paddlex 3.0.0b2__py3-none-any.whl → 3.0.0rc0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- paddlex/.version +1 -1
- paddlex/__init__.py +1 -0
- paddlex/__main__.py +3 -4
- paddlex/configs/modules/3d_bev_detection/BEVFusion.yaml +38 -0
- paddlex/configs/modules/face_feature/MobileFaceNet.yaml +41 -0
- paddlex/configs/modules/face_feature/ResNet50_face.yaml +41 -0
- paddlex/configs/modules/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
- paddlex/configs/modules/formula_recognition/PP-FormulaNet-L.yaml +40 -0
- paddlex/configs/modules/formula_recognition/PP-FormulaNet-S.yaml +40 -0
- paddlex/configs/modules/formula_recognition/UniMERNet.yaml +40 -0
- paddlex/configs/modules/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
- paddlex/configs/modules/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
- paddlex/configs/modules/image_classification/ConvNeXt_large_384.yaml +41 -0
- paddlex/configs/modules/keypoint_detection/PP-TinyPose_128x96.yaml +40 -0
- paddlex/configs/modules/keypoint_detection/PP-TinyPose_256x192.yaml +40 -0
- paddlex/configs/modules/layout_detection/PP-DocLayout-L.yaml +40 -0
- paddlex/configs/modules/layout_detection/PP-DocLayout-M.yaml +40 -0
- paddlex/configs/modules/layout_detection/PP-DocLayout-S.yaml +40 -0
- paddlex/configs/modules/multilingual_speech_recognition/whisper_base.yaml +12 -0
- paddlex/configs/modules/multilingual_speech_recognition/whisper_large.yaml +12 -0
- paddlex/configs/modules/multilingual_speech_recognition/whisper_medium.yaml +12 -0
- paddlex/configs/modules/multilingual_speech_recognition/whisper_small.yaml +12 -0
- paddlex/configs/modules/multilingual_speech_recognition/whisper_tiny.yaml +12 -0
- paddlex/configs/modules/object_detection/Co-DINO-R50.yaml +40 -0
- paddlex/configs/modules/object_detection/Co-DINO-Swin-L.yaml +40 -0
- paddlex/configs/modules/object_detection/Co-Deformable-DETR-R50.yaml +40 -0
- paddlex/configs/modules/object_detection/Co-Deformable-DETR-Swin-T.yaml +40 -0
- paddlex/configs/modules/object_detection/YOLOX-X.yaml +40 -0
- paddlex/configs/modules/open_vocabulary_detection/GroundingDINO-T.yaml +13 -0
- paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_box.yaml +17 -0
- paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_point.yaml +15 -0
- paddlex/configs/modules/rotated_object_detection/PP-YOLOE-R-L.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/MaskFormer_small.yaml +42 -0
- paddlex/configs/modules/semantic_segmentation/MaskFormer_tiny.yaml +42 -0
- paddlex/configs/modules/semantic_segmentation/SeaFormer_base.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SeaFormer_large.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SeaFormer_small.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
- paddlex/configs/modules/table_cells_detection/RT-DETR-L_wired_table_cell_det.yaml +40 -0
- paddlex/configs/modules/table_cells_detection/RT-DETR-L_wireless_table_cell_det.yaml +40 -0
- paddlex/configs/modules/table_classification/PP-LCNet_x1_0_table_cls.yaml +41 -0
- paddlex/configs/modules/table_structure_recognition/SLANeXt_wired.yaml +39 -0
- paddlex/configs/modules/table_structure_recognition/SLANeXt_wireless.yaml +39 -0
- paddlex/configs/modules/text_detection/PP-OCRv3_mobile_det.yaml +40 -0
- paddlex/configs/modules/text_detection/PP-OCRv3_server_det.yaml +40 -0
- paddlex/configs/modules/text_recognition/PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/PP-OCRv4_server_rec_doc.yaml +39 -0
- paddlex/configs/modules/text_recognition/arabic_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/chinese_cht_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/cyrillic_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/devanagari_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/en_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/en_PP-OCRv4_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/japan_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/ka_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/korean_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/latin_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/ta_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/te_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/textline_orientation/PP-LCNet_x0_25_textline_ori.yaml +41 -0
- paddlex/configs/modules/video_classification/PP-TSM-R50_8frames_uniform.yaml +42 -0
- paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_16frames_uniform.yaml +42 -0
- paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_8frames_uniform.yaml +42 -0
- paddlex/configs/modules/video_detection/YOWO.yaml +40 -0
- paddlex/configs/pipelines/3d_bev_detection.yaml +9 -0
- paddlex/configs/pipelines/OCR.yaml +44 -0
- paddlex/configs/pipelines/PP-ChatOCRv3-doc.yaml +149 -0
- paddlex/configs/pipelines/PP-ChatOCRv4-doc.yaml +184 -0
- paddlex/configs/pipelines/PP-ShiTuV2.yaml +18 -0
- paddlex/configs/pipelines/PP-StructureV3.yaml +226 -0
- paddlex/configs/pipelines/anomaly_detection.yaml +8 -0
- paddlex/configs/pipelines/doc_preprocessor.yaml +15 -0
- paddlex/configs/pipelines/face_recognition.yaml +18 -0
