.py +2 -2
  507. paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +1 -1
  508. paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +3 -5
  509. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +1 -1
  510. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +2 -5
  511. paddlex/modules/face_recognition/evaluator.py +1 -1
  512. paddlex/modules/face_recognition/exportor.py +1 -1
  513. paddlex/modules/face_recognition/model_list.py +1 -1
  514. paddlex/modules/face_recognition/trainer.py +2 -24
  515. paddlex/modules/formula_recognition/__init__.py +6 -1
  516. paddlex/modules/formula_recognition/dataset_checker/__init__.py +113 -0
  517. paddlex/modules/formula_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  518. paddlex/modules/formula_recognition/dataset_checker/dataset_src/analyse_dataset.py +158 -0
  519. paddlex/modules/formula_recognition/dataset_checker/dataset_src/check_dataset.py +76 -0
  520. paddlex/modules/formula_recognition/dataset_checker/dataset_src/convert_dataset.py +95 -0
  521. paddlex/modules/formula_recognition/dataset_checker/dataset_src/split_dataset.py +80 -0
  522. paddlex/modules/formula_recognition/evaluator.py +77 -0
  523. paddlex/modules/formula_recognition/exportor.py +22 -0
  524. paddlex/modules/formula_recognition/model_list.py +4 -1
  525. paddlex/modules/formula_recognition/trainer.py +120 -0
  526. paddlex/modules/general_recognition/__init__.py +2 -2
  527. paddlex/modules/general_recognition/dataset_checker/__init__.py +2 -2
  528. paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +2 -2
  529. paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +7 -9
  530. paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +4 -5
  531. paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +6 -5
  532. paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +1 -1
  533. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +1 -1
  534. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +2 -5
  535. paddlex/modules/general_recognition/evaluator.py +1 -1
  536. paddlex/modules/general_recognition/exportor.py +1 -1
  537. paddlex/modules/general_recognition/model_list.py +1 -1
  538. paddlex/modules/general_recognition/trainer.py +1 -1
  539. paddlex/modules/image_classification/__init__.py +2 -2
  540. paddlex/modules/image_classification/dataset_checker/__init__.py +2 -2
  541. paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +2 -2
  542. paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +8 -9
  543. paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +4 -3
  544. paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +4 -4
  545. paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +1 -1
  546. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +1 -1
  547. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +2 -5
  548. paddlex/modules/image_classification/evaluator.py +1 -1
  549. paddlex/modules/image_classification/exportor.py +1 -1
  550. paddlex/modules/image_classification/model_list.py +3 -1
  551. paddlex/modules/image_classification/trainer.py +3 -3
  552. paddlex/modules/image_unwarping/__init__.py +1 -1
  553. paddlex/modules/image_unwarping/model_list.py +1 -1
  554. paddlex/modules/instance_segmentation/__init__.py +2 -2
  555. paddlex/modules/instance_segmentation/dataset_checker/__init__.py +17 -3
  556. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +2 -2
  557. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +9 -5
  558. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +8 -5
  559. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +8 -8
  560. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +7 -4
  561. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +1 -1
  562. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +10 -8
  563. paddlex/modules/instance_segmentation/evaluator.py +1 -1
  564. paddlex/modules/instance_segmentation/exportor.py +1 -1
  565. paddlex/modules/instance_segmentation/model_list.py +1 -1
  566. paddlex/modules/instance_segmentation/trainer.py +1 -1
  567. paddlex/modules/keypoint_detection/__init__.py +18 -0
  568. paddlex/modules/keypoint_detection/dataset_checker/__init__.py +56 -0
  569. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/__init__.py +15 -0
  570. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/check_dataset.py +91 -0
  571. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  572. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/visualizer.py +124 -0
  573. paddlex/modules/keypoint_detection/evaluator.py +41 -0
  574. paddlex/modules/keypoint_detection/exportor.py +22 -0
  575. paddlex/modules/keypoint_detection/model_list.py +16 -0
  576. paddlex/modules/keypoint_detection/trainer.py +39 -0
  577. paddlex/modules/m_3d_bev_detection/__init__.py +18 -0
  578. paddlex/modules/m_3d_bev_detection/dataset_checker/__init__.py +95 -0
  579. paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/__init__.py +17 -0
  580. paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/analyse_dataset.py +106 -0
  581. paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/check_dataset.py +101 -0
  582. paddlex/modules/m_3d_bev_detection/evaluator.py +46 -0
  583. paddlex/modules/m_3d_bev_detection/exportor.py +22 -0
  584. paddlex/modules/m_3d_bev_detection/model_list.py +18 -0
  585. paddlex/modules/m_3d_bev_detection/trainer.py +68 -0
  586. paddlex/modules/multilabel_classification/__init__.py +2 -2
  587. paddlex/modules/multilabel_classification/dataset_checker/__init__.py +2 -2
  588. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +2 -2
  589. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +8 -9
  590. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +4 -3
  591. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +10 -7
  592. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +1 -1
  593. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +1 -1
  594. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +1 -5
  595. paddlex/modules/multilabel_classification/evaluator.py +1 -1
  596. paddlex/modules/multilabel_classification/exportor.py +1 -1
  597. paddlex/modules/multilabel_classification/model_list.py +1 -1
  598. paddlex/modules/multilabel_classification/trainer.py +3 -3
  599. paddlex/modules/multilingual_speech_recognition/__init__.py +18 -0
  600. paddlex/modules/multilingual_speech_recognition/dataset_checker.py +27 -0
  601. paddlex/modules/multilingual_speech_recognition/evaluator.py +27 -0
  602. paddlex/modules/multilingual_speech_recognition/exportor.py +27 -0
  603. paddlex/modules/multilingual_speech_recognition/model_list.py +22 -0
  604. paddlex/modules/multilingual_speech_recognition/trainer.py +42 -0
  605. paddlex/modules/object_detection/__init__.py +2 -2
  606. paddlex/modules/object_detection/dataset_checker/__init__.py +2 -11
  607. paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +2 -2
  608. paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +10 -8
  609. paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +10 -5
  610. paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +13 -8
  611. paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +8 -4
  612. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +1 -1
  613. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +9 -8
  614. paddlex/modules/object_detection/evaluator.py +18 -2
  615. paddlex/modules/object_detection/exportor.py +1 -1
  616. paddlex/modules/object_detection/model_list.py +11 -1
  617. paddlex/modules/object_detection/trainer.py +19 -6
  618. paddlex/modules/open_vocabulary_detection/__init__.py +18 -0
  619. paddlex/modules/open_vocabulary_detection/dataset_checker.py +29 -0
  620. paddlex/modules/open_vocabulary_detection/evaluator.py +29 -0
  621. paddlex/modules/open_vocabulary_detection/exportor.py +29 -0
  622. paddlex/modules/open_vocabulary_detection/model_list.py +16 -0
  623. paddlex/modules/open_vocabulary_detection/trainer.py +44 -0
  624. paddlex/modules/open_vocabulary_segmentation/__init__.py +18 -0
  625. paddlex/modules/open_vocabulary_segmentation/dataset_checker.py +29 -0
  626. paddlex/modules/open_vocabulary_segmentation/evaluator.py +29 -0
  627. paddlex/modules/open_vocabulary_segmentation/exportor.py +29 -0
  628. paddlex/modules/open_vocabulary_segmentation/model_list.py +19 -0
  629. paddlex/modules/open_vocabulary_segmentation/trainer.py +44 -0
  630. paddlex/modules/semantic_segmentation/__init__.py +2 -2
  631. paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +17 -3
  632. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +2 -2
  633. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +6 -3
  634. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +2 -2
  635. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +7 -4
  636. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +2 -2
  637. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +1 -1
  638. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +6 -2
  639. paddlex/modules/semantic_segmentation/evaluator.py +1 -1
  640. paddlex/modules/semantic_segmentation/exportor.py +10 -1
  641. paddlex/modules/semantic_segmentation/model_list.py +3 -1
  642. paddlex/modules/semantic_segmentation/trainer.py +5 -4
  643. paddlex/modules/table_recognition/__init__.py +2 -2
  644. paddlex/modules/table_recognition/dataset_checker/__init__.py +21 -6
  645. paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +2 -2
  646. paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +3 -2
  647. paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +20 -20
  648. paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +2 -1
  649. paddlex/modules/table_recognition/evaluator.py +1 -1
  650. paddlex/modules/table_recognition/exportor.py +1 -1
  651. paddlex/modules/table_recognition/model_list.py +3 -1
  652. paddlex/modules/table_recognition/trainer.py +2 -5
  653. paddlex/modules/text_detection/__init__.py +2 -2
  654. paddlex/modules/text_detection/dataset_checker/__init__.py +20 -7
  655. paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +2 -2
  656. paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +12 -9
  657. paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +15 -5
  658. paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +3 -3
  659. paddlex/modules/text_detection/evaluator.py +1 -1
  660. paddlex/modules/text_detection/exportor.py +1 -1
  661. paddlex/modules/text_detection/model_list.py +3 -1
  662. paddlex/modules/text_detection/trainer.py +2 -5
  663. paddlex/modules/text_recognition/__init__.py +2 -2
  664. paddlex/modules/text_recognition/dataset_checker/__init__.py +20 -9
  665. paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +2 -2
  666. paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +13 -12
  667. paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +15 -8
  668. paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +11 -10
  669. paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +1 -2
  670. paddlex/modules/text_recognition/evaluator.py +5 -4
  671. paddlex/modules/text_recognition/exportor.py +1 -4
  672. paddlex/modules/text_recognition/model_list.py +15 -1
  673. paddlex/modules/text_recognition/trainer.py +6 -6
  674. paddlex/modules/ts_anomaly_detection/__init__.py +2 -2
  675. paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +19 -5
  676. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +2 -2
  677. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +1 -9
  678. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +2 -2
  679. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +2 -6
  680. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +4 -4
  681. paddlex/modules/ts_anomaly_detection/evaluator.py +1 -1
  682. paddlex/modules/ts_anomaly_detection/exportor.py +2 -3
  683. paddlex/modules/ts_anomaly_detection/model_list.py +1 -1
  684. paddlex/modules/ts_anomaly_detection/trainer.py +22 -6
  685. paddlex/modules/ts_classification/__init__.py +2 -2
  686. paddlex/modules/ts_classification/dataset_checker/__init__.py +19 -5
  687. paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +2 -2
  688. paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +8 -5
  689. paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +2 -2
  690. paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +2 -6
  691. paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +4 -4
  692. paddlex/modules/ts_classification/evaluator.py +1 -1
  693. paddlex/modules/ts_classification/exportor.py +2 -3
  694. paddlex/modules/ts_classification/model_list.py +1 -1
  695. paddlex/modules/ts_classification/trainer.py +21 -5
  696. paddlex/modules/ts_forecast/__init__.py +2 -2
  697. paddlex/modules/ts_forecast/dataset_checker/__init__.py +19 -5
  698. paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +2 -2
  699. paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +1 -9
  700. paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +2 -2
  701. paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +2 -6
  702. paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +4 -4
  703. paddlex/modules/ts_forecast/evaluator.py +1 -1
  704. paddlex/modules/ts_forecast/exportor.py +2 -3
  705. paddlex/modules/ts_forecast/model_list.py +1 -1
  706. paddlex/modules/ts_forecast/trainer.py +21 -5
  707. paddlex/modules/video_classification/__init__.py +18 -0
  708. paddlex/modules/video_classification/dataset_checker/__init__.py +93 -0
  709. paddlex/modules/video_classification/dataset_checker/dataset_src/__init__.py +18 -0
  710. paddlex/modules/video_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
  711. paddlex/modules/video_classification/dataset_checker/dataset_src/check_dataset.py +120 -0
  712. paddlex/modules/video_classification/dataset_checker/dataset_src/split_dataset.py +82 -0
  713. paddlex/modules/video_classification/evaluator.py +44 -0
  714. paddlex/modules/video_classification/exportor.py +22 -0
  715. paddlex/modules/video_classification/model_list.py +19 -0
  716. paddlex/modules/video_classification/trainer.py +88 -0
  717. paddlex/modules/video_detection/__init__.py +18 -0
  718. paddlex/modules/video_detection/dataset_checker/__init__.py +86 -0
  719. paddlex/modules/video_detection/dataset_checker/dataset_src/__init__.py +17 -0
  720. paddlex/modules/video_detection/dataset_checker/dataset_src/analyse_dataset.py +100 -0
  721. paddlex/modules/video_detection/dataset_checker/dataset_src/check_dataset.py +132 -0
  722. paddlex/modules/video_detection/evaluator.py +42 -0
  723. paddlex/modules/video_detection/exportor.py +22 -0
  724. paddlex/modules/video_detection/model_list.py +15 -0
  725. paddlex/modules/video_detection/trainer.py +82 -0
  726. paddlex/ops/__init__.py +152 -0
  727. paddlex/ops/iou3d_nms/iou3d_cpu.cpp +266 -0
  728. paddlex/ops/iou3d_nms/iou3d_cpu.h +28 -0
  729. paddlex/ops/iou3d_nms/iou3d_nms.cpp +206 -0
  730. paddlex/ops/iou3d_nms/iou3d_nms.h +35 -0
  731. paddlex/ops/iou3d_nms/iou3d_nms_api.cpp +114 -0
  732. paddlex/ops/iou3d_nms/iou3d_nms_kernel.cu +484 -0
  733. paddlex/ops/setup.py +37 -0
  734. paddlex/ops/voxel/voxelize_op.cc +194 -0
  735. paddlex/ops/voxel/voxelize_op.cu +346 -0
  736. paddlex/paddlex_cli.py +352 -74
  737. paddlex/repo_apis/Paddle3D_api/__init__.py +17 -0
  738. paddlex/repo_apis/Paddle3D_api/bev_fusion/__init__.py +18 -0
  739. paddlex/repo_apis/Paddle3D_api/bev_fusion/config.py +118 -0
  740. paddlex/repo_apis/Paddle3D_api/bev_fusion/model.py +238 -0
  741. paddlex/repo_apis/Paddle3D_api/bev_fusion/register.py +55 -0
  742. paddlex/repo_apis/Paddle3D_api/bev_fusion/runner.py +104 -0
  743. paddlex/repo_apis/Paddle3D_api/pp3d_config.py +145 -0
  744. paddlex/repo_apis/PaddleClas_api/__init__.py +1 -1
  745. paddlex/repo_apis/PaddleClas_api/cls/__init__.py +3 -3
  746. paddlex/repo_apis/PaddleClas_api/cls/config.py +4 -3
  747. paddlex/repo_apis/PaddleClas_api/cls/model.py +9 -3
  748. paddlex/repo_apis/PaddleClas_api/cls/register.py +22 -5
  749. paddlex/repo_apis/PaddleClas_api/cls/runner.py +1 -2
  750. paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +2 -2
  751. paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +2 -2
  752. paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +1 -4
  753. paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +2 -2
  754. paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +1 -6
  755. paddlex/repo_apis/PaddleDetection_api/__init__.py +2 -2
  756. paddlex/repo_apis/PaddleDetection_api/config_helper.py +3 -3
  757. paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +2 -2
  758. paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +10 -7
  759. paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +9 -3
  760. paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +2 -3
  761. paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +1 -2
  762. paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +3 -3
  763. paddlex/repo_apis/PaddleDetection_api/object_det/config.py +31 -8
  764. paddlex/repo_apis/PaddleDetection_api/object_det/model.py +11 -6
  765. paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +82 -1
  766. paddlex/repo_apis/PaddleDetection_api/object_det/register.py +184 -6
  767. paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +1 -2
  768. paddlex/repo_apis/PaddleNLP_api/__init__.py +1 -1
  769. paddlex/repo_apis/PaddleOCR_api/__init__.py +4 -2
  770. paddlex/repo_apis/PaddleOCR_api/config_utils.py +1 -1
  771. paddlex/repo_apis/PaddleOCR_api/formula_rec/__init__.py +16 -0
  772. paddlex/repo_apis/PaddleOCR_api/formula_rec/config.py +571 -0
  773. paddlex/repo_apis/PaddleOCR_api/formula_rec/model.py +402 -0
  774. paddlex/repo_apis/PaddleOCR_api/formula_rec/register.py +72 -0
  775. paddlex/repo_apis/PaddleOCR_api/formula_rec/runner.py +239 -0
  776. paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +1 -1
  777. paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +1 -1
