paddlex 3.0.0b2__py3-none-any.whl → 3.0.0rc0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (940) hide show
  1. paddlex/.version +1 -1
  2. paddlex/__init__.py +1 -0
  3. paddlex/__main__.py +3 -4
  4. paddlex/configs/modules/3d_bev_detection/BEVFusion.yaml +38 -0
  5. paddlex/configs/modules/face_feature/MobileFaceNet.yaml +41 -0
  6. paddlex/configs/modules/face_feature/ResNet50_face.yaml +41 -0
  7. paddlex/configs/modules/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
  8. paddlex/configs/modules/formula_recognition/PP-FormulaNet-L.yaml +40 -0
  9. paddlex/configs/modules/formula_recognition/PP-FormulaNet-S.yaml +40 -0
  10. paddlex/configs/modules/formula_recognition/UniMERNet.yaml +40 -0
  11. paddlex/configs/modules/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
  12. paddlex/configs/modules/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
  13. paddlex/configs/modules/image_classification/ConvNeXt_large_384.yaml +41 -0
  14. paddlex/configs/modules/keypoint_detection/PP-TinyPose_128x96.yaml +40 -0
  15. paddlex/configs/modules/keypoint_detection/PP-TinyPose_256x192.yaml +40 -0
  16. paddlex/configs/modules/layout_detection/PP-DocLayout-L.yaml +40 -0
  17. paddlex/configs/modules/layout_detection/PP-DocLayout-M.yaml +40 -0
  18. paddlex/configs/modules/layout_detection/PP-DocLayout-S.yaml +40 -0
  19. paddlex/configs/modules/multilingual_speech_recognition/whisper_base.yaml +12 -0
  20. paddlex/configs/modules/multilingual_speech_recognition/whisper_large.yaml +12 -0
  21. paddlex/configs/modules/multilingual_speech_recognition/whisper_medium.yaml +12 -0
  22. paddlex/configs/modules/multilingual_speech_recognition/whisper_small.yaml +12 -0
  23. paddlex/configs/modules/multilingual_speech_recognition/whisper_tiny.yaml +12 -0
  24. paddlex/configs/modules/object_detection/Co-DINO-R50.yaml +40 -0
  25. paddlex/configs/modules/object_detection/Co-DINO-Swin-L.yaml +40 -0
  26. paddlex/configs/modules/object_detection/Co-Deformable-DETR-R50.yaml +40 -0
  27. paddlex/configs/modules/object_detection/Co-Deformable-DETR-Swin-T.yaml +40 -0
  28. paddlex/configs/modules/object_detection/YOLOX-X.yaml +40 -0
  29. paddlex/configs/modules/open_vocabulary_detection/GroundingDINO-T.yaml +13 -0
  30. paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_box.yaml +17 -0
  31. paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_point.yaml +15 -0
  32. paddlex/configs/modules/rotated_object_detection/PP-YOLOE-R-L.yaml +40 -0
  33. paddlex/configs/modules/semantic_segmentation/MaskFormer_small.yaml +42 -0
  34. paddlex/configs/modules/semantic_segmentation/MaskFormer_tiny.yaml +42 -0
  35. paddlex/configs/modules/semantic_segmentation/SeaFormer_base.yaml +40 -0
  36. paddlex/configs/modules/semantic_segmentation/SeaFormer_large.yaml +40 -0
  37. paddlex/configs/modules/semantic_segmentation/SeaFormer_small.yaml +40 -0
  38. paddlex/configs/modules/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
  39. paddlex/configs/modules/table_cells_detection/RT-DETR-L_wired_table_cell_det.yaml +40 -0
  40. paddlex/configs/modules/table_cells_detection/RT-DETR-L_wireless_table_cell_det.yaml +40 -0
  41. paddlex/configs/modules/table_classification/PP-LCNet_x1_0_table_cls.yaml +41 -0
  42. paddlex/configs/modules/table_structure_recognition/SLANeXt_wired.yaml +39 -0
  43. paddlex/configs/modules/table_structure_recognition/SLANeXt_wireless.yaml +39 -0
  44. paddlex/configs/modules/text_detection/PP-OCRv3_mobile_det.yaml +40 -0
  45. paddlex/configs/modules/text_detection/PP-OCRv3_server_det.yaml +40 -0
  46. paddlex/configs/modules/text_recognition/PP-OCRv3_mobile_rec.yaml +39 -0
  47. paddlex/configs/modules/text_recognition/PP-OCRv4_server_rec_doc.yaml +39 -0
  48. paddlex/configs/modules/text_recognition/arabic_PP-OCRv3_mobile_rec.yaml +39 -0
  49. paddlex/configs/modules/text_recognition/chinese_cht_PP-OCRv3_mobile_rec.yaml +39 -0
  50. paddlex/configs/modules/text_recognition/cyrillic_PP-OCRv3_mobile_rec.yaml +39 -0
  51. paddlex/configs/modules/text_recognition/devanagari_PP-OCRv3_mobile_rec.yaml +39 -0
  52. paddlex/configs/modules/text_recognition/en_PP-OCRv3_mobile_rec.yaml +39 -0
  53. paddlex/configs/modules/text_recognition/en_PP-OCRv4_mobile_rec.yaml +39 -0
  54. paddlex/configs/modules/text_recognition/japan_PP-OCRv3_mobile_rec.yaml +39 -0
  55. paddlex/configs/modules/text_recognition/ka_PP-OCRv3_mobile_rec.yaml +39 -0
  56. paddlex/configs/modules/text_recognition/korean_PP-OCRv3_mobile_rec.yaml +39 -0
  57. paddlex/configs/modules/text_recognition/latin_PP-OCRv3_mobile_rec.yaml +39 -0
  58. paddlex/configs/modules/text_recognition/ta_PP-OCRv3_mobile_rec.yaml +39 -0
  59. paddlex/configs/modules/text_recognition/te_PP-OCRv3_mobile_rec.yaml +39 -0
  60. paddlex/configs/modules/textline_orientation/PP-LCNet_x0_25_textline_ori.yaml +41 -0
  61. paddlex/configs/modules/video_classification/PP-TSM-R50_8frames_uniform.yaml +42 -0
  62. paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_16frames_uniform.yaml +42 -0
  63. paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_8frames_uniform.yaml +42 -0
  64. paddlex/configs/modules/video_detection/YOWO.yaml +40 -0
  65. paddlex/configs/pipelines/3d_bev_detection.yaml +9 -0
  66. paddlex/configs/pipelines/OCR.yaml +44 -0
  67. paddlex/configs/pipelines/PP-ChatOCRv3-doc.yaml +149 -0
  68. paddlex/configs/pipelines/PP-ChatOCRv4-doc.yaml +184 -0
  69. paddlex/configs/pipelines/PP-ShiTuV2.yaml +18 -0
  70. paddlex/configs/pipelines/PP-StructureV3.yaml +226 -0
  71. paddlex/configs/pipelines/anomaly_detection.yaml +8 -0
  72. paddlex/configs/pipelines/doc_preprocessor.yaml +15 -0
  73. paddlex/configs/pipelines/face_recognition.yaml +18 -0
  74. paddlex/configs/pipelines/formula_recognition.yaml +39 -0
  75. paddlex/configs/pipelines/human_keypoint_detection.yaml +17 -0
  76. paddlex/configs/pipelines/image_classification.yaml +10 -0
  77. paddlex/configs/pipelines/image_multilabel_classification.yaml +9 -0
  78. paddlex/configs/pipelines/instance_segmentation.yaml +10 -0
  79. paddlex/configs/pipelines/layout_parsing.yaml +101 -0
  80. paddlex/configs/pipelines/multilingual_speech_recognition.yaml +9 -0
  81. paddlex/configs/pipelines/object_detection.yaml +10 -0
  82. paddlex/configs/pipelines/open_vocabulary_detection.yaml +12 -0
  83. paddlex/configs/pipelines/open_vocabulary_segmentation.yaml +13 -0
  84. paddlex/configs/pipelines/pedestrian_attribute_recognition.yaml +15 -0
  85. paddlex/configs/pipelines/rotated_object_detection.yaml +10 -0
  86. paddlex/configs/pipelines/seal_recognition.yaml +51 -0
  87. paddlex/configs/pipelines/semantic_segmentation.yaml +10 -0
  88. paddlex/configs/pipelines/small_object_detection.yaml +10 -0
  89. paddlex/configs/pipelines/table_recognition.yaml +56 -0
  90. paddlex/configs/pipelines/table_recognition_v2.yaml +76 -0
  91. paddlex/configs/pipelines/ts_anomaly_detection.yaml +8 -0
  92. paddlex/configs/pipelines/ts_classification.yaml +8 -0
  93. paddlex/configs/pipelines/ts_forecast.yaml +8 -0
  94. paddlex/configs/pipelines/vehicle_attribute_recognition.yaml +15 -0
  95. paddlex/configs/pipelines/video_classification.yaml +9 -0
  96. paddlex/configs/pipelines/video_detection.yaml +10 -0
  97. paddlex/engine.py +1 -1
  98. paddlex/hpip_links.html +19 -0
  99. paddlex/inference/__init__.py +3 -1
  100. paddlex/inference/common/batch_sampler/__init__.py +20 -0
  101. paddlex/inference/common/batch_sampler/audio_batch_sampler.py +84 -0
  102. paddlex/inference/common/batch_sampler/base_batch_sampler.py +90 -0
  103. paddlex/inference/common/batch_sampler/det_3d_batch_sampler.py +147 -0
  104. paddlex/inference/common/batch_sampler/image_batch_sampler.py +136 -0
  105. paddlex/inference/common/batch_sampler/ts_batch_sampler.py +110 -0
  106. paddlex/inference/common/batch_sampler/video_batch_sampler.py +94 -0
  107. paddlex/inference/common/reader/__init__.py +19 -0
  108. paddlex/inference/common/reader/audio_reader.py +46 -0
  109. paddlex/inference/common/reader/det_3d_reader.py +239 -0
  110. paddlex/inference/common/reader/image_reader.py +69 -0
  111. paddlex/inference/common/reader/ts_reader.py +45 -0
  112. paddlex/inference/common/reader/video_reader.py +42 -0
  113. paddlex/inference/common/result/__init__.py +29 -0
  114. paddlex/inference/common/result/base_cv_result.py +31 -0
  115. paddlex/inference/common/result/base_result.py +70 -0
  116. paddlex/inference/common/result/base_ts_result.py +42 -0
  117. paddlex/inference/common/result/base_video_result.py +36 -0
  118. paddlex/inference/common/result/mixin.py +703 -0
  119. paddlex/inference/models/3d_bev_detection/__init__.py +15 -0
  120. paddlex/inference/models/3d_bev_detection/predictor.py +314 -0
  121. paddlex/inference/models/3d_bev_detection/processors.py +978 -0
  122. paddlex/inference/models/3d_bev_detection/result.py +65 -0
  123. paddlex/inference/models/3d_bev_detection/visualizer_3d.py +131 -0
  124. paddlex/inference/models/__init__.py +37 -13
  125. paddlex/inference/models/anomaly_detection/__init__.py +15 -0
  126. paddlex/inference/models/anomaly_detection/predictor.py +145 -0
  127. paddlex/inference/models/anomaly_detection/processors.py +46 -0
  128. paddlex/inference/models/anomaly_detection/result.py +70 -0
  129. paddlex/inference/models/base/__init__.py +1 -2
  130. paddlex/inference/models/base/predictor/__init__.py +16 -0
  131. paddlex/inference/models/base/predictor/base_predictor.py +175 -0
  132. paddlex/inference/models/base/predictor/basic_predictor.py +139 -0
  133. paddlex/inference/models/common/__init__.py +35 -0
  134. paddlex/inference/models/common/static_infer.py +329 -0
  135. paddlex/inference/models/common/tokenizer/__init__.py +17 -0
  136. paddlex/inference/models/common/tokenizer/bert_tokenizer.py +655 -0
  137. paddlex/inference/models/common/tokenizer/gpt_tokenizer.py +451 -0
  138. paddlex/inference/models/common/tokenizer/tokenizer_utils.py +2141 -0
  139. paddlex/inference/models/common/tokenizer/tokenizer_utils_base.py +3504 -0
  140. paddlex/inference/models/common/tokenizer/utils.py +66 -0
  141. paddlex/inference/models/common/tokenizer/vocab.py +647 -0
  142. paddlex/inference/models/common/ts/__init__.py +15 -0
  143. paddlex/inference/models/common/ts/funcs.py +533 -0
  144. paddlex/inference/models/common/ts/processors.py +313 -0
  145. paddlex/inference/models/common/vision/__init__.py +23 -0
  146. paddlex/inference/models/common/vision/funcs.py +93 -0
  147. paddlex/inference/models/common/vision/processors.py +270 -0
  148. paddlex/inference/models/face_feature/__init__.py +15 -0
  149. paddlex/inference/models/face_feature/predictor.py +65 -0
  150. paddlex/inference/models/formula_recognition/__init__.py +15 -0
  151. paddlex/inference/models/formula_recognition/predictor.py +203 -0
  152. paddlex/inference/models/formula_recognition/processors.py +986 -0
  153. paddlex/inference/models/formula_recognition/result.py +403 -0
  154. paddlex/inference/models/image_classification/__init__.py +15 -0
  155. paddlex/inference/models/image_classification/predictor.py +182 -0
  156. paddlex/inference/models/image_classification/processors.py +87 -0
  157. paddlex/inference/models/image_classification/result.py +92 -0
  158. paddlex/inference/models/image_feature/__init__.py +15 -0
  159. paddlex/inference/models/image_feature/predictor.py +156 -0
  160. paddlex/inference/models/image_feature/processors.py +29 -0
  161. paddlex/inference/models/image_feature/result.py +33 -0
  162. paddlex/inference/models/image_multilabel_classification/__init__.py +15 -0
  163. paddlex/inference/models/image_multilabel_classification/predictor.py +94 -0
  164. paddlex/inference/models/image_multilabel_classification/processors.py +85 -0
  165. paddlex/inference/models/image_multilabel_classification/result.py +95 -0
  166. paddlex/inference/models/image_unwarping/__init__.py +15 -0
  167. paddlex/inference/models/image_unwarping/predictor.py +105 -0
  168. paddlex/inference/models/image_unwarping/processors.py +88 -0
  169. paddlex/inference/models/image_unwarping/result.py +45 -0
  170. paddlex/inference/models/instance_segmentation/__init__.py +15 -0
  171. paddlex/inference/models/instance_segmentation/predictor.py +210 -0
  172. paddlex/inference/models/instance_segmentation/processors.py +105 -0
  173. paddlex/inference/models/instance_segmentation/result.py +161 -0
  174. paddlex/inference/models/keypoint_detection/__init__.py +15 -0
  175. paddlex/inference/models/keypoint_detection/predictor.py +188 -0
  176. paddlex/inference/models/keypoint_detection/processors.py +359 -0
  177. paddlex/inference/models/keypoint_detection/result.py +192 -0
  178. paddlex/inference/models/multilingual_speech_recognition/__init__.py +15 -0
  179. paddlex/inference/models/multilingual_speech_recognition/predictor.py +141 -0
  180. paddlex/inference/models/multilingual_speech_recognition/processors.py +1941 -0
  181. paddlex/inference/models/multilingual_speech_recognition/result.py +21 -0
  182. paddlex/inference/models/object_detection/__init__.py +15 -0
  183. paddlex/inference/models/object_detection/predictor.py +348 -0
  184. paddlex/inference/models/object_detection/processors.py +855 -0
  185. paddlex/inference/models/object_detection/result.py +113 -0
  186. paddlex/inference/models/object_detection/utils.py +68 -0
  187. paddlex/inference/models/open_vocabulary_detection/__init__.py +15 -0
  188. paddlex/inference/models/open_vocabulary_detection/predictor.py +155 -0
  189. paddlex/inference/models/open_vocabulary_detection/processors/__init__.py +15 -0
  190. paddlex/inference/models/open_vocabulary_detection/processors/groundingdino_processors.py +485 -0
  191. paddlex/inference/models/open_vocabulary_segmentation/__init__.py +15 -0
  192. paddlex/inference/models/open_vocabulary_segmentation/predictor.py +120 -0
  193. paddlex/inference/models/open_vocabulary_segmentation/processors/__init__.py +15 -0
  194. paddlex/inference/models/open_vocabulary_segmentation/processors/sam_processer.py +249 -0
  195. paddlex/inference/models/open_vocabulary_segmentation/results/__init__.py +15 -0
  196. paddlex/inference/models/open_vocabulary_segmentation/results/sam_result.py +147 -0
  197. paddlex/inference/models/semantic_segmentation/__init__.py +15 -0
  198. paddlex/inference/models/semantic_segmentation/predictor.py +167 -0
  199. paddlex/inference/models/semantic_segmentation/processors.py +114 -0
  200. paddlex/inference/models/semantic_segmentation/result.py +72 -0
  201. paddlex/inference/models/table_structure_recognition/__init__.py +15 -0
  202. paddlex/inference/models/table_structure_recognition/predictor.py +171 -0
  203. paddlex/inference/models/table_structure_recognition/processors.py +235 -0
  204. paddlex/inference/models/table_structure_recognition/result.py +70 -0
  205. paddlex/inference/models/text_detection/__init__.py +15 -0
  206. paddlex/inference/models/text_detection/predictor.py +191 -0
  207. paddlex/inference/models/text_detection/processors.py +466 -0
  208. paddlex/inference/models/text_detection/result.py +51 -0
  209. paddlex/inference/models/text_recognition/__init__.py +15 -0
  210. paddlex/inference/models/text_recognition/predictor.py +106 -0
  211. paddlex/inference/models/text_recognition/processors.py +231 -0
  212. paddlex/inference/models/text_recognition/result.py +75 -0
  213. paddlex/inference/models/ts_anomaly_detection/__init__.py +15 -0
  214. paddlex/inference/models/ts_anomaly_detection/predictor.py +146 -0
  215. paddlex/inference/models/ts_anomaly_detection/processors.py +94 -0
  216. paddlex/inference/models/ts_anomaly_detection/result.py +72 -0
  217. paddlex/inference/models/ts_classification/__init__.py +15 -0
  218. paddlex/inference/models/ts_classification/predictor.py +135 -0
  219. paddlex/inference/models/ts_classification/processors.py +117 -0
  220. paddlex/inference/models/ts_classification/result.py +78 -0
  221. paddlex/inference/models/ts_forecasting/__init__.py +15 -0
  222. paddlex/inference/models/ts_forecasting/predictor.py +159 -0
  223. paddlex/inference/models/ts_forecasting/processors.py +149 -0
  224. paddlex/inference/models/ts_forecasting/result.py +83 -0
  225. paddlex/inference/models/video_classification/__init__.py +15 -0
  226. paddlex/inference/models/video_classification/predictor.py +147 -0
  227. paddlex/inference/models/video_classification/processors.py +409 -0
  228. paddlex/inference/models/video_classification/result.py +92 -0
  229. paddlex/inference/models/video_detection/__init__.py +15 -0
  230. paddlex/inference/models/video_detection/predictor.py +136 -0
  231. paddlex/inference/models/video_detection/processors.py +450 -0
  232. paddlex/inference/models/video_detection/result.py +104 -0
  233. paddlex/inference/pipelines/3d_bev_detection/__init__.py +15 -0
  234. paddlex/inference/pipelines/3d_bev_detection/pipeline.py +67 -0
  235. paddlex/inference/pipelines/__init__.py +174 -73
  236. paddlex/inference/pipelines/anomaly_detection/__init__.py +15 -0
  237. paddlex/inference/pipelines/anomaly_detection/pipeline.py +62 -0
  238. paddlex/inference/pipelines/attribute_recognition/__init__.py +15 -0
  239. paddlex/inference/pipelines/attribute_recognition/pipeline.py +105 -0
  240. paddlex/inference/pipelines/attribute_recognition/result.py +100 -0
  241. paddlex/inference/pipelines/base.py +103 -57
  242. paddlex/inference/pipelines/components/__init__.py +23 -0
  243. paddlex/inference/pipelines/components/chat_server/__init__.py +16 -0
  244. paddlex/inference/pipelines/components/chat_server/base.py +39 -0
  245. paddlex/inference/pipelines/components/chat_server/openai_bot_chat.py +236 -0
  246. paddlex/inference/pipelines/components/common/__init__.py +18 -0
  247. paddlex/inference/pipelines/components/common/base_operator.py +36 -0
  248. paddlex/inference/pipelines/components/common/base_result.py +65 -0
  249. paddlex/inference/pipelines/components/common/convert_points_and_boxes.py +46 -0
  250. paddlex/inference/pipelines/components/common/crop_image_regions.py +550 -0
  251. paddlex/inference/pipelines/components/common/seal_det_warp.py +941 -0
  252. paddlex/inference/pipelines/components/common/sort_boxes.py +83 -0
  253. paddlex/inference/pipelines/components/faisser.py +352 -0
  254. paddlex/inference/pipelines/components/prompt_engineering/__init__.py +16 -0
  255. paddlex/inference/pipelines/components/prompt_engineering/base.py +35 -0
  256. paddlex/inference/pipelines/components/prompt_engineering/generate_ensemble_prompt.py +127 -0
  257. paddlex/inference/pipelines/components/prompt_engineering/generate_kie_prompt.py +148 -0
  258. paddlex/inference/pipelines/components/retriever/__init__.py +16 -0
  259. paddlex/inference/pipelines/components/retriever/base.py +226 -0
  260. paddlex/inference/pipelines/components/retriever/openai_bot_retriever.py +70 -0
  261. paddlex/inference/pipelines/components/retriever/qianfan_bot_retriever.py +163 -0
  262. paddlex/inference/pipelines/components/utils/__init__.py +13 -0
  263. paddlex/inference/pipelines/components/utils/mixin.py +206 -0
  264. paddlex/inference/pipelines/doc_preprocessor/__init__.py +15 -0
  265. paddlex/inference/pipelines/doc_preprocessor/pipeline.py +190 -0
  266. paddlex/inference/pipelines/doc_preprocessor/result.py +103 -0
  267. paddlex/inference/pipelines/face_recognition/__init__.py +15 -0
  268. paddlex/inference/pipelines/face_recognition/pipeline.py +61 -0
  269. paddlex/inference/pipelines/face_recognition/result.py +43 -0
  270. paddlex/inference/pipelines/formula_recognition/__init__.py +15 -0
  271. paddlex/inference/pipelines/formula_recognition/pipeline.py +303 -0
  272. paddlex/inference/pipelines/formula_recognition/result.py +291 -0
  273. paddlex/inference/pipelines/image_classification/__init__.py +15 -0
  274. paddlex/inference/pipelines/image_classification/pipeline.py +71 -0
  275. paddlex/inference/pipelines/image_multilabel_classification/__init__.py +15 -0
  276. paddlex/inference/pipelines/image_multilabel_classification/pipeline.py +78 -0