- paddlex/configs/pipelines/formula_recognition.yaml +39 -0
- paddlex/configs/pipelines/human_keypoint_detection.yaml +17 -0
- paddlex/configs/pipelines/image_classification.yaml +10 -0
- paddlex/configs/pipelines/image_multilabel_classification.yaml +9 -0
- paddlex/configs/pipelines/instance_segmentation.yaml +10 -0
- paddlex/configs/pipelines/layout_parsing.yaml +101 -0
- paddlex/configs/pipelines/multilingual_speech_recognition.yaml +9 -0
- paddlex/configs/pipelines/object_detection.yaml +10 -0
- paddlex/configs/pipelines/open_vocabulary_detection.yaml +12 -0
- paddlex/configs/pipelines/open_vocabulary_segmentation.yaml +13 -0
- paddlex/configs/pipelines/pedestrian_attribute_recognition.yaml +15 -0
- paddlex/configs/pipelines/rotated_object_detection.yaml +10 -0
- paddlex/configs/pipelines/seal_recognition.yaml +51 -0
- paddlex/configs/pipelines/semantic_segmentation.yaml +10 -0
- paddlex/configs/pipelines/small_object_detection.yaml +10 -0
- paddlex/configs/pipelines/table_recognition.yaml +56 -0
- paddlex/configs/pipelines/table_recognition_v2.yaml +76 -0
- paddlex/configs/pipelines/ts_anomaly_detection.yaml +8 -0
- paddlex/configs/pipelines/ts_classification.yaml +8 -0
- paddlex/configs/pipelines/ts_forecast.yaml +8 -0
- paddlex/configs/pipelines/vehicle_attribute_recognition.yaml +15 -0
- paddlex/configs/pipelines/video_classification.yaml +9 -0
- paddlex/configs/pipelines/video_detection.yaml +10 -0
- paddlex/engine.py +1 -1
- paddlex/hpip_links.html +19 -0
- paddlex/inference/__init__.py +3 -1
- paddlex/inference/common/batch_sampler/__init__.py +20 -0
- paddlex/inference/common/batch_sampler/audio_batch_sampler.py +84 -0
- paddlex/inference/common/batch_sampler/base_batch_sampler.py +90 -0
- paddlex/inference/common/batch_sampler/det_3d_batch_sampler.py +147 -0
- paddlex/inference/common/batch_sampler/image_batch_sampler.py +136 -0
- paddlex/inference/common/batch_sampler/ts_batch_sampler.py +110 -0
- paddlex/inference/common/batch_sampler/video_batch_sampler.py +94 -0
- paddlex/inference/common/reader/__init__.py +19 -0
- paddlex/inference/common/reader/audio_reader.py +46 -0
- paddlex/inference/common/reader/det_3d_reader.py +239 -0
- paddlex/inference/common/reader/image_reader.py +69 -0
- paddlex/inference/common/reader/ts_reader.py +45 -0
- paddlex/inference/common/reader/video_reader.py +42 -0
- paddlex/inference/common/result/__init__.py +29 -0
- paddlex/inference/common/result/base_cv_result.py +31 -0
- paddlex/inference/common/result/base_result.py +70 -0
- paddlex/inference/common/result/base_ts_result.py +42 -0
- paddlex/inference/common/result/base_video_result.py +36 -0
- paddlex/inference/common/result/mixin.py +703 -0
- paddlex/inference/models/3d_bev_detection/__init__.py +15 -0
- paddlex/inference/models/3d_bev_detection/predictor.py +314 -0
- paddlex/inference/models/3d_bev_detection/processors.py +978 -0
- paddlex/inference/models/3d_bev_detection/result.py +65 -0
- paddlex/inference/models/3d_bev_detection/visualizer_3d.py +131 -0
- paddlex/inference/models/__init__.py +37 -13
- paddlex/inference/models/anomaly_detection/__init__.py +15 -0
- paddlex/inference/models/anomaly_detection/predictor.py +145 -0
- paddlex/inference/models/anomaly_detection/processors.py +46 -0
- paddlex/inference/models/anomaly_detection/result.py +70 -0
- paddlex/inference/models/base/__init__.py +1 -2
- paddlex/inference/models/base/predictor/__init__.py +16 -0
- paddlex/inference/models/base/predictor/base_predictor.py +175 -0
- paddlex/inference/models/base/predictor/basic_predictor.py +139 -0
- paddlex/inference/models/common/__init__.py +35 -0
- paddlex/inference/models/common/static_infer.py +329 -0
- paddlex/inference/models/common/tokenizer/__init__.py +17 -0
- paddlex/inference/models/common/tokenizer/bert_tokenizer.py +655 -0
- paddlex/inference/models/common/tokenizer/gpt_tokenizer.py +451 -0
- paddlex/inference/models/common/tokenizer/tokenizer_utils.py +2141 -0
- paddlex/inference/models/common/tokenizer/tokenizer_utils_base.py +3504 -0
- paddlex/inference/models/common/tokenizer/utils.py +66 -0
- paddlex/inference/models/common/tokenizer/vocab.py +647 -0
- paddlex/inference/models/common/ts/__init__.py +15 -0
- paddlex/inference/models/common/ts/funcs.py +533 -0
- paddlex/inference/models/common/ts/processors.py +313 -0
- paddlex/inference/models/common/vision/__init__.py +23 -0
- paddlex/inference/models/common/vision/funcs.py +93 -0
- paddlex/inference/models/common/vision/processors.py +270 -0
- paddlex/inference/models/face_feature/__init__.py +15 -0
- paddlex/inference/models/face_feature/predictor.py +65 -0
- paddlex/inference/models/formula_recognition/__init__.py +15 -0
- paddlex/inference/models/formula_recognition/predictor.py +203 -0
- paddlex/inference/models/formula_recognition/processors.py +986 -0
- paddlex/inference/models/formula_recognition/result.py +403 -0
- paddlex/inference/models/image_classification/__init__.py +15 -0
- paddlex/inference/models/image_classification/predictor.py +182 -0
- paddlex/inference/models/image_classification/processors.py +87 -0
- paddlex/inference/models/image_classification/result.py +92 -0