  778. paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +3 -3
  779. paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +20 -3
  780. paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +2 -2
  781. paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +1 -1
  782. paddlex/repo_apis/PaddleOCR_api/text_det/config.py +1 -1
  783. paddlex/repo_apis/PaddleOCR_api/text_det/model.py +3 -3
  784. paddlex/repo_apis/PaddleOCR_api/text_det/register.py +20 -3
  785. paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +2 -2
  786. paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +1 -1
  787. paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +25 -3
  788. paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +10 -4
  789. paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +128 -10
  790. paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +1 -2
  791. paddlex/repo_apis/PaddleSeg_api/__init__.py +1 -1
  792. paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +2 -2
  793. paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +1 -1
  794. paddlex/repo_apis/PaddleSeg_api/seg/config.py +12 -6
  795. paddlex/repo_apis/PaddleSeg_api/seg/model.py +15 -5
  796. paddlex/repo_apis/PaddleSeg_api/seg/register.py +22 -3
  797. paddlex/repo_apis/PaddleSeg_api/seg/runner.py +1 -2
  798. paddlex/repo_apis/PaddleTS_api/__init__.py +4 -3
  799. paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +1 -1
  800. paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +2 -3
  801. paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +2 -2
  802. paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +2 -2
  803. paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +1 -1
  804. paddlex/repo_apis/PaddleTS_api/ts_base/config.py +25 -3
  805. paddlex/repo_apis/PaddleTS_api/ts_base/model.py +15 -11
  806. paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +2 -2
  807. paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +1 -1
  808. paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +2 -3
  809. paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +2 -2
  810. paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +2 -2
  811. paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +1 -1
  812. paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +2 -3
  813. paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +1 -1
  814. paddlex/repo_apis/PaddleVideo_api/__init__.py +17 -0
  815. paddlex/repo_apis/PaddleVideo_api/config_utils.py +51 -0
  816. paddlex/repo_apis/PaddleVideo_api/video_cls/__init__.py +19 -0
  817. paddlex/repo_apis/PaddleVideo_api/video_cls/config.py +548 -0
  818. paddlex/repo_apis/PaddleVideo_api/video_cls/model.py +346 -0
  819. paddlex/repo_apis/PaddleVideo_api/video_cls/register.py +70 -0
  820. paddlex/repo_apis/PaddleVideo_api/video_cls/runner.py +204 -0
  821. paddlex/repo_apis/PaddleVideo_api/video_det/__init__.py +19 -0
  822. paddlex/repo_apis/PaddleVideo_api/video_det/config.py +549 -0
  823. paddlex/repo_apis/PaddleVideo_api/video_det/model.py +298 -0
  824. paddlex/repo_apis/PaddleVideo_api/video_det/register.py +44 -0
  825. paddlex/repo_apis/PaddleVideo_api/video_det/runner.py +199 -0
  826. paddlex/repo_apis/__init__.py +1 -1
  827. paddlex/repo_apis/base/__init__.py +4 -5
  828. paddlex/repo_apis/base/config.py +2 -3
  829. paddlex/repo_apis/base/model.py +11 -19
  830. paddlex/repo_apis/base/register.py +1 -1
  831. paddlex/repo_apis/base/runner.py +13 -13
  832. paddlex/repo_apis/base/utils/__init__.py +1 -1
  833. paddlex/repo_apis/base/utils/arg.py +1 -1
  834. paddlex/repo_apis/base/utils/subprocess.py +1 -1
  835. paddlex/repo_manager/__init__.py +2 -9
  836. paddlex/repo_manager/core.py +9 -27
  837. paddlex/repo_manager/meta.py +58 -25
  838. paddlex/repo_manager/repo.py +169 -141
  839. paddlex/repo_manager/utils.py +72 -222
  840. paddlex/utils/__init__.py +1 -1
  841. paddlex/utils/cache.py +8 -10
  842. paddlex/utils/config.py +10 -8
  843. paddlex/utils/custom_device_list.py +287 -0
  844. paddlex/utils/deps.py +249 -0
  845. paddlex/utils/device.py +125 -33
  846. paddlex/utils/download.py +4 -4
  847. paddlex/utils/env.py +54 -0
  848. paddlex/utils/errors/__init__.py +1 -1
  849. paddlex/utils/errors/dataset_checker.py +1 -1
  850. paddlex/utils/errors/others.py +2 -16
  851. paddlex/utils/file_interface.py +4 -5
  852. paddlex/utils/flags.py +22 -11
  853. paddlex/utils/fonts/__init__.py +50 -6
  854. paddlex/utils/func_register.py +1 -1
  855. paddlex/utils/install.py +87 -0
  856. paddlex/utils/interactive_get_pipeline.py +3 -3
  857. paddlex/utils/lazy_loader.py +4 -2
  858. paddlex/utils/logging.py +11 -3
  859. paddlex/utils/misc.py +5 -5
  860. paddlex/utils/pipeline_arguments.py +719 -0
  861. paddlex/utils/result_saver.py +4 -5
  862. paddlex/utils/subclass_register.py +2 -4
  863. paddlex/version.py +2 -1
  864. paddlex-3.0.0rc1.dist-info/METADATA +1174 -0
  865. paddlex-3.0.0rc1.dist-info/RECORD +1068 -0
  866. paddlex-3.0.0rc1.dist-info/WHEEL +5 -0
  867. paddlex/configs/face_recognition/MobileFaceNet.yaml +0 -44
  868. paddlex/configs/face_recognition/ResNet50_face.yaml +0 -44
  869. paddlex/configs/formula_recognition/LaTeX_OCR_rec.yaml +0 -40
  870. paddlex/configs/image_classification/CLIP_vit_base_patch16_224.yaml +0 -41
  871. paddlex/configs/image_classification/CLIP_vit_large_patch14_224.yaml +0 -41
  872. paddlex/configs/image_classification/ConvNeXt_large_384.yaml +0 -41
  873. paddlex/configs/object_detection/YOLOX-X.yaml +0 -40
  874. paddlex/configs/semantic_segmentation/SeaFormer_base.yaml +0 -40
  875. paddlex/configs/semantic_segmentation/SeaFormer_large.yaml +0 -40
  876. paddlex/configs/semantic_segmentation/SeaFormer_small.yaml +0 -40
  877. paddlex/configs/semantic_segmentation/SeaFormer_tiny.yaml +0 -40
  878. paddlex/inference/components/__init__.py +0 -18
  879. paddlex/inference/components/base.py +0 -292
  880. paddlex/inference/components/llm/__init__.py +0 -25
  881. paddlex/inference/components/llm/base.py +0 -65
  882. paddlex/inference/components/llm/erniebot.py +0 -212
  883. paddlex/inference/components/paddle_predictor/__init__.py +0 -20
  884. paddlex/inference/components/paddle_predictor/predictor.py +0 -332
  885. paddlex/inference/components/retrieval/__init__.py +0 -15
  886. paddlex/inference/components/retrieval/faiss.py +0 -359
  887. paddlex/inference/components/task_related/__init__.py +0 -33
  888. paddlex/inference/components/task_related/clas.py +0 -124
  889. paddlex/inference/components/task_related/det.py +0 -284
  890. paddlex/inference/components/task_related/instance_seg.py +0 -89
  891. paddlex/inference/components/task_related/seal_det_warp.py +0 -940
  892. paddlex/inference/components/task_related/seg.py +0 -40
  893. paddlex/inference/components/task_related/table_rec.py +0 -191
  894. paddlex/inference/components/task_related/text_det.py +0 -895
  895. paddlex/inference/components/task_related/text_rec.py +0 -353
  896. paddlex/inference/components/task_related/warp.py +0 -43
  897. paddlex/inference/components/transforms/__init__.py +0 -16
  898. paddlex/inference/components/transforms/image/__init__.py +0 -15
  899. paddlex/inference/components/transforms/image/common.py +0 -598
  900. paddlex/inference/components/transforms/image/funcs.py +0 -58
  901. paddlex/inference/components/transforms/read_data.py +0 -67
  902. paddlex/inference/components/transforms/ts/__init__.py +0 -15
  903. paddlex/inference/components/transforms/ts/common.py +0 -393
  904. paddlex/inference/components/transforms/ts/funcs.py +0 -424
  905. paddlex/inference/models/anomaly_detection.py +0 -87
  906. paddlex/inference/models/base/base_predictor.py +0 -76
  907. paddlex/inference/models/base/basic_predictor.py +0 -122
  908. paddlex/inference/models/face_recognition.py +0 -21
  909. paddlex/inference/models/formula_recognition.py +0 -55
  910. paddlex/inference/models/general_recognition.py +0 -99
  911. paddlex/inference/models/image_classification.py +0 -101
  912. paddlex/inference/models/image_unwarping.py +0 -43
  913. paddlex/inference/models/instance_segmentation.py +0 -66
  914. paddlex/inference/models/multilabel_classification.py +0 -33
  915. paddlex/inference/models/object_detection.py +0 -129
  916. paddlex/inference/models/semantic_segmentation.py +0 -86
  917. paddlex/inference/models/table_recognition.py +0 -106
  918. paddlex/inference/models/text_detection.py +0 -105
  919. paddlex/inference/models/text_recognition.py +0 -78
  920. paddlex/inference/models/ts_ad.py +0 -68
  921. paddlex/inference/models/ts_cls.py +0 -57
  922. paddlex/inference/models/ts_fc.py +0 -73
  923. paddlex/inference/pipelines/attribute_recognition.py +0 -92
  924. paddlex/inference/pipelines/face_recognition.py +0 -49
  925. paddlex/inference/pipelines/formula_recognition.py +0 -102
  926. paddlex/inference/pipelines/layout_parsing/layout_parsing.py +0 -362
  927. paddlex/inference/pipelines/ocr.py +0 -80
  928. paddlex/inference/pipelines/pp_shitu_v2.py +0 -152
  929. paddlex/inference/pipelines/ppchatocrv3/__init__.py +0 -15
  930. paddlex/inference/pipelines/ppchatocrv3/ch_prompt.yaml +0 -14
  931. paddlex/inference/pipelines/ppchatocrv3/ppchatocrv3.py +0 -717
  932. paddlex/inference/pipelines/ppchatocrv3/utils.py +0 -168
  933. paddlex/inference/pipelines/seal_recognition.py +0 -152
  934. paddlex/inference/pipelines/serving/__init__.py +0 -17
  935. paddlex/inference/pipelines/serving/_pipeline_apps/__init__.py +0 -205
  936. paddlex/inference/pipelines/serving/_pipeline_apps/anomaly_detection.py +0 -80
  937. paddlex/inference/pipelines/serving/_pipeline_apps/face_recognition.py +0 -317
  938. paddlex/inference/pipelines/serving/_pipeline_apps/formula_recognition.py +0 -119
  939. paddlex/inference/pipelines/serving/_pipeline_apps/image_classification.py +0 -101
  940. paddlex/inference/pipelines/serving/_pipeline_apps/instance_segmentation.py +0 -112
  941. paddlex/inference/pipelines/serving/_pipeline_apps/layout_parsing.py +0 -205
  942. paddlex/inference/pipelines/serving/_pipeline_apps/multi_label_image_classification.py +0 -90
  943. paddlex/inference/pipelines/serving/_pipeline_apps/object_detection.py +0 -90
  944. paddlex/inference/pipelines/serving/_pipeline_apps/ocr.py +0 -98
  945. paddlex/inference/pipelines/serving/_pipeline_apps/pedestrian_attribute_recognition.py +0 -102
  946. paddlex/inference/pipelines/serving/_pipeline_apps/pp_shitu_v2.py +0 -319
  947. paddlex/inference/pipelines/serving/_pipeline_apps/ppchatocrv3.py +0 -445
  948. paddlex/inference/pipelines/serving/_pipeline_apps/seal_recognition.py +0 -110
  949. paddlex/inference/pipelines/serving/_pipeline_apps/semantic_segmentation.py +0 -82
  950. paddlex/inference/pipelines/serving/_pipeline_apps/small_object_detection.py +0 -92
  951. paddlex/inference/pipelines/serving/_pipeline_apps/table_recognition.py +0 -110
  952. paddlex/inference/pipelines/serving/_pipeline_apps/ts_ad.py +0 -68
  953. paddlex/inference/pipelines/serving/_pipeline_apps/ts_cls.py +0 -68
  954. paddlex/inference/pipelines/serving/_pipeline_apps/ts_fc.py +0 -68
  955. paddlex/inference/pipelines/serving/_pipeline_apps/vehicle_attribute_recognition.py +0 -102
  956. paddlex/inference/pipelines/serving/app.py +0 -164
  957. paddlex/inference/pipelines/serving/models.py +0 -30
  958. paddlex/inference/pipelines/serving/server.py +0 -25
  959. paddlex/inference/pipelines/serving/storage.py +0 -161
  960. paddlex/inference/pipelines/serving/utils.py +0 -190
  961. paddlex/inference/pipelines/single_model_pipeline.py +0 -76
  962. paddlex/inference/pipelines/table_recognition/table_recognition.py +0 -193
  963. paddlex/inference/results/__init__.py +0 -31
  964. paddlex/inference/results/attribute_rec.py +0 -89
  965. paddlex/inference/results/base.py +0 -43
  966. paddlex/inference/results/chat_ocr.py +0 -158
  967. paddlex/inference/results/clas.py +0 -133
  968. paddlex/inference/results/det.py +0 -86
  969. paddlex/inference/results/face_rec.py +0 -34
  970. paddlex/inference/results/formula_rec.py +0 -363
  971. paddlex/inference/results/instance_seg.py +0 -152
  972. paddlex/inference/results/ocr.py +0 -157
  973. paddlex/inference/results/seal_rec.py +0 -50
  974. paddlex/inference/results/seg.py +0 -72
  975. paddlex/inference/results/shitu.py +0 -35
  976. paddlex/inference/results/table_rec.py +0 -109
  977. paddlex/inference/results/text_det.py +0 -33
  978. paddlex/inference/results/text_rec.py +0 -66
  979. paddlex/inference/results/ts.py +0 -37
  980. paddlex/inference/results/utils/__init__.py +0 -13
  981. paddlex/inference/results/utils/mixin.py +0 -204
  982. paddlex/inference/results/warp.py +0 -31
  983. paddlex/inference/utils/new_ir_blacklist.py +0 -22
  984. paddlex/inference/utils/process_hook.py +0 -54
  985. paddlex/pipelines/OCR.yaml +0 -8
  986. paddlex/pipelines/PP-ChatOCRv3-doc.yaml +0 -27
  987. paddlex/pipelines/PP-ShiTuV2.yaml +0 -13
  988. paddlex/pipelines/anomaly_detection.yaml +0 -7
  989. paddlex/pipelines/face_recognition.yaml +0 -13
  990. paddlex/pipelines/formula_recognition.yaml +0 -8
  991. paddlex/pipelines/image_classification.yaml +0 -7
  992. paddlex/pipelines/instance_segmentation.yaml +0 -7
  993. paddlex/pipelines/layout_parsing.yaml +0 -14
  994. paddlex/pipelines/multi_label_image_classification.yaml +0 -7
  995. paddlex/pipelines/object_detection.yaml +0 -7
  996. paddlex/pipelines/pedestrian_attribute_recognition.yaml +0 -7
  997. paddlex/pipelines/seal_recognition.yaml +0 -10
  998. paddlex/pipelines/semantic_segmentation.yaml +0 -7
  999. paddlex/pipelines/small_object_detection.yaml +0 -7
  1000. paddlex/pipelines/table_recognition.yaml +0 -12
  1001. paddlex/pipelines/ts_ad.yaml +0 -7
  1002. paddlex/pipelines/ts_cls.yaml +0 -7
  1003. paddlex/pipelines/ts_fc.yaml +0 -7
  1004. paddlex/pipelines/vehicle_attribute_recognition.yaml +0 -7
  1005. paddlex/repo_manager/requirements.txt +0 -18
  1006. paddlex/utils/fonts/PingFang-SC-Regular.ttf +0 -0
  1007. paddlex-3.0.0b2.dist-info/METADATA +0 -760
  1008. paddlex-3.0.0b2.dist-info/RECORD +0 -646
  1009. paddlex-3.0.0b2.dist-info/WHEEL +0 -5
  1010. /paddlex/configs/{doc_text_orientation → modules/doc_text_orientation}/PP-LCNet_x1_0_doc_ori.yaml +0 -0
  1011. /paddlex/configs/{face_detection → modules/face_detection}/BlazeFace-FPN-SSH.yaml +0 -0
  1012. /paddlex/configs/{face_detection → modules/face_detection}/BlazeFace.yaml +0 -0
  1013. /paddlex/configs/{face_detection → modules/face_detection}/PP-YOLOE_plus-S_face.yaml +0 -0
  1014. /paddlex/configs/{face_detection → modules/face_detection}/PicoDet_LCNet_x2_5_face.yaml +0 -0
  1015. /paddlex/configs/{human_detection → modules/human_detection}/PP-YOLOE-L_human.yaml +0 -0
  1016. /paddlex/configs/{human_detection → modules/human_detection}/PP-YOLOE-S_human.yaml +0 -0
  1017. /paddlex/configs/{anomaly_detection → modules/image_anomaly_detection}/STFPM.yaml +0 -0
  1018. /paddlex/configs/{image_classification → modules/image_classification}/ConvNeXt_base_224.yaml +0 -0
  1019. /paddlex/configs/{image_classification → modules/image_classification}/ConvNeXt_base_384.yaml +0 -0
  1020. /paddlex/configs/{image_classification → modules/image_classification}/ConvNeXt_large_224.yaml +0 -0
  1021. /paddlex/configs/{image_classification → modules/image_classification}/ConvNeXt_small.yaml +0 -0
  1022. /paddlex/configs/{image_classification → modules/image_classification}/ConvNeXt_tiny.yaml +0 -0
  1023. /paddlex/configs/{image_classification → modules/image_classification}/FasterNet-L.yaml +0 -0
  1024. /paddlex/configs/{image_classification → modules/image_classification}/FasterNet-M.yaml +0 -0
  1025. /paddlex/configs/{image_classification → modules/image_classification}/FasterNet-S.yaml +0 -0
  1026. /paddlex/configs/{image_classification → modules/image_classification}/FasterNet-T0.yaml +0 -0
  1027. /paddlex/configs/{image_classification → modules/image_classification}/FasterNet-T1.yaml +0 -0
  1028. /paddlex/configs/{image_classification → modules/image_classification}/FasterNet-T2.yaml +0 -0
  1029. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV1_x0_25.yaml +0 -0
  1030. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV1_x0_5.yaml +0 -0
  1031. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV1_x0_75.yaml +0 -0
  1032. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV1_x1_0.yaml +0 -0
  1033. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV2_x0_25.yaml +0 -0
  1034. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV2_x0_5.yaml +0 -0
  1035. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV2_x1_0.yaml +0 -0
  1036. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV2_x1_5.yaml +0 -0
  1037. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV2_x2_0.yaml +0 -0
  1038. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_large_x0_35.yaml +0 -0
  1039. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_large_x0_5.yaml +0 -0
  1040. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_large_x0_75.yaml +0 -0
  1041. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_large_x1_0.yaml +0 -0
  1042. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_large_x1_25.yaml +0 -0
  1043. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_small_x0_35.yaml +0 -0
  1044. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_small_x0_5.yaml +0 -0
  1045. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_small_x0_75.yaml +0 -0
  1046. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_small_x1_0.yaml +0 -0
  1047. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_small_x1_25.yaml +0 -0
  1048. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV4_conv_large.yaml +0 -0
  1049. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV4_conv_medium.yaml +0 -0
  1050. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV4_conv_small.yaml +0 -0
  1051. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV4_hybrid_large.yaml +0 -0