  277. paddlex/inference/pipelines/instance_segmentation/__init__.py +15 -0
  278. paddlex/inference/pipelines/instance_segmentation/pipeline.py +70 -0
  279. paddlex/inference/pipelines/keypoint_detection/__init__.py +15 -0
  280. paddlex/inference/pipelines/keypoint_detection/pipeline.py +137 -0
  281. paddlex/inference/pipelines/layout_parsing/__init__.py +2 -1
  282. paddlex/inference/pipelines/layout_parsing/pipeline.py +570 -0
  283. paddlex/inference/pipelines/layout_parsing/pipeline_v2.py +739 -0
  284. paddlex/inference/pipelines/layout_parsing/result.py +203 -0
  285. paddlex/inference/pipelines/layout_parsing/result_v2.py +470 -0
  286. paddlex/inference/pipelines/layout_parsing/utils.py +2385 -0
  287. paddlex/inference/pipelines/multilingual_speech_recognition/__init__.py +15 -0
  288. paddlex/inference/pipelines/multilingual_speech_recognition/pipeline.py +67 -0
  289. paddlex/inference/pipelines/object_detection/__init__.py +15 -0
  290. paddlex/inference/pipelines/object_detection/pipeline.py +95 -0
  291. paddlex/inference/pipelines/ocr/__init__.py +15 -0
  292. paddlex/inference/pipelines/ocr/pipeline.py +389 -0
  293. paddlex/inference/pipelines/ocr/result.py +248 -0
  294. paddlex/inference/pipelines/open_vocabulary_detection/__init__.py +15 -0
  295. paddlex/inference/pipelines/open_vocabulary_detection/pipeline.py +75 -0
  296. paddlex/inference/pipelines/open_vocabulary_segmentation/__init__.py +15 -0
  297. paddlex/inference/pipelines/open_vocabulary_segmentation/pipeline.py +89 -0
  298. paddlex/inference/pipelines/pp_chatocr/__init__.py +16 -0
  299. paddlex/inference/pipelines/pp_chatocr/pipeline_base.py +102 -0
  300. paddlex/inference/pipelines/pp_chatocr/pipeline_v3.py +773 -0
  301. paddlex/inference/pipelines/pp_chatocr/pipeline_v4.py +977 -0
  302. paddlex/inference/pipelines/pp_shitu_v2/__init__.py +15 -0
  303. paddlex/inference/pipelines/pp_shitu_v2/pipeline.py +152 -0
  304. paddlex/inference/pipelines/pp_shitu_v2/result.py +126 -0
  305. paddlex/inference/pipelines/rotated_object_detection/__init__.py +15 -0
  306. paddlex/inference/pipelines/rotated_object_detection/pipeline.py +74 -0
  307. paddlex/inference/pipelines/seal_recognition/__init__.py +15 -0
  308. paddlex/inference/pipelines/seal_recognition/pipeline.py +271 -0
  309. paddlex/inference/pipelines/seal_recognition/result.py +87 -0
  310. paddlex/inference/pipelines/semantic_segmentation/__init__.py +15 -0
  311. paddlex/inference/pipelines/semantic_segmentation/pipeline.py +74 -0
  312. paddlex/inference/pipelines/small_object_detection/__init__.py +15 -0
  313. paddlex/inference/pipelines/small_object_detection/pipeline.py +74 -0
  314. paddlex/inference/pipelines/table_recognition/__init__.py +2 -1
  315. paddlex/inference/pipelines/table_recognition/pipeline.py +462 -0
  316. paddlex/inference/pipelines/table_recognition/pipeline_v2.py +792 -0
  317. paddlex/inference/pipelines/table_recognition/result.py +216 -0
  318. paddlex/inference/pipelines/table_recognition/table_recognition_post_processing.py +362 -0
  319. paddlex/inference/pipelines/table_recognition/table_recognition_post_processing_v2.py +470 -0
  320. paddlex/inference/pipelines/table_recognition/utils.py +23 -436
  321. paddlex/inference/pipelines/ts_anomaly_detection/__init__.py +15 -0
  322. paddlex/inference/pipelines/ts_anomaly_detection/pipeline.py +62 -0
  323. paddlex/inference/pipelines/ts_classification/__init__.py +15 -0
  324. paddlex/inference/pipelines/ts_classification/pipeline.py +62 -0
  325. paddlex/inference/pipelines/ts_forecasting/__init__.py +15 -0
  326. paddlex/inference/pipelines/ts_forecasting/pipeline.py +62 -0
  327. paddlex/inference/pipelines/video_classification/__init__.py +15 -0
  328. paddlex/inference/pipelines/video_classification/pipeline.py +68 -0
  329. paddlex/inference/pipelines/video_detection/__init__.py +15 -0
  330. paddlex/inference/pipelines/video_detection/pipeline.py +73 -0
  331. paddlex/inference/serving/__init__.py +13 -0
  332. paddlex/inference/serving/basic_serving/__init__.py +18 -0
  333. paddlex/inference/serving/basic_serving/_app.py +209 -0
  334. paddlex/inference/serving/basic_serving/_pipeline_apps/__init__.py +41 -0
  335. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/__init__.py +13 -0
  336. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/common.py +96 -0
  337. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/image_recognition.py +36 -0
  338. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/ocr.py +90 -0
  339. paddlex/inference/serving/basic_serving/_pipeline_apps/anomaly_detection.py +64 -0
  340. paddlex/inference/serving/basic_serving/_pipeline_apps/doc_preprocessor.py +97 -0
  341. paddlex/inference/serving/basic_serving/_pipeline_apps/face_recognition.py +223 -0
  342. paddlex/inference/serving/basic_serving/_pipeline_apps/formula_recognition.py +97 -0
  343. paddlex/inference/serving/basic_serving/_pipeline_apps/human_keypoint_detection.py +78 -0
  344. paddlex/inference/serving/basic_serving/_pipeline_apps/image_classification.py +66 -0
  345. paddlex/inference/serving/basic_serving/_pipeline_apps/image_multilabel_classification.py +70 -0
  346. paddlex/inference/serving/basic_serving/_pipeline_apps/instance_segmentation.py +81 -0
  347. paddlex/inference/serving/basic_serving/_pipeline_apps/layout_parsing.py +115 -0
  348. paddlex/inference/serving/basic_serving/_pipeline_apps/m_3d_bev_detection.py +76 -0
  349. paddlex/inference/serving/basic_serving/_pipeline_apps/multilingual_speech_recognition.py +89 -0
  350. paddlex/inference/serving/basic_serving/_pipeline_apps/object_detection.py +74 -0
  351. paddlex/inference/serving/basic_serving/_pipeline_apps/ocr.py +99 -0
  352. paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_detection.py +78 -0
  353. paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_segmentation.py +85 -0
  354. paddlex/inference/serving/basic_serving/_pipeline_apps/pedestrian_attribute_recognition.py +81 -0
  355. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv3_doc.py +191 -0
  356. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv4_doc.py +221 -0
  357. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_shituv2.py +218 -0
  358. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_structurev3.py +136 -0
  359. paddlex/inference/serving/basic_serving/_pipeline_apps/rotated_object_detection.py +78 -0
  360. paddlex/inference/serving/basic_serving/_pipeline_apps/seal_recognition.py +103 -0
  361. paddlex/inference/serving/basic_serving/_pipeline_apps/semantic_segmentation.py +64 -0
  362. paddlex/inference/serving/basic_serving/_pipeline_apps/small_object_detection.py +69 -0
  363. paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition.py +105 -0
  364. paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition_v2.py +107 -0
  365. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_anomaly_detection.py +62 -0
  366. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_classification.py +61 -0
  367. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_forecast.py +62 -0
  368. paddlex/inference/serving/basic_serving/_pipeline_apps/vehicle_attribute_recognition.py +81 -0
  369. paddlex/inference/serving/basic_serving/_pipeline_apps/video_classification.py +73 -0
  370. paddlex/inference/serving/basic_serving/_pipeline_apps/video_detection.py +89 -0
  371. paddlex/inference/serving/basic_serving/_server.py +35 -0
  372. paddlex/inference/serving/infra/__init__.py +13 -0
  373. paddlex/inference/serving/infra/config.py +36 -0
  374. paddlex/inference/serving/infra/models.py +72 -0
  375. paddlex/inference/serving/infra/storage.py +175 -0
  376. paddlex/inference/serving/infra/utils.py +259 -0
  377. paddlex/inference/serving/schemas/__init__.py +13 -0
  378. paddlex/inference/serving/schemas/anomaly_detection.py +39 -0
  379. paddlex/inference/serving/schemas/doc_preprocessor.py +54 -0
  380. paddlex/inference/serving/schemas/face_recognition.py +124 -0
  381. paddlex/inference/serving/schemas/formula_recognition.py +56 -0
  382. paddlex/inference/serving/schemas/human_keypoint_detection.py +55 -0
  383. paddlex/inference/serving/schemas/image_classification.py +45 -0
  384. paddlex/inference/serving/schemas/image_multilabel_classification.py +47 -0
  385. paddlex/inference/serving/schemas/instance_segmentation.py +53 -0
  386. paddlex/inference/serving/schemas/layout_parsing.py +72 -0
  387. paddlex/inference/serving/schemas/m_3d_bev_detection.py +48 -0
  388. paddlex/inference/serving/schemas/multilingual_speech_recognition.py +57 -0
  389. paddlex/inference/serving/schemas/object_detection.py +52 -0
  390. paddlex/inference/serving/schemas/ocr.py +60 -0
  391. paddlex/inference/serving/schemas/open_vocabulary_detection.py +52 -0
  392. paddlex/inference/serving/schemas/open_vocabulary_segmentation.py +52 -0
  393. paddlex/inference/serving/schemas/pedestrian_attribute_recognition.py +61 -0
  394. paddlex/inference/serving/schemas/pp_chatocrv3_doc.py +134 -0
  395. paddlex/inference/serving/schemas/pp_chatocrv4_doc.py +151 -0
  396. paddlex/inference/serving/schemas/pp_shituv2.py +124 -0
  397. paddlex/inference/serving/schemas/pp_structurev3.py +84 -0
  398. paddlex/inference/serving/schemas/rotated_object_detection.py +52 -0
  399. paddlex/inference/serving/schemas/seal_recognition.py +62 -0
  400. paddlex/inference/serving/schemas/semantic_segmentation.py +45 -0
  401. paddlex/inference/serving/schemas/shared/__init__.py +13 -0
  402. paddlex/inference/serving/schemas/shared/classification.py +23 -0
  403. paddlex/inference/serving/schemas/shared/image_segmentation.py +28 -0
  404. paddlex/inference/serving/schemas/shared/object_detection.py +24 -0
  405. paddlex/inference/serving/schemas/shared/ocr.py +25 -0
  406. paddlex/inference/serving/schemas/small_object_detection.py +52 -0
  407. paddlex/inference/serving/schemas/table_recognition.py +64 -0
  408. paddlex/inference/serving/schemas/table_recognition_v2.py +66 -0
  409. paddlex/inference/serving/schemas/ts_anomaly_detection.py +37 -0
  410. paddlex/inference/serving/schemas/ts_classification.py +38 -0
  411. paddlex/inference/serving/schemas/ts_forecast.py +37 -0
  412. paddlex/inference/serving/schemas/vehicle_attribute_recognition.py +61 -0
  413. paddlex/inference/serving/schemas/video_classification.py +44 -0
  414. paddlex/inference/serving/schemas/video_detection.py +56 -0
  415. paddlex/inference/utils/benchmark.py +23 -11
  416. paddlex/inference/utils/get_pipeline_path.py +2 -1
  417. paddlex/inference/utils/io/__init__.py +3 -0
  418. paddlex/inference/utils/io/readers.py +164 -17
  419. paddlex/inference/utils/io/writers.py +85 -2
  420. paddlex/inference/utils/new_ir_blacklist.py +6 -0
  421. paddlex/inference/utils/official_models.py +277 -211
  422. paddlex/inference/utils/pp_option.py +24 -4
  423. paddlex/model.py +12 -5
  424. paddlex/modules/3d_bev_detection/__init__.py +18 -0
  425. paddlex/modules/3d_bev_detection/dataset_checker/__init__.py +95 -0
  426. paddlex/modules/3d_bev_detection/dataset_checker/dataset_src/__init__.py +17 -0
  427. paddlex/modules/3d_bev_detection/dataset_checker/dataset_src/analyse_dataset.py +106 -0
  428. paddlex/modules/3d_bev_detection/dataset_checker/dataset_src/check_dataset.py +102 -0
  429. paddlex/modules/3d_bev_detection/evaluator.py +46 -0
  430. paddlex/modules/3d_bev_detection/exportor.py +22 -0
  431. paddlex/modules/3d_bev_detection/model_list.py +18 -0
  432. paddlex/modules/3d_bev_detection/trainer.py +70 -0
  433. paddlex/modules/__init__.py +34 -1
  434. paddlex/modules/base/build_model.py +1 -1
  435. paddlex/modules/base/dataset_checker/dataset_checker.py +6 -1
  436. paddlex/modules/base/evaluator.py +20 -4
  437. paddlex/modules/base/exportor.py +30 -5
  438. paddlex/modules/base/trainer.py +29 -6
  439. paddlex/modules/face_recognition/trainer.py +1 -23
  440. paddlex/modules/formula_recognition/__init__.py +5 -0
  441. paddlex/modules/formula_recognition/dataset_checker/__init__.py +113 -0
  442. paddlex/modules/formula_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  443. paddlex/modules/formula_recognition/dataset_checker/dataset_src/analyse_dataset.py +157 -0
  444. paddlex/modules/formula_recognition/dataset_checker/dataset_src/check_dataset.py +80 -0
  445. paddlex/modules/formula_recognition/dataset_checker/dataset_src/convert_dataset.py +94 -0
  446. paddlex/modules/formula_recognition/dataset_checker/dataset_src/split_dataset.py +81 -0
  447. paddlex/modules/formula_recognition/evaluator.py +77 -0
  448. paddlex/modules/formula_recognition/exportor.py +22 -0
  449. paddlex/modules/formula_recognition/model_list.py +3 -0
  450. paddlex/modules/formula_recognition/trainer.py +121 -0
  451. paddlex/modules/image_classification/model_list.py +2 -0
  452. paddlex/modules/instance_segmentation/dataset_checker/__init__.py +15 -0
  453. paddlex/modules/keypoint_detection/__init__.py +18 -0
  454. paddlex/modules/keypoint_detection/dataset_checker/__init__.py +56 -0
  455. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/__init__.py +15 -0
  456. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/check_dataset.py +86 -0
  457. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  458. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/visualizer.py +119 -0
  459. paddlex/modules/keypoint_detection/evaluator.py +41 -0
  460. paddlex/modules/keypoint_detection/exportor.py +22 -0
  461. paddlex/modules/keypoint_detection/model_list.py +16 -0
  462. paddlex/modules/keypoint_detection/trainer.py +39 -0
  463. paddlex/modules/multilingual_speech_recognition/__init__.py +18 -0
  464. paddlex/modules/multilingual_speech_recognition/dataset_checker.py +27 -0
  465. paddlex/modules/multilingual_speech_recognition/evaluator.py +27 -0
  466. paddlex/modules/multilingual_speech_recognition/exportor.py +27 -0
  467. paddlex/modules/multilingual_speech_recognition/model_list.py +22 -0
  468. paddlex/modules/multilingual_speech_recognition/trainer.py +40 -0
  469. paddlex/modules/object_detection/evaluator.py +12 -1
  470. paddlex/modules/object_detection/model_list.py +10 -0
  471. paddlex/modules/object_detection/trainer.py +15 -1
  472. paddlex/modules/open_vocabulary_detection/__init__.py +18 -0
  473. paddlex/modules/open_vocabulary_detection/dataset_checker.py +29 -0
  474. paddlex/modules/open_vocabulary_detection/evaluator.py +29 -0
  475. paddlex/modules/open_vocabulary_detection/exportor.py +29 -0
  476. paddlex/modules/open_vocabulary_detection/model_list.py +18 -0
  477. paddlex/modules/open_vocabulary_detection/trainer.py +42 -0
  478. paddlex/modules/open_vocabulary_segmentation/__init__.py +18 -0
  479. paddlex/modules/open_vocabulary_segmentation/dataset_checker.py +29 -0
  480. paddlex/modules/open_vocabulary_segmentation/evaluator.py +29 -0
  481. paddlex/modules/open_vocabulary_segmentation/exportor.py +29 -0
  482. paddlex/modules/open_vocabulary_segmentation/model_list.py +19 -0
  483. paddlex/modules/open_vocabulary_segmentation/trainer.py +42 -0
  484. paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +15 -0
  485. paddlex/modules/semantic_segmentation/exportor.py +9 -0
  486. paddlex/modules/semantic_segmentation/model_list.py +2 -0
  487. paddlex/modules/semantic_segmentation/trainer.py +2 -0
  488. paddlex/modules/table_recognition/dataset_checker/__init__.py +16 -1
  489. paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +13 -14
  490. paddlex/modules/table_recognition/model_list.py +2 -0
  491. paddlex/modules/text_detection/dataset_checker/__init__.py +16 -1
  492. paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +13 -3
  493. paddlex/modules/text_detection/model_list.py +2 -0
  494. paddlex/modules/text_recognition/dataset_checker/__init__.py +16 -4
  495. paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +13 -3
  496. paddlex/modules/text_recognition/evaluator.py +4 -3
  497. paddlex/modules/text_recognition/exportor.py +0 -3
  498. paddlex/modules/text_recognition/model_list.py +14 -0
  499. paddlex/modules/text_recognition/trainer.py +4 -3
  500. paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +15 -0
  501. paddlex/modules/ts_anomaly_detection/trainer.py +17 -1
  502. paddlex/modules/ts_classification/dataset_checker/__init__.py +15 -0
  503. paddlex/modules/ts_classification/trainer.py +17 -1
  504. paddlex/modules/ts_forecast/dataset_checker/__init__.py +15 -0
  505. paddlex/modules/ts_forecast/trainer.py +17 -1
  506. paddlex/modules/video_classification/__init__.py +18 -0
  507. paddlex/modules/video_classification/dataset_checker/__init__.py +93 -0
  508. paddlex/modules/video_classification/dataset_checker/dataset_src/__init__.py +18 -0
  509. paddlex/modules/video_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
  510. paddlex/modules/video_classification/dataset_checker/dataset_src/check_dataset.py +121 -0
  511. paddlex/modules/video_classification/dataset_checker/dataset_src/split_dataset.py +82 -0
  512. paddlex/modules/video_classification/evaluator.py +44 -0
  513. paddlex/modules/video_classification/exportor.py +22 -0
  514. paddlex/modules/video_classification/model_list.py +19 -0
  515. paddlex/modules/video_classification/trainer.py +88 -0
  516. paddlex/modules/video_detection/__init__.py +18 -0
  517. paddlex/modules/video_detection/dataset_checker/__init__.py +86 -0
  518. paddlex/modules/video_detection/dataset_checker/dataset_src/__init__.py +17 -0
  519. paddlex/modules/video_detection/dataset_checker/dataset_src/analyse_dataset.py +101 -0
  520. paddlex/modules/video_detection/dataset_checker/dataset_src/check_dataset.py +134 -0
  521. paddlex/modules/video_detection/evaluator.py +42 -0
  522. paddlex/modules/video_detection/exportor.py +22 -0
  523. paddlex/modules/video_detection/model_list.py +15 -0
  524. paddlex/modules/video_detection/trainer.py +82 -0
  525. paddlex/ops/__init__.py +149 -0
  526. paddlex/ops/iou3d_nms/iou3d_cpu.cpp +264 -0
  527. paddlex/ops/iou3d_nms/iou3d_cpu.h +27 -0
  528. paddlex/ops/iou3d_nms/iou3d_nms.cpp +204 -0
  529. paddlex/ops/iou3d_nms/iou3d_nms.h +33 -0
  530. paddlex/ops/iou3d_nms/iou3d_nms_api.cpp +108 -0
  531. paddlex/ops/iou3d_nms/iou3d_nms_kernel.cu +482 -0
  532. paddlex/ops/setup.py +37 -0
  533. paddlex/ops/voxel/voxelize_op.cc +191 -0
  534. paddlex/ops/voxel/voxelize_op.cu +346 -0
  535. paddlex/paddle2onnx_requirements.txt +1 -0
  536. paddlex/paddlex_cli.py +339 -72
  537. paddlex/repo_apis/Paddle3D_api/__init__.py +17 -0
  538. paddlex/repo_apis/Paddle3D_api/bev_fusion/__init__.py +18 -0
  539. paddlex/repo_apis/Paddle3D_api/bev_fusion/config.py +118 -0
  540. paddlex/repo_apis/Paddle3D_api/bev_fusion/model.py +238 -0
  541. paddlex/repo_apis/Paddle3D_api/bev_fusion/register.py +55 -0
  542. paddlex/repo_apis/Paddle3D_api/bev_fusion/runner.py +104 -0
  543. paddlex/repo_apis/Paddle3D_api/pp3d_config.py +144 -0
  544. paddlex/repo_apis/PaddleClas_api/cls/model.py +6 -0
  545. paddlex/repo_apis/PaddleClas_api/cls/register.py +20 -2
  546. paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +8 -4
  547. paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +6 -0
  548. paddlex/repo_apis/PaddleDetection_api/object_det/config.py +27 -5
  549. paddlex/repo_apis/PaddleDetection_api/object_det/model.py +6 -0
  550. paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +81 -0
  551. paddlex/repo_apis/PaddleDetection_api/object_det/register.py +182 -3
  552. paddlex/repo_apis/PaddleOCR_api/__init__.py +1 -0
  553. paddlex/repo_apis/PaddleOCR_api/formula_rec/__init__.py +16 -0
  554. paddlex/repo_apis/PaddleOCR_api/formula_rec/config.py +570 -0
  555. paddlex/repo_apis/PaddleOCR_api/formula_rec/model.py +402 -0
  556. paddlex/repo_apis/PaddleOCR_api/formula_rec/register.py +73 -0
  557. paddlex/repo_apis/PaddleOCR_api/formula_rec/runner.py +240 -0
  558. paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +18 -0
  559. paddlex/repo_apis/PaddleOCR_api/text_det/register.py +18 -0
  560. paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +21 -0