- paddlex/inference/models/image_feature/__init__.py +15 -0
- paddlex/inference/models/image_feature/predictor.py +156 -0
- paddlex/inference/models/image_feature/processors.py +29 -0
- paddlex/inference/models/image_feature/result.py +33 -0
- paddlex/inference/models/image_multilabel_classification/__init__.py +15 -0
- paddlex/inference/models/image_multilabel_classification/predictor.py +94 -0
- paddlex/inference/models/image_multilabel_classification/processors.py +85 -0
- paddlex/inference/models/image_multilabel_classification/result.py +95 -0
- paddlex/inference/models/image_unwarping/__init__.py +15 -0
- paddlex/inference/models/image_unwarping/predictor.py +105 -0
- paddlex/inference/models/image_unwarping/processors.py +88 -0
- paddlex/inference/models/image_unwarping/result.py +45 -0
- paddlex/inference/models/instance_segmentation/__init__.py +15 -0
- paddlex/inference/models/instance_segmentation/predictor.py +210 -0
- paddlex/inference/models/instance_segmentation/processors.py +105 -0
- paddlex/inference/models/instance_segmentation/result.py +161 -0
- paddlex/inference/models/keypoint_detection/__init__.py +15 -0
- paddlex/inference/models/keypoint_detection/predictor.py +188 -0
- paddlex/inference/models/keypoint_detection/processors.py +359 -0
- paddlex/inference/models/keypoint_detection/result.py +192 -0
- paddlex/inference/models/multilingual_speech_recognition/__init__.py +15 -0
- paddlex/inference/models/multilingual_speech_recognition/predictor.py +141 -0
- paddlex/inference/models/multilingual_speech_recognition/processors.py +1941 -0
- paddlex/inference/models/multilingual_speech_recognition/result.py +21 -0
- paddlex/inference/models/object_detection/__init__.py +15 -0
- paddlex/inference/models/object_detection/predictor.py +348 -0
- paddlex/inference/models/object_detection/processors.py +855 -0
- paddlex/inference/models/object_detection/result.py +113 -0
- paddlex/inference/models/object_detection/utils.py +68 -0
- paddlex/inference/models/open_vocabulary_detection/__init__.py +15 -0
- paddlex/inference/models/open_vocabulary_detection/predictor.py +155 -0
- paddlex/inference/models/open_vocabulary_detection/processors/__init__.py +15 -0
- paddlex/inference/models/open_vocabulary_detection/processors/groundingdino_processors.py +485 -0
- paddlex/inference/models/open_vocabulary_segmentation/__init__.py +15 -0
- paddlex/inference/models/open_vocabulary_segmentation/predictor.py +120 -0
- paddlex/inference/models/open_vocabulary_segmentation/processors/__init__.py +15 -0
- paddlex/inference/models/open_vocabulary_segmentation/processors/sam_processer.py +249 -0
- paddlex/inference/models/open_vocabulary_segmentation/results/__init__.py +15 -0
- paddlex/inference/models/open_vocabulary_segmentation/results/sam_result.py +147 -0
- paddlex/inference/models/semantic_segmentation/__init__.py +15 -0
- paddlex/inference/models/semantic_segmentation/predictor.py +167 -0
- paddlex/inference/models/semantic_segmentation/processors.py +114 -0
- paddlex/inference/models/semantic_segmentation/result.py +72 -0
- paddlex/inference/models/table_structure_recognition/__init__.py +15 -0
- paddlex/inference/models/table_structure_recognition/predictor.py +171 -0
- paddlex/inference/models/table_structure_recognition/processors.py +235 -0
- paddlex/inference/models/table_structure_recognition/result.py +70 -0
- paddlex/inference/models/text_detection/__init__.py +15 -0
- paddlex/inference/models/text_detection/predictor.py +191 -0
- paddlex/inference/models/text_detection/processors.py +466 -0
- paddlex/inference/models/text_detection/result.py +51 -0
- paddlex/inference/models/text_recognition/__init__.py +15 -0
- paddlex/inference/models/text_recognition/predictor.py +106 -0
- paddlex/inference/models/text_recognition/processors.py +231 -0
- paddlex/inference/models/text_recognition/result.py +75 -0
- paddlex/inference/models/ts_anomaly_detection/__init__.py +15 -0
- paddlex/inference/models/ts_anomaly_detection/predictor.py +146 -0
- paddlex/inference/models/ts_anomaly_detection/processors.py +94 -0
- paddlex/inference/models/ts_anomaly_detection/result.py +72 -0
- paddlex/inference/models/ts_classification/__init__.py +15 -0
- paddlex/inference/models/ts_classification/predictor.py +135 -0
- paddlex/inference/models/ts_classification/processors.py +117 -0
- paddlex/inference/models/ts_classification/result.py +78 -0
- paddlex/inference/models/ts_forecasting/__init__.py +15 -0
- paddlex/inference/models/ts_forecasting/predictor.py +159 -0
- paddlex/inference/models/ts_forecasting/processors.py +149 -0
- paddlex/inference/models/ts_forecasting/result.py +83 -0
- paddlex/inference/models/video_classification/__init__.py +15 -0
- paddlex/inference/models/video_classification/predictor.py +147 -0
- paddlex/inference/models/video_classification/processors.py +409 -0
- paddlex/inference/models/video_classification/result.py +92 -0
- paddlex/inference/models/video_detection/__init__.py +15 -0
- paddlex/inference/models/video_detection/predictor.py +136 -0
- paddlex/inference/models/video_detection/processors.py +450 -0