  1052. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV4_hybrid_medium.yaml +0 -0
  1053. /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNetV2-B0.yaml +0 -0
  1054. /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNetV2-B1.yaml +0 -0
  1055. /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNetV2-B2.yaml +0 -0
  1056. /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNetV2-B3.yaml +0 -0
  1057. /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNetV2-B4.yaml +0 -0
  1058. /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNetV2-B5.yaml +0 -0
  1059. /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNetV2-B6.yaml +0 -0
  1060. /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNet_base.yaml +0 -0
  1061. /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNet_small.yaml +0 -0
  1062. /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNet_tiny.yaml +0 -0
  1063. /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNetV2_base.yaml +0 -0
  1064. /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNetV2_large.yaml +0 -0
  1065. /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNetV2_small.yaml +0 -0
  1066. /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x0_25.yaml +0 -0
  1067. /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x0_35.yaml +0 -0
  1068. /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x0_5.yaml +0 -0
  1069. /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x0_75.yaml +0 -0
  1070. /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x1_0.yaml +0 -0
  1071. /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x1_5.yaml +0 -0
  1072. /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x2_0.yaml +0 -0
  1073. /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x2_5.yaml +0 -0
  1074. /paddlex/configs/{image_classification → modules/image_classification}/ResNet101.yaml +0 -0
  1075. /paddlex/configs/{image_classification → modules/image_classification}/ResNet101_vd.yaml +0 -0
  1076. /paddlex/configs/{image_classification → modules/image_classification}/ResNet152.yaml +0 -0
  1077. /paddlex/configs/{image_classification → modules/image_classification}/ResNet152_vd.yaml +0 -0
  1078. /paddlex/configs/{image_classification → modules/image_classification}/ResNet18.yaml +0 -0
  1079. /paddlex/configs/{image_classification → modules/image_classification}/ResNet18_vd.yaml +0 -0
  1080. /paddlex/configs/{image_classification → modules/image_classification}/ResNet200_vd.yaml +0 -0
  1081. /paddlex/configs/{image_classification → modules/image_classification}/ResNet34.yaml +0 -0
  1082. /paddlex/configs/{image_classification → modules/image_classification}/ResNet34_vd.yaml +0 -0
  1083. /paddlex/configs/{image_classification → modules/image_classification}/ResNet50.yaml +0 -0
  1084. /paddlex/configs/{image_classification → modules/image_classification}/ResNet50_vd.yaml +0 -0
  1085. /paddlex/configs/{image_classification → modules/image_classification}/StarNet-S1.yaml +0 -0
  1086. /paddlex/configs/{image_classification → modules/image_classification}/StarNet-S2.yaml +0 -0
  1087. /paddlex/configs/{image_classification → modules/image_classification}/StarNet-S3.yaml +0 -0
  1088. /paddlex/configs/{image_classification → modules/image_classification}/StarNet-S4.yaml +0 -0
  1089. /paddlex/configs/{image_classification → modules/image_classification}/SwinTransformer_base_patch4_window12_384.yaml +0 -0
  1090. /paddlex/configs/{image_classification → modules/image_classification}/SwinTransformer_base_patch4_window7_224.yaml +0 -0
  1091. /paddlex/configs/{image_classification → modules/image_classification}/SwinTransformer_large_patch4_window12_384.yaml +0 -0
  1092. /paddlex/configs/{image_classification → modules/image_classification}/SwinTransformer_large_patch4_window7_224.yaml +0 -0
  1093. /paddlex/configs/{image_classification → modules/image_classification}/SwinTransformer_small_patch4_window7_224.yaml +0 -0
  1094. /paddlex/configs/{image_classification → modules/image_classification}/SwinTransformer_tiny_patch4_window7_224.yaml +0 -0
  1095. /paddlex/configs/{general_recognition → modules/image_feature}/PP-ShiTuV2_rec.yaml +0 -0
  1096. /paddlex/configs/{general_recognition → modules/image_feature}/PP-ShiTuV2_rec_CLIP_vit_base.yaml +0 -0
  1097. /paddlex/configs/{general_recognition → modules/image_feature}/PP-ShiTuV2_rec_CLIP_vit_large.yaml +0 -0
  1098. /paddlex/configs/{multilabel_classification → modules/image_multilabel_classification}/CLIP_vit_base_patch16_448_ML.yaml +0 -0
  1099. /paddlex/configs/{multilabel_classification → modules/image_multilabel_classification}/PP-HGNetV2-B0_ML.yaml +0 -0
  1100. /paddlex/configs/{multilabel_classification → modules/image_multilabel_classification}/PP-HGNetV2-B4_ML.yaml +0 -0
  1101. /paddlex/configs/{multilabel_classification → modules/image_multilabel_classification}/PP-HGNetV2-B6_ML.yaml +0 -0
  1102. /paddlex/configs/{multilabel_classification → modules/image_multilabel_classification}/PP-LCNet_x1_0_ML.yaml +0 -0
  1103. /paddlex/configs/{multilabel_classification → modules/image_multilabel_classification}/ResNet50_ML.yaml +0 -0
  1104. /paddlex/configs/{image_unwarping → modules/image_unwarping}/UVDoc.yaml +0 -0
  1105. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/Cascade-MaskRCNN-ResNet50-FPN.yaml +0 -0
  1106. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +0 -0
  1107. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/Mask-RT-DETR-H.yaml +0 -0
  1108. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/Mask-RT-DETR-L.yaml +0 -0
  1109. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/Mask-RT-DETR-M.yaml +0 -0
  1110. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/Mask-RT-DETR-S.yaml +0 -0
  1111. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/Mask-RT-DETR-X.yaml +0 -0
  1112. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/MaskRCNN-ResNeXt101-vd-FPN.yaml +0 -0
  1113. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/MaskRCNN-ResNet101-FPN.yaml +0 -0
  1114. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/MaskRCNN-ResNet101-vd-FPN.yaml +0 -0
  1115. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/MaskRCNN-ResNet50-FPN.yaml +0 -0
  1116. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/MaskRCNN-ResNet50-vd-FPN.yaml +0 -0
  1117. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/MaskRCNN-ResNet50.yaml +0 -0
  1118. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/PP-YOLOE_seg-S.yaml +0 -0
  1119. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/SOLOv2.yaml +0 -0
  1120. /paddlex/configs/{structure_analysis → modules/layout_detection}/PicoDet-L_layout_17cls.yaml +0 -0
  1121. /paddlex/configs/{structure_analysis → modules/layout_detection}/PicoDet-L_layout_3cls.yaml +0 -0
  1122. /paddlex/configs/{structure_analysis → modules/layout_detection}/PicoDet-S_layout_17cls.yaml +0 -0
  1123. /paddlex/configs/{structure_analysis → modules/layout_detection}/PicoDet-S_layout_3cls.yaml +0 -0
  1124. /paddlex/configs/{structure_analysis → modules/layout_detection}/PicoDet_layout_1x.yaml +0 -0
  1125. /paddlex/configs/{structure_analysis → modules/layout_detection}/PicoDet_layout_1x_table.yaml +0 -0
  1126. /paddlex/configs/{structure_analysis → modules/layout_detection}/RT-DETR-H_layout_17cls.yaml +0 -0
  1127. /paddlex/configs/{structure_analysis → modules/layout_detection}/RT-DETR-H_layout_3cls.yaml +0 -0
  1128. /paddlex/configs/{mainbody_detection → modules/mainbody_detection}/PP-ShiTuV2_det.yaml +0 -0
  1129. /paddlex/configs/{object_detection → modules/object_detection}/Cascade-FasterRCNN-ResNet50-FPN.yaml +0 -0
  1130. /paddlex/configs/{object_detection → modules/object_detection}/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +0 -0
  1131. /paddlex/configs/{object_detection → modules/object_detection}/CenterNet-DLA-34.yaml +0 -0
  1132. /paddlex/configs/{object_detection → modules/object_detection}/CenterNet-ResNet50.yaml +0 -0
  1133. /paddlex/configs/{object_detection → modules/object_detection}/DETR-R50.yaml +0 -0
  1134. /paddlex/configs/{object_detection → modules/object_detection}/FCOS-ResNet50.yaml +0 -0
  1135. /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNeXt101-vd-FPN.yaml +0 -0
  1136. /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNet101-FPN.yaml +0 -0
  1137. /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNet101.yaml +0 -0
  1138. /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNet34-FPN.yaml +0 -0
  1139. /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNet50-FPN.yaml +0 -0
  1140. /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNet50-vd-FPN.yaml +0 -0
  1141. /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +0 -0
  1142. /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNet50.yaml +0 -0
  1143. /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-Swin-Tiny-FPN.yaml +0 -0
  1144. /paddlex/configs/{object_detection → modules/object_detection}/PP-YOLOE_plus-L.yaml +0 -0
  1145. /paddlex/configs/{object_detection → modules/object_detection}/PP-YOLOE_plus-M.yaml +0 -0
  1146. /paddlex/configs/{object_detection → modules/object_detection}/PP-YOLOE_plus-S.yaml +0 -0
  1147. /paddlex/configs/{object_detection → modules/object_detection}/PP-YOLOE_plus-X.yaml +0 -0
  1148. /paddlex/configs/{object_detection → modules/object_detection}/PicoDet-L.yaml +0 -0
  1149. /paddlex/configs/{object_detection → modules/object_detection}/PicoDet-M.yaml +0 -0
  1150. /paddlex/configs/{object_detection → modules/object_detection}/PicoDet-S.yaml +0 -0
  1151. /paddlex/configs/{object_detection → modules/object_detection}/PicoDet-XS.yaml +0 -0
  1152. /paddlex/configs/{object_detection → modules/object_detection}/RT-DETR-H.yaml +0 -0
  1153. /paddlex/configs/{object_detection → modules/object_detection}/RT-DETR-L.yaml +0 -0
  1154. /paddlex/configs/{object_detection → modules/object_detection}/RT-DETR-R18.yaml +0 -0
  1155. /paddlex/configs/{object_detection → modules/object_detection}/RT-DETR-R50.yaml +0 -0
  1156. /paddlex/configs/{object_detection → modules/object_detection}/RT-DETR-X.yaml +0 -0
  1157. /paddlex/configs/{object_detection → modules/object_detection}/YOLOX-L.yaml +0 -0
  1158. /paddlex/configs/{object_detection → modules/object_detection}/YOLOX-M.yaml +0 -0
  1159. /paddlex/configs/{object_detection → modules/object_detection}/YOLOX-N.yaml +0 -0
  1160. /paddlex/configs/{object_detection → modules/object_detection}/YOLOX-S.yaml +0 -0
  1161. /paddlex/configs/{object_detection → modules/object_detection}/YOLOX-T.yaml +0 -0
  1162. /paddlex/configs/{object_detection → modules/object_detection}/YOLOv3-DarkNet53.yaml +0 -0
  1163. /paddlex/configs/{object_detection → modules/object_detection}/YOLOv3-MobileNetV3.yaml +0 -0
  1164. /paddlex/configs/{object_detection → modules/object_detection}/YOLOv3-ResNet50_vd_DCN.yaml +0 -0
  1165. /paddlex/configs/{pedestrian_attribute → modules/pedestrian_attribute_recognition}/PP-LCNet_x1_0_pedestrian_attribute.yaml +0 -0
  1166. /paddlex/configs/{text_detection_seal → modules/seal_text_detection}/PP-OCRv4_mobile_seal_det.yaml +0 -0
  1167. /paddlex/configs/{text_detection_seal → modules/seal_text_detection}/PP-OCRv4_server_seal_det.yaml +0 -0
  1168. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/Deeplabv3-R101.yaml +0 -0
  1169. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/Deeplabv3-R50.yaml +0 -0
  1170. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/Deeplabv3_Plus-R101.yaml +0 -0
  1171. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/Deeplabv3_Plus-R50.yaml +0 -0
  1172. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/OCRNet_HRNet-W18.yaml +0 -0
  1173. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/OCRNet_HRNet-W48.yaml +0 -0
  1174. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/PP-LiteSeg-B.yaml +0 -0
  1175. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/PP-LiteSeg-T.yaml +0 -0
  1176. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/SegFormer-B0.yaml +0 -0
  1177. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/SegFormer-B1.yaml +0 -0
  1178. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/SegFormer-B2.yaml +0 -0
  1179. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/SegFormer-B3.yaml +0 -0
  1180. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/SegFormer-B4.yaml +0 -0
  1181. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/SegFormer-B5.yaml +0 -0
  1182. /paddlex/configs/{small_object_detection → modules/small_object_detection}/PP-YOLOE_plus_SOD-L.yaml +0 -0
  1183. /paddlex/configs/{small_object_detection → modules/small_object_detection}/PP-YOLOE_plus_SOD-S.yaml +0 -0
  1184. /paddlex/configs/{small_object_detection → modules/small_object_detection}/PP-YOLOE_plus_SOD-largesize-L.yaml +0 -0
  1185. /paddlex/configs/{table_recognition → modules/table_structure_recognition}/SLANet.yaml +0 -0
  1186. /paddlex/configs/{table_recognition → modules/table_structure_recognition}/SLANet_plus.yaml +0 -0
  1187. /paddlex/configs/{text_detection → modules/text_detection}/PP-OCRv4_mobile_det.yaml +0 -0
  1188. /paddlex/configs/{text_detection → modules/text_detection}/PP-OCRv4_server_det.yaml +0 -0
  1189. /paddlex/configs/{text_recognition → modules/text_recognition}/PP-OCRv4_mobile_rec.yaml +0 -0
  1190. /paddlex/configs/{text_recognition → modules/text_recognition}/PP-OCRv4_server_rec.yaml +0 -0
  1191. /paddlex/configs/{text_recognition → modules/text_recognition}/ch_RepSVTR_rec.yaml +0 -0
  1192. /paddlex/configs/{text_recognition → modules/text_recognition}/ch_SVTRv2_rec.yaml +0 -0
  1193. /paddlex/configs/{ts_anomaly_detection → modules/ts_anomaly_detection}/AutoEncoder_ad.yaml +0 -0
  1194. /paddlex/configs/{ts_anomaly_detection → modules/ts_anomaly_detection}/DLinear_ad.yaml +0 -0
  1195. /paddlex/configs/{ts_anomaly_detection → modules/ts_anomaly_detection}/Nonstationary_ad.yaml +0 -0
  1196. /paddlex/configs/{ts_anomaly_detection → modules/ts_anomaly_detection}/PatchTST_ad.yaml +0 -0
  1197. /paddlex/configs/{ts_anomaly_detection → modules/ts_anomaly_detection}/TimesNet_ad.yaml +0 -0
  1198. /paddlex/configs/{ts_classification → modules/ts_classification}/TimesNet_cls.yaml +0 -0
  1199. /paddlex/configs/{ts_forecast → modules/ts_forecast}/DLinear.yaml +0 -0
  1200. /paddlex/configs/{ts_forecast → modules/ts_forecast}/NLinear.yaml +0 -0
  1201. /paddlex/configs/{ts_forecast → modules/ts_forecast}/Nonstationary.yaml +0 -0
  1202. /paddlex/configs/{ts_forecast → modules/ts_forecast}/PatchTST.yaml +0 -0
  1203. /paddlex/configs/{ts_forecast → modules/ts_forecast}/RLinear.yaml +0 -0
  1204. /paddlex/configs/{ts_forecast → modules/ts_forecast}/TiDE.yaml +0 -0
  1205. /paddlex/configs/{ts_forecast → modules/ts_forecast}/TimesNet.yaml +0 -0
  1206. /paddlex/configs/{vehicle_attribute → modules/vehicle_attribute_recognition}/PP-LCNet_x1_0_vehicle_attribute.yaml +0 -0
  1207. /paddlex/configs/{vehicle_detection → modules/vehicle_detection}/PP-YOLOE-L_vehicle.yaml +0 -0
  1208. /paddlex/configs/{vehicle_detection → modules/vehicle_detection}/PP-YOLOE-S_vehicle.yaml +0 -0
  1209. {paddlex-3.0.0b2.dist-info → paddlex-3.0.0rc1.dist-info}/entry_points.txt +0 -0
  1210. {paddlex-3.0.0b2.dist-info → paddlex-3.0.0rc1.dist-info/licenses}/LICENSE +0 -0
  1211. {paddlex-3.0.0b2.dist-info → paddlex-3.0.0rc1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,2149 @@
1
+ # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import bisect
16
+ import functools
17
+ import inspect
18
+ import io
19
+ import itertools
20
+ import json
21
+ import os
22
+ import re
23
+ import unicodedata
24
+ from collections import OrderedDict
25
+ from dataclasses import asdict, dataclass
26
+ from functools import lru_cache
27
+ from typing import Any, Dict, List, Literal, Optional, Tuple, Union
28
+
29
+ import numpy as np
30
+
31
+ from .....utils import logging
32
+ from .....utils.deps import class_requires_deps, is_dep_available
33
+ from .tokenizer_utils_base import (
34
+ CHAT_TEMPLATE_CONFIG_NAME,
35
+ AddedToken,
36
+ BatchEncoding,
37
+ EncodedInput,
38
+ EncodedInputPair,
39
+ PaddingStrategy,
40
+ PreTokenizedInput,
41
+ PreTokenizedInputPair,
42
+ PretrainedTokenizerBase,
43
+ TensorType,
44
+ TextInput,
45
+ TextInputPair,
46
+ TruncationStrategy,
47
+ )
48
+ from .utils import convert_to_dict_message, fn_args_to_dict
49
+ from .vocab import Vocab
50
+
51
+ if is_dep_available("Jinja2"):
52
+ from jinja2 import Template
53
+ from jinja2.exceptions import TemplateError, TemplateSyntaxError
54
+ from jinja2.sandbox import ImmutableSandboxedEnvironment
55
+
56
+ __all__ = [
57
+ "ChatTemplate",
58
+ "Trie",
59
+ "ChatTemplateMixin",
60
+ "PretrainedTokenizer",
61
+ "InitTrackerMeta",
62
+ ]
63
+
64
+
65
+ @class_requires_deps("Jinja2")
66
+ @dataclass
67
+ class ChatTemplate:
68
+ conversation: Union[List[str], None] = None
69
+ system: Union[str, None] = None
70
+ query: str = None
71
+
72
+ @staticmethod
73
+ @lru_cache()
74
+ def _compile_jinja_template(chat_template) -> "Template":
75
+ def raise_exception(message):
76
+ raise TemplateError(message)
77
+
78
+ jinja_env = ImmutableSandboxedEnvironment(
79
+ trim_blocks=True, lstrip_blocks=True, keep_trailing_newline=True
80
+ )
81
+ jinja_env.globals["raise_exception"] = raise_exception
82
+ return jinja_env.from_string(chat_template)
83
+
84
+ def render_conversation(
85
+ self,
86
+ conversation_data: Union[List[str], Dict[str, str]],
87
+ index: int = 0,
88
+ context_data: Dict[str, Any] = {},
89
+ ) -> List[str]:
90
+ """
91
+ Args:
92
+ conversation_data (list[str]): the conversation data which must be two parts
93
+ index (int): the index of current conversation
94
+
95
+ Returns:
96
+ list[str]: the rendered conversation data
97
+ """
98
+ if self.conversation is None:
99
+ raise ValueError(
100
+ "The template for multi-turns is invalid, please check `conversation` filed in your chat-template."