  561. paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +6 -0
  562. paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +126 -7
  563. paddlex/repo_apis/PaddleSeg_api/seg/config.py +9 -0
  564. paddlex/repo_apis/PaddleSeg_api/seg/model.py +10 -0
  565. paddlex/repo_apis/PaddleSeg_api/seg/register.py +20 -0
  566. paddlex/repo_apis/PaddleTS_api/ts_base/config.py +24 -0
  567. paddlex/repo_apis/PaddleTS_api/ts_base/model.py +11 -7
  568. paddlex/repo_apis/PaddleVideo_api/__init__.py +17 -0
  569. paddlex/repo_apis/PaddleVideo_api/config_utils.py +51 -0
  570. paddlex/repo_apis/PaddleVideo_api/video_cls/__init__.py +19 -0
  571. paddlex/repo_apis/PaddleVideo_api/video_cls/config.py +547 -0
  572. paddlex/repo_apis/PaddleVideo_api/video_cls/model.py +346 -0
  573. paddlex/repo_apis/PaddleVideo_api/video_cls/register.py +71 -0
  574. paddlex/repo_apis/PaddleVideo_api/video_cls/runner.py +205 -0
  575. paddlex/repo_apis/PaddleVideo_api/video_det/__init__.py +19 -0
  576. paddlex/repo_apis/PaddleVideo_api/video_det/config.py +548 -0
  577. paddlex/repo_apis/PaddleVideo_api/video_det/model.py +298 -0
  578. paddlex/repo_apis/PaddleVideo_api/video_det/register.py +45 -0
  579. paddlex/repo_apis/PaddleVideo_api/video_det/runner.py +200 -0
  580. paddlex/repo_apis/base/runner.py +2 -1
  581. paddlex/repo_manager/meta.py +29 -2
  582. paddlex/repo_manager/repo.py +24 -5
  583. paddlex/repo_manager/requirements.txt +10 -7
  584. paddlex/repo_manager/utils.py +62 -1
  585. paddlex/serving_requirements.txt +9 -0
  586. paddlex/utils/config.py +4 -3
  587. paddlex/utils/custom_device_whitelist.py +457 -0
  588. paddlex/utils/device.py +74 -26
  589. paddlex/utils/env.py +28 -0
  590. paddlex/utils/flags.py +4 -0
  591. paddlex/utils/fonts/__init__.py +48 -5
  592. paddlex/utils/lazy_loader.py +2 -0
  593. paddlex/utils/logging.py +1 -2
  594. paddlex/utils/pipeline_arguments.py +711 -0
  595. paddlex-3.0.0rc0.dist-info/METADATA +1035 -0
  596. paddlex-3.0.0rc0.dist-info/RECORD +1015 -0
  597. paddlex-3.0.0rc0.dist-info/WHEEL +5 -0
  598. paddlex/configs/face_recognition/MobileFaceNet.yaml +0 -44
  599. paddlex/configs/face_recognition/ResNet50_face.yaml +0 -44
  600. paddlex/configs/formula_recognition/LaTeX_OCR_rec.yaml +0 -40
  601. paddlex/configs/image_classification/CLIP_vit_base_patch16_224.yaml +0 -41
  602. paddlex/configs/image_classification/CLIP_vit_large_patch14_224.yaml +0 -41
  603. paddlex/configs/image_classification/ConvNeXt_large_384.yaml +0 -41
  604. paddlex/configs/object_detection/YOLOX-X.yaml +0 -40
  605. paddlex/configs/semantic_segmentation/SeaFormer_base.yaml +0 -40
  606. paddlex/configs/semantic_segmentation/SeaFormer_large.yaml +0 -40
  607. paddlex/configs/semantic_segmentation/SeaFormer_small.yaml +0 -40
  608. paddlex/configs/semantic_segmentation/SeaFormer_tiny.yaml +0 -40
  609. paddlex/inference/components/__init__.py +0 -18
  610. paddlex/inference/components/base.py +0 -292
  611. paddlex/inference/components/llm/__init__.py +0 -25
  612. paddlex/inference/components/llm/base.py +0 -65
  613. paddlex/inference/components/llm/erniebot.py +0 -212
  614. paddlex/inference/components/paddle_predictor/__init__.py +0 -20
  615. paddlex/inference/components/paddle_predictor/predictor.py +0 -332
  616. paddlex/inference/components/retrieval/__init__.py +0 -15
  617. paddlex/inference/components/retrieval/faiss.py +0 -359
  618. paddlex/inference/components/task_related/__init__.py +0 -33
  619. paddlex/inference/components/task_related/clas.py +0 -124
  620. paddlex/inference/components/task_related/det.py +0 -284
  621. paddlex/inference/components/task_related/instance_seg.py +0 -89
  622. paddlex/inference/components/task_related/seal_det_warp.py +0 -940
  623. paddlex/inference/components/task_related/seg.py +0 -40
  624. paddlex/inference/components/task_related/table_rec.py +0 -191
  625. paddlex/inference/components/task_related/text_det.py +0 -895
  626. paddlex/inference/components/task_related/text_rec.py +0 -353
  627. paddlex/inference/components/task_related/warp.py +0 -43
  628. paddlex/inference/components/transforms/__init__.py +0 -16
  629. paddlex/inference/components/transforms/image/__init__.py +0 -15
  630. paddlex/inference/components/transforms/image/common.py +0 -598
  631. paddlex/inference/components/transforms/image/funcs.py +0 -58
  632. paddlex/inference/components/transforms/read_data.py +0 -67
  633. paddlex/inference/components/transforms/ts/__init__.py +0 -15
  634. paddlex/inference/components/transforms/ts/common.py +0 -393
  635. paddlex/inference/components/transforms/ts/funcs.py +0 -424
  636. paddlex/inference/models/anomaly_detection.py +0 -87
  637. paddlex/inference/models/base/base_predictor.py +0 -76
  638. paddlex/inference/models/base/basic_predictor.py +0 -122
  639. paddlex/inference/models/face_recognition.py +0 -21
  640. paddlex/inference/models/formula_recognition.py +0 -55
  641. paddlex/inference/models/general_recognition.py +0 -99
  642. paddlex/inference/models/image_classification.py +0 -101
  643. paddlex/inference/models/image_unwarping.py +0 -43
  644. paddlex/inference/models/instance_segmentation.py +0 -66
  645. paddlex/inference/models/multilabel_classification.py +0 -33
  646. paddlex/inference/models/object_detection.py +0 -129
  647. paddlex/inference/models/semantic_segmentation.py +0 -86
  648. paddlex/inference/models/table_recognition.py +0 -106
  649. paddlex/inference/models/text_detection.py +0 -105
  650. paddlex/inference/models/text_recognition.py +0 -78
  651. paddlex/inference/models/ts_ad.py +0 -68
  652. paddlex/inference/models/ts_cls.py +0 -57
  653. paddlex/inference/models/ts_fc.py +0 -73
  654. paddlex/inference/pipelines/attribute_recognition.py +0 -92
  655. paddlex/inference/pipelines/face_recognition.py +0 -49
  656. paddlex/inference/pipelines/formula_recognition.py +0 -102
  657. paddlex/inference/pipelines/layout_parsing/layout_parsing.py +0 -362
  658. paddlex/inference/pipelines/ocr.py +0 -80
  659. paddlex/inference/pipelines/pp_shitu_v2.py +0 -152
  660. paddlex/inference/pipelines/ppchatocrv3/__init__.py +0 -15
  661. paddlex/inference/pipelines/ppchatocrv3/ch_prompt.yaml +0 -14
  662. paddlex/inference/pipelines/ppchatocrv3/ppchatocrv3.py +0 -717
  663. paddlex/inference/pipelines/ppchatocrv3/utils.py +0 -168
  664. paddlex/inference/pipelines/seal_recognition.py +0 -152
  665. paddlex/inference/pipelines/serving/__init__.py +0 -17
  666. paddlex/inference/pipelines/serving/_pipeline_apps/__init__.py +0 -205
  667. paddlex/inference/pipelines/serving/_pipeline_apps/anomaly_detection.py +0 -80
  668. paddlex/inference/pipelines/serving/_pipeline_apps/face_recognition.py +0 -317
  669. paddlex/inference/pipelines/serving/_pipeline_apps/formula_recognition.py +0 -119
  670. paddlex/inference/pipelines/serving/_pipeline_apps/image_classification.py +0 -101
  671. paddlex/inference/pipelines/serving/_pipeline_apps/instance_segmentation.py +0 -112
  672. paddlex/inference/pipelines/serving/_pipeline_apps/layout_parsing.py +0 -205
  673. paddlex/inference/pipelines/serving/_pipeline_apps/multi_label_image_classification.py +0 -90
  674. paddlex/inference/pipelines/serving/_pipeline_apps/object_detection.py +0 -90
  675. paddlex/inference/pipelines/serving/_pipeline_apps/ocr.py +0 -98
  676. paddlex/inference/pipelines/serving/_pipeline_apps/pedestrian_attribute_recognition.py +0 -102
  677. paddlex/inference/pipelines/serving/_pipeline_apps/pp_shitu_v2.py +0 -319
  678. paddlex/inference/pipelines/serving/_pipeline_apps/ppchatocrv3.py +0 -445
  679. paddlex/inference/pipelines/serving/_pipeline_apps/seal_recognition.py +0 -110
  680. paddlex/inference/pipelines/serving/_pipeline_apps/semantic_segmentation.py +0 -82
  681. paddlex/inference/pipelines/serving/_pipeline_apps/small_object_detection.py +0 -92
  682. paddlex/inference/pipelines/serving/_pipeline_apps/table_recognition.py +0 -110
  683. paddlex/inference/pipelines/serving/_pipeline_apps/ts_ad.py +0 -68
  684. paddlex/inference/pipelines/serving/_pipeline_apps/ts_cls.py +0 -68
  685. paddlex/inference/pipelines/serving/_pipeline_apps/ts_fc.py +0 -68
  686. paddlex/inference/pipelines/serving/_pipeline_apps/vehicle_attribute_recognition.py +0 -102
  687. paddlex/inference/pipelines/serving/app.py +0 -164
  688. paddlex/inference/pipelines/serving/models.py +0 -30
  689. paddlex/inference/pipelines/serving/server.py +0 -25
  690. paddlex/inference/pipelines/serving/storage.py +0 -161
  691. paddlex/inference/pipelines/serving/utils.py +0 -190
  692. paddlex/inference/pipelines/single_model_pipeline.py +0 -76
  693. paddlex/inference/pipelines/table_recognition/table_recognition.py +0 -193
  694. paddlex/inference/results/__init__.py +0 -31
  695. paddlex/inference/results/attribute_rec.py +0 -89
  696. paddlex/inference/results/base.py +0 -43
  697. paddlex/inference/results/chat_ocr.py +0 -158
  698. paddlex/inference/results/clas.py +0 -133
  699. paddlex/inference/results/det.py +0 -86
  700. paddlex/inference/results/face_rec.py +0 -34
  701. paddlex/inference/results/formula_rec.py +0 -363
  702. paddlex/inference/results/instance_seg.py +0 -152
  703. paddlex/inference/results/ocr.py +0 -157
  704. paddlex/inference/results/seal_rec.py +0 -50
  705. paddlex/inference/results/seg.py +0 -72
  706. paddlex/inference/results/shitu.py +0 -35
  707. paddlex/inference/results/table_rec.py +0 -109
  708. paddlex/inference/results/text_det.py +0 -33
  709. paddlex/inference/results/text_rec.py +0 -66
  710. paddlex/inference/results/ts.py +0 -37
  711. paddlex/inference/results/utils/mixin.py +0 -204
  712. paddlex/inference/results/warp.py +0 -31
  713. paddlex/inference/utils/process_hook.py +0 -54
  714. paddlex/pipelines/OCR.yaml +0 -8
  715. paddlex/pipelines/PP-ChatOCRv3-doc.yaml +0 -27
  716. paddlex/pipelines/PP-ShiTuV2.yaml +0 -13
  717. paddlex/pipelines/anomaly_detection.yaml +0 -7
  718. paddlex/pipelines/face_recognition.yaml +0 -13
  719. paddlex/pipelines/formula_recognition.yaml +0 -8
  720. paddlex/pipelines/image_classification.yaml +0 -7
  721. paddlex/pipelines/instance_segmentation.yaml +0 -7
  722. paddlex/pipelines/layout_parsing.yaml +0 -14
  723. paddlex/pipelines/multi_label_image_classification.yaml +0 -7
  724. paddlex/pipelines/object_detection.yaml +0 -7
  725. paddlex/pipelines/pedestrian_attribute_recognition.yaml +0 -7
  726. paddlex/pipelines/seal_recognition.yaml +0 -10
  727. paddlex/pipelines/semantic_segmentation.yaml +0 -7
  728. paddlex/pipelines/small_object_detection.yaml +0 -7
  729. paddlex/pipelines/table_recognition.yaml +0 -12
  730. paddlex/pipelines/ts_ad.yaml +0 -7
  731. paddlex/pipelines/ts_cls.yaml +0 -7
  732. paddlex/pipelines/ts_fc.yaml +0 -7
  733. paddlex/pipelines/vehicle_attribute_recognition.yaml +0 -7
  734. paddlex/utils/fonts/PingFang-SC-Regular.ttf +0 -0
  735. paddlex-3.0.0b2.dist-info/METADATA +0 -760
  736. paddlex-3.0.0b2.dist-info/RECORD +0 -646
  737. paddlex-3.0.0b2.dist-info/WHEEL +0 -5
  738. /paddlex/configs/{doc_text_orientation → modules/doc_text_orientation}/PP-LCNet_x1_0_doc_ori.yaml +0 -0
  739. /paddlex/configs/{face_detection → modules/face_detection}/BlazeFace-FPN-SSH.yaml +0 -0
  740. /paddlex/configs/{face_detection → modules/face_detection}/BlazeFace.yaml +0 -0
  741. /paddlex/configs/{face_detection → modules/face_detection}/PP-YOLOE_plus-S_face.yaml +0 -0
  742. /paddlex/configs/{face_detection → modules/face_detection}/PicoDet_LCNet_x2_5_face.yaml +0 -0
  743. /paddlex/configs/{human_detection → modules/human_detection}/PP-YOLOE-L_human.yaml +0 -0
  744. /paddlex/configs/{human_detection → modules/human_detection}/PP-YOLOE-S_human.yaml +0 -0
  745. /paddlex/configs/{anomaly_detection → modules/image_anomaly_detection}/STFPM.yaml +0 -0
  746. /paddlex/configs/{image_classification → modules/image_classification}/ConvNeXt_base_224.yaml +0 -0
  747. /paddlex/configs/{image_classification → modules/image_classification}/ConvNeXt_base_384.yaml +0 -0
  748. /paddlex/configs/{image_classification → modules/image_classification}/ConvNeXt_large_224.yaml +0 -0
  749. /paddlex/configs/{image_classification → modules/image_classification}/ConvNeXt_small.yaml +0 -0
  750. /paddlex/configs/{image_classification → modules/image_classification}/ConvNeXt_tiny.yaml +0 -0
  751. /paddlex/configs/{image_classification → modules/image_classification}/FasterNet-L.yaml +0 -0
  752. /paddlex/configs/{image_classification → modules/image_classification}/FasterNet-M.yaml +0 -0
  753. /paddlex/configs/{image_classification → modules/image_classification}/FasterNet-S.yaml +0 -0
  754. /paddlex/configs/{image_classification → modules/image_classification}/FasterNet-T0.yaml +0 -0
  755. /paddlex/configs/{image_classification → modules/image_classification}/FasterNet-T1.yaml +0 -0
  756. /paddlex/configs/{image_classification → modules/image_classification}/FasterNet-T2.yaml +0 -0
  757. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV1_x0_25.yaml +0 -0
  758. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV1_x0_5.yaml +0 -0
  759. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV1_x0_75.yaml +0 -0
  760. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV1_x1_0.yaml +0 -0
  761. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV2_x0_25.yaml +0 -0
  762. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV2_x0_5.yaml +0 -0
  763. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV2_x1_0.yaml +0 -0
  764. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV2_x1_5.yaml +0 -0
  765. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV2_x2_0.yaml +0 -0
  766. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_large_x0_35.yaml +0 -0
  767. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_large_x0_5.yaml +0 -0
  768. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_large_x0_75.yaml +0 -0
  769. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_large_x1_0.yaml +0 -0
  770. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_large_x1_25.yaml +0 -0
  771. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_small_x0_35.yaml +0 -0
  772. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_small_x0_5.yaml +0 -0
  773. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_small_x0_75.yaml +0 -0
  774. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_small_x1_0.yaml +0 -0
  775. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_small_x1_25.yaml +0 -0
  776. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV4_conv_large.yaml +0 -0
  777. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV4_conv_medium.yaml +0 -0
  778. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV4_conv_small.yaml +0 -0
  779. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV4_hybrid_large.yaml +0 -0
  780. /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV4_hybrid_medium.yaml +0 -0
  781. /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNetV2-B0.yaml +0 -0
  782. /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNetV2-B1.yaml +0 -0
  783. /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNetV2-B2.yaml +0 -0
  784. /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNetV2-B3.yaml +0 -0
  785. /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNetV2-B4.yaml +0 -0
  786. /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNetV2-B5.yaml +0 -0
  787. /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNetV2-B6.yaml +0 -0
  788. /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNet_base.yaml +0 -0
  789. /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNet_small.yaml +0 -0
  790. /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNet_tiny.yaml +0 -0
  791. /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNetV2_base.yaml +0 -0
  792. /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNetV2_large.yaml +0 -0
  793. /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNetV2_small.yaml +0 -0
  794. /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x0_25.yaml +0 -0
  795. /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x0_35.yaml +0 -0
  796. /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x0_5.yaml +0 -0
  797. /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x0_75.yaml +0 -0
  798. /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x1_0.yaml +0 -0
  799. /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x1_5.yaml +0 -0
  800. /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x2_0.yaml +0 -0
  801. /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x2_5.yaml +0 -0
  802. /paddlex/configs/{image_classification → modules/image_classification}/ResNet101.yaml +0 -0
  803. /paddlex/configs/{image_classification → modules/image_classification}/ResNet101_vd.yaml +0 -0
  804. /paddlex/configs/{image_classification → modules/image_classification}/ResNet152.yaml +0 -0
  805. /paddlex/configs/{image_classification → modules/image_classification}/ResNet152_vd.yaml +0 -0
  806. /paddlex/configs/{image_classification → modules/image_classification}/ResNet18.yaml +0 -0
  807. /paddlex/configs/{image_classification → modules/image_classification}/ResNet18_vd.yaml +0 -0
  808. /paddlex/configs/{image_classification → modules/image_classification}/ResNet200_vd.yaml +0 -0
  809. /paddlex/configs/{image_classification → modules/image_classification}/ResNet34.yaml +0 -0
  810. /paddlex/configs/{image_classification → modules/image_classification}/ResNet34_vd.yaml +0 -0
  811. /paddlex/configs/{image_classification → modules/image_classification}/ResNet50.yaml +0 -0
  812. /paddlex/configs/{image_classification → modules/image_classification}/ResNet50_vd.yaml +0 -0
  813. /paddlex/configs/{image_classification → modules/image_classification}/StarNet-S1.yaml +0 -0
  814. /paddlex/configs/{image_classification → modules/image_classification}/StarNet-S2.yaml +0 -0
  815. /paddlex/configs/{image_classification → modules/image_classification}/StarNet-S3.yaml +0 -0
  816. /paddlex/configs/{image_classification → modules/image_classification}/StarNet-S4.yaml +0 -0
  817. /paddlex/configs/{image_classification → modules/image_classification}/SwinTransformer_base_patch4_window12_384.yaml +0 -0
  818. /paddlex/configs/{image_classification → modules/image_classification}/SwinTransformer_base_patch4_window7_224.yaml +0 -0
  819. /paddlex/configs/{image_classification → modules/image_classification}/SwinTransformer_large_patch4_window12_384.yaml +0 -0
  820. /paddlex/configs/{image_classification → modules/image_classification}/SwinTransformer_large_patch4_window7_224.yaml +0 -0
  821. /paddlex/configs/{image_classification → modules/image_classification}/SwinTransformer_small_patch4_window7_224.yaml +0 -0
  822. /paddlex/configs/{image_classification → modules/image_classification}/SwinTransformer_tiny_patch4_window7_224.yaml +0 -0
  823. /paddlex/configs/{general_recognition → modules/image_feature}/PP-ShiTuV2_rec.yaml +0 -0
  824. /paddlex/configs/{general_recognition → modules/image_feature}/PP-ShiTuV2_rec_CLIP_vit_base.yaml +0 -0
  825. /paddlex/configs/{general_recognition → modules/image_feature}/PP-ShiTuV2_rec_CLIP_vit_large.yaml +0 -0
  826. /paddlex/configs/{multilabel_classification → modules/image_multilabel_classification}/CLIP_vit_base_patch16_448_ML.yaml +0 -0
  827. /paddlex/configs/{multilabel_classification → modules/image_multilabel_classification}/PP-HGNetV2-B0_ML.yaml +0 -0
  828. /paddlex/configs/{multilabel_classification → modules/image_multilabel_classification}/PP-HGNetV2-B4_ML.yaml +0 -0
  829. /paddlex/configs/{multilabel_classification → modules/image_multilabel_classification}/PP-HGNetV2-B6_ML.yaml +0 -0
  830. /paddlex/configs/{multilabel_classification → modules/image_multilabel_classification}/PP-LCNet_x1_0_ML.yaml +0 -0
  831. /paddlex/configs/{multilabel_classification → modules/image_multilabel_classification}/ResNet50_ML.yaml +0 -0
  832. /paddlex/configs/{image_unwarping → modules/image_unwarping}/UVDoc.yaml +0 -0
  833. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/Cascade-MaskRCNN-ResNet50-FPN.yaml +0 -0
  834. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +0 -0