- paddlex/inference/models/video_detection/result.py +104 -0
- paddlex/inference/pipelines/3d_bev_detection/__init__.py +15 -0
- paddlex/inference/pipelines/3d_bev_detection/pipeline.py +67 -0
- paddlex/inference/pipelines/__init__.py +174 -73
- paddlex/inference/pipelines/anomaly_detection/__init__.py +15 -0
- paddlex/inference/pipelines/anomaly_detection/pipeline.py +62 -0
- paddlex/inference/pipelines/attribute_recognition/__init__.py +15 -0
- paddlex/inference/pipelines/attribute_recognition/pipeline.py +105 -0
- paddlex/inference/pipelines/attribute_recognition/result.py +100 -0
- paddlex/inference/pipelines/base.py +103 -57
- paddlex/inference/pipelines/components/__init__.py +23 -0
- paddlex/inference/pipelines/components/chat_server/__init__.py +16 -0
- paddlex/inference/pipelines/components/chat_server/base.py +39 -0
- paddlex/inference/pipelines/components/chat_server/openai_bot_chat.py +236 -0
- paddlex/inference/pipelines/components/common/__init__.py +18 -0
- paddlex/inference/pipelines/components/common/base_operator.py +36 -0
- paddlex/inference/pipelines/components/common/base_result.py +65 -0
- paddlex/inference/pipelines/components/common/convert_points_and_boxes.py +46 -0
- paddlex/inference/pipelines/components/common/crop_image_regions.py +550 -0
- paddlex/inference/pipelines/components/common/seal_det_warp.py +941 -0
- paddlex/inference/pipelines/components/common/sort_boxes.py +83 -0
- paddlex/inference/pipelines/components/faisser.py +352 -0
- paddlex/inference/pipelines/components/prompt_engineering/__init__.py +16 -0
- paddlex/inference/pipelines/components/prompt_engineering/base.py +35 -0
- paddlex/inference/pipelines/components/prompt_engineering/generate_ensemble_prompt.py +127 -0
- paddlex/inference/pipelines/components/prompt_engineering/generate_kie_prompt.py +148 -0
- paddlex/inference/pipelines/components/retriever/__init__.py +16 -0
- paddlex/inference/pipelines/components/retriever/base.py +226 -0
- paddlex/inference/pipelines/components/retriever/openai_bot_retriever.py +70 -0
- paddlex/inference/pipelines/components/retriever/qianfan_bot_retriever.py +163 -0
- paddlex/inference/pipelines/components/utils/__init__.py +13 -0
- paddlex/inference/pipelines/components/utils/mixin.py +206 -0
- paddlex/inference/pipelines/doc_preprocessor/__init__.py +15 -0
- paddlex/inference/pipelines/doc_preprocessor/pipeline.py +190 -0
- paddlex/inference/pipelines/doc_preprocessor/result.py +103 -0
- paddlex/inference/pipelines/face_recognition/__init__.py +15 -0
- paddlex/inference/pipelines/face_recognition/pipeline.py +61 -0
- paddlex/inference/pipelines/face_recognition/result.py +43 -0
- paddlex/inference/pipelines/formula_recognition/__init__.py +15 -0
- paddlex/inference/pipelines/formula_recognition/pipeline.py +303 -0
- paddlex/inference/pipelines/formula_recognition/result.py +291 -0
- paddlex/inference/pipelines/image_classification/__init__.py +15 -0
- paddlex/inference/pipelines/image_classification/pipeline.py +71 -0
- paddlex/inference/pipelines/image_multilabel_classification/__init__.py +15 -0
- paddlex/inference/pipelines/image_multilabel_classification/pipeline.py +78 -0
- paddlex/inference/pipelines/instance_segmentation/__init__.py +15 -0
- paddlex/inference/pipelines/instance_segmentation/pipeline.py +70 -0
- paddlex/inference/pipelines/keypoint_detection/__init__.py +15 -0
- paddlex/inference/pipelines/keypoint_detection/pipeline.py +137 -0
- paddlex/inference/pipelines/layout_parsing/__init__.py +2 -1
- paddlex/inference/pipelines/layout_parsing/pipeline.py +570 -0
- paddlex/inference/pipelines/layout_parsing/pipeline_v2.py +739 -0
- paddlex/inference/pipelines/layout_parsing/result.py +203 -0
- paddlex/inference/pipelines/layout_parsing/result_v2.py +470 -0
- paddlex/inference/pipelines/layout_parsing/utils.py +2385 -0
- paddlex/inference/pipelines/multilingual_speech_recognition/__init__.py +15 -0
- paddlex/inference/pipelines/multilingual_speech_recognition/pipeline.py +67 -0
- paddlex/inference/pipelines/object_detection/__init__.py +15 -0
- paddlex/inference/pipelines/object_detection/pipeline.py +95 -0
- paddlex/inference/pipelines/ocr/__init__.py +15 -0
- paddlex/inference/pipelines/ocr/pipeline.py +389 -0
- paddlex/inference/pipelines/ocr/result.py +248 -0
- paddlex/inference/pipelines/open_vocabulary_detection/__init__.py +15 -0
- paddlex/inference/pipelines/open_vocabulary_detection/pipeline.py +75 -0
- paddlex/inference/pipelines/open_vocabulary_segmentation/__init__.py +15 -0
- paddlex/inference/pipelines/open_vocabulary_segmentation/pipeline.py +89 -0
- paddlex/inference/pipelines/pp_chatocr/__init__.py +16 -0
- paddlex/inference/pipelines/pp_chatocr/pipeline_base.py +102 -0
- paddlex/inference/pipelines/pp_chatocr/pipeline_v3.py +773 -0
- paddlex/inference/pipelines/pp_chatocr/pipeline_v4.py +977 -0
- paddlex/inference/pipelines/pp_shitu_v2/__init__.py +15 -0
- paddlex/inference/pipelines/pp_shitu_v2/pipeline.py +152 -0
- paddlex/inference/pipelines/pp_shitu_v2/result.py +126 -0
- paddlex/inference/pipelines/rotated_object_detection/__init__.py +15 -0