101
+ )
102
+
103
+ if isinstance(conversation_data, (list, tuple)):
104
+ assert (
105
+ len(conversation_data) == 2
106
+ ), "Each round/turn of conversation must be two participants, eg: [user-query, bot-query]"
107
+
108
+ conversation_data = {
109
+ "user": conversation_data[0],
110
+ "bot": conversation_data[1],
111
+ "index": index,
112
+ }
113
+ conversation_data.update(context_data)
114
+
115
+ one_turn_conversation = []
116
+ for conversation in self.conversation:
117
+ template = self._compile_jinja_template(conversation)
118
+ result = template.render(conversation_data)
119
+ one_turn_conversation.append(result)
120
+ return one_turn_conversation
121
+
122
+ def render_query(
123
+ self, query: str, index: int = 0, context_data: Dict[str, Union[int, str]] = {}
124
+ ):
125
+ if self.query is None:
126
+ return query
127
+
128
+ template = self._compile_jinja_template(self.query)
129
+ return template.render(query=query, index=index, **context_data)
130
+
131
+ def _init_context_data(
132
+ self, context_data: Dict[str, Union[int, str]] = {}
133
+ ) -> Dict[str, Union[int, str]]:
134
+ """init the context data for chat-template"""
135
+ context_data["is_training"] = context_data.get("is_training", False)
136
+ return context_data
137
+
138
+ def render_system(self, context_data: Dict[str, Union[int, str]] = {}) -> str:
139
+ if self.system is None:
140
+ return ""
141
+
142
+ template = self._compile_jinja_template(self.system)
143
+ return template.render(**context_data)
144
+
145
+ def __call__(
146
+ self,
147
+ conversations: Union[List[List[str]], str],
148
+ context_data: Dict[str, Union[int, str]] = {},
149
+ ) -> str:
150
+ """render the conversations by chat-template
151
+
152
+ Args:
153
+ conversations (list[list[str]]): the conversations of use and bot
154
+
155
+ Returns:
156
+ str: the result of conversation
157
+ """
158
+ if isinstance(conversations, str):
159
+ conversations = [[conversations]]
160
+
161
+ # [1 ... n-1] conversation
162
+ final_query = self.render_system(context_data=context_data)
163
+ context_data["length"] = len(conversations)
164
+ for index, conversation in enumerate(conversations[:-1]):
165
+ context_data["is_first"] = index == 0
166
+ context_data["is_last"] = False
167
+ final_query += "".join(
168
+ self.render_conversation(
169
+ conversation, index=index, context_data=context_data
170
+ )
171
+ )
172
+
173
+ if not isinstance(conversations[-1], list) and not len(conversations[-1]) != 1:
174
+ raise ValueError(
175
+ "The length of last conversation must be one, eg: [[user-query, bot-answer], [user-query, bot-answer], ..., [user-query]]"
176
+ )
177
+ if len(conversations[-1]) > 1:
178
+ logging.warning(
179
+ f"The last conversation is not a single-round, chat-template will skip the conversation: {conversations[-1][1:]}"
180
+ )
181
+
182
+ final_query += self.render_query(
183
+ conversations[-1][0],
184
+ index=len(conversations) - 1,
185
+ context_data=context_data,
186
+ )
187
+ return final_query
188
+
189
+ @classmethod
190
+ def from_dict(cls, config: Dict):
191
+ return cls(**config)
192
+
193
+ @classmethod
194
+ def from_file(cls, file: str):
195
+ with open(file, "r", encoding="utf-8") as f:
196
+ config = json.load(f)
197
+ return cls.from_dict(config)
198
+
199
+
200
+ def adapt_stale_fwd_patch(self, name, value):
201
+ """
202
+ Since there are some monkey patches for forward of PretrainedModel, such as
203
+ model compression, we make these patches compatible with the latest forward
204
+ method.
205
+ """
206
+
207
+ if name == "forward":
208
+ # NOTE(guosheng): In dygraph to static, `layer.forward` would be patched
209
+ # by an instance of `StaticFunction`. And use string compare to avoid to
210
+ # import fluid.
211
+ if type(value).__name__.endswith(
212
+ "StaticFunction"
213
+ ) or self.forward.__class__.__name__.endswith("StaticFunction"):
214
+ return value
215
+ (
216
+ patch_spec_args,
217
+ patch_spec_varargs,
218
+ patch_spec_varkw,
219
+ patch_spec_defaults,
220
+ _,
221
+ _,
222
+ _,
223
+ ) = inspect.getfullargspec(value)
224
+ (spec_args, spec_varargs, spec_varkw, spec_defaults, _, _, _) = (
225
+ inspect.getfullargspec(self.forward)
226
+ )
227
+ new_args = [
228
+ arg
229
+ for arg in ("output_hidden_states", "output_attentions", "return_dict")
230
+ if arg not in patch_spec_args and arg in spec_args
231
+ ]
232
+
233
+ if new_args:
234
+ import paddle
235
+
236
+ if self.__module__.startswith("paddlenlp"):
237
+ logging.warning(
238
+ f"The `forward` method of {self.__class__ if isinstance(self, paddle.nn.Layer) else self} is patched and the patch "
239
+ "might be based on an old oversion which missing some "
240
+ f"arguments compared with the latest, such as {new_args}. "
241
+ "We automatically add compatibility on the patch for "
242
+ "these arguemnts, and maybe the patch should be updated."
243
+ )
244
+ else:
245
+ logging.warning(
246
+ f"The `forward` method of {self.__class__ if isinstance(self, paddle.nn.Layer) else self} "
247
+ "is patched and the patch might be conflict with patches made "
248
+ f"by paddlenlp which seems have more arguments such as {new_args}. "
249
+ "We automatically add compatibility on the patch for "
250
+ "these arguemnts, and maybe the patch should be updated."
251
+ )
252
+ if isinstance(self, paddle.nn.Layer) and inspect.isfunction(value):
253
+
254
+ @functools.wraps(value)
255
+ def wrap_fwd(*args, **kwargs):
256
+ for arg in new_args:
257
+ kwargs.pop(arg, None)
258
+ return value(self, *args, **kwargs)
259
+
260
+ else:
261
+
262
+ @functools.wraps(value)
263
+ def wrap_fwd(*args, **kwargs):
264
+ for arg in new_args:
265
+ kwargs.pop(arg, None)
266
+ return value(*args, **kwargs)
267
+
268
+ return wrap_fwd
269
+ return value
270
+
271
+
272
+ # NOTE:
273
+ # Modification:
274
+ # class InitTrackerMeta(type(paddle.nn.Layer)) -> class InitTrackerMeta(type)
275
+ # Context:
276
+ # 1. In paddle 3.0rc, type(paddle.nn.Layer) == type
277
+ # 2. Solve the conflict between ultra-infer and paddle
278
+ class InitTrackerMeta(type):
279
+ """
280
+ This metaclass wraps the `__init__` method of a class to add `init_config`
281
+ attribute for instances of that class, and `init_config` use a dict to track
282
+ the initial configuration. If the class has `_pre_init` or `_post_init`
283
+ method, it would be hooked before or after `__init__` and called as
284
+ `_pre_init(self, init_fn, init_args)` or `_post_init(self, init_fn, init_args)`.
285
+ Since InitTrackerMeta would be used as metaclass for pretrained model classes,
286
+ which always are Layer and `type(Layer)` is not `type`, thus use `type(Layer)`
287
+ rather than `type` as base class for it to avoid inheritance metaclass
288
+ conflicts.
289
+ """
290
+
291
+ def __init__(cls, name, bases, attrs):
292
+ init_func = cls.__init__
293
+ # If attrs has `__init__`, wrap it using accessable `_pre_init, _post_init`.
294
+ # Otherwise, no need to wrap again since the super cls has been wraped.
295
+ # TODO: remove reduplicated tracker if using super cls `__init__`
296
+ pre_init_func = getattr(cls, "_pre_init", None) if "__init__" in attrs else None
297
+ post_init_func = (
298
+ getattr(cls, "_post_init", None) if "__init__" in attrs else None
299
+ )
300
+ cls.__init__ = InitTrackerMeta.init_and_track_conf(
301
+ init_func, pre_init_func, post_init_func
302
+ )
303
+ super(InitTrackerMeta, cls).__init__(name, bases, attrs)
304
+
305
+ @staticmethod
306
+ def init_and_track_conf(init_func, pre_init_func=None, post_init_func=None):
307
+ """
308
+ wraps `init_func` which is `__init__` method of a class to add `init_config`
309
+ attribute for instances of that class.
310
+ Args:
311
+ init_func (callable): It should be the `__init__` method of a class.
312
+ warning: `self` always is the class type of down-stream model, eg: BertForTokenClassification
313
+ pre_init_func (callable, optional): If provided, it would be hooked after
314
+ `init_func` and called as `pre_init_func(self, init_func, *init_args, **init_args)`.
315
+ Default None.
316
+ post_init_func (callable, optional): If provided, it would be hooked after
317
+ `init_func` and called as `post_init_func(self, init_func, *init_args, **init_args)`.
318
+ Default None.
319
+
320
+ Returns:
321
+ function: the wrapped function
322
+ """
323
+
324
+ @functools.wraps(init_func)
325
+ def __impl__(self, *args, **kwargs):
326
+ # registed helper by `pre_init_func`
327
+ if pre_init_func:
328
+ pre_init_func(self, init_func, *args, **kwargs)
329
+ # keep full configuration
330
+ init_func(self, *args, **kwargs)
331
+ # registed helper by `post_init_func`
332
+ if post_init_func:
333
+ post_init_func(self, init_func, *args, **kwargs)
334
+ self.init_config = kwargs
335
+ if args:
336
+ kwargs["init_args"] = args
337
+ kwargs["init_class"] = self.__class__.__name__
338
+
339
+ return __impl__
340
+
341
+ def __setattr__(self, name, value):
342
+ value = adapt_stale_fwd_patch(self, name, value)
343
+ return super(InitTrackerMeta, self).__setattr__(name, value)
344
+
345
+
346
+ class Trie:
347
+ """
348
+ Trie in Python. Creates a Trie out of a list of words. The trie is used to split on `added_tokens` in one pass
349
+ Loose reference https://en.wikipedia.org/wiki/Trie
350
+ """
351
+
352
+ def __init__(self):
353
+ self.data = {}
354
+
355
+ def add(self, word: str):
356
+ """
357
+ Passes over every char (utf-8 char) on word and recursively adds it to the internal `data` trie representation.
358
+ The special key `""` is used to represent termination.
359
+
360
+ This function is idempotent, adding twice the same word will leave the trie unchanged
361
+
362
+ Example:
363
+
364
+ ```python
365
+ >>> trie = Trie()
366
+ >>> trie.add("Hello 友達")
367
+ >>> trie.data
368
+ {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}}
369
+
370
+ >>> trie.add("Hello")
371
+ >>> trie.data
372
+ {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}}
373
+ ```
374
+ """
375
+ if not word:
376
+ # Prevent empty string
377
+ return
378
+ ref = self.data
379
+ for char in word:
380
+ ref[char] = char in ref and ref[char] or {}
381
+ ref = ref[char]
382
+ ref[""] = 1
383
+
384
+ def split(self, text: str) -> List[str]:
385
+ """
386
+ Will look for the words added to the trie within `text`. Output is the original string splitted along the
387
+ boundaries of the words found.
388
+
389
+ This trie will match the longest possible word first !
390
+
391
+ Example:
392
+
393
+ ```python
394
+ >>> trie = Trie()
395
+ >>> trie.split("[CLS] This is a extra_id_100")
396
+ ["[CLS] This is a extra_id_100"]
397
+
398
+ >>> trie.add("[CLS]")
399
+ >>> trie.add("extra_id_1")
400
+ >>> trie.add("extra_id_100")
401
+ >>> trie.split("[CLS] This is a extra_id_100")
402
+ ["[CLS]", " This is a ", "extra_id_100"]
403
+ ```
404
+ """
405
+ # indexes are counted left of the chars index.
406
+ # "hello", index 0, is left of h, index 1 is between h and e.
407
+ # index 5 is right of the "o".
408
+
409
+ # States are going to capture every possible start (indexes as above)
410
+ # as keys, and have as values, a pointer to the position in the trie
411
+ # where we're at. This is a partial match for now.
412
+ # This enables to keep track of multiple matches while we're iterating
413
+ # the string
414
+ # If the trie contains, "blowing", and "lower" and we encounter the
415
+ # string "blower", we need to split into ["b", "lower"].
416
+ # This is where we need to keep track of multiple possible starts.
417
+ states = OrderedDict()
418
+
419
+ # This will contain every indices where we need
420
+ # to cut.
421
+ # We force to cut at offset 0 and len(text) (added later)
422
+ offsets = [0]
423
+
424
+ # This is used by the lookahead which needs to skip over
425
+ # some text where the full match exceeded the place in the initial
426
+ # for loop
427
+ skip = 0
428
+ # Main loop, Giving this algorithm O(n) complexity
429
+ for current, current_char in enumerate(text):
430
+ if skip and current < skip:
431
+ # Prevents the lookahead for matching twice
432
+ # like extra_id_100 and id_100
433
+ continue
434
+
435
+ # This will track every state
436
+ # that stop matching, we need to stop tracking them.
437
+ # If we look at "lowball", we're going to match "l" (add it to states), "o", "w", then
438
+ # fail on "b", we need to remove 0 from the valid states.
439
+ to_remove = set()
440
+ # Whenever we found a match, we need to drop everything
441
+ # this is a greedy algorithm, it will match on the first found token
442
+ reset = False
443
+
444
+ # In this case, we already have partial matches (But unfinished)
445
+ for start, trie_pointer in states.items():
446
+ if "" in trie_pointer:
447
+ # This is a final match, we need to reset and
448
+ # store the results in `offsets`.