  835. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/Mask-RT-DETR-H.yaml +0 -0
  836. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/Mask-RT-DETR-L.yaml +0 -0
  837. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/Mask-RT-DETR-M.yaml +0 -0
  838. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/Mask-RT-DETR-S.yaml +0 -0
  839. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/Mask-RT-DETR-X.yaml +0 -0
  840. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/MaskRCNN-ResNeXt101-vd-FPN.yaml +0 -0
  841. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/MaskRCNN-ResNet101-FPN.yaml +0 -0
  842. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/MaskRCNN-ResNet101-vd-FPN.yaml +0 -0
  843. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/MaskRCNN-ResNet50-FPN.yaml +0 -0
  844. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/MaskRCNN-ResNet50-vd-FPN.yaml +0 -0
  845. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/MaskRCNN-ResNet50.yaml +0 -0
  846. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/PP-YOLOE_seg-S.yaml +0 -0
  847. /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/SOLOv2.yaml +0 -0
  848. /paddlex/configs/{structure_analysis → modules/layout_detection}/PicoDet-L_layout_17cls.yaml +0 -0
  849. /paddlex/configs/{structure_analysis → modules/layout_detection}/PicoDet-L_layout_3cls.yaml +0 -0
  850. /paddlex/configs/{structure_analysis → modules/layout_detection}/PicoDet-S_layout_17cls.yaml +0 -0
  851. /paddlex/configs/{structure_analysis → modules/layout_detection}/PicoDet-S_layout_3cls.yaml +0 -0
  852. /paddlex/configs/{structure_analysis → modules/layout_detection}/PicoDet_layout_1x.yaml +0 -0
  853. /paddlex/configs/{structure_analysis → modules/layout_detection}/PicoDet_layout_1x_table.yaml +0 -0
  854. /paddlex/configs/{structure_analysis → modules/layout_detection}/RT-DETR-H_layout_17cls.yaml +0 -0
  855. /paddlex/configs/{structure_analysis → modules/layout_detection}/RT-DETR-H_layout_3cls.yaml +0 -0
  856. /paddlex/configs/{mainbody_detection → modules/mainbody_detection}/PP-ShiTuV2_det.yaml +0 -0
  857. /paddlex/configs/{object_detection → modules/object_detection}/Cascade-FasterRCNN-ResNet50-FPN.yaml +0 -0
  858. /paddlex/configs/{object_detection → modules/object_detection}/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +0 -0
  859. /paddlex/configs/{object_detection → modules/object_detection}/CenterNet-DLA-34.yaml +0 -0
  860. /paddlex/configs/{object_detection → modules/object_detection}/CenterNet-ResNet50.yaml +0 -0
  861. /paddlex/configs/{object_detection → modules/object_detection}/DETR-R50.yaml +0 -0
  862. /paddlex/configs/{object_detection → modules/object_detection}/FCOS-ResNet50.yaml +0 -0
  863. /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNeXt101-vd-FPN.yaml +0 -0
  864. /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNet101-FPN.yaml +0 -0
  865. /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNet101.yaml +0 -0
  866. /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNet34-FPN.yaml +0 -0
  867. /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNet50-FPN.yaml +0 -0
  868. /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNet50-vd-FPN.yaml +0 -0
  869. /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +0 -0
  870. /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNet50.yaml +0 -0
  871. /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-Swin-Tiny-FPN.yaml +0 -0
  872. /paddlex/configs/{object_detection → modules/object_detection}/PP-YOLOE_plus-L.yaml +0 -0
  873. /paddlex/configs/{object_detection → modules/object_detection}/PP-YOLOE_plus-M.yaml +0 -0
  874. /paddlex/configs/{object_detection → modules/object_detection}/PP-YOLOE_plus-S.yaml +0 -0
  875. /paddlex/configs/{object_detection → modules/object_detection}/PP-YOLOE_plus-X.yaml +0 -0
  876. /paddlex/configs/{object_detection → modules/object_detection}/PicoDet-L.yaml +0 -0
  877. /paddlex/configs/{object_detection → modules/object_detection}/PicoDet-M.yaml +0 -0
  878. /paddlex/configs/{object_detection → modules/object_detection}/PicoDet-S.yaml +0 -0
  879. /paddlex/configs/{object_detection → modules/object_detection}/PicoDet-XS.yaml +0 -0
  880. /paddlex/configs/{object_detection → modules/object_detection}/RT-DETR-H.yaml +0 -0
  881. /paddlex/configs/{object_detection → modules/object_detection}/RT-DETR-L.yaml +0 -0
  882. /paddlex/configs/{object_detection → modules/object_detection}/RT-DETR-R18.yaml +0 -0
  883. /paddlex/configs/{object_detection → modules/object_detection}/RT-DETR-R50.yaml +0 -0
  884. /paddlex/configs/{object_detection → modules/object_detection}/RT-DETR-X.yaml +0 -0
  885. /paddlex/configs/{object_detection → modules/object_detection}/YOLOX-L.yaml +0 -0
  886. /paddlex/configs/{object_detection → modules/object_detection}/YOLOX-M.yaml +0 -0
  887. /paddlex/configs/{object_detection → modules/object_detection}/YOLOX-N.yaml +0 -0
  888. /paddlex/configs/{object_detection → modules/object_detection}/YOLOX-S.yaml +0 -0
  889. /paddlex/configs/{object_detection → modules/object_detection}/YOLOX-T.yaml +0 -0
  890. /paddlex/configs/{object_detection → modules/object_detection}/YOLOv3-DarkNet53.yaml +0 -0
  891. /paddlex/configs/{object_detection → modules/object_detection}/YOLOv3-MobileNetV3.yaml +0 -0
  892. /paddlex/configs/{object_detection → modules/object_detection}/YOLOv3-ResNet50_vd_DCN.yaml +0 -0
  893. /paddlex/configs/{pedestrian_attribute → modules/pedestrian_attribute_recognition}/PP-LCNet_x1_0_pedestrian_attribute.yaml +0 -0
  894. /paddlex/configs/{text_detection_seal → modules/seal_text_detection}/PP-OCRv4_mobile_seal_det.yaml +0 -0
  895. /paddlex/configs/{text_detection_seal → modules/seal_text_detection}/PP-OCRv4_server_seal_det.yaml +0 -0
  896. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/Deeplabv3-R101.yaml +0 -0
  897. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/Deeplabv3-R50.yaml +0 -0
  898. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/Deeplabv3_Plus-R101.yaml +0 -0
  899. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/Deeplabv3_Plus-R50.yaml +0 -0
  900. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/OCRNet_HRNet-W18.yaml +0 -0
  901. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/OCRNet_HRNet-W48.yaml +0 -0
  902. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/PP-LiteSeg-B.yaml +0 -0
  903. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/PP-LiteSeg-T.yaml +0 -0
  904. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/SegFormer-B0.yaml +0 -0
  905. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/SegFormer-B1.yaml +0 -0
  906. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/SegFormer-B2.yaml +0 -0
  907. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/SegFormer-B3.yaml +0 -0
  908. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/SegFormer-B4.yaml +0 -0
  909. /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/SegFormer-B5.yaml +0 -0
  910. /paddlex/configs/{small_object_detection → modules/small_object_detection}/PP-YOLOE_plus_SOD-L.yaml +0 -0
  911. /paddlex/configs/{small_object_detection → modules/small_object_detection}/PP-YOLOE_plus_SOD-S.yaml +0 -0
  912. /paddlex/configs/{small_object_detection → modules/small_object_detection}/PP-YOLOE_plus_SOD-largesize-L.yaml +0 -0
  913. /paddlex/configs/{table_recognition → modules/table_structure_recognition}/SLANet.yaml +0 -0
  914. /paddlex/configs/{table_recognition → modules/table_structure_recognition}/SLANet_plus.yaml +0 -0
  915. /paddlex/configs/{text_detection → modules/text_detection}/PP-OCRv4_mobile_det.yaml +0 -0
  916. /paddlex/configs/{text_detection → modules/text_detection}/PP-OCRv4_server_det.yaml +0 -0
  917. /paddlex/configs/{text_recognition → modules/text_recognition}/PP-OCRv4_mobile_rec.yaml +0 -0
  918. /paddlex/configs/{text_recognition → modules/text_recognition}/PP-OCRv4_server_rec.yaml +0 -0
  919. /paddlex/configs/{text_recognition → modules/text_recognition}/ch_RepSVTR_rec.yaml +0 -0
  920. /paddlex/configs/{text_recognition → modules/text_recognition}/ch_SVTRv2_rec.yaml +0 -0
  921. /paddlex/configs/{ts_anomaly_detection → modules/ts_anomaly_detection}/AutoEncoder_ad.yaml +0 -0
  922. /paddlex/configs/{ts_anomaly_detection → modules/ts_anomaly_detection}/DLinear_ad.yaml +0 -0
  923. /paddlex/configs/{ts_anomaly_detection → modules/ts_anomaly_detection}/Nonstationary_ad.yaml +0 -0
  924. /paddlex/configs/{ts_anomaly_detection → modules/ts_anomaly_detection}/PatchTST_ad.yaml +0 -0
  925. /paddlex/configs/{ts_anomaly_detection → modules/ts_anomaly_detection}/TimesNet_ad.yaml +0 -0
  926. /paddlex/configs/{ts_classification → modules/ts_classification}/TimesNet_cls.yaml +0 -0
  927. /paddlex/configs/{ts_forecast → modules/ts_forecast}/DLinear.yaml +0 -0
  928. /paddlex/configs/{ts_forecast → modules/ts_forecast}/NLinear.yaml +0 -0
  929. /paddlex/configs/{ts_forecast → modules/ts_forecast}/Nonstationary.yaml +0 -0
  930. /paddlex/configs/{ts_forecast → modules/ts_forecast}/PatchTST.yaml +0 -0
  931. /paddlex/configs/{ts_forecast → modules/ts_forecast}/RLinear.yaml +0 -0
  932. /paddlex/configs/{ts_forecast → modules/ts_forecast}/TiDE.yaml +0 -0
  933. /paddlex/configs/{ts_forecast → modules/ts_forecast}/TimesNet.yaml +0 -0
  934. /paddlex/configs/{vehicle_attribute → modules/vehicle_attribute_recognition}/PP-LCNet_x1_0_vehicle_attribute.yaml +0 -0
  935. /paddlex/configs/{vehicle_detection → modules/vehicle_detection}/PP-YOLOE-L_vehicle.yaml +0 -0
  936. /paddlex/configs/{vehicle_detection → modules/vehicle_detection}/PP-YOLOE-S_vehicle.yaml +0 -0
  937. /paddlex/inference/{results/utils → common}/__init__.py +0 -0
  938. {paddlex-3.0.0b2.dist-info → paddlex-3.0.0rc0.dist-info}/LICENSE +0 -0
  939. {paddlex-3.0.0b2.dist-info → paddlex-3.0.0rc0.dist-info}/entry_points.txt +0 -0
  940. {paddlex-3.0.0b2.dist-info → paddlex-3.0.0rc0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,2385 @@
1
+ # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ __all__ = [
16
+ "get_sub_regions_ocr_res",
17
+ "get_layout_ordering",
18
+ "get_single_block_parsing_res",
19
+ "get_show_color",
20
+ "sorted_layout_boxes",
21
+ ]
22
+
23
+ import numpy as np
24
+ from PIL import Image
25
+ import uuid
26
+ import re
27
+ from pathlib import Path
28
+ from copy import deepcopy
29
+ from typing import Optional, Union, List, Tuple, Dict, Any
30
+ from ..ocr.result import OCRResult
31
+ from ...models.object_detection.result import DetResult
32
+ from ..components import convert_points_to_boxes
33
+
34
+
35
+ def get_overlap_boxes_idx(src_boxes: np.ndarray, ref_boxes: np.ndarray) -> List:
36
+ """
37
+ Get the indices of source boxes that overlap with reference boxes based on a specified threshold.
38
+
39
+ Args:
40
+ src_boxes (np.ndarray): A 2D numpy array of source bounding boxes.
41
+ ref_boxes (np.ndarray): A 2D numpy array of reference bounding boxes.
42
+ Returns:
43
+ match_idx_list (list): A list of indices of source boxes that overlap with reference boxes.
44
+ """
45
+ match_idx_list = []
46
+ src_boxes_num = len(src_boxes)
47
+ if src_boxes_num > 0 and len(ref_boxes) > 0:
48
+ for rno in range(len(ref_boxes)):
49
+ ref_box = ref_boxes[rno]
50
+ x1 = np.maximum(ref_box[0], src_boxes[:, 0])
51
+ y1 = np.maximum(ref_box[1], src_boxes[:, 1])
52
+ x2 = np.minimum(ref_box[2], src_boxes[:, 2])
53
+ y2 = np.minimum(ref_box[3], src_boxes[:, 3])
54
+ pub_w = x2 - x1
55
+ pub_h = y2 - y1
56
+ match_idx = np.where((pub_w > 3) & (pub_h > 3))[0]
57
+ match_idx_list.extend(match_idx)
58
+ return match_idx_list
59
+
60
+
61
+ def get_sub_regions_ocr_res(
62
+ overall_ocr_res: OCRResult,
63
+ object_boxes: List,
64
+ flag_within: bool = True,
65
+ return_match_idx: bool = False,
66
+ ) -> OCRResult:
67
+ """
68
+ Filters OCR results to only include text boxes within specified object boxes based on a flag.
69
+
70
+ Args:
71
+ overall_ocr_res (OCRResult): The original OCR result containing all text boxes.
72
+ object_boxes (list): A list of bounding boxes for the objects of interest.
73
+ flag_within (bool): If True, only include text boxes within the object boxes. If False, exclude text boxes within the object boxes.
74
+ return_match_idx (bool): If True, return the list of matching indices.
75
+
76
+ Returns:
77
+ OCRResult: A filtered OCR result containing only the relevant text boxes.
78
+ """
79
+ sub_regions_ocr_res = {}
80
+ sub_regions_ocr_res["rec_polys"] = []
81
+ sub_regions_ocr_res["rec_texts"] = []
82
+ sub_regions_ocr_res["rec_scores"] = []
83
+ sub_regions_ocr_res["rec_boxes"] = []
84
+
85
+ overall_text_boxes = overall_ocr_res["rec_boxes"]
86
+ match_idx_list = get_overlap_boxes_idx(overall_text_boxes, object_boxes)
87
+ match_idx_list = list(set(match_idx_list))
88
+ for box_no in range(len(overall_text_boxes)):
89
+ if flag_within:
90
+ if box_no in match_idx_list:
91
+ flag_match = True
92
+ else:
93
+ flag_match = False
94
+ else:
95
+ if box_no not in match_idx_list:
96
+ flag_match = True
97
+ else:
98
+ flag_match = False
99
+ if flag_match:
100
+ sub_regions_ocr_res["rec_polys"].append(
101
+ overall_ocr_res["rec_polys"][box_no]
102
+ )
103
+ sub_regions_ocr_res["rec_texts"].append(
104
+ overall_ocr_res["rec_texts"][box_no]
105
+ )
106
+ sub_regions_ocr_res["rec_scores"].append(
107
+ overall_ocr_res["rec_scores"][box_no]
108
+ )
109
+ sub_regions_ocr_res["rec_boxes"].append(
110
+ overall_ocr_res["rec_boxes"][box_no]
111
+ )
112
+ for key in ["rec_polys", "rec_scores", "rec_boxes"]:
113
+ sub_regions_ocr_res[key] = np.array(sub_regions_ocr_res[key])
114
+ return (
115
+ (sub_regions_ocr_res, match_idx_list)
116
+ if return_match_idx
117
+ else sub_regions_ocr_res
118
+ )
119
+
120
+
121
+ def sorted_layout_boxes(res, w):
122
+ """
123
+ Sort text boxes in order from top to bottom, left to right
124
+ Args:
125
+ res: List of dictionaries containing layout information.
126
+ w: Width of image.
127
+
128
+ Returns:
129
+ List of dictionaries containing sorted layout information.
130
+ """
131
+ num_boxes = len(res)
132
+ if num_boxes == 1:
133
+ return res
134
+
135
+ # Sort on the y axis first or sort it on the x axis
136
+ sorted_boxes = sorted(res, key=lambda x: (x["block_bbox"][1], x["block_bbox"][0]))
137
+ _boxes = list(sorted_boxes)
138
+
139
+ new_res = []
140
+ res_left = []
141
+ res_right = []
142
+ i = 0
143
+
144
+ while True:
145
+ if i >= num_boxes:
146
+ break
147
+ # Check that the bbox is on the left
148
+ elif (
149
+ _boxes[i]["block_bbox"][0] < w / 4
150
+ and _boxes[i]["block_bbox"][2] < 3 * w / 5
151
+ ):
152
+ res_left.append(_boxes[i])
153
+ i += 1
154
+ elif _boxes[i]["block_bbox"][0] > 2 * w / 5:
155
+ res_right.append(_boxes[i])
156
+ i += 1
157
+ else:
158
+ new_res += res_left
159
+ new_res += res_right
160
+ new_res.append(_boxes[i])
161
+ res_left = []
162
+ res_right = []
163
+ i += 1
164
+
165
+ res_left = sorted(res_left, key=lambda x: (x["block_bbox"][1]))
166
+ res_right = sorted(res_right, key=lambda x: (x["block_bbox"][1]))
167
+
168
+ if res_left:
169
+ new_res += res_left
170
+ if res_right:
171
+ new_res += res_right
172
+
173
+ return new_res
174
+
175
+
176
+ def _calculate_overlap_area_div_minbox_area_ratio(
177
+ bbox1: Union[list, tuple],
178
+ bbox2: Union[list, tuple],
179
+ ) -> float:
180
+ """
181
+ Calculate the ratio of the overlap area between bbox1 and bbox2
182
+ to the area of the smaller bounding box.
183
+
184
+ Args:
185
+ bbox1 (list or tuple): Coordinates of the first bounding box [x_min, y_min, x_max, y_max].
186
+ bbox2 (list or tuple): Coordinates of the second bounding box [x_min, y_min, x_max, y_max].
187
+
188
+ Returns:
189
+ float: The ratio of the overlap area to the area of the smaller bounding box.
190
+ """
191
+ bbox1 = list(map(int, bbox1))
192
+ bbox2 = list(map(int, bbox2))
193
+
194
+ x_left = max(bbox1[0], bbox2[0])
195
+ y_top = max(bbox1[1], bbox2[1])
196
+ x_right = min(bbox1[2], bbox2[2])
197
+ y_bottom = min(bbox1[3], bbox2[3])
198
+
199
+ if x_right <= x_left or y_bottom <= y_top:
200
+ return 0.0
201
+
202
+ intersection_area = (x_right - x_left) * (y_bottom - y_top)
203
+ area_bbox1 = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1])
204
+ area_bbox2 = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1])
205
+ min_box_area = min(area_bbox1, area_bbox2)
206
+
207
+ if min_box_area <= 0:
208
+ return 0.0
209
+
210
+ return intersection_area / min_box_area
211
+
212
+
213
+ def _whether_y_overlap_exceeds_threshold(
214
+ bbox1: Union[list, tuple],
215
+ bbox2: Union[list, tuple],
216
+ overlap_ratio_threshold: float = 0.6,
217
+ ) -> bool:
218
+ """
219
+ Determines whether the vertical overlap between two bounding boxes exceeds a given threshold.
220
+
221
+ Args:
222
+ bbox1 (list or tuple): The first bounding box defined as (left, top, right, bottom).
223
+ bbox2 (list or tuple): The second bounding box defined as (left, top, right, bottom).
224
+ overlap_ratio_threshold (float): The threshold ratio to determine if the overlap is significant.
225
+ Defaults to 0.6.
226
+
227
+ Returns:
228
+ bool: True if the vertical overlap divided by the minimum height of the two bounding boxes
229
+ exceeds the overlap_ratio_threshold, otherwise False.
230
+ """
231
+ _, y1_0, _, y1_1 = bbox1
232
+ _, y2_0, _, y2_1 = bbox2
233
+
234
+ overlap = max(0, min(y1_1, y2_1) - max(y1_0, y2_0))
235
+ min_height = min(y1_1 - y1_0, y2_1 - y2_0)
236
+
237
+ return (overlap / min_height) > overlap_ratio_threshold
238
+
239
+
240
+ def _adjust_span_text(span: List[str], prepend: bool = False, append: bool = False):
241
+ """
242
+ Adjust the text of a span by prepending or appending a newline.
243
+
244
+ Args:
245
+ span (list): A list where the second element is the text of the span.
246
+ prepend (bool): If True, prepend a newline to the text.
247
+ append (bool): If True, append a newline to the text.
248
+
249
+ Returns:
250
+ None: The function modifies the span in place.
251
+ """
252
+ if prepend:
253
+ span[1] = "\n" + span[1]
254
+ if append:
255
+ span[1] = span[1] + "\n"
256
+ return span
257
+
258
+
259
+ def _format_line(
260
+ line: List[List[Union[List[int], str]]],
261
+ layout_min: int,
262
+ layout_max: int,
263
+ is_reference: bool = False,
264
+ ) -> None:
265
+ """
266
+ Format a line of text spans based on layout constraints.
267
+
268
+ Args:
269
+ line (list): A list of spans, where each span is a list containing a bounding box and text.
270
+ layout_min (int): The minimum x-coordinate of the layout bounding box.
271
+ layout_max (int): The maximum x-coordinate of the layout bounding box.
272
+ is_reference (bool): A flag indicating whether the line is a reference line, which affects formatting rules.
273
+
274
+ Returns:
275
+ None: The function modifies the line in place.
276
+ """
277
+ first_span = line[0]
278
+ end_span = line[-1]
279
+
280
+ if not is_reference:
281
+ if first_span[0][0] - layout_min > 10:
282
+ first_span = _adjust_span_text(first_span, prepend=True)
283
+ if layout_max - end_span[0][2] > 10:
284
+ end_span = _adjust_span_text(end_span, append=True)
285
+ else:
286
+ if first_span[0][0] - layout_min < 5:
287
+ first_span = _adjust_span_text(first_span, prepend=True)
288
+ if layout_max - end_span[0][2] > 20:
289
+ end_span = _adjust_span_text(end_span, append=True)
290
+
291
+ line[0] = first_span
292
+ line[-1] = end_span
293
+
294
+ return line
295
+
296
+
297
+ def split_boxes_if_x_contained(boxes, offset=1e-5):
298
+ """
299
+ Check if there is any complete containment in the x-direction
300
+ between the bounding boxes and split the containing box accordingly.
301
+
302
+ Args:
303
+ boxes (list of lists): Each element is a list containing an ndarray of length 4, a description, and a label.
304
+ offset (float): A small offset value to ensure that the split boxes are not too close to the original boxes.
305
+ Returns:
306
+ A new list of boxes, including split boxes, with the same `rec_text` and `label` attributes.
307
+ """
308
+
309
+ def is_x_contained(box_a, box_b):
310
+ """Check if box_a completely contains box_b in the x-direction."""