- paddlex/inference/pipelines/rotated_object_detection/pipeline.py +74 -0
- paddlex/inference/pipelines/seal_recognition/__init__.py +15 -0
- paddlex/inference/pipelines/seal_recognition/pipeline.py +271 -0
- paddlex/inference/pipelines/seal_recognition/result.py +87 -0
- paddlex/inference/pipelines/semantic_segmentation/__init__.py +15 -0
- paddlex/inference/pipelines/semantic_segmentation/pipeline.py +74 -0
- paddlex/inference/pipelines/small_object_detection/__init__.py +15 -0
- paddlex/inference/pipelines/small_object_detection/pipeline.py +74 -0
- paddlex/inference/pipelines/table_recognition/__init__.py +2 -1
- paddlex/inference/pipelines/table_recognition/pipeline.py +462 -0
- paddlex/inference/pipelines/table_recognition/pipeline_v2.py +792 -0
- paddlex/inference/pipelines/table_recognition/result.py +216 -0
- paddlex/inference/pipelines/table_recognition/table_recognition_post_processing.py +362 -0
- paddlex/inference/pipelines/table_recognition/table_recognition_post_processing_v2.py +470 -0
- paddlex/inference/pipelines/table_recognition/utils.py +23 -436
- paddlex/inference/pipelines/ts_anomaly_detection/__init__.py +15 -0
- paddlex/inference/pipelines/ts_anomaly_detection/pipeline.py +62 -0
- paddlex/inference/pipelines/ts_classification/__init__.py +15 -0
- paddlex/inference/pipelines/ts_classification/pipeline.py +62 -0
- paddlex/inference/pipelines/ts_forecasting/__init__.py +15 -0
- paddlex/inference/pipelines/ts_forecasting/pipeline.py +62 -0
- paddlex/inference/pipelines/video_classification/__init__.py +15 -0
- paddlex/inference/pipelines/video_classification/pipeline.py +68 -0
- paddlex/inference/pipelines/video_detection/__init__.py +15 -0
- paddlex/inference/pipelines/video_detection/pipeline.py +73 -0
- paddlex/inference/serving/__init__.py +13 -0
- paddlex/inference/serving/basic_serving/__init__.py +18 -0
- paddlex/inference/serving/basic_serving/_app.py +209 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/__init__.py +41 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/_common/__init__.py +13 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/_common/common.py +96 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/_common/image_recognition.py +36 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/_common/ocr.py +90 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/anomaly_detection.py +64 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/doc_preprocessor.py +97 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/face_recognition.py +223 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/formula_recognition.py +97 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/human_keypoint_detection.py +78 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/image_classification.py +66 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/image_multilabel_classification.py +70 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/instance_segmentation.py +81 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/layout_parsing.py +115 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/m_3d_bev_detection.py +76 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/multilingual_speech_recognition.py +89 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/object_detection.py +74 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/ocr.py +99 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_detection.py +78 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_segmentation.py +85 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/pedestrian_attribute_recognition.py +81 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv3_doc.py +191 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv4_doc.py +221 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/pp_shituv2.py +218 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/pp_structurev3.py +136 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/rotated_object_detection.py +78 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/seal_recognition.py +103 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/semantic_segmentation.py +64 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/small_object_detection.py +69 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition.py +105 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition_v2.py +107 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/ts_anomaly_detection.py +62 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/ts_classification.py +61 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/ts_forecast.py +62 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/vehicle_attribute_recognition.py +81 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/video_classification.py +73 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/video_detection.py +89 -0
- paddlex/inference/serving/basic_serving/_server.py +35 -0
- paddlex/inference/serving/infra/__init__.py +13 -0
- paddlex/inference/serving/infra/config.py +36 -0
- paddlex/inference/serving/infra/models.py +72 -0
- paddlex/inference/serving/infra/storage.py +175 -0