449
+
450
+ # Lookahead to match longest first
451
+ # Important in case of extra_id_1 vs extra_id_100
452
+ # Here we are also actively looking for other earlier partial
453
+ # matches
454
+ # "[CLS]", "L", we need to match CLS even if L is special
455
+ for lookstart, looktrie_pointer in states.items():
456
+ if lookstart > start:
457
+ # This partial match is later, we can stop looking
458
+ break
459
+ elif lookstart < start:
460
+ # This partial match is earlier, the trie pointer
461
+ # was already updated, so index is + 1
462
+ lookahead_index = current + 1
463
+ end = current + 1
464
+ else:
465
+ # Here lookstart == start and
466
+ # looktrie_pointer == trie_pointer
467
+ # It wasn't updated yet so indices are current ones
468
+ lookahead_index = current
469
+ end = current
470
+ next_char = (
471
+ text[lookahead_index]
472
+ if lookahead_index < len(text)
473
+ else None
474
+ )
475
+ if "" in looktrie_pointer:
476
+ start = lookstart
477
+ end = lookahead_index
478
+ skip = lookahead_index
479
+
480
+ while next_char in looktrie_pointer:
481
+ looktrie_pointer = looktrie_pointer[next_char]
482
+ lookahead_index += 1
483
+ if "" in looktrie_pointer:
484
+ start = lookstart
485
+ end = lookahead_index
486
+ skip = lookahead_index
487
+
488
+ if lookahead_index == len(text):
489
+ # End of string
490
+ break
491
+ next_char = text[lookahead_index]
492
+ # End lookahead
493
+
494
+ # Storing and resetting
495
+ offsets.append(start)
496
+ offsets.append(end)
497
+ reset = True
498
+ break
499
+ elif current_char in trie_pointer:
500
+ # The current character being looked at has a match within the trie
501
+ # update the pointer (it will be stored back into states later).
502
+ trie_pointer = trie_pointer[current_char]
503
+
504
+ # Storing back the new pointer into the states.
505
+ # Partial matches got longer by one.
506
+ states[start] = trie_pointer
507
+ else:
508
+ # The new character has not match in the trie, we need
509
+ # to stop keeping track of this partial match.
510
+ # We can't do it directly within the loop because of how
511
+ # python iteration works
512
+ to_remove.add(start)
513
+
514
+ # Either clearing the full start (we found a real match)
515
+ # Or clearing only the partial matches that didn't work.
516
+ if reset:
517
+ states = {}
518
+ else:
519
+ for start in to_remove:
520
+ del states[start]
521
+
522
+ # If this character is a starting character within the trie
523
+ # start keeping track of this partial match.
524
+ if current >= skip and current_char in self.data:
525
+ states[current] = self.data[current_char]
526
+
527
+ # We have a cut at the end with states.
528
+ for start, trie_pointer in states.items():
529
+ if "" in trie_pointer:
530
+ # This is a final match, we need to reset and
531
+ # store the results in `offsets`.
532
+ end = len(text)
533
+ offsets.append(start)
534
+ offsets.append(end)
535
+ # Longest cut is always the one with lower start so the first
536
+ # item so we need to break.
537
+ break
538
+
539
+ return self.cut_text(text, offsets)
540
+
541
+ def cut_text(self, text, offsets):
542
+ # We have all the offsets now, we just need to do the actual splitting.
543
+ # We need to eventually add the first part of the string and the eventual
544
+ # last part.
545
+ offsets.append(len(text))
546
+ tokens = []
547
+ start = 0
548
+ for end in offsets:
549
+ if start > end:
550
+ logging.error(
551
+ "There was a bug in Trie algorithm in tokenization. Attempting to recover. Please report it anyway."
552
+ )
553
+ continue
554
+ elif start == end:
555
+ # This might happen if there's a match at index 0
556
+ # we're also preventing zero-width cuts in case of two
557
+ # consecutive matches
558
+ continue
559
+ tokens.append(text[start:end])
560
+ start = end
561
+
562
+ return tokens
563
+
564
+
565
+ def _insert_one_token_to_ordered_list(token_list: List[str], new_token: str):
566
+ """
567
+ Inserts one token to an ordered list if it does not already exist. Note: token_list must be sorted.
568
+ """
569
+ insertion_idx = bisect.bisect_left(token_list, new_token)
570
+ # Checks if new_token is already in the ordered token_list
571
+ if insertion_idx < len(token_list) and token_list[insertion_idx] == new_token:
572
+ # new_token is in token_list, don't add
573
+ return
574
+ else:
575
+ token_list.insert(insertion_idx, new_token)
576
+
577
+
578
+ def _is_control(char):
579
+ """Checks whether `chars` is a control character."""
580
+ # These are technically control characters but we count them as whitespace
581
+ # characters.
582
+ if char == "\t" or char == "\n" or char == "\r":
583
+ return False
584
+ cat = unicodedata.category(char)
585
+ if cat.startswith("C"):
586
+ return True
587
+ return False
588
+
589
+
590
+ def _is_nonnormalized_char(char):
591
+ """Check whther `chars` is a non-normalized character."""
592
+ cp = ord(char)
593
+ if (
594
+ (0xFF00 <= cp <= 0xFFEF)
595
+ or (0xFE50 <= cp <= 0xFE6B) # Halfwidth and Fullwidth Forms
596
+ or (0x3358 <= cp <= 0x33FF) # Small Form Variants
597
+ or (0x249C <= cp <= 0x24E9) # CJK Compatibility
598
+ or (0x3200 <= cp <= 0x32FF) # Enclosed Alphanumerics: Ⓛ ⒰
599
+ ): # Enclosed CJK Letters and Months
600
+ return True
601
+
602
+ return False
603
+
604
+
605
+ def _is_nonnormalized_numeric(char):
606
+ """Check whether `chars` is a non-normalized numeric character."""
607
+ cp = ord(char)
608
+ if (
609
+ (0x2460 <= cp <= 0x249B)
610
+ or (0x24EA <= cp <= 0x24FF) #
611
+ or (0x2776 <= cp <= 0x2793) #
612
+ or (0x2160 <= cp <= 0x217F) # Enclosed Alphanumerics
613
+ ): # Number Forms
614
+ return True
615
+
616
+ return False
617
+
618
+
619
+ def normalize_chars(text):
620
+ """
621
+ Normalize the text for multiligual and chinese models. Unicode range:
622
+ https://www.ling.upenn.edu/courses/Spring_2003/ling538/UnicodeRanges.html
623
+ """
624
+ output = []
625
+ for char in text:
626
+ if _is_nonnormalized_char(char):
627
+ for c in unicodedata.normalize("NFKC", char):
628
+ output.append(c)
629
+ elif _is_nonnormalized_numeric(char):
630
+ output.append(" ")
631
+ for c in str(int(unicodedata.numeric(char))):
632
+ output.append(c)
633
+ output.append(" ")
634
+ elif ord(char) == 0xF979: # https://www.zhihu.com/question/20697984
635
+ output.append("凉")
636
+ else:
637
+ output.append(char)
638
+ return "".join(output)
639
+
640
+
641
+ class ChatTemplateMixin:
642
+ chat_template: Optional[ChatTemplate] = None
643
+
644
+ def apply_chat_template(
645
+ self,
646
+ conversation: Union[List[List[str]], Dict[str, str], str],
647
+ tokenize: bool = True,
648
+ context_data: Dict[str, Any] = {},
649
+ **tokenizer_kwargs,
650
+ ):
651
+ """apply chat_template rules to conversation which should not be batched data
652
+
653
+ Args:
654
+ conversation (List[List[str]] , str): the conversation messages between user and bot
655
+ context_data (Dict[str, Any]): the context data for chat_template.json
656
+ tokenize (bool, optional): whether do tokenization. Defaults to True.
657
+
658
+ Returns:
659
+ str | dict[str, Union[numpy.ndarray, paddle.Tensor]]: return the result of applied data
660
+ """
661
+ if not self.chat_template:
662
+ raise ValueError(
663
+ "chat_template is not set, please set chat_template first."
664
+ )
665
+ elif isinstance(self.chat_template, Template):
666
+ add_generation_prompt = tokenizer_kwargs.pop("add_generation_prompt", True)
667
+ query = self._apply_chat_template(
668
+ conversation, add_generation_prompt=add_generation_prompt
669
+ )
670
+ elif isinstance(self.chat_template, ChatTemplate):
671
+ query = self._apply_chat_template_paddle(conversation, context_data)
672
+
673
+ if not tokenize:
674
+ return query
675
+
676
+ # chat_template should not add special tokens
677
+ tokenizer_kwargs["add_special_tokens"] = False
678
+ return self(query, **tokenizer_kwargs)
679
+
680
+ def _apply_chat_template_paddle(
681
+ self,
682
+ conversation: Union[List[List[str]], str],
683
+ context_data: Dict[str, Any] = {},
684
+ ):
685
+ context_data = self.chat_template._init_context_data(context_data)
686
+
687
+ if isinstance(conversation, str):
688
+ conversation = [[conversation]]
689
+ elif isinstance(conversation, list) and isinstance(conversation[0], str):
690
+ raise ValueError(
691
+ "apply_chat_template do not support appling batch conversations, "
692
+ "so you should apply the conversation one by one."
693
+ )
694
+
695
+ query = self.chat_template(conversation, context_data=context_data)
696
+ return query
697
+
698
+ def _apply_chat_template(
699
+ self,
700
+ conversation: Union[List[List[str]], Dict[str, str], str],
701
+ add_generation_prompt=True,
702
+ ):
703
+ if isinstance(conversation, str):
704
+ conversations = [{"role": "user", "content": conversation}]
705
+ elif isinstance(conversation, list):
706
+ assert len(conversation) > 0, "empty conversation is not allowed"
707
+ if isinstance(conversation[0], list):
708
+ conversations = convert_to_dict_message(conversation)
709
+ elif isinstance(conversation[0], dict):
710
+ conversations = conversation
711
+ else:
712
+ raise ValueError(
713
+ "apply_chat_template do not support appling batch conversations, "
714
+ "so you should apply the conversation one by one."
715
+ )
716
+ query = self.chat_template.render(
717
+ messages=conversations,
718
+ **self.special_tokens_map,
719
+ add_generation_prompt=add_generation_prompt,
720
+ )
721
+ return query
722
+
723
+ def encode_chat_inputs(
724
+ self,
725
+ conversations: List[List[str]],
726
+ context_data: Dict[str, Any] = {},
727
+ **kwargs,
728
+ ):
729
+ """Encodes conversation to pairs of token ids.
730
+ Turn 0: bos + system + sep + user bot + eos
731
+ Turn t: sep + bot + query bot + eos
732
+
733
+ Args:
734
+ conversation (List[List[str]]): the conversation of data
735
+ context_data (Dict[str, Any]): the context data of conversation
736
+
737
+ Returns:
738
+ List[list[int], list[int]]: the pair of input_ids and target_ids
739
+ """
740
+ if not self.chat_template:
741
+ raise ValueError(
742
+ "chat_template is not set, please set chat_template first."
743
+ )
744
+ elif isinstance(self.chat_template, Template):
745
+ add_generation_prompt = kwargs.pop("add_generation_prompt", True)
746
+ query = self._encode_chat_inputs(
747
+ conversations, context_data, add_generation_prompt=add_generation_prompt
748
+ )
749
+ elif isinstance(self.chat_template, ChatTemplate):
750
+ query = self._encode_chat_inputs_paddle(conversations, context_data)
751
+ return query
752
+
753
+ def _encode_chat_inputs_paddle(
754
+ self, conversations: List[List[str]], context_data: Dict[str, Any] = {}
755
+ ):
756
+ context_data = self.chat_template._init_context_data(context_data)
757
+ # encode system
758
+ result = {}
759
+ if self.chat_template.system:
760
+ system = self.chat_template.render_system(context_data)
761
+ result["system"] = self.encode(system, add_special_tokens=False)[
762
+ "input_ids"
763
+ ]
764
+
765
+ # encode conversation
766
+ conversation_ids = []
767
+ for index, conversation in enumerate(conversations):
768
+ # give more control to chat_template
769
+ context_data["is_first"] = index == 0
770
+ context_data["is_last"] = index == len(conversations) - 1
771
+
772
+ user_input, bot_output = self.chat_template.render_conversation(
773
+ conversation, index=index, context_data=context_data
774
+ )
775
+ user_ids = self.encode(user_input, add_special_tokens=False)["input_ids"]
776
+ bot_ids = self.encode(bot_output, add_special_tokens=False)["input_ids"]
777
+ conversation_ids.append([user_ids, bot_ids])
778
+
779
+ result["conversations"] = conversation_ids
780
+ return result
781
+
782
+ def _encode_chat_inputs(
783
+ self,
784
+ conversations: List[List[str]],
785
+ context_data: Dict[str, Any] = {},
786
+ system: str = None,
787
+ add_generation_prompt=True,
788
+ ):
789
+ result = {}
790
+
791
+ # Some template do not support system msg, so we need to check it first.
792
+ if system:
793
+ try:
794
+ self.chat_template.render(
795
+ messages={"role": "system", "content": system}
796
+ )
797
+ except Exception as e:
798
+ raise ValueError("System is not supported in this tokenizer.", e)
799
+
800
+ # convert list msg to role dict msg
801
+ conversation_dict = []
802
+ origin_msg = []
803
+ for round in conversations:
804
+ round_role = [
805
+ {"role": "user", "content": round[0]},
806
+ {"role": "assistant", "content": round[1]},
807
+ ]
808
+ origin_msg.extend(round_role)
809
+ conversation_dict.append(round_role)
810
+ ans = []
811
+
812
+ # get answer in single round, then compile the chat entirely and split by single round ans
813
+ # attention: answer should include end token!
814
+ for conv in conversation_dict:
815
+ roundi = [system] + conv if system else conv
816
+ roundi_str = self.chat_template.render(
817
+ messages=roundi, add_generation_prompt=False, **self.special_tokens_map
818
+ )
819
+ roundi_no_ans = [system] + [conv[0]] if system else [conv[0]]
820
+ roundi_no_ans_str = self.chat_template.render(
821
+ messages=roundi_no_ans,
822
+ add_generation_prompt=add_generation_prompt,
823
+ **self.special_tokens_map,
824
+ )
825
+ ans_roundi = roundi_str[len(roundi_no_ans_str) :]
826
+ ans.append(ans_roundi)
827
+
828
+ non_learnable_parts = self._extract_non_learnable_parts(origin_msg, ans)
829
+ assert len(non_learnable_parts) == len(
830
+ ans
831
+ ), f"Get non_learnable_parts len: {len(non_learnable_parts)}, but ans len: {len(ans)}."
832
+
833
+ conversation_ids = []
834
+ for i in range(len(non_learnable_parts)):
835
+ conversation_ids.append(
836
+ self.batch_encode(
837
+ [non_learnable_parts[i], ans[i]],
838
+ add_special_tokens=False,
839
+ padding=False,
840
+ )["input_ids"]
841
+ )
842
+
843
+ result["conversations"] = conversation_ids
844
+ return result
845
+
846
+ def _extract_non_learnable_parts(
847
+ self, origin_msg: List[Dict[str, str]], split_s: List[str]
848
+ ):
849
+ """Split the entire chat by specified words. Extract the non-learnable parts."""
850
+ # distingish and replace the special words in original string to an uncompiled form: Like | -> \|
851
+ regex_pattern = "|".join(map(re.escape, split_s))
852
+ # splited by replaced specified words
853
+ non_learnable_parts = re.split(
854
+ r"(?:%s)" % regex_pattern,
855
+ self.chat_template.render(
856
+ messages=origin_msg,
857
+ add_generation_prompt=False,
858
+ **self.special_tokens_map,
859
+ ),
860
+ )
861
+ if non_learnable_parts[-1] == "":
862
+ non_learnable_parts.pop()
863
+ return non_learnable_parts
864
+
865
+ @classmethod
866
+ def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs):
867
+ cache_dir = kwargs.pop("cache_dir", None)
868
+ from_hf_hub = kwargs.pop("from_hf_hub", False)
869
+ from_aistudio = kwargs.pop("from_aistudio", False)
870
+ subfolder = kwargs.pop("subfolder", "")
871
+ if subfolder is None:
872
+ subfolder = ""
873
+
874
+ kwargs["subfolder"] = subfolder
875
+ kwargs["cache_dir"] = cache_dir
876
+ kwargs["from_hf_hub"] = from_hf_hub
877
+ kwargs["from_aistudio"] = from_aistudio
878
+ kwargs["return_tokenizer_file_dir"] = True
879
+ tokenizer, tokenizer_config_file_dir = super().from_pretrained(
880
+ pretrained_model_name_or_path, *args, **kwargs
881
+ )
882
+
883
+ # load chat-template
884
+ chat_template_file = os.path.join(
885
+ tokenizer_config_file_dir, CHAT_TEMPLATE_CONFIG_NAME
886
+ )
887
+ if not os.path.exists(chat_template_file):
888
+ return tokenizer
889
+
890
+ if tokenizer.chat_template is not None:
891
+ logging.warning(
892
+ "Chat-template already exists in config file, it will be overwritten by chat_template.json file."
893
+ )
894
+ logging.warning(
895
+ "`chat_template.json` will be deprecated in the future! Please set it in `tokenizer_config.json`."