311
+ return box_a[0][0] <= box_b[0][0] and box_a[0][2] >= box_b[0][2]
312
+
313
+ new_boxes = []
314
+
315
+ for i in range(len(boxes)):
316
+ box_a = boxes[i]
317
+ is_split = False
318
+ for j in range(len(boxes)):
319
+ if i == j:
320
+ continue
321
+ box_b = boxes[j]
322
+ if is_x_contained(box_a, box_b):
323
+ is_split = True
324
+ # Split box_a based on the x-coordinates of box_b
325
+ if box_a[0][0] < box_b[0][0]:
326
+ w = box_b[0][0] - offset - box_a[0][0]
327
+ if w > 1:
328
+ new_boxes.append(
329
+ [
330
+ np.array(
331
+ [
332
+ box_a[0][0],
333
+ box_a[0][1],
334
+ box_b[0][0] - offset,
335
+ box_a[0][3],
336
+ ]
337
+ ),
338
+ box_a[1],
339
+ box_a[2],
340
+ ]
341
+ )
342
+ if box_a[0][2] > box_b[0][2]:
343
+ w = box_a[0][2] - box_b[0][2] + offset
344
+ if w > 1:
345
+ box_a = [
346
+ np.array(
347
+ [
348
+ box_b[0][2] + offset,
349
+ box_a[0][1],
350
+ box_a[0][2],
351
+ box_a[0][3],
352
+ ]
353
+ ),
354
+ box_a[1],
355
+ box_a[2],
356
+ ]
357
+ if j == len(boxes) - 1 and is_split:
358
+ new_boxes.append(box_a)
359
+ if not is_split:
360
+ new_boxes.append(box_a)
361
+
362
+ return new_boxes
363
+
364
+
365
+ def _sort_line_by_x_projection(
366
+ input_img: np.ndarray,
367
+ general_ocr_pipeline: Any,
368
+ line: List[List[Union[List[int], str]]],
369
+ ) -> None:
370
+ """
371
+ Sort a line of text spans based on their vertical position within the layout bounding box.
372
+
373
+ Args:
374
+ input_img (ndarray): The input image used for OCR.
375
+ general_ocr_pipeline (Any): The general OCR pipeline used for text recognition.
376
+ line (list): A list of spans, where each span is a list containing a bounding box and text.
377
+
378
+ Returns:
379
+ list: The sorted line of text spans.
380
+ """
381
+ splited_boxes = split_boxes_if_x_contained(line)
382
+ splited_lines = []
383
+ if len(line) != len(splited_boxes):
384
+ splited_boxes.sort(key=lambda span: span[0][0])
385
+ text_rec_model = general_ocr_pipeline.text_rec_model
386
+ for span in splited_boxes:
387
+ if span[2] == "text":
388
+ crop_img = input_img[
389
+ int(span[0][1]) : int(span[0][3]),
390
+ int(span[0][0]) : int(span[0][2]),
391
+ ]
392
+ span[1] = next(text_rec_model([crop_img]))["rec_text"]
393
+ splited_lines.append(span)
394
+ else:
395
+ splited_lines = line
396
+
397
+ return splited_lines
398
+
399
+
400
+ def _sort_ocr_res_by_y_projection(
401
+ input_img: np.ndarray,
402
+ general_ocr_pipeline: Any,
403
+ label: Any,
404
+ block_bbox: Tuple[int, int, int, int],
405
+ ocr_res: Dict[str, List[Any]],
406
+ line_height_iou_threshold: float = 0.7,
407
+ ) -> Dict[str, List[Any]]:
408
+ """
409
+ Sorts OCR results based on their spatial arrangement, grouping them into lines and blocks.
410
+
411
+ Args:
412
+ input_img (ndarray): The input image used for OCR.
413
+ general_ocr_pipeline (Any): The general OCR pipeline used for text recognition.
414
+ label (Any): The label associated with the OCR results. It's not used in the function but might be
415
+ relevant for other parts of the calling context.
416
+ block_bbox (Tuple[int, int, int, int]): A tuple representing the layout bounding box, defined as
417
+ (left, top, right, bottom).
418
+ ocr_res (Dict[str, List[Any]]): A dictionary containing OCR results with the following keys:
419
+ - "boxes": A list of bounding boxes, each defined as [left, top, right, bottom].
420
+ - "rec_texts": A corresponding list of recognized text strings for each box.
421
+ line_height_iou_threshold (float): The threshold for determining whether two boxes belong to
422
+ the same line based on their vertical overlap. Defaults to 0.7.
423
+
424
+ Returns:
425
+ Dict[str, List[Any]]: A dictionary with the same structure as `ocr_res`, but with boxes and texts sorted
426
+ and grouped into lines and blocks.
427
+ """
428
+ assert (
429
+ ocr_res["boxes"] and ocr_res["rec_texts"]
430
+ ), "OCR results must contain 'boxes' and 'rec_texts'"
431
+
432
+ boxes = ocr_res["boxes"]
433
+ rec_texts = ocr_res["rec_texts"]
434
+ rec_labels = ocr_res["rec_labels"]
435
+
436
+ x_min, _, x_max, _ = block_bbox
437
+ inline_x_min = min([box[0] for box in boxes])
438
+ inline_x_max = max([box[2] for box in boxes])
439
+
440
+ spans = list(zip(boxes, rec_texts, rec_labels))
441
+
442
+ spans.sort(key=lambda span: span[0][1])
443
+ spans = [list(span) for span in spans]
444
+
445
+ lines = []
446
+ current_line = [spans[0]]
447
+ current_y0, current_y1 = spans[0][0][1], spans[0][0][3]
448
+
449
+ for span in spans[1:]:
450
+ y0, y1 = span[0][1], span[0][3]
451
+ if _whether_y_overlap_exceeds_threshold(
452
+ (0, current_y0, 0, current_y1),
453
+ (0, y0, 0, y1),
454
+ line_height_iou_threshold,
455
+ ):
456
+ current_line.append(span)
457
+ current_y0 = min(current_y0, y0)
458
+ current_y1 = max(current_y1, y1)
459
+ else:
460
+ lines.append(current_line)
461
+ current_line = [span]
462
+ current_y0, current_y1 = y0, y1
463
+
464
+ if current_line:
465
+ lines.append(current_line)
466
+
467
+ new_lines = []
468
+ for line in lines:
469
+ line.sort(key=lambda span: span[0][0])
470
+
471
+ ocr_labels = [span[2] for span in line]
472
+ if "formula" in ocr_labels:
473
+ line = _sort_line_by_x_projection(input_img, general_ocr_pipeline, line)
474
+ if label == "reference":
475
+ line = _format_line(line, inline_x_min, inline_x_max, is_reference=True)
476
+ elif label != "content":
477
+ line = _format_line(line, x_min, x_max)
478
+ new_lines.append(line)
479
+
480
+ ocr_res["boxes"] = [span[0] for line in new_lines for span in line]
481
+ if label == "content":
482
+ ocr_res["rec_texts"] = [
483
+ "".join(f"{span[1]} " for span in line).rstrip() for line in new_lines
484
+ ]
485
+ else:
486
+ ocr_res["rec_texts"] = [span[1] + " " for line in new_lines for span in line]
487
+ return ocr_res, len(new_lines)
488
+
489
+
490
+ def _process_text(input_text: str) -> str:
491
+ """
492
+ Process the input text to handle spaces.
493
+
494
+ The function removes multiple consecutive spaces between Chinese characters and ensures that
495
+ only a single space is retained between Chinese and non-Chinese characters.
496
+
497
+ Args:
498
+ input_text (str): The text to be processed.
499
+
500
+ Returns:
501
+ str: The processed text with properly formatted spaces.
502
+ """
503
+
504
+ def handle_spaces_(text: str) -> str:
505
+ """
506
+ Handle spaces in the text by removing multiple consecutive spaces and inserting a single space
507
+ between Chinese and non-Chinese characters.
508
+
509
+ Args:
510
+ text (str): The text to handle spaces for.
511
+
512
+ Returns:
513
+ str: The text with properly formatted spaces.
514
+ """
515
+ spaces = re.finditer(r"\s+", text)
516
+ processed_text = list(text)
517
+
518
+ for space in reversed(list(spaces)):
519
+ start, end = space.span()
520
+ prev_char = processed_text[start - 1] if start > 0 else ""
521
+ next_char = processed_text[end] if end < len(processed_text) else ""
522
+
523
+ is_prev_chinese = (
524
+ re.match(r"[\u4e00-\u9fff]", prev_char) if prev_char else False
525
+ )
526
+ is_next_chinese = (
527
+ re.match(r"[\u4e00-\u9fff]", next_char) if next_char else False
528
+ )
529
+
530
+ if is_prev_chinese and is_next_chinese:
531
+ processed_text[start:end] = []
532
+ else:
533
+ processed_text[start:end] = [" "]
534
+
535
+ return "".join(processed_text)
536
+
537
+ text_without_spaces = handle_spaces_(input_text)
538
+
539
+ final_text = re.sub(r"\s+", " ", text_without_spaces).strip()
540
+ return final_text
541
+
542
+
543
+ def get_single_block_parsing_res(
544
+ general_ocr_pipeline: Any,
545
+ overall_ocr_res: OCRResult,
546
+ layout_det_res: DetResult,
547
+ table_res_list: list,
548
+ seal_res_list: list,
549
+ ) -> OCRResult:
550
+ """
551
+ Extract structured information from OCR and layout detection results.
552
+
553
+ Args:
554
+ overall_ocr_res (OCRResult): An object containing the overall OCR results, including detected text boxes and recognized text. The structure is expected to have:
555
+ - "input_img": The image on which OCR was performed.
556
+ - "dt_boxes": A list of detected text box coordinates.
557
+ - "rec_texts": A list of recognized text corresponding to the detected boxes.
558
+
559
+ layout_det_res (DetResult): An object containing the layout detection results, including detected layout boxes and their labels. The structure is expected to have:
560
+ - "boxes": A list of dictionaries with keys "coordinate" for box coordinates and "block_label" for the type of content.
561
+
562
+ table_res_list (list): A list of table detection results, where each item is a dictionary containing:
563
+ - "block_bbox": The bounding box of the table layout.
564
+ - "pred_html": The predicted HTML representation of the table.
565
+
566
+ seal_res_list (List): A list of seal detection results. The details of each item depend on the specific application context.
567
+
568
+ Returns:
569
+ list: A list of structured boxes where each item is a dictionary containing:
570
+ - "block_label": The label of the content (e.g., 'table', 'chart', 'image').
571
+ - The label as a key with either table HTML or image data and text.
572
+ - "block_bbox": The coordinates of the layout box.
573
+ """
574
+
575
+ single_block_layout_parsing_res = []
576
+ input_img = overall_ocr_res["doc_preprocessor_res"]["output_img"]
577
+ seal_index = 0
578
+ with_doc_title = False
579
+ max_block_area = 0.0
580
+ paragraph_title_indexs = []
581
+
582
+ layout_det_res_list, _ = _remove_overlap_blocks(
583
+ deepcopy(layout_det_res["boxes"]),
584
+ threshold=0.5,
585
+ smaller=True,
586
+ )
587
+
588
+ for box_idx, box_info in enumerate(layout_det_res_list):
589
+ block_bbox = box_info["coordinate"]
590
+ label = box_info["label"]
591
+ rec_res = {"boxes": [], "rec_texts": [], "rec_labels": [], "flag": False}
592
+ seg_start_coordinate = float("inf")
593
+ seg_end_coordinate = float("-inf")
594
+ num_of_lines = 1
595
+
596
+ if label == "doc_title":
597
+ with_doc_title = True
598
+ elif label == "paragraph_title":
599
+ paragraph_title_indexs.append(box_idx)
600
+
601
+ block_area = (block_bbox[2] - block_bbox[0]) * (block_bbox[3] - block_bbox[1])
602
+ max_block_area = max(max_block_area, block_area)
603
+
604
+ if label == "table":
605
+ for table_res in table_res_list:
606
+ if len(table_res["cell_box_list"]) == 0:
607
+ continue
608
+ if (
609
+ _calculate_overlap_area_div_minbox_area_ratio(
610
+ block_bbox, table_res["cell_box_list"][0]
611
+ )
612
+ > 0.5
613
+ ):
614
+ single_block_layout_parsing_res.append(
615
+ {
616
+ "block_label": label,
617
+ "block_content": table_res["pred_html"],
618
+ "block_bbox": block_bbox,
619
+ },
620
+ )
621
+ break
622
+ elif label == "seal":
623
+ if len(seal_res_list) > 0:
624
+ single_block_layout_parsing_res.append(
625
+ {
626
+ "block_label": label,
627
+ "block_content": _process_text(
628
+ ", ".join(seal_res_list[seal_index]["rec_texts"])
629
+ ),
630
+ "block_bbox": block_bbox,
631
+ },
632
+ )
633
+ seal_index += 1
634
+ else:
635
+ overall_text_boxes = overall_ocr_res["rec_boxes"]
636
+ for box_no in range(len(overall_text_boxes)):
637
+ if (
638
+ _calculate_overlap_area_div_minbox_area_ratio(
639
+ block_bbox, overall_text_boxes[box_no]
640
+ )
641
+ > 0.5
642
+ ):
643
+ rec_res["boxes"].append(overall_text_boxes[box_no])
644
+ rec_res["rec_texts"].append(
645
+ overall_ocr_res["rec_texts"][box_no],
646
+ )
647
+ rec_res["rec_labels"].append(
648
+ overall_ocr_res["rec_labels"][box_no],
649
+ )
650
+ rec_res["flag"] = True
651
+
652
+ if rec_res["flag"]:
653
+ rec_res, num_of_lines = _sort_ocr_res_by_y_projection(
654
+ input_img, general_ocr_pipeline, label, block_bbox, rec_res, 0.7
655
+ )
656
+ seg_start_coordinate = rec_res["boxes"][0][0]
657
+ seg_end_coordinate = rec_res["boxes"][-1][2]
658
+ if label == "formula":
659
+ rec_res["rec_texts"] = [
660
+ rec_res_text.replace("$", "")
661
+ for rec_res_text in rec_res["rec_texts"]
662
+ ]
663
+
664
+ if label in ["chart", "image"]:
665
+ x_min, y_min, x_max, y_max = list(map(int, block_bbox))
666
+ img_path = f"imgs/img_in_table_box_{x_min}_{y_min}_{x_max}_{y_max}.jpg"
667
+ img = Image.fromarray(input_img[y_min:y_max, x_min:x_max, ::-1])
668
+ single_block_layout_parsing_res.append(
669
+ {
670
+ "block_label": label,
671
+ "block_content": _process_text("".join(rec_res["rec_texts"])),
672
+ "block_image": {img_path: img},
673
+ "block_bbox": block_bbox,
674
+ },
675
+ )
676
+ else:
677
+ if label in ["doc_title"]:
678
+ content = " ".join(rec_res["rec_texts"])
679
+ elif label in ["content"]:
680
+ content = "\n".join(rec_res["rec_texts"])
681
+ else:
682
+ content = "".join(rec_res["rec_texts"])
683
+ if label != "reference":
684
+ content = _process_text(content)
685
+ single_block_layout_parsing_res.append(
686
+ {
687
+ "block_label": label,
688
+ "block_content": content,
689
+ "block_bbox": block_bbox,
690
+ "seg_start_coordinate": seg_start_coordinate,
691
+ "seg_end_coordinate": seg_end_coordinate,
692
+ "num_of_lines": num_of_lines,
693
+ "block_area": block_area,
694
+ },
695
+ )
696
+
697
+ if (
698
+ not with_doc_title
699
+ and len(paragraph_title_indexs) == 1
700
+ and single_block_layout_parsing_res[paragraph_title_indexs[0]].get(
701
+ "block_area", 0
702
+ )
703
+ > max_block_area * 0.3
704
+ ):
705
+ single_block_layout_parsing_res[paragraph_title_indexs[0]][
706
+ "block_label"
707
+ ] = "doc_title"
708
+
709
+ if len(layout_det_res_list) == 0:
710
+ for ocr_rec_box, ocr_rec_text in zip(
711
+ overall_ocr_res["rec_boxes"], overall_ocr_res["rec_texts"]
712
+ ):
713
+ single_block_layout_parsing_res.append(
714
+ {
715
+ "block_label": "text",
716
+ "block_content": ocr_rec_text,
717
+ "block_bbox": ocr_rec_box,
718
+ "seg_start_coordinate": ocr_rec_box[0],
719
+ "seg_end_coordinate": ocr_rec_box[2],
720
+ },
721
+ )
722
+
723
+ single_block_layout_parsing_res = get_layout_ordering(
724
+ single_block_layout_parsing_res,
725
+ no_mask_labels=[
726
+ "text",
727
+ "formula",
728
+ "algorithm",
729
+ "reference",
730
+ "content",
731
+ "abstract",
732
+ ],
733
+ )
734
+
735
+ return single_block_layout_parsing_res
736
+
737
+
738
+ def _projection_by_bboxes(boxes: np.ndarray, axis: int) -> np.ndarray:
739
+ """
740
+ Generate a 1D projection histogram from bounding boxes along a specified axis.
741
+
742
+ Args:
743
+ boxes: A (N, 4) array of bounding boxes defined by [x_min, y_min, x_max, y_max].
744
+ axis: Axis for projection; 0 for horizontal (x-axis), 1 for vertical (y-axis).
745
+
746
+ Returns:
747
+ A 1D numpy array representing the projection histogram based on bounding box intervals.
748
+ """
749
+ assert axis in [0, 1]
750
+ max_length = np.max(boxes[:, axis::2])
751
+ projection = np.zeros(max_length, dtype=int)
752
+
753
+ # Increment projection histogram over the interval defined by each bounding box
754
+ for start, end in boxes[:, axis::2]:
755
+ projection[start:end] += 1
756
+
757
+ return projection
758
+
759
+
760
+ def _split_projection_profile(arr_values: np.ndarray, min_value: float, min_gap: float):
761
+ """
762
+ Split the projection profile into segments based on specified thresholds.
763
+
764
+ Args:
765
+ arr_values: 1D array representing the projection profile.
766
+ min_value: Minimum value threshold to consider a profile segment significant.
767
+ min_gap: Minimum gap width to consider a separation between segments.
768
+
769
+ Returns:
770
+ A tuple of start and end indices for each segment that meets the criteria.
771
+ """
772
+ # Identify indices where the projection exceeds the minimum value
773
+ significant_indices = np.where(arr_values > min_value)[0]
774
+ if not len(significant_indices):
775
+ return
776
+
777
+ # Calculate gaps between significant indices
778
+ index_diffs = significant_indices[1:] - significant_indices[:-1]
779
+ gap_indices = np.where(index_diffs > min_gap)[0]
780
+
781
+ # Determine start and end indices of segments
782
+ segment_starts = np.insert(
783
+ significant_indices[gap_indices + 1],
784
+ 0,
785
+ significant_indices[0],
786
+ )
787
+ segment_ends = np.append(
788
+ significant_indices[gap_indices],
789
+ significant_indices[-1] + 1,
790
+ )
791
+
792
+ return segment_starts, segment_ends
793
+
794
+
795
+ def _recursive_yx_cut(
796
+ boxes: np.ndarray, indices: List[int], res: List[int], min_gap: int = 1
797
+ ):
798
+ """
799
+ Recursively project and segment bounding boxes, starting with Y-axis and followed by X-axis.
800
+
801
+ Args:
802
+ boxes: A (N, 4) array representing bounding boxes.
803
+ indices: List of indices indicating the original position of boxes.
804
+ res: List to store indices of the final segmented bounding boxes.
805
+ min_gap (int): Minimum gap width to consider a separation between segments on the X-axis. Defaults to 1.
806
+
807
+ Returns:
808
+ None: This function modifies the `res` list in place.
809
+ """
810
+ assert len(boxes) == len(
811
+ indices
812
+ ), "The length of boxes and indices must be the same."
813
+
814
+ # Sort by y_min for Y-axis projection
815
+ y_sorted_indices = boxes[:, 1].argsort()
816
+ y_sorted_boxes = boxes[y_sorted_indices]
817
+ y_sorted_indices = np.array(indices)[y_sorted_indices]
818
+
819
+ # Perform Y-axis projection
820
+ y_projection = _projection_by_bboxes(boxes=y_sorted_boxes, axis=1)
821
+ y_intervals = _split_projection_profile(y_projection, 0, 1)
822
+
823
+ if not y_intervals:
824
+ return
825
+
826
+ # Process each segment defined by Y-axis projection
827
+ for y_start, y_end in zip(*y_intervals):
828
+ # Select boxes within the current y interval
829
+ y_interval_indices = (y_start <= y_sorted_boxes[:, 1]) & (
830
+ y_sorted_boxes[:, 1] < y_end
831
+ )
832
+ y_boxes_chunk = y_sorted_boxes[y_interval_indices]
833
+ y_indices_chunk = y_sorted_indices[y_interval_indices]
834
+
835
+ # Sort by x_min for X-axis projection
836
+ x_sorted_indices = y_boxes_chunk[:, 0].argsort()
837
+ x_sorted_boxes_chunk = y_boxes_chunk[x_sorted_indices]
838
+ x_sorted_indices_chunk = y_indices_chunk[x_sorted_indices]
839
+
840
+ # Perform X-axis projection
841
+ x_projection = _projection_by_bboxes(boxes=x_sorted_boxes_chunk, axis=0)
842
+ x_intervals = _split_projection_profile(x_projection, 0, min_gap)
843
+
844
+ if not x_intervals:
845
+ continue
846
+
847
+ # If X-axis cannot be further segmented, add current indices to results
848
+ if len(x_intervals[0]) == 1:
849
+ res.extend(x_sorted_indices_chunk)
850
+ continue
851
+
852
+ # Recursively process each segment defined by X-axis projection
853
+ for x_start, x_end in zip(*x_intervals):
854
+ x_interval_indices = (x_start <= x_sorted_boxes_chunk[:, 0]) & (
855
+ x_sorted_boxes_chunk[:, 0] < x_end
856
+ )
857
+ _recursive_yx_cut(
858
+ x_sorted_boxes_chunk[x_interval_indices],
859
+ x_sorted_indices_chunk[x_interval_indices],
860
+ res,
861
+ )
862
+
863
+
864
+ def _recursive_xy_cut(
865
+ boxes: np.ndarray, indices: List[int], res: List[int], min_gap: int = 1
866
+ ):
867
+ """
868
+ Recursively performs X-axis projection followed by Y-axis projection to segment bounding boxes.
869
+
870
+ Args:
871
+ boxes: A (N, 4) array representing bounding boxes with [x_min, y_min, x_max, y_max].