- paddlex/inference/serving/infra/utils.py +259 -0
- paddlex/inference/serving/schemas/__init__.py +13 -0
- paddlex/inference/serving/schemas/anomaly_detection.py +39 -0
- paddlex/inference/serving/schemas/doc_preprocessor.py +54 -0
- paddlex/inference/serving/schemas/face_recognition.py +124 -0
- paddlex/inference/serving/schemas/formula_recognition.py +56 -0
- paddlex/inference/serving/schemas/human_keypoint_detection.py +55 -0
- paddlex/inference/serving/schemas/image_classification.py +45 -0
- paddlex/inference/serving/schemas/image_multilabel_classification.py +47 -0
- paddlex/inference/serving/schemas/instance_segmentation.py +53 -0
- paddlex/inference/serving/schemas/layout_parsing.py +72 -0
- paddlex/inference/serving/schemas/m_3d_bev_detection.py +48 -0
- paddlex/inference/serving/schemas/multilingual_speech_recognition.py +57 -0
- paddlex/inference/serving/schemas/object_detection.py +52 -0
- paddlex/inference/serving/schemas/ocr.py +60 -0
- paddlex/inference/serving/schemas/open_vocabulary_detection.py +52 -0
- paddlex/inference/serving/schemas/open_vocabulary_segmentation.py +52 -0
- paddlex/inference/serving/schemas/pedestrian_attribute_recognition.py +61 -0
- paddlex/inference/serving/schemas/pp_chatocrv3_doc.py +134 -0
- paddlex/inference/serving/schemas/pp_chatocrv4_doc.py +151 -0
- paddlex/inference/serving/schemas/pp_shituv2.py +124 -0
- paddlex/inference/serving/schemas/pp_structurev3.py +84 -0
- paddlex/inference/serving/schemas/rotated_object_detection.py +52 -0
- paddlex/inference/serving/schemas/seal_recognition.py +62 -0
- paddlex/inference/serving/schemas/semantic_segmentation.py +45 -0
- paddlex/inference/serving/schemas/shared/__init__.py +13 -0
- paddlex/inference/serving/schemas/shared/classification.py +23 -0
- paddlex/inference/serving/schemas/shared/image_segmentation.py +28 -0
- paddlex/inference/serving/schemas/shared/object_detection.py +24 -0
- paddlex/inference/serving/schemas/shared/ocr.py +25 -0
- paddlex/inference/serving/schemas/small_object_detection.py +52 -0
- paddlex/inference/serving/schemas/table_recognition.py +64 -0
- paddlex/inference/serving/schemas/table_recognition_v2.py +66 -0
- paddlex/inference/serving/schemas/ts_anomaly_detection.py +37 -0
- paddlex/inference/serving/schemas/ts_classification.py +38 -0
- paddlex/inference/serving/schemas/ts_forecast.py +37 -0
- paddlex/inference/serving/schemas/vehicle_attribute_recognition.py +61 -0
- paddlex/inference/serving/schemas/video_classification.py +44 -0
- paddlex/inference/serving/schemas/video_detection.py +56 -0
- paddlex/inference/utils/benchmark.py +23 -11
- paddlex/inference/utils/get_pipeline_path.py +2 -1
- paddlex/inference/utils/io/__init__.py +3 -0
- paddlex/inference/utils/io/readers.py +164 -17
- paddlex/inference/utils/io/writers.py +85 -2
- paddlex/inference/utils/new_ir_blacklist.py +6 -0
- paddlex/inference/utils/official_models.py +277 -211
- paddlex/inference/utils/pp_option.py +24 -4
- paddlex/model.py +12 -5
- paddlex/modules/3d_bev_detection/__init__.py +18 -0
- paddlex/modules/3d_bev_detection/dataset_checker/__init__.py +95 -0
- paddlex/modules/3d_bev_detection/dataset_checker/dataset_src/__init__.py +17 -0
- paddlex/modules/3d_bev_detection/dataset_checker/dataset_src/analyse_dataset.py +106 -0
- paddlex/modules/3d_bev_detection/dataset_checker/dataset_src/check_dataset.py +102 -0
- paddlex/modules/3d_bev_detection/evaluator.py +46 -0
- paddlex/modules/3d_bev_detection/exportor.py +22 -0
- paddlex/modules/3d_bev_detection/model_list.py +18 -0
- paddlex/modules/3d_bev_detection/trainer.py +70 -0
- paddlex/modules/__init__.py +34 -1
- paddlex/modules/base/build_model.py +1 -1
- paddlex/modules/base/dataset_checker/dataset_checker.py +6 -1
- paddlex/modules/base/evaluator.py +20 -4
- paddlex/modules/base/exportor.py +30 -5
- paddlex/modules/base/trainer.py +29 -6
- paddlex/modules/face_recognition/trainer.py +1 -23
- paddlex/modules/formula_recognition/__init__.py +5 -0
- paddlex/modules/formula_recognition/dataset_checker/__init__.py +113 -0
- paddlex/modules/formula_recognition/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/formula_recognition/dataset_checker/dataset_src/analyse_dataset.py +157 -0
- paddlex/modules/formula_recognition/dataset_checker/dataset_src/check_dataset.py +80 -0
- paddlex/modules/formula_recognition/dataset_checker/dataset_src/convert_dataset.py +94 -0
- paddlex/modules/formula_recognition/dataset_checker/dataset_src/split_dataset.py +81 -0
- paddlex/modules/formula_recognition/evaluator.py +77 -0
- paddlex/modules/formula_recognition/exportor.py +22 -0
- paddlex/modules/formula_recognition/model_list.py +3 -0
- paddlex/modules/formula_recognition/trainer.py +121 -0
- paddlex/modules/image_classification/model_list.py +2 -0
- paddlex/modules/instance_segmentation/dataset_checker/__init__.py +15 -0
- paddlex/modules/keypoint_detection/__init__.py +18 -0
- paddlex/modules/keypoint_detection/dataset_checker/__init__.py +56 -0
- paddlex/modules/keypoint_detection/dataset_checker/dataset_src/__init__.py +15 -0
- paddlex/modules/keypoint_detection/dataset_checker/dataset_src/check_dataset.py +86 -0
- paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/visualizer.py +119 -0
- paddlex/modules/keypoint_detection/evaluator.py +41 -0
- paddlex/modules/keypoint_detection/exportor.py +22 -0
- paddlex/modules/keypoint_detection/model_list.py +16 -0
- paddlex/modules/keypoint_detection/trainer.py +39 -0
- paddlex/modules/multilingual_speech_recognition/__init__.py +18 -0
- paddlex/modules/multilingual_speech_recognition/dataset_checker.py +27 -0
- paddlex/modules/multilingual_speech_recognition/evaluator.py +27 -0
- paddlex/modules/multilingual_speech_recognition/exportor.py +27 -0
- paddlex/modules/multilingual_speech_recognition/model_list.py +22 -0
- paddlex/modules/multilingual_speech_recognition/trainer.py +40 -0
- paddlex/modules/object_detection/evaluator.py +12 -1
- paddlex/modules/object_detection/model_list.py +10 -0
- paddlex/modules/object_detection/trainer.py +15 -1
- paddlex/modules/open_vocabulary_detection/__init__.py +18 -0
- paddlex/modules/open_vocabulary_detection/dataset_checker.py +29 -0
- paddlex/modules/open_vocabulary_detection/evaluator.py +29 -0
- paddlex/modules/open_vocabulary_detection/exportor.py +29 -0
- paddlex/modules/open_vocabulary_detection/model_list.py +18 -0
- paddlex/modules/open_vocabulary_detection/trainer.py +42 -0
- paddlex/modules/open_vocabulary_segmentation/__init__.py +18 -0
- paddlex/modules/open_vocabulary_segmentation/dataset_checker.py +29 -0
- paddlex/modules/open_vocabulary_segmentation/evaluator.py +29 -0
- paddlex/modules/open_vocabulary_segmentation/exportor.py +29 -0
- paddlex/modules/open_vocabulary_segmentation/model_list.py +19 -0
- paddlex/modules/open_vocabulary_segmentation/trainer.py +42 -0
- paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +15 -0
- paddlex/modules/semantic_segmentation/exportor.py +9 -0
- paddlex/modules/semantic_segmentation/model_list.py +2 -0
- paddlex/modules/semantic_segmentation/trainer.py +2 -0
- paddlex/modules/table_recognition/dataset_checker/__init__.py +16 -1
- paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +13 -14
- paddlex/modules/table_recognition/model_list.py +2 -0
- paddlex/modules/text_detection/dataset_checker/__init__.py +16 -1
- paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +13 -3
- paddlex/modules/text_detection/model_list.py +2 -0
- paddlex/modules/text_recognition/dataset_checker/__init__.py +16 -4
- paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +13 -3
- paddlex/modules/text_recognition/evaluator.py +4 -3
- paddlex/modules/text_recognition/exportor.py +0 -3
- paddlex/modules/text_recognition/model_list.py +14 -0
- paddlex/modules/text_recognition/trainer.py +4 -3
- paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +15 -0
- paddlex/modules/ts_anomaly_detection/trainer.py +17 -1
- paddlex/modules/ts_classification/dataset_checker/__init__.py +15 -0
- paddlex/modules/ts_classification/trainer.py +17 -1
- paddlex/modules/ts_forecast/dataset_checker/__init__.py +15 -0
- paddlex/modules/ts_forecast/trainer.py +17 -1
- paddlex/modules/video_classification/__init__.py +18 -0
- paddlex/modules/video_classification/dataset_checker/__init__.py +93 -0
- paddlex/modules/video_classification/dataset_checker/dataset_src/__init__.py +18 -0
- paddlex/modules/video_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
- paddlex/modules/video_classification/dataset_checker/dataset_src/check_dataset.py +121 -0
- paddlex/modules/video_classification/dataset_checker/dataset_src/split_dataset.py +82 -0
- paddlex/modules/video_classification/evaluator.py +44 -0
- paddlex/modules/video_classification/exportor.py +22 -0
- paddlex/modules/video_classification/model_list.py +19 -0
- paddlex/modules/video_classification/trainer.py +88 -0
- paddlex/modules/video_detection/__init__.py +18 -0
- paddlex/modules/video_detection/dataset_checker/__init__.py +86 -0
- paddlex/modules/video_detection/dataset_checker/dataset_src/__init__.py +17 -0
- paddlex/modules/video_detection/dataset_checker/dataset_src/analyse_dataset.py +101 -0
- paddlex/modules/video_detection/dataset_checker/dataset_src/check_dataset.py +134 -0
- paddlex/modules/video_detection/evaluator.py +42 -0
- paddlex/modules/video_detection/exportor.py +22 -0
- paddlex/modules/video_detection/model_list.py +15 -0
- paddlex/modules/video_detection/trainer.py +82 -0
- paddlex/ops/__init__.py +149 -0
- paddlex/ops/iou3d_nms/iou3d_cpu.cpp +264 -0
- paddlex/ops/iou3d_nms/iou3d_cpu.h +27 -0
- paddlex/ops/iou3d_nms/iou3d_nms.cpp +204 -0
- paddlex/ops/iou3d_nms/iou3d_nms.h +33 -0
- paddlex/ops/iou3d_nms/iou3d_nms_api.cpp +108 -0
- paddlex/ops/iou3d_nms/iou3d_nms_kernel.cu +482 -0
- paddlex/ops/setup.py +37 -0
- paddlex/ops/voxel/voxelize_op.cc +191 -0
- paddlex/ops/voxel/voxelize_op.cu +346 -0
- paddlex/paddle2onnx_requirements.txt +1 -0
- paddlex/paddlex_cli.py +339 -72
- paddlex/repo_apis/Paddle3D_api/__init__.py +17 -0
- paddlex/repo_apis/Paddle3D_api/bev_fusion/__init__.py +18 -0
- paddlex/repo_apis/Paddle3D_api/bev_fusion/config.py +118 -0
- paddlex/repo_apis/Paddle3D_api/bev_fusion/model.py +238 -0
- paddlex/repo_apis/Paddle3D_api/bev_fusion/register.py +55 -0