896
+ )
897
+ tokenizer.init_chat_template(chat_template_file)
898
+ return tokenizer
899
+
900
+ def init_chat_template(self, chat_template: Union[str, dict]):
901
+ """init chat_tempalte by file_path or template dict data
902
+
903
+ Args:
904
+ chat_template (str, dict): file_path or template dict data
905
+ """
906
+ if isinstance(chat_template, str):
907
+ if not os.path.exists(chat_template):
908
+ try:
909
+ self.chat_template: Template = ChatTemplate._compile_jinja_template(
910
+ chat_template
911
+ )
912
+ except TemplateSyntaxError:
913
+ # It is neither jinjia string nor path string
914
+ raise TemplateSyntaxError(
915
+ "The chat-template in json is not valid jinja string: {}".format(
916
+ chat_template
917
+ ),
918
+ lineno=0, # fake lineno, useless required msg
919
+ )
920
+ else:
921
+ self.chat_template = ChatTemplate.from_file(chat_template)
922
+ elif isinstance(chat_template, dict):
923
+ self.chat_template = ChatTemplate.from_dict(chat_template)
924
+ elif isinstance(chat_template, ChatTemplate):
925
+ self.chat_template = chat_template
926
+ else:
927
+ raise ValueError("Receive error chat_template data: ", chat_template)
928
+
929
+ def save_resources(self, save_directory):
930
+ super().save_resources(save_directory)
931
+
932
+ if isinstance(
933
+ self.chat_template, ChatTemplate
934
+ ): # Future remove if ChatTemplate is deprecated
935
+ chat_template_file = os.path.join(save_directory, CHAT_TEMPLATE_CONFIG_NAME)
936
+ with open(chat_template_file, "w", encoding="utf-8") as f:
937
+ json.dump(asdict(self.chat_template), f, ensure_ascii=False, indent=4)
938
+ logging.info("Chat-template config file saved in " + chat_template_file)
939
+
940
+
941
+ class PretrainedTokenizer(
942
+ ChatTemplateMixin, PretrainedTokenizerBase, metaclass=InitTrackerMeta
943
+ ):
944
+ """
945
+ Base class for all tokenizers.
946
+
947
+ Inherits from [`~tokenizer_utils_base.PretrainedTokenizerBase`].
948
+
949
+ Handle all the shared methods for tokenization and special tokens as well as methods downloading/caching/loading
950
+ pretrained tokenizers as well as adding tokens to the vocabulary.
951
+
952
+ This class also contain the added tokens in a unified way on top of all tokenizers so we don't have to handle the
953
+ specific vocabulary augmentation methods of the various underlying dictionary structures (BPE, sentencepiece...).
954
+
955
+ - **resource_files_names** (`Dict[str, str]`) -- A dictionary with, as keys, the `__init__` keyword name of each
956
+ vocabulary file required by the model, and as associated values, the filename for saving the associated file
957
+ (string).
958
+ - **pretrained_resource_files_map** (`Dict[str, Dict[str, str]]`) -- A dictionary of dictionaries, with the
959
+ high-level keys being the `__init__` keyword name of each vocabulary file required by the model, the
960
+ low-level being the `short-cut-names` of the pretrained models with, as associated values, the `url` to the
961
+ associated pretrained vocabulary file.
962
+ - **max_model_input_sizes** (`Dict[str, Optional[int]]`) -- A dictionary with, as keys, the `short-cut-names`
963
+ of the pretrained models, and as associated values, the maximum length of the sequence inputs of this model,
964
+ or `None` if the model has no maximum input size.
965
+ - **pretrained_init_configuration** (`Dict[str, Dict[str, Any]]`) -- A dictionary with, as keys, the
966
+ `short-cut-names` of the pretrained models, and as associated values, a dictionary of specific arguments to
967
+ pass to the `__init__` method of the tokenizer class for this pretrained model when loading the tokenizer
968
+ with the [`~tokenizer_utils_base.PretrainedTokenizerBase.from_pretrained`] method.
969
+ - **model_input_names** (`List[str]`) -- A list of inputs expected in the forward pass of the model.
970
+ - **padding_side** (`str`) -- The default value for the side on which the model should have padding applied.
971
+ Should be `'right'` or `'left'`.
972
+ - **truncation_side** (`str`) -- The default value for the side on which the model should have truncation
973
+ applied. Should be `'right'` or `'left'`.
974
+
975
+ Moreover, methods common to tokenizers for tokenization, token/id conversion
976
+ and encoding as model inputs are also provided here.
977
+
978
+ Besides, metaclass `InitTrackerMeta` is used to create `PretrainedTokenizer`,
979
+ by which subclasses can track arguments for initialization automatically
980
+ and expose special tokens initialization used as attributes.
981
+ """
982
+
983
+ added_tokens_encoder: Dict[str, int] = {}
984
+ added_tokens_decoder: Dict[int, str] = {}
985
+ unique_no_split_tokens: List[str] = []
986
+ tokens_trie = Trie()
987
+
988
+ _decode_use_source_tokenizer = False
989
+
990
+ def _pre_init(self, original_init, *args, **kwargs):
991
+ """
992
+ It would be hooked before `__init__` to add specials tokens (arguments of
993
+ `__init__` whose name ends with `_token`) as attributes of the tokenizer
994
+ instance.
995
+ """
996
+ init_dict = fn_args_to_dict(original_init, *((self,) + args), **kwargs)
997
+ init_dict.pop("self", None)
998
+ super(PretrainedTokenizer, self).__init__(**init_dict)
999
+
1000
+ self.added_tokens_decoder: Dict[int, AddedToken] = {}
1001
+ self.added_tokens_decoder.update(kwargs.pop("added_tokens_decoder", {}))
1002
+ self.added_tokens_encoder: Dict[str, int] = {
1003
+ k.content: v for v, k in self.added_tokens_decoder.items()
1004
+ }
1005
+
1006
+ self.unique_no_split_tokens: List[str] = []
1007
+ self.tokens_trie = Trie()
1008
+
1009
+ self._decode_use_source_tokenizer = False
1010
+
1011
+ def _build_special_tokens_map_extended(self, **kwargs):
1012
+ for key, value in kwargs.items():
1013
+ if value is None:
1014
+ continue
1015
+ if key in self.SPECIAL_TOKENS_ATTRIBUTES:
1016
+ if key == "additional_special_tokens":
1017
+ assert isinstance(
1018
+ value, (list, tuple)
1019
+ ), f"Value {value} is not a list or tuple"
1020
+ assert all(
1021
+ isinstance(t, (str, AddedToken)) for t in value
1022
+ ), "One of the tokens is not a string or an AddedToken"
1023
+ setattr(self, key, value)
1024
+ elif isinstance(value, (str, AddedToken)):
1025
+ setattr(self, key, value)
1026
+ else:
1027
+ raise TypeError(
1028
+ f"special token {key} has to be either str or AddedToken but got: {type(value)}"
1029
+ )
1030
+
1031
+ @property
1032
+ def vocab_size(self) -> int:
1033
+ """
1034
+ `int`: Size of the base vocabulary (without the added tokens).
1035
+ """
1036
+ raise NotImplementedError
1037
+
1038
+ @property
1039
+ def is_fast(self) -> bool:
1040
+ return False
1041
+
1042
+ def get_added_vocab(self) -> Dict[str, int]:
1043
+ """
1044
+ Returns the added tokens in the vocabulary as a dictionary of token to index.
1045
+
1046
+ Returns:
1047
+ `Dict[str, int]`: The added tokens.
1048
+ """
1049
+ return self.added_tokens_encoder
1050
+
1051
+ def __len__(self):
1052
+ """
1053
+ Size of the full vocabulary with the added tokens.
1054
+ """
1055
+ return self.vocab_size + len(self.added_tokens_encoder)
1056
+
1057
+ def _add_tokens(
1058
+ self,
1059
+ new_tokens: Union[List[str], List[AddedToken]],
1060
+ special_tokens: bool = False,
1061
+ ) -> int:
1062
+ """
1063
+ Add a list of new tokens to the tokenizer class. If the new tokens are not in the vocabulary, they are added to
1064
+ it with indices starting from length of the current vocabulary.
1065
+
1066
+ Args:
1067
+ new_tokens (`List[str]`or `List[AddedToken]`):
1068
+ Token(s) to add in vocabulary. A token is only added if it's not already in the vocabulary (tested by
1069
+ checking if the tokenizer assign the index of the `unk_token` to them).
1070
+ special_tokens (`bool`, *optional*, defaults to `False`):
1071
+ Whether or not the tokens should be added as special tokens.
1072
+
1073
+ Returns:
1074
+ `int`: The number of tokens actually added to the vocabulary.
1075
+
1076
+ Examples:
1077
+
1078
+ ```python
1079
+ # Let's see how to increase the vocabulary of Bert model and tokenizer
1080
+ tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
1081
+ model = BertModel.from_pretrained("bert-base-uncased")
1082
+
1083
+ num_added_toks = tokenizer.add_tokens(["new_tok1", "my_new-tok2"])
1084
+ print("We have added", num_added_toks, "tokens")
1085
+ ```"""
1086
+ new_tokens = [str(tok) for tok in new_tokens]
1087
+
1088
+ tokens_to_add = []
1089
+ for token in new_tokens:
1090
+ if not isinstance(token, str):
1091
+ raise TypeError(f"Token {token} is not a string but a {type(token)}.")
1092
+ if (
1093
+ not special_tokens
1094
+ and hasattr(self, "do_lower_case")
1095
+ and self.do_lower_case
1096
+ ):
1097
+ token = token.lower()
1098
+ if (
1099
+ token != self.unk_token
1100
+ and self.convert_tokens_to_ids(token)
1101
+ == self.convert_tokens_to_ids(self.unk_token)
1102
+ and token not in tokens_to_add
1103
+ and token not in self.added_tokens_encoder.keys()
1104
+ ):
1105
+ tokens_to_add.append(token)
1106
+ if self.verbose:
1107
+ logging.info(f"Adding {token} to the vocabulary")
1108
+
1109
+ added_tok_encoder = dict(
1110
+ (tok, len(self) + i) for i, tok in enumerate(tokens_to_add)
1111
+ )
1112
+ added_tok_decoder = {v: k for k, v in added_tok_encoder.items()}
1113
+ self.added_tokens_encoder.update(added_tok_encoder)
1114
+ self.added_tokens_decoder.update(added_tok_decoder)
1115
+
1116
+ # Make sure we don't split on any special tokens (even they were already in the vocab before e.g. for Albert)
1117
+ if special_tokens:
1118
+ if len(new_tokens) == 1:
1119
+ _insert_one_token_to_ordered_list(
1120
+ self.unique_no_split_tokens, new_tokens[0]
1121
+ )
1122
+ else:
1123
+ self.unique_no_split_tokens = sorted(
1124
+ set(self.unique_no_split_tokens).union(set(new_tokens))
1125
+ )
1126
+ else:
1127
+ # Or on the newly added tokens
1128
+ if len(tokens_to_add) == 1:
1129
+ _insert_one_token_to_ordered_list(
1130
+ self.unique_no_split_tokens, tokens_to_add[0]
1131
+ )
1132
+ else:
1133
+ self.unique_no_split_tokens = sorted(
1134
+ set(self.unique_no_split_tokens).union(set(tokens_to_add))
1135
+ )
1136
+ self._create_trie(self.unique_no_split_tokens)
1137
+
1138
+ return len(tokens_to_add)
1139
+
1140
+ def _create_trie(self, unique_no_split_tokens):
1141
+ trie = Trie()
1142
+ for token in unique_no_split_tokens:
1143
+ if (
1144
+ hasattr(self, "do_lower_case")
1145
+ and self.do_lower_case
1146
+ and token not in self.all_special_tokens
1147
+ ):
1148
+ trie.add(token.lower())
1149
+ else:
1150
+ trie.add(token)
1151
+ self.tokens_trie = trie
1152
+
1153
+ def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
1154
+ """
1155
+ Performs any necessary transformations before tokenization.
1156
+
1157
+ This method should pop the arguments from kwargs and return the remaining `kwargs` as well. We test the
1158
+ `kwargs` at the end of the encoding process to be sure all the arguments have been used.
1159
+
1160
+ Args:
1161
+ text (`str`):
1162
+ The text to prepare.
1163
+ is_split_into_words (`bool`, *optional*, defaults to `False`):
1164
+ Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the
1165
+ tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
1166
+ which it will tokenize. This is useful for NER or token classification.
1167
+ kwargs:
1168
+ Keyword arguments to use for the tokenization.
1169
+
1170
+ Returns:
1171
+ `Tuple[str, Dict[str, Any]]`: The prepared text and the unused kwargs.
1172
+ """
1173
+
1174
+ return (text, kwargs)
1175
+
1176
+ def tokenize(self, text: TextInput, **kwargs) -> List[str]:
1177
+ """
1178
+ Converts a string in a sequence of tokens, using the tokenizer.
1179
+
1180
+ Split in words for word-based vocabulary or sub-words for sub-word-based vocabularies
1181
+ (BPE/SentencePieces/WordPieces). Takes care of added tokens.
1182
+
1183
+ Args:
1184
+ text (`str`):
1185
+ The sequence to be encoded.
1186
+ **kwargs (additional keyword arguments):
1187
+ Passed along to the model-specific `prepare_for_tokenization` preprocessing method.
1188
+
1189
+ Returns:
1190
+ `List[str]`: The list of tokens.
1191
+ """
1192
+
1193
+ split_special_tokens = kwargs.pop(
1194
+ "split_special_tokens", self.split_special_tokens
1195
+ )
1196
+
1197
+ # Simple mapping string => AddedToken for special tokens with specific tokenization behaviors
1198
+ all_special_tokens_extended = dict(
1199
+ (str(t), t)
1200
+ for t in self.all_special_tokens_extended
1201
+ if isinstance(t, AddedToken)
1202
+ )
1203
+
1204
+ text, kwargs = self.prepare_for_tokenization(text, **kwargs)
1205
+
1206
+ # TODO: should this be in the base class?
1207
+ if hasattr(self, "do_lower_case") and self.do_lower_case:
1208
+ # convert non-special tokens to lowercase
1209
+ escaped_special_toks = [
1210
+ re.escape(s_tok)
1211
+ for s_tok in (self.unique_no_split_tokens + self.all_special_tokens)
1212
+ ]
1213
+ pattern = r"(" + r"|".join(escaped_special_toks) + r")|" + r"(.+?)"
1214
+ text = re.sub(
1215
+ pattern, lambda m: m.groups()[0] or m.groups()[1].lower(), text
1216
+ )
1217
+
1218
+ if split_special_tokens:
1219
+ no_split_token = []
1220
+ tokens = [text]
1221
+ else:
1222
+ no_split_token = set(
1223
+ self.unique_no_split_tokens
1224
+ ) # don't split on any of the added tokens
1225
+ # "This is something<special_token_1> else"
1226
+ tokens = self.tokens_trie.split(text)
1227
+
1228
+ # ["This is something", "<special_token_1>", " else"]
1229
+ for i, token in enumerate(tokens):
1230
+ if token in no_split_token:
1231
+ tok_extended = all_special_tokens_extended.get(token, None)
1232
+ left = tokens[i - 1] if i > 0 else None
1233
+ right = tokens[i + 1] if i < len(tokens) - 1 else None
1234
+ if isinstance(tok_extended, AddedToken):
1235
+ if tok_extended.rstrip and right:
1236
+ # A bit counter-intuitive but we strip the left of the string
1237
+ # since tok_extended.rstrip means the special token is eating all white spaces on its right
1238
+ tokens[i + 1] = right.lstrip()
1239
+ # Strip white spaces on the left
1240
+ if tok_extended.lstrip and left:
1241
+ tokens[i - 1] = left.rstrip() # Opposite here
1242
+ else:
1243
+ # We strip left and right by default
1244
+ if right:
1245
+ tokens[i + 1] = right.lstrip()
1246
+ if left:
1247
+ tokens[i - 1] = left.rstrip()
1248
+ # ["This is something", "<special_token_1>", "else"]
1249
+ tokenized_text = []
1250
+ for token in tokens:
1251
+ # Need to skip eventual empty (fully stripped) tokens
1252
+ if not token:
1253
+ continue
1254
+ if token in no_split_token:
1255
+ tokenized_text.append(token)
1256
+ else:
1257
+ tokenized_text.extend(self._tokenize(token))
1258
+ # ["This", " is", " something", "<special_token_1>", "else"]
1259
+ return tokenized_text
1260
+
1261
+ def _tokenize(self, text, **kwargs):
1262
+ """
1263
+ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
1264
+ vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
1265
+
1266
+ Do NOT take care of added tokens.
1267
+ """
1268
+ raise NotImplementedError
1269
+
1270
+ def convert_tokens_to_ids(self, tokens):
1271
+ if tokens is None:
1272
+ return None
1273
+
1274
+ if isinstance(tokens, str):
1275
+ return self._convert_token_to_id_with_added_voc(tokens)
1276
+
1277
+ ids = []
1278
+ for token in tokens:
1279
+ ids.append(self._convert_token_to_id_with_added_voc(token))
1280
+
1281
+ return ids
1282
+
1283
+ def _convert_token_to_id_with_added_voc(self, token):
1284
+ if token is None:
1285
+ return None
1286
+
1287
+ if token in self.added_tokens_encoder:
1288
+ return self.added_tokens_encoder[token]
1289
+ return self._convert_token_to_id(token)
1290
+
1291
+ def _convert_token_to_id(self, token):
1292
+
1293
+ return self.vocab.to_indices(token)
1294
+
1295
+ def convert_tokens_to_string(self, tokens):
1296
+ """
1297
+ Converts a sequence of tokens (list of string) to a single string by
1298
+ using ``' '.join(tokens)`` .