872
+ indices: A list of indices representing the position of boxes in the original data.
873
+ res: A list to store indices of bounding boxes that meet the criteria.
874
+ min_gap (int): Minimum gap width to consider a separation between segments on the X-axis. Defaults to 1.
875
+
876
+ Returns:
877
+ None: This function modifies the `res` list in place.
878
+ """
879
+ # Ensure boxes and indices have the same length
880
+ assert len(boxes) == len(
881
+ indices
882
+ ), "The length of boxes and indices must be the same."
883
+
884
+ # Sort by x_min to prepare for X-axis projection
885
+ x_sorted_indices = boxes[:, 0].argsort()
886
+ x_sorted_boxes = boxes[x_sorted_indices]
887
+ x_sorted_indices = np.array(indices)[x_sorted_indices]
888
+
889
+ # Perform X-axis projection
890
+ x_projection = _projection_by_bboxes(boxes=x_sorted_boxes, axis=0)
891
+ x_intervals = _split_projection_profile(x_projection, 0, 1)
892
+
893
+ if not x_intervals:
894
+ return
895
+
896
+ # Process each segment defined by X-axis projection
897
+ for x_start, x_end in zip(*x_intervals):
898
+ # Select boxes within the current x interval
899
+ x_interval_indices = (x_start <= x_sorted_boxes[:, 0]) & (
900
+ x_sorted_boxes[:, 0] < x_end
901
+ )
902
+ x_boxes_chunk = x_sorted_boxes[x_interval_indices]
903
+ x_indices_chunk = x_sorted_indices[x_interval_indices]
904
+
905
+ # Sort selected boxes by y_min to prepare for Y-axis projection
906
+ y_sorted_indices = x_boxes_chunk[:, 1].argsort()
907
+ y_sorted_boxes_chunk = x_boxes_chunk[y_sorted_indices]
908
+ y_sorted_indices_chunk = x_indices_chunk[y_sorted_indices]
909
+
910
+ # Perform Y-axis projection
911
+ y_projection = _projection_by_bboxes(boxes=y_sorted_boxes_chunk, axis=1)
912
+ y_intervals = _split_projection_profile(y_projection, 0, min_gap)
913
+
914
+ if not y_intervals:
915
+ continue
916
+
917
+ # If Y-axis cannot be further segmented, add current indices to results
918
+ if len(y_intervals[0]) == 1:
919
+ res.extend(y_sorted_indices_chunk)
920
+ continue
921
+
922
+ # Recursively process each segment defined by Y-axis projection
923
+ for y_start, y_end in zip(*y_intervals):
924
+ y_interval_indices = (y_start <= y_sorted_boxes_chunk[:, 1]) & (
925
+ y_sorted_boxes_chunk[:, 1] < y_end
926
+ )
927
+ _recursive_xy_cut(
928
+ y_sorted_boxes_chunk[y_interval_indices],
929
+ y_sorted_indices_chunk[y_interval_indices],
930
+ res,
931
+ )
932
+
933
+
934
+ def sort_by_xycut(
935
+ block_bboxes: Union[np.ndarray, List[List[int]]],
936
+ direction: int = 0,
937
+ min_gap: int = 1,
938
+ ) -> List[int]:
939
+ """
940
+ Sort bounding boxes using recursive XY cut method based on the specified direction.
941
+
942
+ Args:
943
+ block_bboxes (Union[np.ndarray, List[List[int]]]): An array or list of bounding boxes,
944
+ where each box is represented as
945
+ [x_min, y_min, x_max, y_max].
946
+ direction (int): Direction for the initial cut. Use 1 for Y-axis first and 0 for X-axis first.
947
+ Defaults to 0.
948
+ min_gap (int): Minimum gap width to consider a separation between segments. Defaults to 1.
949
+
950
+ Returns:
951
+ List[int]: A list of indices representing the order of sorted bounding boxes.
952
+ """
953
+ block_bboxes = np.asarray(block_bboxes).astype(int)
954
+ res = []
955
+ if direction == 1:
956
+ _recursive_yx_cut(
957
+ block_bboxes,
958
+ np.arange(len(block_bboxes)).tolist(),
959
+ res,
960
+ min_gap,
961
+ )
962
+ else:
963
+ _recursive_xy_cut(
964
+ block_bboxes,
965
+ np.arange(len(block_bboxes)).tolist(),
966
+ res,
967
+ min_gap,
968
+ )
969
+ return res
970
+
971
+
972
+ def gather_imgs(original_img, layout_det_objs):
973
+ imgs_in_doc = []
974
+ for det_obj in layout_det_objs:
975
+ if det_obj["label"] in ("image", "chart"):
976
+ x_min, y_min, x_max, y_max = list(map(int, det_obj["coordinate"]))
977
+ img_path = f"imgs/img_in_table_box_{x_min}_{y_min}_{x_max}_{y_max}.jpg"
978
+ img = Image.fromarray(original_img[y_min:y_max, x_min:x_max, ::-1])
979
+ imgs_in_doc.append(
980
+ {
981
+ "path": img_path,
982
+ "img": img,
983
+ "coordinate": (x_min, y_min, x_max, y_max),
984
+ "score": det_obj["score"],
985
+ }
986
+ )
987
+ return imgs_in_doc
988
+
989
+
990
+ def _get_minbox_if_overlap_by_ratio(
991
+ bbox1: Union[List[int], Tuple[int, int, int, int]],
992
+ bbox2: Union[List[int], Tuple[int, int, int, int]],
993
+ ratio: float,
994
+ smaller: bool = True,
995
+ ) -> Optional[Union[List[int], Tuple[int, int, int, int]]]:
996
+ """
997
+ Determine if the overlap area between two bounding boxes exceeds a given ratio
998
+ and return the smaller (or larger) bounding box based on the `smaller` flag.
999
+
1000
+ Args:
1001
+ bbox1 (Union[List[int], Tuple[int, int, int, int]]): Coordinates of the first bounding box [x_min, y_min, x_max, y_max].
1002
+ bbox2 (Union[List[int], Tuple[int, int, int, int]]): Coordinates of the second bounding box [x_min, y_min, x_max, y_max].
1003
+ ratio (float): The overlap ratio threshold.
1004
+ smaller (bool): If True, return the smaller bounding box; otherwise, return the larger one.
1005
+
1006
+ Returns:
1007
+ Optional[Union[List[int], Tuple[int, int, int, int]]]:
1008
+ The selected bounding box or None if the overlap ratio is not exceeded.
1009
+ """
1010
+ # Calculate the areas of both bounding boxes
1011
+ area1 = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1])
1012
+ area2 = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1])
1013
+ # Calculate the overlap ratio using a helper function
1014
+ overlap_ratio = _calculate_overlap_area_div_minbox_area_ratio(bbox1, bbox2)
1015
+ # Check if the overlap ratio exceeds the threshold
1016
+ if overlap_ratio > ratio:
1017
+ if (area1 <= area2 and smaller) or (area1 >= area2 and not smaller):
1018
+ return 1
1019
+ else:
1020
+ return 2
1021
+ return None
1022
+
1023
+
1024
+ def _remove_overlap_blocks(
1025
+ blocks: List[Dict[str, List[int]]], threshold: float = 0.65, smaller: bool = True
1026
+ ) -> Tuple[List[Dict[str, List[int]]], List[Dict[str, List[int]]]]:
1027
+ """
1028
+ Remove overlapping blocks based on a specified overlap ratio threshold.
1029
+
1030
+ Args:
1031
+ blocks (List[Dict[str, List[int]]]): List of block dictionaries, each containing a 'block_bbox' key.
1032
+ threshold (float): Ratio threshold to determine significant overlap.
1033
+ smaller (bool): If True, the smaller block in overlap is removed.
1034
+
1035
+ Returns:
1036
+ Tuple[List[Dict[str, List[int]]], List[Dict[str, List[int]]]]:
1037
+ A tuple containing the updated list of blocks and a list of dropped blocks.
1038
+ """
1039
+ dropped_blocks = []
1040
+ dropped_indexes = set()
1041
+
1042
+ # Iterate over each pair of blocks to find overlaps
1043
+ for i, block1 in enumerate(blocks):
1044
+ for j in range(i + 1, len(blocks)):
1045
+ block2 = blocks[j]
1046
+ # Skip blocks that are already marked for removal
1047
+ if i in dropped_indexes or j in dropped_indexes:
1048
+ continue
1049
+ # Check for overlap and determine which block to remove
1050
+ overlap_box_index = _get_minbox_if_overlap_by_ratio(
1051
+ block1["coordinate"],
1052
+ block2["coordinate"],
1053
+ threshold,
1054
+ smaller=smaller,
1055
+ )
1056
+ if overlap_box_index is not None:
1057
+ # Determine which block to remove based on overlap_box_index
1058
+ if overlap_box_index == 1:
1059
+ drop_index = i
1060
+ else:
1061
+ drop_index = j
1062
+ dropped_indexes.add(drop_index)
1063
+
1064
+ # Remove marked blocks from the original list
1065
+ for index in sorted(dropped_indexes, reverse=True):
1066
+ dropped_blocks.append(blocks[index])
1067
+ del blocks[index]
1068
+
1069
+ return blocks, dropped_blocks
1070
+
1071
+
1072
+ def _get_text_median_width(blocks: List[Dict[str, any]]) -> float:
1073
+ """
1074
+ Calculate the median width of blocks labeled as "text".
1075
+
1076
+ Args:
1077
+ blocks (List[Dict[str, any]]): List of block dictionaries, each containing a 'block_bbox' and 'label'.
1078
+
1079
+ Returns:
1080
+ float: The median width of text blocks, or infinity if no text blocks are found.
1081
+ """
1082
+ widths = [
1083
+ block["block_bbox"][2] - block["block_bbox"][0]
1084
+ for block in blocks
1085
+ if block.get("block_label") == "text"
1086
+ ]
1087
+ return np.median(widths) if widths else float("inf")
1088
+
1089
+
1090
+ def _get_layout_property(
1091
+ blocks: List[Dict[str, any]],
1092
+ median_width: float,
1093
+ no_mask_labels: List[str],
1094
+ threshold: float = 0.8,
1095
+ ) -> Tuple[List[Dict[str, any]], bool]:
1096
+ """
1097
+ Determine the layout (single or double column) of text blocks.
1098
+
1099
+ Args:
1100
+ blocks (List[Dict[str, any]]): List of block dictionaries containing 'label' and 'block_bbox'.
1101
+ median_width (float): Median width of text blocks.
1102
+ no_mask_labels (List[str]): Labels of blocks to be considered for layout analysis.
1103
+ threshold (float): Threshold for determining layout overlap.
1104
+
1105
+ Returns:
1106
+ Tuple[List[Dict[str, any]], bool]: Updated list of blocks with layout information and a boolean
1107
+ indicating if the double layout area is greater than the single layout area.
1108
+ """
1109
+ blocks.sort(
1110
+ key=lambda x: (
1111
+ x["block_bbox"][0],
1112
+ (x["block_bbox"][2] - x["block_bbox"][0]),
1113
+ ),
1114
+ )
1115
+ check_single_layout = {}
1116
+ page_min_x, page_max_x = float("inf"), 0
1117
+ double_label_area = 0
1118
+ single_label_area = 0
1119
+
1120
+ for i, block in enumerate(blocks):
1121
+ page_min_x = min(page_min_x, block["block_bbox"][0])
1122
+ page_max_x = max(page_max_x, block["block_bbox"][2])
1123
+ page_width = page_max_x - page_min_x
1124
+
1125
+ for i, block in enumerate(blocks):
1126
+ if block["block_label"] not in no_mask_labels:
1127
+ continue
1128
+
1129
+ x_min_i, _, x_max_i, _ = block["block_bbox"]
1130
+ layout_length = x_max_i - x_min_i
1131
+ cover_count, cover_with_threshold_count = 0, 0
1132
+ match_block_with_threshold_indexes = []
1133
+
1134
+ for j, other_block in enumerate(blocks):
1135
+ if i == j or other_block["block_label"] not in no_mask_labels:
1136
+ continue
1137
+
1138
+ x_min_j, _, x_max_j, _ = other_block["block_bbox"]
1139
+ x_match_min, x_match_max = max(
1140
+ x_min_i,
1141
+ x_min_j,
1142
+ ), min(x_max_i, x_max_j)
1143
+ match_block_iou = (x_match_max - x_match_min) / (x_max_j - x_min_j)
1144
+
1145
+ if match_block_iou > 0:
1146
+ cover_count += 1
1147
+ if match_block_iou > threshold:
1148
+ cover_with_threshold_count += 1
1149
+ match_block_with_threshold_indexes.append(
1150
+ (j, match_block_iou),
1151
+ )
1152
+ x_min_i = x_match_max
1153
+ if x_min_i >= x_max_i:
1154
+ break
1155
+
1156
+ if (
1157
+ layout_length > median_width * 1.3
1158
+ and (cover_with_threshold_count >= 2 or cover_count >= 2)
1159
+ ) or layout_length > 0.6 * page_width:
1160
+ # if layout_length > median_width * 1.3 and (cover_with_threshold_count >= 2):
1161
+ block["layout"] = "double"
1162
+ double_label_area += (block["block_bbox"][2] - block["block_bbox"][0]) * (
1163
+ block["block_bbox"][3] - block["block_bbox"][1]
1164
+ )
1165
+ else:
1166
+ block["layout"] = "single"
1167
+ check_single_layout[i] = match_block_with_threshold_indexes
1168
+
1169
+ # Check single-layout block
1170
+ for i, single_layout in check_single_layout.items():
1171
+ if single_layout:
1172
+ index, match_iou = single_layout[-1]
1173
+ if match_iou > 0.9 and blocks[index]["layout"] == "double":
1174
+ blocks[i]["layout"] = "double"
1175
+ double_label_area += (
1176
+ blocks[i]["block_bbox"][2] - blocks[i]["block_bbox"][0]
1177
+ ) * (blocks[i]["block_bbox"][3] - blocks[i]["block_bbox"][1])
1178
+ else:
1179
+ single_label_area += (
1180
+ blocks[i]["block_bbox"][2] - blocks[i]["block_bbox"][0]
1181
+ ) * (blocks[i]["block_bbox"][3] - blocks[i]["block_bbox"][1])
1182
+
1183
+ return blocks, (double_label_area > single_label_area)
1184
+
1185
+
1186
+ def _get_bbox_direction(input_bbox: List[float], ratio: float = 1.0) -> bool:
1187
+ """
1188
+ Determine if a bounding box is horizontal or vertical.
1189
+
1190
+ Args:
1191
+ input_bbox (List[float]): Bounding box [x_min, y_min, x_max, y_max].
1192
+ ratio (float): Ratio for determining orientation. Default is 1.0.
1193
+
1194
+ Returns:
1195
+ bool: True if the bounding box is considered horizontal, False if vertical.
1196
+ """
1197
+ width = input_bbox[2] - input_bbox[0]
1198
+ height = input_bbox[3] - input_bbox[1]
1199
+ return width * ratio >= height
1200
+
1201
+
1202
+ def _get_projection_iou(
1203
+ input_bbox: List[float], match_bbox: List[float], is_horizontal: bool = True
1204
+ ) -> float:
1205
+ """
1206
+ Calculate the IoU of lines between two bounding boxes.
1207
+
1208
+ Args:
1209
+ input_bbox (List[float]): First bounding box [x_min, y_min, x_max, y_max].
1210
+ match_bbox (List[float]): Second bounding box [x_min, y_min, x_max, y_max].
1211
+ is_horizontal (bool): Whether to compare horizontally or vertically.
1212
+
1213
+ Returns:
1214
+ float: Line IoU. Returns 0 if there is no overlap.
1215
+ """
1216
+ if is_horizontal:
1217
+ x_match_min = max(input_bbox[0], match_bbox[0])
1218
+ x_match_max = min(input_bbox[2], match_bbox[2])
1219
+ overlap = max(0, x_match_max - x_match_min)
1220
+ input_width = min(input_bbox[2] - input_bbox[0], match_bbox[2] - match_bbox[0])
1221
+ else:
1222
+ y_match_min = max(input_bbox[1], match_bbox[1])
1223
+ y_match_max = min(input_bbox[3], match_bbox[3])
1224
+ overlap = max(0, y_match_max - y_match_min)
1225
+ input_width = min(input_bbox[3] - input_bbox[1], match_bbox[3] - match_bbox[1])
1226
+
1227
+ return overlap / input_width if input_width > 0 else 0.0
1228
+
1229
+
1230
+ def _get_sub_category(
1231
+ blocks: List[Dict[str, Any]], title_labels: List[str]
1232
+ ) -> Tuple[List[Dict[str, Any]], List[float]]:
1233
+ """
1234
+ Determine the layout of title and text blocks and collect pre_cuts.
1235
+
1236
+ Args:
1237
+ blocks (List[Dict[str, Any]]): List of block dictionaries.
1238
+ title_labels (List[str]): List of labels considered as titles.
1239
+
1240
+ Returns:
1241
+ List[Dict[str, Any]]: Updated list of blocks with title-text layout information.
1242
+ Dict[float]: Dict of pre_cuts coordinates.