1299
+
1300
+ Args:
1301
+ tokens (list[str]): A sequence of tokens.
1302
+
1303
+ Returns:
1304
+ str: Converted string.
1305
+ """
1306
+ return " ".join(tokens)
1307
+
1308
+ def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
1309
+ if isinstance(ids, int):
1310
+ if ids in self.added_tokens_decoder:
1311
+ token = self.added_tokens_decoder[ids]
1312
+ token = token.content if isinstance(token, AddedToken) else token
1313
+ return token
1314
+ else:
1315
+ return self._convert_id_to_token(ids)
1316
+ tokens = []
1317
+ for index in ids:
1318
+ index = int(index)
1319
+ if skip_special_tokens and index in self.all_special_ids:
1320
+ continue
1321
+ if index in self.added_tokens_decoder:
1322
+ token = self.added_tokens_decoder[index]
1323
+ token = token.content if isinstance(token, AddedToken) else token
1324
+ tokens.append(token)
1325
+ else:
1326
+ tokens.append(self._convert_id_to_token(index))
1327
+ return tokens
1328
+
1329
+ def _convert_id_to_token(self, index):
1330
+
1331
+ return self.vocab.to_tokens(index)
1332
+
1333
+ @staticmethod
1334
+ def load_vocabulary(
1335
+ filepath,
1336
+ unk_token=None,
1337
+ pad_token=None,
1338
+ bos_token=None,
1339
+ eos_token=None,
1340
+ **kwargs,
1341
+ ):
1342
+ """
1343
+ Instantiate an instance of `Vocab` from a file reserving all tokens
1344
+ by using `Vocab.from_dict`. The file contains a token per line, and the
1345
+ line number would be the index of corresponding token.
1346
+
1347
+ Args:
1348
+ filepath (str): path of file to construct vocabulary.
1349
+ unk_token (str): special token for unknown token. If no need, it also
1350
+ could be `None`. Defaults to `None`.
1351
+ pad_token (str): special token for padding token. If no need, it also
1352
+ could be `None`. Defaults to `None`.
1353
+ bos_token (str): special token for bos token. If no need, it also
1354
+ could be `None`. Defaults to `None`.
1355
+ eos_token (str): special token for eos token. If no need, it also
1356
+ could be `None`. Defaults to `None`.
1357
+ **kwargs (dict): keyword arguments for `Vocab.from_dict`.
1358
+
1359
+ Returns:
1360
+ Vocab: An instance of `Vocab`.
1361
+ """
1362
+ token_to_idx = {}
1363
+ with io.open(filepath, "r", encoding="utf-8") as f:
1364
+ for index, line in enumerate(f):
1365
+ token = line.rstrip("\n")
1366
+ token_to_idx[token] = int(index)
1367
+ vocab = Vocab.from_dict(
1368
+ token_to_idx,
1369
+ unk_token=unk_token,
1370
+ pad_token=pad_token,
1371
+ bos_token=bos_token,
1372
+ eos_token=eos_token,
1373
+ **kwargs,
1374
+ )
1375
+ return vocab
1376
+
1377
+ @staticmethod
1378
+ def save_vocabulary(filepath, vocab):
1379
+ """
1380
+ Save all tokens to a vocabulary file. The file contains a token per line,
1381
+ and the line number would be the index of corresponding token.
1382
+
1383
+ Args:
1384
+ filepath (str): File path to be saved to.
1385
+ vocab (Vocab|dict): The `Vocab` or `dict` instance to be saved.
1386
+ """
1387
+ if isinstance(vocab, Vocab):
1388
+ tokens = vocab.idx_to_token
1389
+ else:
1390
+ tokens = sorted(vocab.keys(), key=lambda token: vocab[token])
1391
+ with io.open(filepath, "w", encoding="utf-8") as f:
1392
+ for token in tokens:
1393
+ f.write(token + "\n")
1394
+
1395
+ def get_special_tokens_mask(
1396
+ self, token_ids_0, token_ids_1=None, already_has_special_tokens=False
1397
+ ):
1398
+ """
1399
+ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
1400
+ special tokens using the tokenizer ``encode`` methods.
1401
+
1402
+ Args:
1403
+ token_ids_0 (List[int]): List of ids of the first sequence.
1404
+ token_ids_1 (List[int], optional): List of ids of the second sequence.
1405
+ already_has_special_tokens (bool, optional): Whether or not the token list is already
1406
+ formatted with special tokens for the model. Defaults to None.
1407
+
1408
+ Returns:
1409
+ results (List[int]): The list of integers in the range [0, 1]:
1410
+ 1 for a special token, 0 for a sequence token.
1411
+ """
1412
+ if already_has_special_tokens:
1413
+ if token_ids_1 is not None:
1414
+ raise ValueError(
1415
+ "You should not supply a second sequence if the provided sequence of "
1416
+ "ids is already formatted with special tokens for the model."
1417
+ )
1418
+
1419
+ return super().get_special_tokens_mask(
1420
+ token_ids_0=token_ids_0,
1421
+ token_ids_1=token_ids_1,
1422
+ already_has_special_tokens=True,
1423
+ )
1424
+ return [0] * ((len(token_ids_1) if token_ids_1 else 0) + len(token_ids_0))
1425
+
1426
+ def num_special_tokens_to_add(self, pair):
1427
+ """
1428
+ Returns the number of added tokens when encoding a sequence with special tokens.
1429
+
1430
+ Args:
1431
+ pair (bool, optional):
1432
+ Whether the number of added tokens should be computed in the case of a sequence pair or a single
1433
+ sequence. Defaults to `False`.
1434
+ Returns:
1435
+ int: Number of special tokens added to sequences.
1436
+ """
1437
+ token_ids_0 = []
1438
+ token_ids_1 = []
1439
+ return len(
1440
+ self.build_inputs_with_special_tokens(
1441
+ token_ids_0, token_ids_1 if pair else None
1442
+ )
1443
+ )
1444
+
1445
+ def _encode_plus(
1446
+ self,
1447
+ text: Union[TextInput, PreTokenizedInput, EncodedInput],
1448
+ text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None,
1449
+ add_special_tokens: bool = True,
1450
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
1451
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
1452
+ max_length: Optional[int] = None,
1453
+ stride: int = 0,
1454
+ is_split_into_words: bool = False,
1455
+ pad_to_multiple_of: Optional[int] = None,
1456
+ padding_side: Optional[Literal["right", "left"]] = None,
1457
+ return_tensors: Optional[Union[str, TensorType]] = None,
1458
+ return_position_ids: Optional[bool] = None,
1459
+ return_token_type_ids: Optional[bool] = None,
1460
+ return_attention_mask: Optional[bool] = None,
1461
+ return_overflowing_tokens: bool = False,
1462
+ return_special_tokens_mask: bool = False,
1463
+ return_offsets_mapping: bool = False,
1464
+ return_length: bool = False,
1465
+ verbose: bool = True,
1466
+ **kwargs,
1467
+ ) -> BatchEncoding:
1468
+ def get_input_ids(text):
1469
+ if isinstance(text, str):
1470
+ tokens = self.tokenize(text, **kwargs)
1471
+ return self.convert_tokens_to_ids(tokens)
1472
+ elif (
1473
+ isinstance(text, (list, tuple))
1474
+ and len(text) > 0
1475
+ and isinstance(text[0], str)
1476
+ ):
1477
+ if is_split_into_words:
1478
+ tokens = list(
1479
+ itertools.chain(
1480
+ *(
1481
+ self.tokenize(t, is_split_into_words=True, **kwargs)
1482
+ for t in text
1483
+ )
1484
+ )
1485
+ )
1486
+ return self.convert_tokens_to_ids(tokens)
1487
+ else:
1488
+ return self.convert_tokens_to_ids(text)
1489
+ elif (
1490
+ isinstance(text, (list, tuple))
1491
+ and len(text) > 0
1492
+ and isinstance(text[0], int)
1493
+ ):
1494
+ return text
1495
+ else:
1496
+ if is_split_into_words:
1497
+ raise ValueError(
1498
+ f"Input {text} is not valid. Should be a string or a list/tuple of strings when `is_split_into_words=True`."
1499
+ )
1500
+ else:
1501
+ raise ValueError(
1502
+ f"Input {text} is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
1503
+ )
1504
+
1505
+ first_ids = get_input_ids(text)
1506
+ second_ids = get_input_ids(text_pair) if text_pair is not None else None
1507
+
1508
+ if return_offsets_mapping:
1509
+ kwargs["text"] = text
1510
+ kwargs["text_pair"] = text_pair
1511
+
1512
+ return self.prepare_for_model(
1513
+ first_ids,
1514
+ pair_ids=second_ids,
1515
+ add_special_tokens=add_special_tokens,
1516
+ padding=padding_strategy.value,
1517
+ truncation=truncation_strategy.value,
1518
+ max_length=max_length,
1519
+ stride=stride,
1520
+ pad_to_multiple_of=pad_to_multiple_of,
1521
+ padding_side=padding_side,
1522
+ return_tensors=return_tensors,
1523
+ prepend_batch_axis=True,
1524
+ return_position_ids=return_position_ids,
1525
+ return_attention_mask=return_attention_mask,
1526
+ return_token_type_ids=return_token_type_ids,
1527
+ return_overflowing_tokens=return_overflowing_tokens,
1528
+ return_special_tokens_mask=return_special_tokens_mask,
1529
+ return_offsets_mapping=return_offsets_mapping,
1530
+ return_length=return_length,
1531
+ verbose=verbose,
1532
+ **kwargs,
1533
+ )
1534
+
1535
+ def _batch_encode_plus(
1536
+ self,
1537
+ batch_text_or_text_pairs: Union[
1538
+ List[TextInput],
1539
+ List[TextInputPair],
1540
+ List[PreTokenizedInput],
1541
+ List[PreTokenizedInputPair],
1542
+ List[EncodedInput],
1543
+ List[EncodedInputPair],
1544
+ ],
1545
+ add_special_tokens: bool = True,
1546
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
1547
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
1548
+ max_length: Optional[int] = None,
1549
+ stride: int = 0,
1550
+ is_split_into_words: bool = False,
1551
+ pad_to_multiple_of: Optional[int] = None,
1552
+ padding_side: Optional[Literal["right", "left"]] = None,
1553
+ return_position_ids: Optional[bool] = None,
1554
+ return_tensors: Optional[Union[str, TensorType]] = None,
1555
+ return_token_type_ids: Optional[bool] = None,
1556
+ return_attention_mask: Optional[bool] = None,
1557
+ return_overflowing_tokens: bool = False,
1558
+ return_special_tokens_mask: bool = False,
1559
+ return_dict: bool = True,
1560
+ return_offsets_mapping: bool = False,
1561
+ return_length: bool = False,
1562
+ verbose: bool = True,
1563
+ **kwargs,
1564
+ ) -> BatchEncoding:
1565
+ def get_input_ids(text):
1566
+ if isinstance(text, str):
1567
+ tokens = self.tokenize(text, **kwargs)
1568
+ return self.convert_tokens_to_ids(tokens)
1569
+ elif (
1570
+ isinstance(text, (list, tuple))
1571
+ and len(text) > 0
1572
+ and isinstance(text[0], str)
1573
+ ):
1574
+ if is_split_into_words:
1575
+ tokens = list(
1576
+ itertools.chain(
1577
+ *(
1578
+ self.tokenize(t, is_split_into_words=True, **kwargs)
1579
+ for t in text
1580
+ )
1581
+ )
1582
+ )
1583
+ return self.convert_tokens_to_ids(tokens)
1584
+ else:
1585
+ return self.convert_tokens_to_ids(text)
1586
+ elif (
1587
+ isinstance(text, (list, tuple))
1588
+ and len(text) > 0
1589
+ and isinstance(text[0], int)
1590
+ ):
1591
+ return text
1592
+ else:
1593
+ raise ValueError(
1594
+ "Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
1595
+ )
1596
+
1597
+ input_ids = []
1598
+ for ids_or_pair_ids in batch_text_or_text_pairs:
1599
+ if not isinstance(ids_or_pair_ids, (list, tuple)):
1600
+ ids, pair_ids = ids_or_pair_ids, None
1601
+ elif is_split_into_words and not isinstance(
1602
+ ids_or_pair_ids[0], (list, tuple)
1603
+ ):
1604
+ ids, pair_ids = ids_or_pair_ids, None
1605
+ else:
1606
+ ids, pair_ids = ids_or_pair_ids
1607
+
1608
+ first_ids = get_input_ids(ids)
1609
+ second_ids = get_input_ids(pair_ids) if pair_ids is not None else None
1610
+ input_ids.append((first_ids, second_ids))
1611
+
1612
+ if stride > 0 and second_ids is not None:
1613
+ kwargs["batch_text_or_text_pairs"] = batch_text_or_text_pairs
1614
+ else:
1615
+ if return_offsets_mapping:
1616
+ has_pair = False
1617
+ if len(batch_text_or_text_pairs) > 0:
1618
+ if isinstance(batch_text_or_text_pairs[0], (list, tuple)):
1619
+ has_pair = True
1620
+ kwargs["texts"] = None
1621
+ kwargs["text_pairs"] = None
1622
+ if has_pair:
1623
+ kwargs["texts"] = [text[0] for text in batch_text_or_text_pairs]
1624
+ kwargs["text_pairs"] = [
1625
+ text[1] for text in batch_text_or_text_pairs
1626
+ ]
1627
+ else:
1628
+ kwargs["texts"] = [text for text in batch_text_or_text_pairs]
1629
+
1630
+ batch_outputs = self._batch_prepare_for_model(
1631
+ input_ids,
1632
+ add_special_tokens=add_special_tokens,
1633
+ padding_strategy=padding_strategy,
1634
+ truncation_strategy=truncation_strategy,
1635
+ max_length=max_length,
1636
+ stride=stride,
1637
+ pad_to_multiple_of=pad_to_multiple_of,
1638
+ padding_side=padding_side,
1639
+ return_position_ids=return_position_ids,
1640
+ return_attention_mask=return_attention_mask,
1641
+ return_token_type_ids=return_token_type_ids,
1642
+ return_overflowing_tokens=return_overflowing_tokens,
1643
+ return_special_tokens_mask=return_special_tokens_mask,
1644
+ return_dict=return_dict,
1645
+ return_offsets_mapping=return_offsets_mapping,
1646
+ return_length=return_length,
1647
+ return_tensors=return_tensors,
1648
+ verbose=verbose,
1649
+ **kwargs,
1650
+ )
1651
+
1652
+ return batch_outputs
1653
+
1654
+ def _batch_prepare_for_model(
1655
+ self,
1656
+ batch_ids_pairs: List[Union[PreTokenizedInputPair, Tuple[List[int], None]]],
1657
+ add_special_tokens: bool = True,
1658
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
1659
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
1660
+ max_length: Optional[int] = None,
1661
+ stride: int = 0,
1662
+ pad_to_multiple_of: Optional[int] = None,
1663
+ padding_side: Optional[Literal["right", "left"]] = None,
1664
+ return_position_ids: Optional[bool] = None,
1665
+ return_tensors: Optional[str] = None,
1666
+ return_token_type_ids: Optional[bool] = None,
1667
+ return_attention_mask: Optional[bool] = None,
1668
+ return_overflowing_tokens: bool = False,
1669
+ return_special_tokens_mask: bool = False,
1670
+ return_dict: bool = True,
1671
+ return_offsets_mapping: bool = False,
1672
+ return_length: bool = False,
1673
+ verbose: bool = True,
1674
+ **kwargs,
1675
+ ) -> BatchEncoding:
1676
+ """
1677
+ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
1678
+ adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
1679
+ manages a moving window (with user defined stride) for overflowing tokens
1680
+
1681
+ Args:
1682
+ batch_ids_pairs: list of tokenized input ids or input ids pairs
1683
+ """
1684
+ if return_token_type_ids and not add_special_tokens:
1685
+ raise ValueError(
1686
+ "Asking to return token_type_ids while setting add_special_tokens to False "
1687
+ "results in an undefined behavior. Please set add_special_tokens to True or "
1688
+ "set return_token_type_ids to None."