1243
+ """
1244
+
1245
+ sub_title_labels = ["paragraph_title"]
1246
+ vision_labels = ["image", "table", "chart", "figure"]
1247
+ vision_title_labels = ["figure_title", "chart_title", "table_title"]
1248
+ all_labels = title_labels + sub_title_labels + vision_labels + vision_title_labels
1249
+ special_pre_cut_labels = sub_title_labels
1250
+
1251
+ # single doc title is irregular,pre cut not applicable
1252
+ num_doc_title = 0
1253
+ for block in blocks:
1254
+ if block["block_label"] == "doc_title":
1255
+ num_doc_title += 1
1256
+ if num_doc_title == 2:
1257
+ special_pre_cut_labels = title_labels + sub_title_labels
1258
+ break
1259
+ if len(blocks) == 0:
1260
+ return blocks, {}
1261
+
1262
+ min_x = min(block["block_bbox"][0] for block in blocks)
1263
+ min_y = min(block["block_bbox"][1] for block in blocks)
1264
+ max_x = max(block["block_bbox"][2] for block in blocks)
1265
+ max_y = max(block["block_bbox"][3] for block in blocks)
1266
+ region_bbox = (min_x, min_y, max_x, max_y)
1267
+ region_x_center = (region_bbox[0] + region_bbox[2]) / 2
1268
+ region_y_center = (region_bbox[1] + region_bbox[3]) / 2
1269
+ region_width = region_bbox[2] - region_bbox[0]
1270
+ region_height = region_bbox[3] - region_bbox[1]
1271
+
1272
+ pre_cuts = {}
1273
+
1274
+ for i, block1 in enumerate(blocks):
1275
+ block1.setdefault("title_text", [])
1276
+ block1.setdefault("sub_title", [])
1277
+ block1.setdefault("vision_footnote", [])
1278
+ block1.setdefault("sub_label", block1["block_label"])
1279
+
1280
+ if block1["block_label"] not in all_labels:
1281
+ continue
1282
+
1283
+ bbox1 = block1["block_bbox"]
1284
+ x1, y1, x2, y2 = bbox1
1285
+ is_horizontal_1 = _get_bbox_direction(block1["block_bbox"])
1286
+ left_up_title_text_distance = float("inf")
1287
+ left_up_title_text_index = -1
1288
+ left_up_title_text_direction = None
1289
+ right_down_title_text_distance = float("inf")
1290
+ right_down_title_text_index = -1
1291
+ right_down_title_text_direction = None
1292
+
1293
+ # pre-cuts
1294
+ # Condition 1: Length is greater than half of the layout region
1295
+ if is_horizontal_1:
1296
+ block_length = x2 - x1
1297
+ required_length = region_width / 2
1298
+ else:
1299
+ block_length = y2 - y1
1300
+ required_length = region_height / 2
1301
+ if block1["block_label"] in special_pre_cut_labels:
1302
+ length_condition = True
1303
+ else:
1304
+ length_condition = block_length > required_length
1305
+
1306
+ # Condition 2: Centered check (must be within ±20 in both horizontal and vertical directions)
1307
+ block_x_center = (x1 + x2) / 2
1308
+ block_y_center = (y1 + y2) / 2
1309
+ tolerance_len = block_length // 5
1310
+ if block1["block_label"] in special_pre_cut_labels:
1311
+ tolerance_len = block_length // 10
1312
+ if is_horizontal_1:
1313
+ is_centered = abs(block_x_center - region_x_center) <= tolerance_len
1314
+ else:
1315
+ is_centered = abs(block_y_center - region_y_center) <= tolerance_len
1316
+
1317
+ # Condition 3: Check for surrounding text
1318
+ has_left_text = False
1319
+ has_right_text = False
1320
+ has_above_text = False
1321
+ has_below_text = False
1322
+ for block2 in blocks:
1323
+ if block2["block_label"] != "text":
1324
+ continue
1325
+ bbox2 = block2["block_bbox"]
1326
+ x1_2, y1_2, x2_2, y2_2 = bbox2
1327
+ if is_horizontal_1:
1328
+ if x2_2 <= x1 and not (y2_2 <= y1 or y1_2 >= y2):
1329
+ has_left_text = True
1330
+ if x1_2 >= x2 and not (y2_2 <= y1 or y1_2 >= y2):
1331
+ has_right_text = True
1332
+ else:
1333
+ if y2_2 <= y1 and not (x2_2 <= x1 or x1_2 >= x2):
1334
+ has_above_text = True
1335
+ if y1_2 >= y2 and not (x2_2 <= x1 or x1_2 >= x2):
1336
+ has_below_text = True
1337
+
1338
+ if (is_horizontal_1 and has_left_text and has_right_text) or (
1339
+ not is_horizontal_1 and has_above_text and has_below_text
1340
+ ):
1341
+ break
1342
+
1343
+ no_text_on_sides = (
1344
+ not (has_left_text or has_right_text)
1345
+ if is_horizontal_1
1346
+ else not (has_above_text or has_below_text)
1347
+ )
1348
+
1349
+ # Add coordinates if all conditions are met
1350
+ if is_centered and length_condition and no_text_on_sides:
1351
+ if is_horizontal_1:
1352
+ pre_cuts.setdefault("y", []).append(y1)
1353
+ else:
1354
+ pre_cuts.setdefault("x", []).append(x1)
1355
+
1356
+ for j, block2 in enumerate(blocks):
1357
+ if i == j:
1358
+ continue
1359
+
1360
+ bbox2 = block2["block_bbox"]
1361
+ x1_prime, y1_prime, x2_prime, y2_prime = bbox2
1362
+ is_horizontal_2 = _get_bbox_direction(bbox2)
1363
+ match_block_iou = _get_projection_iou(
1364
+ bbox2,
1365
+ bbox1,
1366
+ is_horizontal_1,
1367
+ )
1368
+
1369
+ def distance_(is_horizontal, is_left_up):
1370
+ if is_horizontal:
1371
+ if is_left_up:
1372
+ return (y1 - y2_prime + 2) // 5 + x1_prime / 5000
1373
+ else:
1374
+ return (y1_prime - y2 + 2) // 5 + x1_prime / 5000
1375
+
1376
+ else:
1377
+ if is_left_up:
1378
+ return (x1 - x2_prime + 2) // 5 + y1_prime / 5000
1379
+ else:
1380
+ return (x1_prime - x2 + 2) // 5 + y1_prime / 5000
1381
+
1382
+ block_iou_threshold = 0.1
1383
+ if block1["block_label"] in sub_title_labels:
1384
+ block_iou_threshold = 0.5
1385
+
1386
+ if is_horizontal_1:
1387
+ if match_block_iou >= block_iou_threshold:
1388
+ left_up_distance = distance_(True, True)
1389
+ right_down_distance = distance_(True, False)
1390
+ if (
1391
+ y2_prime <= y1
1392
+ and left_up_distance <= left_up_title_text_distance
1393
+ ):
1394
+ left_up_title_text_distance = left_up_distance
1395
+ left_up_title_text_index = j
1396
+ left_up_title_text_direction = is_horizontal_2
1397
+ elif (
1398
+ y1_prime > y2
1399
+ and right_down_distance < right_down_title_text_distance
1400
+ ):
1401
+ right_down_title_text_distance = right_down_distance
1402
+ right_down_title_text_index = j
1403
+ right_down_title_text_direction = is_horizontal_2
1404
+ else:
1405
+ if match_block_iou >= block_iou_threshold:
1406
+ left_up_distance = distance_(False, True)
1407
+ right_down_distance = distance_(False, False)
1408
+ if (
1409
+ x2_prime <= x1
1410
+ and left_up_distance <= left_up_title_text_distance
1411
+ ):
1412
+ left_up_title_text_distance = left_up_distance
1413
+ left_up_title_text_index = j
1414
+ left_up_title_text_direction = is_horizontal_2
1415
+ elif (
1416
+ x1_prime > x2
1417
+ and right_down_distance < right_down_title_text_distance
1418
+ ):
1419
+ right_down_title_text_distance = right_down_distance
1420
+ right_down_title_text_index = j
1421
+ right_down_title_text_direction = is_horizontal_2
1422
+
1423
+ height = bbox1[3] - bbox1[1]
1424
+ width = bbox1[2] - bbox1[0]
1425
+ title_text_weight = [0.8, 0.8]
1426
+
1427
+ title_text, sub_title, vision_footnote = [], [], []
1428
+
1429
+ def get_sub_category_(
1430
+ title_text_direction,
1431
+ title_text_index,
1432
+ label,
1433
+ is_left_up=True,
1434
+ ):
1435
+ direction_ = [1, 3] if is_left_up else [2, 4]
1436
+ if (
1437
+ title_text_direction == is_horizontal_1
1438
+ and title_text_index != -1
1439
+ and (label == "text" or label == "paragraph_title")
1440
+ ):
1441
+ bbox2 = blocks[title_text_index]["block_bbox"]
1442
+ if is_horizontal_1:
1443
+ height1 = bbox2[3] - bbox2[1]
1444
+ width1 = bbox2[2] - bbox2[0]
1445
+ if label == "text":
1446
+ if (
1447
+ _nearest_edge_distance(bbox1, bbox2)[0] <= 15
1448
+ and block1["block_label"] in vision_labels
1449
+ and width1 < width
1450
+ and height1 < 0.5 * height
1451
+ ):
1452
+ blocks[title_text_index]["sub_label"] = "vision_footnote"
1453
+ vision_footnote.append(bbox2)
1454
+ elif (
1455
+ height1 < height * title_text_weight[0]
1456
+ and (width1 < width or width1 > 1.5 * width)
1457
+ and block1["block_label"] in title_labels
1458
+ ):
1459
+ blocks[title_text_index]["sub_label"] = "title_text"
1460
+ title_text.append((direction_[0], bbox2))
1461
+ elif (
1462
+ label == "paragraph_title"
1463
+ and block1["block_label"] in sub_title_labels
1464
+ ):
1465
+ sub_title.append(bbox2)
1466
+ else:
1467
+ height1 = bbox2[3] - bbox2[1]
1468
+ width1 = bbox2[2] - bbox2[0]
1469
+ if label == "text":
1470
+ if (
1471
+ _nearest_edge_distance(bbox1, bbox2)[0] <= 15
1472
+ and block1["block_label"] in vision_labels
1473
+ and height1 < height
1474
+ and width1 < 0.5 * width
1475
+ ):
1476
+ blocks[title_text_index]["sub_label"] = "vision_footnote"
1477
+ vision_footnote.append(bbox2)
1478
+ elif (
1479
+ width1 < width * title_text_weight[1]
1480
+ and block1["block_label"] in title_labels
1481
+ ):
1482
+ blocks[title_text_index]["sub_label"] = "title_text"
1483
+ title_text.append((direction_[1], bbox2))
1484
+ elif (
1485
+ label == "paragraph_title"
1486
+ and block1["block_label"] in sub_title_labels
1487
+ ):
1488
+ sub_title.append(bbox2)
1489
+
1490
+ if (
1491
+ is_horizontal_1
1492
+ and abs(left_up_title_text_distance - right_down_title_text_distance) * 5
1493
+ > height
1494
+ ) or (
1495
+ not is_horizontal_1
1496
+ and abs(left_up_title_text_distance - right_down_title_text_distance) * 5
1497
+ > width
1498
+ ):
1499
+ if left_up_title_text_distance < right_down_title_text_distance:
1500
+ get_sub_category_(
1501
+ left_up_title_text_direction,
1502
+ left_up_title_text_index,
1503
+ blocks[left_up_title_text_index]["block_label"],
1504
+ True,
1505
+ )
1506
+ else:
1507
+ get_sub_category_(
1508
+ right_down_title_text_direction,
1509
+ right_down_title_text_index,
1510
+ blocks[right_down_title_text_index]["block_label"],
1511
+ False,
1512
+ )
1513
+ else:
1514
+ get_sub_category_(
1515
+ left_up_title_text_direction,
1516
+ left_up_title_text_index,
1517
+ blocks[left_up_title_text_index]["block_label"],
1518
+ True,
1519
+ )
1520
+ get_sub_category_(
1521
+ right_down_title_text_direction,
1522
+ right_down_title_text_index,
1523
+ blocks[right_down_title_text_index]["block_label"],
1524
+ False,
1525
+ )
1526
+
1527
+ if block1["block_label"] in title_labels:
1528
+ if blocks[i].get("title_text") == []:
1529
+ blocks[i]["title_text"] = title_text
1530
+
1531
+ if block1["block_label"] in sub_title_labels:
1532
+ if blocks[i].get("sub_title") == []:
1533
+ blocks[i]["sub_title"] = sub_title
1534
+
1535
+ if block1["block_label"] in vision_labels:
1536
+ if blocks[i].get("vision_footnote") == []:
1537
+ blocks[i]["vision_footnote"] = vision_footnote
1538
+
1539
+ return blocks, pre_cuts
1540
+
1541
+
1542
+ def get_layout_ordering(
1543
+ parsing_res_list: List[Dict[str, Any]],
1544
+ no_mask_labels: List[str] = [],
1545
+ ) -> None:
1546
+ """
1547
+ Process layout parsing results to remove overlapping bounding boxes
1548
+ and assign an ordering index based on their positions.
1549
+
1550
+ Modifies:
1551
+ The 'parsing_res_list' list by adding an 'index' to each block.
1552
+
1553
+ Args:
1554
+ parsing_res_list (List[Dict[str, Any]]): List of block dictionaries with 'block_bbox' and 'block_label'.
1555
+ no_mask_labels (List[str]): Labels for which overlapping removal is not performed.
1556
+ """
1557
+ title_text_labels = ["doc_title"]
1558
+ title_labels = ["doc_title", "paragraph_title"]
1559
+ vision_labels = ["image", "table", "seal", "chart", "figure"]
1560
+ vision_title_labels = ["table_title", "chart_title", "figure_title"]
1561
+
1562
+ parsing_res_list, pre_cuts = _get_sub_category(parsing_res_list, title_text_labels)
1563
+
1564
+ parsing_res_by_pre_cuts_list = []
1565
+ if len(pre_cuts) > 0:
1566
+ block_bboxes = [block["block_bbox"] for block in parsing_res_list]
1567
+ for axis, cuts in pre_cuts.items():
1568
+ axis_index = 1 if axis == "y" else 0
1569
+
1570
+ max_val = max(bbox[axis_index + 2] for bbox in block_bboxes)
1571
+
1572
+ intervals = []
1573
+ prev = 0
1574
+ for cut in sorted(cuts):
1575
+ intervals.append((prev, cut))
1576
+ prev = cut
1577
+ intervals.append((prev, max_val))
1578
+
1579
+ for start, end in intervals:
1580
+ mask = [
1581
+ (bbox[axis_index] >= start) and (bbox[axis_index] < end)
1582
+ for bbox in block_bboxes
1583
+ ]
1584
+ parsing_res_by_pre_cuts_list.append(
1585
+ [parsing_res_list[i] for i, m in enumerate(mask) if m]
1586
+ )
1587
+ else:
1588
+ parsing_res_by_pre_cuts_list = [parsing_res_list]
1589
+
1590
+ final_parsing_res_list = []
1591
+ num_index = 0
1592
+ num_sub_index = 0
1593
+ for parsing_res_by_pre_cuts in parsing_res_by_pre_cuts_list:
1594
+
1595
+ doc_flag = False
1596
+ median_width = _get_text_median_width(parsing_res_by_pre_cuts)
1597
+ parsing_res_by_pre_cuts, projection_direction = _get_layout_property(
1598
+ parsing_res_by_pre_cuts,
1599
+ median_width,
1600
+ no_mask_labels=no_mask_labels,
1601
+ threshold=0.3,
1602
+ )
1603
+ # Convert bounding boxes to float and remove overlaps
1604
+ (
1605
+ double_text_blocks,
1606
+ title_text_blocks,
1607
+ title_blocks,
1608
+ vision_blocks,
1609
+ vision_title_blocks,
1610
+ vision_footnote_blocks,
1611
+ other_blocks,
1612
+ ) = ([], [], [], [], [], [], [])
1613
+
1614
+ drop_indexes = []
1615
+
1616
+ for index, block in enumerate(parsing_res_by_pre_cuts):
1617
+ label = block["sub_label"]
1618
+ block["block_bbox"] = list(map(int, block["block_bbox"]))
1619
+
1620
+ if label == "doc_title":
1621
+ doc_flag = True
1622
+
1623
+ if label in no_mask_labels:
1624
+ if block["layout"] == "double":
1625
+ double_text_blocks.append(block)
1626
+ drop_indexes.append(index)
1627
+ elif label == "title_text":
1628
+ title_text_blocks.append(block)
1629
+ drop_indexes.append(index)
1630
+ elif label == "vision_footnote":
1631
+ vision_footnote_blocks.append(block)
1632
+ drop_indexes.append(index)
1633
+ elif label in vision_title_labels:
1634
+ vision_title_blocks.append(block)
1635
+ drop_indexes.append(index)
1636
+ elif label in title_labels:
1637
+ title_blocks.append(block)
1638
+ drop_indexes.append(index)
1639
+ elif label in vision_labels:
1640
+ vision_blocks.append(block)
1641
+ drop_indexes.append(index)
1642
+ else:
1643
+ other_blocks.append(block)
1644
+ drop_indexes.append(index)
1645
+
1646
+ for index in sorted(drop_indexes, reverse=True):
1647
+ del parsing_res_by_pre_cuts[index]
1648
+
1649
+ if len(parsing_res_by_pre_cuts) > 0:
1650
+ # single text label
1651
+ if (
1652
+ len(double_text_blocks) > len(parsing_res_by_pre_cuts)
1653
+ or projection_direction
1654
+ ):
1655
+ parsing_res_by_pre_cuts.extend(title_blocks + double_text_blocks)
1656
+ title_blocks = []
1657
+ double_text_blocks = []
1658
+ block_bboxes = [
1659
+ block["block_bbox"] for block in parsing_res_by_pre_cuts
1660
+ ]
1661
+ block_bboxes.sort(
1662
+ key=lambda x: (
1663
+ x[0] // max(20, median_width),
1664
+ x[1],
1665
+ ),
1666
+ )
1667
+ block_bboxes = np.array(block_bboxes)
1668
+ sorted_indices = sort_by_xycut(block_bboxes, direction=1, min_gap=1)
1669
+ else:
1670
+ block_bboxes = [
1671
+ block["block_bbox"] for block in parsing_res_by_pre_cuts
1672
+ ]
1673
+ block_bboxes.sort(key=lambda x: (x[0] // 20, x[1]))
1674
+ block_bboxes = np.array(block_bboxes)
1675
+ sorted_indices = sort_by_xycut(block_bboxes, direction=0, min_gap=20)
1676
+
1677
+ sorted_boxes = block_bboxes[sorted_indices].tolist()
1678
+
1679
+ for block in parsing_res_by_pre_cuts:
1680
+ block["index"] = num_index + sorted_boxes.index(block["block_bbox"]) + 1
1681
+ block["sub_index"] = (
1682
+ num_sub_index + sorted_boxes.index(block["block_bbox"]) + 1
1683
+ )
1684
+
1685
+ def nearest_match_(input_blocks, distance_type="manhattan", is_add_index=True):
1686
+ for block in input_blocks:
1687
+ bbox = block["block_bbox"]
1688
+ min_distance = float("inf")
1689
+ min_distance_config = [
1690
+ [float("inf"), float("inf")],
1691
+ float("inf"),
1692
+ float("inf"),
1693
+ ] # for double text
1694
+ nearest_gt_index = 0
1695
+ for match_block in parsing_res_by_pre_cuts:
1696
+ match_bbox = match_block["block_bbox"]
1697
+ if distance_type == "nearest_iou_edge_distance":
1698
+ distance, min_distance_config = _nearest_iou_edge_distance(
1699
+ bbox,
1700
+ match_bbox,
1701
+ block["sub_label"],
1702
+ vision_labels=vision_labels,
1703
+ no_mask_labels=no_mask_labels,
1704
+ median_width=median_width,
1705
+ title_labels=title_labels,
1706
+ title_text=block["title_text"],
1707
+ sub_title=block["sub_title"],
1708
+ min_distance_config=min_distance_config,
1709
+ tolerance_len=10,
1710
+ )
1711
+ elif distance_type == "title_text":
1712
+ if (
1713
+ match_block["block_label"] in title_labels + ["abstract"]
1714
+ and match_block["title_text"] != []
1715
+ ):
1716
+ iou_left_up = _calculate_overlap_area_div_minbox_area_ratio(
1717
+ bbox,
1718
+ match_block["title_text"][0][1],
1719
+ )
1720
+ iou_right_down = (
1721
+ _calculate_overlap_area_div_minbox_area_ratio(
1722
+ bbox,
1723
+ match_block["title_text"][-1][1],
1724
+ )
1725
+ )
1726
+ iou = 1 - max(iou_left_up, iou_right_down)
1727
+ distance = _manhattan_distance(bbox, match_bbox) * iou
1728
+ else:
1729
+ distance = float("inf")
1730
+ elif distance_type == "manhattan":
1731
+ distance = _manhattan_distance(bbox, match_bbox)
1732
+ elif distance_type == "vision_footnote":
1733
+ if (
1734
+ match_block["block_label"] in vision_labels
1735
+ and match_block["vision_footnote"] != []
1736
+ ):
1737
+ iou_left_up = _calculate_overlap_area_div_minbox_area_ratio(
1738
+ bbox,
1739
+ match_block["vision_footnote"][0],
1740
+ )
1741
+ iou_right_down = (
1742
+ _calculate_overlap_area_div_minbox_area_ratio(
1743
+ bbox,
1744
+ match_block["vision_footnote"][-1],
1745
+ )
1746
+ )
1747
+ iou = 1 - max(iou_left_up, iou_right_down)
1748
+ distance = _manhattan_distance(bbox, match_bbox) * iou
1749
+ else:
1750
+ distance = float("inf")
1751
+ elif distance_type == "vision_body":
1752
+ if (
1753
+ match_block["block_label"] in vision_title_labels
1754
+ and block["vision_footnote"] != []
1755
+ ):
1756
+ iou_left_up = _calculate_overlap_area_div_minbox_area_ratio(
1757
+ match_bbox,
1758
+ block["vision_footnote"][0],
1759
+ )
1760
+ iou_right_down = (
1761
+ _calculate_overlap_area_div_minbox_area_ratio(
1762
+ match_bbox,
1763
+ block["vision_footnote"][-1],
1764
+ )
1765
+ )
1766
+ iou = 1 - max(iou_left_up, iou_right_down)
1767
+ distance = _manhattan_distance(bbox, match_bbox) * iou
1768
+ else:
1769
+ distance = float("inf")
1770
+ # when reference block cross mulitple columns, its order should be after the blocks above it.
1771
+ elif distance_type == "append":
1772
+ if match_bbox[3] <= bbox[1]:
1773
+ distance = -(match_bbox[2] * 10 + match_bbox[3])
1774
+ else:
1775
+ distance = float("inf")
1776
+ else:
1777
+ raise NotImplementedError
1778
+
1779
+ if distance < min_distance:
1780
+ min_distance = distance
1781
+ if is_add_index:
1782
+ nearest_gt_index = match_block.get("index", 999)
1783
+ else:
1784
+ nearest_gt_index = match_block.get("sub_index", 999)
1785
+
1786
+ if is_add_index:
1787
+ block["index"] = nearest_gt_index
1788
+ else:
1789
+ block["sub_index"] = nearest_gt_index
1790
+
1791
+ parsing_res_by_pre_cuts.append(block)
1792
+
1793
+ # double text label
1794
+ double_text_blocks.sort(
1795
+ key=lambda x: (
1796
+ x["block_bbox"][1] // 10,
1797
+ x["block_bbox"][0] // median_width,
1798
+ x["block_bbox"][1] ** 2 + x["block_bbox"][0] ** 2,
1799
+ ),
1800
+ )
1801
+ # filter the reference blocks from all blocks that cross mulitple columns.
1802
+ # they should be ordered using "append".
1803
+ double_text_reference_blocks = []
1804
+ i = 0
1805
+ while i < len(double_text_blocks):
1806
+ if double_text_blocks[i]["block_label"] == "reference":
1807
+ double_text_reference_blocks.append(double_text_blocks.pop(i))
1808
+ else:
1809
+ i += 1
1810
+ nearest_match_(
1811
+ double_text_blocks,
1812
+ distance_type="nearest_iou_edge_distance",
1813
+ )
1814
+ nearest_match_(
1815
+ double_text_reference_blocks,
1816
+ distance_type="append",
1817
+ )
1818
+ parsing_res_by_pre_cuts.sort(
1819
+ key=lambda x: (x["index"], x["block_bbox"][1], x["block_bbox"][0]),
1820
+ )
1821
+
1822
+ for idx, block in enumerate(parsing_res_by_pre_cuts):
1823
+ block["index"] = num_index + idx + 1
1824
+ block["sub_index"] = num_sub_index + idx + 1
1825
+
1826
+ # title label
1827
+ title_blocks.sort(
1828
+ key=lambda x: (
1829
+ x["block_bbox"][1] // 10,
1830
+ x["block_bbox"][0] // median_width,
1831
+ x["block_bbox"][1] ** 2 + x["block_bbox"][0] ** 2,
1832
+ ),
1833
+ )
1834
+ nearest_match_(title_blocks, distance_type="nearest_iou_edge_distance")
1835
+
1836
+ if doc_flag:
1837
+ text_sort_labels = ["doc_title"]
1838
+ text_label_priority = {
1839
+ label: priority for priority, label in enumerate(text_sort_labels)
1840
+ }
1841
+ doc_titles = []
1842
+ for i, block in enumerate(parsing_res_by_pre_cuts):
1843
+ if block["block_label"] == "doc_title":
1844
+ doc_titles.append(
1845
+ (i, block["block_bbox"][1], block["block_bbox"][0]),
1846
+ )
1847
+ doc_titles.sort(key=lambda x: (x[1], x[2]))
1848
+ first_doc_title_index = doc_titles[0][0]
1849
+ parsing_res_by_pre_cuts[first_doc_title_index]["index"] = 1
1850
+ parsing_res_by_pre_cuts.sort(
1851
+ key=lambda x: (
1852
+ x["index"],
1853
+ text_label_priority.get(x["block_label"], 9999),
1854
+ x["block_bbox"][1],
1855
+ x["block_bbox"][0],
1856
+ ),
1857
+ )
1858
+ else:
1859
+ parsing_res_by_pre_cuts.sort(
1860
+ key=lambda x: (
1861
+ x["index"],
1862
+ x["block_bbox"][1],
1863
+ x["block_bbox"][0],
1864
+ ),
1865
+ )
1866
+
1867
+ for idx, block in enumerate(parsing_res_by_pre_cuts):
1868
+ block["index"] = num_index + idx + 1
1869
+ block["sub_index"] = num_sub_index + idx + 1
1870
+
1871
+ # title-text label
1872
+ nearest_match_(title_text_blocks, distance_type="title_text")
1873
+
1874
+ def hor_tb_and_ver_lr(x):
1875
+ input_bbox = x["block_bbox"]
1876
+ is_horizontal = _get_bbox_direction(input_bbox)
1877
+ if is_horizontal:
1878
+ return input_bbox[1]
1879
+ else:
1880
+ return input_bbox[0]
1881
+
1882
+ parsing_res_by_pre_cuts.sort(
1883
+ key=lambda x: (x["index"], hor_tb_and_ver_lr(x)),
1884
+ )
1885
+
1886
+ for idx, block in enumerate(parsing_res_by_pre_cuts):
1887
+ block["index"] = num_index + idx + 1
1888
+ block["sub_index"] = num_sub_index + idx + 1
1889
+
1890
+ # image,figure,chart,seal label
1891
+ nearest_match_(
1892
+ vision_blocks,
1893
+ distance_type="nearest_iou_edge_distance",
1894
+ is_add_index=False,
1895
+ )
1896
+ parsing_res_by_pre_cuts.sort(
1897
+ key=lambda x: (
1898
+ x["sub_index"],
1899
+ x["block_bbox"][1],
1900
+ x["block_bbox"][0],
1901
+ ),
1902
+ )
1903
+
1904
+ for idx, block in enumerate(parsing_res_by_pre_cuts):
1905
+ block["sub_index"] = num_sub_index + idx + 1
1906
+
1907
+ # image,figure,chart,seal title label
1908
+ nearest_match_(
1909
+ vision_title_blocks,
1910
+ distance_type="nearest_iou_edge_distance",
1911
+ is_add_index=False,
1912
+ )
1913
+ parsing_res_by_pre_cuts.sort(
1914
+ key=lambda x: (
1915
+ x["sub_index"],
1916
+ x["block_bbox"][1],
1917
+ x["block_bbox"][0],
1918
+ ),
1919
+ )
1920
+
1921
+ for idx, block in enumerate(parsing_res_by_pre_cuts):
1922
+ block["sub_index"] = num_sub_index + idx + 1
1923
+
1924
+ # vision footnote label
1925
+ nearest_match_(
1926
+ vision_footnote_blocks,
1927
+ distance_type="vision_footnote",
1928
+ is_add_index=False,
1929
+ )
1930
+ text_label_priority = {"vision_footnote": 9999}
1931
+ parsing_res_by_pre_cuts.sort(
1932
+ key=lambda x: (
1933
+ x["sub_index"],
1934
+ text_label_priority.get(x["sub_label"], 0),
1935
+ x["block_bbox"][1],
1936
+ x["block_bbox"][0],
1937
+ ),
1938
+ )
1939
+
1940
+ for idx, block in enumerate(parsing_res_by_pre_cuts):
1941
+ block["sub_index"] = num_sub_index + idx + 1
1942
+
1943
+ # header、footnote、header_image... label
1944
+ nearest_match_(other_blocks, distance_type="manhattan", is_add_index=False)
1945
+
1946
+ # add all parsing result
1947
+ final_parsing_res_list.extend(parsing_res_by_pre_cuts)
1948
+
1949
+ # update num index
1950
+ num_sub_index += len(parsing_res_by_pre_cuts)
1951
+ for parsing_res in parsing_res_by_pre_cuts:
1952
+ if parsing_res.get("index"):
1953
+ num_index += 1
1954
+
1955
+ parsing_res_list = [
1956
+ {
1957
+ "block_label": parsing_res["block_label"],
1958
+ "block_content": parsing_res["block_content"],
1959
+ "block_bbox": parsing_res["block_bbox"],
1960
+ "block_image": parsing_res.get("block_image", None),
1961
+ "sub_label": parsing_res["sub_label"],
1962
+ "sub_index": parsing_res["sub_index"],
1963
+ "index": parsing_res.get("index", None),
1964
+ "seg_start_coordinate": parsing_res.get(
1965
+ "seg_start_coordinate", float("inf")
1966
+ ),
1967
+ "seg_end_coordinate": parsing_res.get("seg_end_coordinate", float("-inf")),
1968
+ "num_of_lines": parsing_res.get("num_of_lines", 1),
1969
+ }
1970
+ for parsing_res in final_parsing_res_list
1971
+ ]
1972
+
1973
+ return parsing_res_list
1974
+
1975
+
1976
+ def _manhattan_distance(
1977
+ point1: Tuple[float, float],
1978
+ point2: Tuple[float, float],
1979
+ weight_x: float = 1.0,
1980
+ weight_y: float = 1.0,
1981
+ ) -> float:
1982
+ """
1983
+ Calculate the weighted Manhattan distance between two points.