1689
+ )
1690
+
1691
+ batch_outputs = {}
1692
+ batch_outputs_list = []
1693
+ for example_id, (first_ids, second_ids) in enumerate(batch_ids_pairs):
1694
+ if stride > 0 and second_ids is not None:
1695
+ if return_token_type_ids is None:
1696
+ return_token_type_ids = "token_type_ids" in self.model_input_names
1697
+ if return_attention_mask is None:
1698
+ return_attention_mask = "attention_mask" in self.model_input_names
1699
+
1700
+ max_len_for_pair = (
1701
+ max_length
1702
+ - len(first_ids)
1703
+ - (
1704
+ self.num_special_tokens_to_add(pair=True)
1705
+ if add_special_tokens
1706
+ else 0
1707
+ )
1708
+ )
1709
+
1710
+ text, text_pair = kwargs["batch_text_or_text_pairs"][example_id]
1711
+ token_offset_mapping = self.get_offset_mapping(text)
1712
+ token_pair_offset_mapping = self.get_offset_mapping(text_pair)
1713
+
1714
+ offset = 0
1715
+ while offset < len(second_ids):
1716
+ encoded_inputs = {}
1717
+ length = len(second_ids) - offset
1718
+ if length > max_len_for_pair:
1719
+ length = max_len_for_pair
1720
+
1721
+ ids = first_ids
1722
+ pair_ids = second_ids[offset : offset + length]
1723
+ pair = bool(pair_ids is not None)
1724
+ mapping = token_offset_mapping
1725
+ pair_mapping = token_pair_offset_mapping[offset : offset + length]
1726
+ if add_special_tokens:
1727
+ offset_mapping = self.build_offset_mapping_with_special_tokens(
1728
+ mapping, pair_mapping
1729
+ )
1730
+ sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
1731
+ token_type_ids = self.create_token_type_ids_from_sequences(
1732
+ ids, pair_ids
1733
+ )
1734
+ else:
1735
+ offset_mapping = mapping + pair_mapping
1736
+ sequence = ids + pair_ids if pair else ids
1737
+ token_type_ids = [0] * len(ids) + (
1738
+ [0] * len(pair_ids) if pair else []
1739
+ )
1740
+ encoded_inputs["offset_mapping"] = offset_mapping
1741
+ # Build output dictionnary
1742
+ encoded_inputs["input_ids"] = sequence
1743
+ if return_token_type_ids:
1744
+ encoded_inputs["token_type_ids"] = token_type_ids
1745
+ if return_special_tokens_mask:
1746
+ if add_special_tokens:
1747
+ encoded_inputs["special_tokens_mask"] = (
1748
+ self.get_special_tokens_mask(ids, pair_ids)
1749
+ )
1750
+ else:
1751
+ encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
1752
+
1753
+ # Check lengths
1754
+ self._eventual_warn_about_too_long_sequence(
1755
+ encoded_inputs["input_ids"], max_length, verbose
1756
+ )
1757
+ if return_position_ids:
1758
+ encoded_inputs["position_ids"] = list(
1759
+ range(len(encoded_inputs["input_ids"]))
1760
+ )
1761
+
1762
+ if return_length:
1763
+ encoded_inputs["length"] = len(encoded_inputs["input_ids"])
1764
+ encoded_inputs["seq_len"] = encoded_inputs["length"]
1765
+
1766
+ encoded_inputs["overflow_to_sample"] = example_id
1767
+
1768
+ for key, value in encoded_inputs.items():
1769
+ if key not in batch_outputs:
1770
+ batch_outputs[key] = []
1771
+ batch_outputs[key].append(value)
1772
+
1773
+ if offset + length == len(second_ids):
1774
+ break
1775
+ offset += min(length, stride)
1776
+ else:
1777
+ if return_offsets_mapping:
1778
+ kwargs["text"] = kwargs["texts"][example_id]
1779
+ kwargs["text_pair"] = None
1780
+ if kwargs["text_pairs"] is not None:
1781
+ kwargs["text_pair"] = kwargs["text_pairs"][example_id]
1782
+
1783
+ encoded_inputs = self.prepare_for_model(
1784
+ first_ids,
1785
+ second_ids,
1786
+ add_special_tokens=add_special_tokens,
1787
+ padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward
1788
+ truncation=truncation_strategy.value,
1789
+ max_length=max_length,
1790
+ stride=stride,
1791
+ pad_to_multiple_of=None, # we pad in batch afterward
1792
+ padding_side=padding_side, # we pad in batch afterward
1793
+ return_position_ids=return_position_ids, # we pad in batch afterward
1794
+ return_attention_mask=False, # we pad in batch afterward
1795
+ return_token_type_ids=return_token_type_ids,
1796
+ return_overflowing_tokens=return_overflowing_tokens,
1797
+ return_special_tokens_mask=return_special_tokens_mask,
1798
+ return_offsets_mapping=return_offsets_mapping,
1799
+ return_length=return_length,
1800
+ return_tensors=None, # We convert the whole batch to tensors at the end
1801
+ prepend_batch_axis=False,
1802
+ verbose=verbose,
1803
+ **kwargs,
1804
+ )
1805
+ for key, value in encoded_inputs.items():
1806
+ if key not in batch_outputs:
1807
+ batch_outputs[key] = []
1808
+ batch_outputs[key].append(value)
1809
+
1810
+ batch_outputs = self.pad(
1811
+ batch_outputs,
1812
+ padding=padding_strategy.value,
1813
+ max_length=max_length,
1814
+ pad_to_multiple_of=pad_to_multiple_of,
1815
+ padding_side=padding_side,
1816
+ return_attention_mask=return_attention_mask,
1817
+ )
1818
+ if return_dict:
1819
+ batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
1820
+ return batch_outputs
1821
+ else:
1822
+ for k, v in batch_outputs.items():
1823
+ for i in range(len(v)):
1824
+ if i >= len(batch_outputs_list):
1825
+ batch_outputs_list.append({k: v[i]})
1826
+ else:
1827
+ batch_outputs_list[i][k] = v[i]
1828
+ return batch_outputs_list
1829
+
1830
+ def _get_bert_like_offset_mapping(self, text: str):
1831
+ """
1832
+ Returns the map of tokens and the start and end index of their start and end character.
1833
+ Modified from https://github.com/bojone/bert4keras/blob/master/bert4keras/tokenizers.py#L372
1834
+ Args:
1835
+ text (str):
1836
+ Input text.
1837
+ Returns:
1838
+ list: The offset map of input text.
1839
+
1840
+ """
1841
+ if text is None:
1842
+ return None
1843
+ split_tokens = self.tokenize(text)
1844
+
1845
+ normalized_text, char_mapping = "", []
1846
+
1847
+ for i, ch in enumerate(text):
1848
+ if hasattr(self, "do_lower_case") and self.do_lower_case:
1849
+ ch = ch.lower()
1850
+ if self.basic_tokenizer.strip_accents is not False:
1851
+ ch = unicodedata.normalize("NFD", ch)
1852
+ ch = "".join([c for c in ch if unicodedata.category(c) != "Mn"])
1853
+ elif self.basic_tokenizer.strip_accents:
1854
+ ch = unicodedata.normalize("NFD", ch)
1855
+ ch = "".join([c for c in ch if unicodedata.category(c) != "Mn"])
1856
+
1857
+ ch = "".join(
1858
+ [
1859
+ c
1860
+ for c in ch
1861
+ if not (ord(c) == 0 or ord(c) == 0xFFFD or _is_control(c))
1862
+ ]
1863
+ )
1864
+ normalized_text += ch
1865
+
1866
+ char_mapping.extend([i] * len(ch))
1867
+ text, token_mapping, offset = normalized_text, [], 0
1868
+
1869
+ char_mapping_indexes = []
1870
+ for index, token in enumerate(split_tokens):
1871
+ if token[:2] == "##":
1872
+ token = token[2:]
1873
+ if token in self.all_special_tokens:
1874
+ token = (
1875
+ token.lower()
1876
+ if hasattr(self, "do_lower_case") and self.do_lower_case
1877
+ else token
1878
+ )
1879
+ # The greek letter "sigma" has 2 forms of lowercase, σ and ς respectively.
1880
+ # When used as a final letter of a word, the final form (ς) is used. Otherwise, the form (σ) is used.
1881
+ # https://latin.stackexchange.com/questions/6168/how-and-when-did-we-get-two-forms-of-sigma
1882
+ if "σ" in token or "ς" in token:
1883
+ start = (
1884
+ text[offset:].replace("ς", "σ").index(token.replace("ς", "σ"))
1885
+ + offset
1886
+ )
1887
+ else:
1888
+
1889
+ # try to fix: https://github.com/PaddlePaddle/PaddleNLP/issues/3985
1890
+ if token not in text[offset:]:
1891
+ # check whether there are consecutive UNK tokens, eg: ['好', '[UNK]', '[UNK]', 'good']
1892
+ if (
1893
+ index < len(split_tokens) - 1
1894
+ and split_tokens[index + 1] in self.all_special_tokens
1895
+ ):
1896
+ start = offset
1897
+ token = " " # only contains one char
1898
+ else:
1899
+ start = -1
1900
+ else:
1901
+ start = text[offset:].index(token) + offset
1902
+
1903
+ end = start + len(token)
1904
+ char_mapping_indexes.append([start, end])
1905
+
1906
+ if start != -1:
1907
+ offset = end
1908
+
1909
+ token_mapping = []
1910
+ for index, (start, end) in enumerate(char_mapping_indexes):
1911
+ if start == -1:
1912
+ # init start
1913
+ if index == 0:
1914
+ start = 0
1915
+ else:
1916
+ start = char_mapping_indexes[index - 1][1]
1917
+
1918
+ # init end
1919
+ if index == len(char_mapping_indexes) - 1:
1920
+ end = len(char_mapping)
1921
+ else:
1922
+ # next start
1923
+ end = char_mapping_indexes[index + 1][0]
1924
+
1925
+ token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1))
1926
+
1927
+ return token_mapping
1928
+
1929
+ def get_offset_mapping(self, text: str, split_tokens: Optional[List[str]] = None):
1930
+ """
1931
+ Returns the map of tokens and the start and end index of their start and end character.
1932
+ Modified from https://github.com/bojone/bert4keras/blob/master/bert4keras/tokenizers.py#L372
1933
+ Args:
1934
+ text (str):
1935
+ Input text.
1936
+ split_tokens (Optional[List[str]]):
1937
+ the tokens which has been split which can accelerate the operation.
1938
+
1939
+ Returns:
1940
+ list: The offset map of input text.
1941
+
1942
+ """
1943
+ if text is None:
1944
+ return None
1945
+ split_tokens = self.tokenize(text)
1946
+
1947
+ # bert-like tokenizer use the old-school code block
1948
+ if hasattr(self, "basic_tokenizer") or hasattr(self, "wordpiece_tokenizer"):
1949
+ return self._get_bert_like_offset_mapping(text)
1950
+
1951
+ if not split_tokens:
1952
+ split_tokens = self.tokenize(text)
1953
+
1954
+ normalized_text, char_mapping = "", []
1955
+
1956
+ for i, ch in enumerate(text):
1957
+ normalized_text += normalize_chars(ch)
1958
+ char_mapping.extend([i] * len(ch))
1959
+
1960
+ text, token_mapping, offset = normalized_text, [], 0
1961
+ do_lower_case = getattr(self, "do_lower_case", False)
1962
+
1963
+ # lower the text if the token is lower-cased
1964
+ # keep align with token
1965
+ if do_lower_case:
1966
+ text = text.lower()
1967
+
1968
+ char_mapping_indexes = []
1969
+ for token in split_tokens:
1970
+
1971
+ # convert tokens into original string
1972
+ token: str = self.convert_tokens_to_string(token).strip()
1973
+
1974
+ if token in self.all_special_tokens:
1975
+ if do_lower_case:
1976
+ token = token.lower()
1977
+
1978
+ # The greek letter "sigma" has 2 forms of lowercase, σ and ς respectively.
1979
+ # When used as a final letter of a word, the final form (ς) is used. Otherwise, the form (σ) is used.
1980
+ # https://latin.stackexchange.com/questions/6168/how-and-when-did-we-get-two-forms-of-sigma
1981
+ if "σ" in token or "ς" in token:
1982
+ start = (
1983
+ text[offset:].replace("ς", "σ").index(token.replace("ς", "σ"))
1984
+ + offset
1985
+ )
1986
+ else:
1987
+
1988
+ # try to fix: https://github.com/PaddlePaddle/PaddleNLP/issues/3985
1989
+ if token not in text[offset:]:
1990
+ start = -1
1991
+ else:
1992
+ start = text[offset:].index(token) + offset
1993
+
1994
+ end = start + len(token)
1995
+ char_mapping_indexes.append([start, end])
1996
+
1997
+ if start != -1:
1998
+ offset = end
1999
+
2000
+ token_mapping = []
2001
+ for index, (start, end) in enumerate(char_mapping_indexes):
2002
+ if start == -1:
2003
+ # init start
2004
+ if index == 0:
2005
+ start = 0
2006
+ else:
2007
+ start = char_mapping_indexes[index - 1][1]
2008
+
2009
+ # init end
2010
+ if index == len(char_mapping_indexes) - 1:
2011
+ end = len(char_mapping)
2012
+ else:
2013
+ # next start
2014
+ end = char_mapping_indexes[index + 1][0]
2015
+
2016
+ token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1))
2017
+
2018
+ return token_mapping
2019
+
2020
+ def _decode(
2021
+ self,
2022
+ token_ids: List[int],
2023
+ skip_special_tokens: bool = False,
2024
+ clean_up_tokenization_spaces: bool = True,
2025
+ spaces_between_special_tokens: bool = True,
2026
+ **kwargs,
2027
+ ) -> str:
2028
+ if isinstance(token_ids, np.ndarray):
2029
+ token_ids = token_ids.tolist()
2030
+ self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False)
2031
+ filtered_tokens = self.convert_ids_to_tokens(
2032
+ token_ids, skip_special_tokens=skip_special_tokens
2033
+ )
2034
+
2035
+ # To avoid mixing byte-level and unicode for byte-level BPT
2036
+ # we need to build string separately for added tokens and byte-level tokens
2037
+ # cf. https://github.com/huggingface/transformers/issues/1133
2038
+ sub_texts = []
2039
+ current_sub_text = []
2040
+ for token in filtered_tokens:
2041
+ if skip_special_tokens and token in self.all_special_ids:
2042
+ continue
2043
+ if token in self.added_tokens_encoder:
2044
+ if current_sub_text:
2045
+ sub_texts.append(self.convert_tokens_to_string(current_sub_text))
2046
+ current_sub_text = []
2047
+ sub_texts.append(token)
2048
+ else:
2049
+ current_sub_text.append(token)
2050
+ if current_sub_text:
2051
+ sub_texts.append(self.convert_tokens_to_string(current_sub_text))
2052
+
2053
+ if spaces_between_special_tokens:
2054
+ text = " ".join(sub_texts)
2055
+ else:
2056
+ text = "".join(sub_texts)
2057
+
2058
+ if clean_up_tokenization_spaces:
2059
+ clean_text = self.clean_up_tokenization(text)
2060
+ return clean_text
2061
+ else:
2062
+ return text
2063
+
2064
+
2065
+ def _is_control(char):
2066
+ """Checks whether `chars` is a control character."""
2067
+ # These are technically control characters but we count them as whitespace
2068
+ # characters.
2069
+ if char == "\t" or char == "\n" or char == "\r":
2070
+ return False
2071
+ cat = unicodedata.category(char)
2072
+ if cat.startswith("C"):
2073
+ return True
2074
+ return False
2075
+
2076
+
2077
+ def _is_punctuation(char):
2078
+ """Checks whether `chars` is a punctuation character."""
2079
+ cp = ord(char)
2080
+ # We treat all non-letter/number ASCII as punctuation.
2081
+ # Characters such as "^", "$", and "`" are not in the Unicode
2082
+ # Punctuation class but we treat them as punctuation anyways, for
2083
+ # consistency.
2084
+ if (
2085
+ (cp >= 33 and cp <= 47)
2086
+ or (cp >= 58 and cp <= 64)
2087
+ or (cp >= 91 and cp <= 96)
2088
+ or (cp >= 123 and cp <= 126)
2089
+ ):
2090
+ return True
2091
+ cat = unicodedata.category(char)
2092
+ if cat.startswith("P"):
2093
+ return True
2094
+ return False
2095
+
2096
+
2097
+ def _is_symbol(char):
2098
+ """Check whether CP is the codepoint of a Symbol character."""
2099
+ cp = ord(char)
2100
+ if unicodedata.category(char).startswith("S") or (
2101
+ cp in [0x00AD, 0x00B2, 0x00BA, 0x3007, 0x00B5, 0x00D8, 0x014B, 0x01B1]
2102
+ ):
2103
+ return True
2104
+ return False
2105
+
2106
+
2107
+ def _is_whitespace(char):
2108
+ """
2109
+ Checks whether `chars` is a whitespace character.
2110
+ """
2111
+ # \t, \n, and \r are technically contorl characters but we treat them
2112
+ # as whitespace since they are generally considered as such.
2113
+ if char == " " or char == "\t" or char == "\n" or char == "\r":
2114
+ return True
2115
+ cat = unicodedata.category(char)
2116
+ if cat == "Zs":
2117
+ return True
2118
+ return False
2119
+
2120
+
2121
+ def convert_to_unicode(text):
2122
+ """
2123
+ Converts `text` to Unicode (if it's not already), assuming utf-8 input.
2124
+ Args:
2125
+ text (str|bytes): Text to be converted to unicode.
2126
+ Returns:
2127
+ str: converted text.
2128
+ """
2129
+ if isinstance(text, str):
2130
+ return text
2131
+ elif isinstance(text, bytes):
2132
+ return text.decode("utf-8", "ignore")
2133
+ else:
2134
+ raise ValueError("Unsupported string type: %s" % (type(text)))
2135
+
2136
+
2137
+ def whitespace_tokenize(text):
2138
+ """
2139
+ Runs basic whitespace cleaning and splitting on a peice of text.
2140
+ Args:
2141
+ text (str): Text to be tokenized.
2142
+ Returns:
2143
+ list(str): Token list.
2144
+ """
2145
+ text = text.strip()
2146
+ if not text:
2147
+ return []
2148
+ tokens = text.split()
2149
+ return tokens