1984
+
1985
+ Args:
1986
+ point1 (Tuple[float, float]): The first point as (x, y).
1987
+ point2 (Tuple[float, float]): The second point as (x, y).
1988
+ weight_x (float): The weight for the x-axis distance. Default is 1.0.
1989
+ weight_y (float): The weight for the y-axis distance. Default is 1.0.
1990
+
1991
+ Returns:
1992
+ float: The weighted Manhattan distance between the two points.
1993
+ """
1994
+ return weight_x * abs(point1[0] - point2[0]) + weight_y * abs(point1[1] - point2[1])
1995
+
1996
+
1997
+ def _calculate_horizontal_distance(
1998
+ input_bbox: List[int],
1999
+ match_bbox: List[int],
2000
+ height: int,
2001
+ disperse: int,
2002
+ title_text: List[Tuple[int, List[int]]],
2003
+ ) -> float:
2004
+ """
2005
+ Calculate the horizontal distance between two bounding boxes, considering title text adjustments.
2006
+
2007
+ Args:
2008
+ input_bbox (List[int]): The bounding box coordinates [x1, y1, x2, y2] of the input object.
2009
+ match_bbox (List[int]): The bounding box coordinates [x1', y1', x2', y2'] of the object to match against.
2010
+ height (int): The height of the input bounding box used for normalization.
2011
+ disperse (int): The dispersion factor used to normalize the horizontal distance.
2012
+ title_text (List[Tuple[int, List[int]]]): A list of tuples containing title text information and their bounding box coordinates.
2013
+ Format: [(position_indicator, [x1, y1, x2, y2]), ...].
2014
+
2015
+ Returns:
2016
+ float: The calculated horizontal distance taking into account the title text adjustments.
2017
+ """
2018
+ x1, y1, x2, y2 = input_bbox
2019
+ x1_prime, y1_prime, x2_prime, y2_prime = match_bbox
2020
+
2021
+ # Determine vertical distance adjustment based on title text
2022
+ if y2 < y1_prime:
2023
+ if title_text and title_text[-1][0] == 2:
2024
+ y2 += title_text[-1][1][3] - title_text[-1][1][1]
2025
+ vertical_adjustment = (y1_prime - y2) * 0.5
2026
+ else:
2027
+ if title_text and title_text[0][0] == 1:
2028
+ y1 -= title_text[0][1][3] - title_text[0][1][1]
2029
+ vertical_adjustment = y1 - y2_prime
2030
+
2031
+ # Calculate horizontal distance with adjustments
2032
+ horizontal_distance = (
2033
+ abs(x2_prime - x1) // disperse
2034
+ + vertical_adjustment // height
2035
+ + vertical_adjustment / 5000
2036
+ )
2037
+
2038
+ return horizontal_distance
2039
+
2040
+
2041
+ def _calculate_vertical_distance(
2042
+ input_bbox: List[int],
2043
+ match_bbox: List[int],
2044
+ width: int,
2045
+ disperse: int,
2046
+ title_text: List[Tuple[int, List[int]]],
2047
+ ) -> float:
2048
+ """
2049
+ Calculate the vertical distance between two bounding boxes, considering title text adjustments.
2050
+
2051
+ Args:
2052
+ input_bbox (List[int]): The bounding box coordinates [x1, y1, x2, y2] of the input object.
2053
+ match_bbox (List[int]): The bounding box coordinates [x1', y1', x2', y2'] of the object to match against.
2054
+ width (int): The width of the input bounding box used for normalization.
2055
+ disperse (int): The dispersion factor used to normalize the vertical distance.
2056
+ title_text (List[Tuple[int, List[int]]]): A list of tuples containing title text information and their bounding box coordinates.
2057
+ Format: [(position_indicator, [x1, y1, x2, y2]), ...].
2058
+
2059
+ Returns:
2060
+ float: The calculated vertical distance taking into account the title text adjustments.
2061
+ """
2062
+ x1, y1, x2, y2 = input_bbox
2063
+ x1_prime, y1_prime, x2_prime, y2_prime = match_bbox
2064
+
2065
+ # Determine horizontal distance adjustment based on title text
2066
+ if x1 > x2_prime:
2067
+ if title_text and title_text[0][0] == 3:
2068
+ x1 -= title_text[0][1][2] - title_text[0][1][0]
2069
+ horizontal_adjustment = (x1 - x2_prime) * 0.5
2070
+ else:
2071
+ if title_text and title_text[-1][0] == 4:
2072
+ x2 += title_text[-1][1][2] - title_text[-1][1][0]
2073
+ horizontal_adjustment = x1_prime - x2
2074
+
2075
+ # Calculate vertical distance with adjustments
2076
+ vertical_distance = (
2077
+ abs(y2_prime - y1) // disperse
2078
+ + horizontal_adjustment // width
2079
+ + horizontal_adjustment / 5000
2080
+ )
2081
+
2082
+ return vertical_distance
2083
+
2084
+
2085
+ def _nearest_edge_distance(
2086
+ input_bbox: List[int],
2087
+ match_bbox: List[int],
2088
+ weight: List[float] = [1.0, 1.0, 1.0, 1.0],
2089
+ label: str = "text",
2090
+ no_mask_labels: List[str] = [],
2091
+ min_edge_distance_config: List[float] = [],
2092
+ tolerance_len: float = 10.0,
2093
+ ) -> Tuple[float, List[float]]:
2094
+ """
2095
+ Calculate the nearest edge distance between two bounding boxes, considering directional weights.
2096
+
2097
+ Args:
2098
+ input_bbox (list): The bounding box coordinates [x1, y1, x2, y2] of the input object.
2099
+ match_bbox (list): The bounding box coordinates [x1', y1', x2', y2'] of the object to match against.
2100
+ weight (list, optional): Directional weights for the edge distances [left, right, up, down]. Defaults to [1, 1, 1, 1].
2101
+ label (str, optional): The label/type of the object in the bounding box (e.g., 'text'). Defaults to 'text'.
2102
+ no_mask_labels (list, optional): Labels for which no masking is applied when calculating edge distances. Defaults to an empty list.
2103
+ min_edge_distance_config (list, optional): Configuration for minimum edge distances [min_edge_distance_x, min_edge_distance_y].
2104
+ Defaults to [float('inf'), float('inf')].
2105
+ tolerance_len (float, optional): The tolerance length for adjusting edge distances. Defaults to 10.
2106
+
2107
+ Returns:
2108
+ Tuple[float, List[float]]: A tuple containing:
2109
+ - The calculated minimum edge distance between the bounding boxes.
2110
+ - A list with the minimum edge distances in the x and y directions.
2111
+ """
2112
+ match_bbox_iou = _calculate_overlap_area_div_minbox_area_ratio(
2113
+ input_bbox,
2114
+ match_bbox,
2115
+ )
2116
+ if match_bbox_iou > 0 and label not in no_mask_labels:
2117
+ return 0, [0, 0]
2118
+
2119
+ if not min_edge_distance_config:
2120
+ min_edge_distance_config = [float("inf"), float("inf")]
2121
+ min_edge_distance_x, min_edge_distance_y = min_edge_distance_config
2122
+
2123
+ x1, y1, x2, y2 = input_bbox
2124
+ x1_prime, y1_prime, x2_prime, y2_prime = match_bbox
2125
+
2126
+ direction_num = 0
2127
+ distance_x = float("inf")
2128
+ distance_y = float("inf")
2129
+ distance = [float("inf")] * 4
2130
+
2131
+ # input_bbox is to the left of match_bbox
2132
+ if x2 < x1_prime:
2133
+ direction_num += 1
2134
+ distance[0] = x1_prime - x2
2135
+ if abs(distance[0] - min_edge_distance_x) <= tolerance_len:
2136
+ distance_x = min_edge_distance_x * weight[0]
2137
+ else:
2138
+ distance_x = distance[0] * weight[0]
2139
+ # input_bbox is to the right of match_bbox
2140
+ elif x1 > x2_prime:
2141
+ direction_num += 1
2142
+ distance[1] = x1 - x2_prime
2143
+ if abs(distance[1] - min_edge_distance_x) <= tolerance_len:
2144
+ distance_x = min_edge_distance_x * weight[1]
2145
+ else:
2146
+ distance_x = distance[1] * weight[1]
2147
+ elif match_bbox_iou > 0:
2148
+ distance[0] = 0
2149
+ distance_x = 0
2150
+
2151
+ # input_bbox is above match_bbox
2152
+ if y2 < y1_prime:
2153
+ direction_num += 1
2154
+ distance[2] = y1_prime - y2
2155
+ if abs(distance[2] - min_edge_distance_y) <= tolerance_len:
2156
+ distance_y = min_edge_distance_y * weight[2]
2157
+ else:
2158
+ distance_y = distance[2] * weight[2]
2159
+ if label in no_mask_labels:
2160
+ distance_y = max(0.1, distance_y) * 10 # for abstract
2161
+ # input_bbox is below match_bbox
2162
+ elif y1 > y2_prime:
2163
+ direction_num += 1
2164
+ distance[3] = y1 - y2_prime
2165
+ if abs(distance[3] - min_edge_distance_y) <= tolerance_len:
2166
+ distance_y = min_edge_distance_y * weight[3]
2167
+ else:
2168
+ distance_y = distance[3] * weight[3]
2169
+ elif match_bbox_iou > 0:
2170
+ distance[2] = 0
2171
+ distance_y = 0
2172
+
2173
+ if direction_num == 2:
2174
+ return (distance_x + distance_y), [
2175
+ min(distance[0], distance[1]),
2176
+ min(distance[2], distance[3]),
2177
+ ]
2178
+ else:
2179
+ return min(distance_x, distance_y), [
2180
+ min(distance[0], distance[1]),
2181
+ min(distance[2], distance[3]),
2182
+ ]
2183
+
2184
+
2185
+ def _get_weights(label, horizontal):
2186
+ """Define weights based on the label and orientation."""
2187
+ if label == "doc_title":
2188
+ return (
2189
+ [1, 0.1, 0.1, 1] if horizontal else [0.2, 0.1, 1, 1]
2190
+ ) # left-down , right-left
2191
+ elif label in [
2192
+ "paragraph_title",
2193
+ "table_title",
2194
+ "abstract",
2195
+ "image",
2196
+ "seal",
2197
+ "chart",
2198
+ "figure",
2199
+ ]:
2200
+ return [1, 1, 0.1, 1] # down
2201
+ else:
2202
+ return [1, 1, 1, 0.1] # up
2203
+
2204
+
2205
+ def _nearest_iou_edge_distance(
2206
+ input_bbox: List[int],
2207
+ match_bbox: List[int],
2208
+ label: str,
2209
+ vision_labels: List[str],
2210
+ no_mask_labels: List[str],
2211
+ median_width: int = -1,
2212
+ title_labels: List[str] = [],
2213
+ title_text: List[Tuple[int, List[int]]] = [],
2214
+ sub_title: List[List[int]] = [],
2215
+ min_distance_config: List[float] = [],
2216
+ tolerance_len: float = 10.0,
2217
+ ) -> Tuple[float, List[float]]:
2218
+ """
2219
+ Calculate the nearest IOU edge distance between two bounding boxes, considering label types, title adjustments, and minimum distance configurations.
2220
+ This function computes the edge distance between two bounding boxes while considering their overlap (IOU) and various adjustments based on label types,
2221
+ title text, and subtitle information. It also applies minimum distance configurations and tolerance adjustments.
2222
+
2223
+ Args:
2224
+ input_bbox (List[int]): The bounding box coordinates [x1, y1, x2, y2] of the input object.
2225
+ match_bbox (List[int]): The bounding box coordinates [x1', y1', x2', y2'] of the object to match against.
2226
+ label (str): The label/type of the object in the bounding box (e.g., 'image', 'text', etc.).
2227
+ vision_labels (List[str]): List of labels for vision-related objects (e.g., images, icons).
2228
+ no_mask_labels (List[str]): Labels for which no masking is applied when calculating edge distances.
2229
+ median_width (int, optional): The median width for title dispersion calculation. Defaults to -1.
2230
+ title_labels (List[str], optional): Labels that indicate the object is a title. Defaults to an empty list.
2231
+ title_text (List[Tuple[int, List[int]]], optional): Text content associated with title labels, in the format [(position_indicator, [x1, y1, x2, y2]), ...].
2232
+ sub_title (List[List[int]], optional): List of subtitle bounding boxes to adjust the input_bbox. Defaults to an empty list.
2233
+ min_distance_config (List[float], optional): Configuration for minimum distances [min_edge_distance_config, up_edge_distances_config, total_distance].
2234
+ tolerance_len (float, optional): The tolerance length for adjusting edge distances. Defaults to 10.0.
2235
+
2236
+ Returns:
2237
+ Tuple[float, List[float]]: A tuple containing:
2238
+ - The calculated distance considering IOU and adjustments.
2239
+ - The updated minimum distance configuration.
2240
+ """
2241
+
2242
+ x1, y1, x2, y2 = input_bbox
2243
+ x1_prime, y1_prime, x2_prime, y2_prime = match_bbox
2244
+
2245
+ min_edge_distance_config, up_edge_distances_config, total_distance = (
2246
+ min_distance_config
2247
+ )
2248
+
2249
+ iou_distance = 0
2250
+
2251
+ if label in vision_labels:
2252
+ horizontal1 = horizontal2 = True
2253
+ else:
2254
+ horizontal1 = _get_bbox_direction(input_bbox)
2255
+ horizontal2 = _get_bbox_direction(match_bbox, 3)
2256
+
2257
+ if (
2258
+ horizontal1 != horizontal2
2259
+ or _get_projection_iou(input_bbox, match_bbox, horizontal1) < 0.01
2260
+ ):
2261
+ iou_distance = 1
2262
+
2263
+ if label == "doc_title":
2264
+ # Calculate distance for titles
2265
+ disperse = max(1, median_width)
2266
+ tolerance_len = max(tolerance_len, disperse)
2267
+
2268
+ # Adjust input_bbox based on sub_title
2269
+ if sub_title:
2270
+ for sub in sub_title:
2271
+ x1_, y1_, x2_, y2_ = sub
2272
+ x1, y1, x2, y2 = (
2273
+ min(x1, x1_),
2274
+ min(y1, y1_),
2275
+ min(x2, x2_),
2276
+ max(y2, y2_),
2277
+ )
2278
+ input_bbox = [x1, y1, x2, y2]
2279
+
2280
+ if title_text:
2281
+ for sub in title_text:
2282
+ x1_, y1_, x2_, y2_ = sub[1]
2283
+ if horizontal1:
2284
+ x1, y1, x2, y2 = (
2285
+ min(x1, x1_),
2286
+ min(y1, y1_),
2287
+ min(x2, x2_),
2288
+ max(y2, y2_),
2289
+ )
2290
+ else:
2291
+ x1, y1, x2, y2 = (
2292
+ min(x1, x1_),
2293
+ min(y1, y1_),
2294
+ max(x2, x2_),
2295
+ min(y2, y2_),
2296
+ )
2297
+ input_bbox = [x1, y1, x2, y2]
2298
+
2299
+ # Calculate edge distance
2300
+ weight = _get_weights(label, horizontal1)
2301
+ if label == "abstract":
2302
+ tolerance_len *= 2
2303
+
2304
+ edge_distance, edge_distance_config = _nearest_edge_distance(
2305
+ input_bbox,
2306
+ match_bbox,
2307
+ weight,
2308
+ label=label,
2309
+ no_mask_labels=no_mask_labels,
2310
+ min_edge_distance_config=min_edge_distance_config,
2311
+ tolerance_len=tolerance_len,
2312
+ )
2313
+
2314
+ # Weights for combining distances
2315
+ iou_edge_weight = [10**8, 10**4, 1, 0.0001]
2316
+
2317
+ # Calculate up and left edge distances
2318
+ up_edge_distance = y1_prime
2319
+ left_edge_distance = x1_prime
2320
+ if (
2321
+ label in no_mask_labels or label in title_labels or label in vision_labels
2322
+ ) and y1 > y2_prime:
2323
+ up_edge_distance = -y2_prime
2324
+ left_edge_distance = -x2_prime
2325
+
2326
+ min_up_edge_distance = up_edge_distances_config
2327
+ if abs(min_up_edge_distance - up_edge_distance) <= tolerance_len:
2328
+ up_edge_distance = min_up_edge_distance
2329
+
2330
+ # Calculate total distance
2331
+ distance = (
2332
+ iou_distance * iou_edge_weight[0]
2333
+ + edge_distance * iou_edge_weight[1]
2334
+ + up_edge_distance * iou_edge_weight[2]
2335
+ + left_edge_distance * iou_edge_weight[3]
2336
+ )
2337
+
2338
+ # Update minimum distance configuration if a smaller distance is found
2339
+ if total_distance > distance:
2340
+ edge_distance_config = [
2341
+ edge_distance_config[0],
2342
+ edge_distance_config[1],
2343
+ ]
2344
+ min_distance_config = [
2345
+ edge_distance_config,
2346
+ up_edge_distance,
2347
+ distance,
2348
+ ]
2349
+
2350
+ return distance, min_distance_config
2351
+
2352
+
2353
+ def get_show_color(label: str) -> Tuple:
2354
+ label_colors = {
2355
+ # Medium Blue (from 'titles_list')
2356
+ "paragraph_title": (102, 102, 255, 100),
2357
+ "doc_title": (255, 248, 220, 100), # Cornsilk
2358
+ # Light Yellow (from 'tables_caption_list')
2359
+ "table_title": (255, 255, 102, 100),
2360
+ # Sky Blue (from 'imgs_caption_list')
2361
+ "figure_title": (102, 178, 255, 100),
2362
+ "chart_title": (221, 160, 221, 100), # Plum
2363
+ "vision_footnote": (144, 238, 144, 100), # Light Green
2364
+ # Deep Purple (from 'texts_list')
2365
+ "text": (153, 0, 76, 100),
2366
+ # Bright Green (from 'interequations_list')
2367
+ "formula": (0, 255, 0, 100),
2368
+ "abstract": (255, 239, 213, 100), # Papaya Whip
2369
+ # Medium Green (from 'lists_list' and 'indexs_list')
2370
+ "content": (40, 169, 92, 100),
2371
+ # Neutral Gray (from 'dropped_bbox_list')
2372
+ "seal": (158, 158, 158, 100),
2373
+ # Olive Yellow (from 'tables_body_list')
2374
+ "table": (204, 204, 0, 100),
2375
+ # Bright Green (from 'imgs_body_list')
2376
+ "image": (153, 255, 51, 100),
2377
+ # Bright Green (from 'imgs_body_list')
2378
+ "figure": (153, 255, 51, 100),
2379
+ "chart": (216, 191, 216, 100), # Thistle
2380
+ # Pale Yellow-Green (from 'tables_footnote_list')
2381
+ "reference": (229, 255, 204, 100),
2382
+ "algorithm": (255, 250, 240, 100), # Floral White
2383
+ }
2384
+ default_color = (158, 158, 158, 100)
2385
+ return label_colors.get(label, default_color)