- paddlex/repo_apis/Paddle3D_api/bev_fusion/runner.py +104 -0
- paddlex/repo_apis/Paddle3D_api/pp3d_config.py +144 -0
- paddlex/repo_apis/PaddleClas_api/cls/model.py +6 -0
- paddlex/repo_apis/PaddleClas_api/cls/register.py +20 -2
- paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +8 -4
- paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +6 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/config.py +27 -5
- paddlex/repo_apis/PaddleDetection_api/object_det/model.py +6 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +81 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/register.py +182 -3
- paddlex/repo_apis/PaddleOCR_api/__init__.py +1 -0
- paddlex/repo_apis/PaddleOCR_api/formula_rec/__init__.py +16 -0
- paddlex/repo_apis/PaddleOCR_api/formula_rec/config.py +570 -0
- paddlex/repo_apis/PaddleOCR_api/formula_rec/model.py +402 -0
- paddlex/repo_apis/PaddleOCR_api/formula_rec/register.py +73 -0
- paddlex/repo_apis/PaddleOCR_api/formula_rec/runner.py +240 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +18 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/register.py +18 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +21 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +6 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +126 -7
- paddlex/repo_apis/PaddleSeg_api/seg/config.py +9 -0
- paddlex/repo_apis/PaddleSeg_api/seg/model.py +10 -0
- paddlex/repo_apis/PaddleSeg_api/seg/register.py +20 -0
- paddlex/repo_apis/PaddleTS_api/ts_base/config.py +24 -0
- paddlex/repo_apis/PaddleTS_api/ts_base/model.py +11 -7
- paddlex/repo_apis/PaddleVideo_api/__init__.py +17 -0
- paddlex/repo_apis/PaddleVideo_api/config_utils.py +51 -0
- paddlex/repo_apis/PaddleVideo_api/video_cls/__init__.py +19 -0
- paddlex/repo_apis/PaddleVideo_api/video_cls/config.py +547 -0
- paddlex/repo_apis/PaddleVideo_api/video_cls/model.py +346 -0
- paddlex/repo_apis/PaddleVideo_api/video_cls/register.py +71 -0
- paddlex/repo_apis/PaddleVideo_api/video_cls/runner.py +205 -0
- paddlex/repo_apis/PaddleVideo_api/video_det/__init__.py +19 -0
- paddlex/repo_apis/PaddleVideo_api/video_det/config.py +548 -0
- paddlex/repo_apis/PaddleVideo_api/video_det/model.py +298 -0
- paddlex/repo_apis/PaddleVideo_api/video_det/register.py +45 -0
- paddlex/repo_apis/PaddleVideo_api/video_det/runner.py +200 -0
- paddlex/repo_apis/base/runner.py +2 -1
- paddlex/repo_manager/meta.py +29 -2
- paddlex/repo_manager/repo.py +24 -5
- paddlex/repo_manager/requirements.txt +10 -7
- paddlex/repo_manager/utils.py +62 -1
- paddlex/serving_requirements.txt +9 -0
- paddlex/utils/config.py +4 -3
- paddlex/utils/custom_device_whitelist.py +457 -0
- paddlex/utils/device.py +74 -26
- paddlex/utils/env.py +28 -0
- paddlex/utils/flags.py +4 -0
- paddlex/utils/fonts/__init__.py +48 -5
- paddlex/utils/lazy_loader.py +2 -0
- paddlex/utils/logging.py +1 -2
- paddlex/utils/pipeline_arguments.py +711 -0
- paddlex-3.0.0rc0.dist-info/METADATA +1035 -0
- paddlex-3.0.0rc0.dist-info/RECORD +1015 -0
- paddlex-3.0.0rc0.dist-info/WHEEL +5 -0
- paddlex/configs/face_recognition/MobileFaceNet.yaml +0 -44
- paddlex/configs/face_recognition/ResNet50_face.yaml +0 -44
- paddlex/configs/formula_recognition/LaTeX_OCR_rec.yaml +0 -40
- paddlex/configs/image_classification/CLIP_vit_base_patch16_224.yaml +0 -41
- paddlex/configs/image_classification/CLIP_vit_large_patch14_224.yaml +0 -41
- paddlex/configs/image_classification/ConvNeXt_large_384.yaml +0 -41
- paddlex/configs/object_detection/YOLOX-X.yaml +0 -40
- paddlex/configs/semantic_segmentation/SeaFormer_base.yaml +0 -40
- paddlex/configs/semantic_segmentation/SeaFormer_large.yaml +0 -40
- paddlex/configs/semantic_segmentation/SeaFormer_small.yaml +0 -40
- paddlex/configs/semantic_segmentation/SeaFormer_tiny.yaml +0 -40
- paddlex/inference/components/__init__.py +0 -18
- paddlex/inference/components/base.py +0 -292
- paddlex/inference/components/llm/__init__.py +0 -25
- paddlex/inference/components/llm/base.py +0 -65
- paddlex/inference/components/llm/erniebot.py +0 -212
- paddlex/inference/components/paddle_predictor/__init__.py +0 -20
- paddlex/inference/components/paddle_predictor/predictor.py +0 -332
- paddlex/inference/components/retrieval/__init__.py +0 -15
- paddlex/inference/components/retrieval/faiss.py +0 -359
- paddlex/inference/components/task_related/__init__.py +0 -33
- paddlex/inference/components/task_related/clas.py +0 -124
- paddlex/inference/components/task_related/det.py +0 -284
- paddlex/inference/components/task_related/instance_seg.py +0 -89
- paddlex/inference/components/task_related/seal_det_warp.py +0 -940
- paddlex/inference/components/task_related/seg.py +0 -40
- paddlex/inference/components/task_related/table_rec.py +0 -191
- paddlex/inference/components/task_related/text_det.py +0 -895
- paddlex/inference/components/task_related/text_rec.py +0 -353
- paddlex/inference/components/task_related/warp.py +0 -43
- paddlex/inference/components/transforms/__init__.py +0 -16
- paddlex/inference/components/transforms/image/__init__.py +0 -15
- paddlex/inference/components/transforms/image/common.py +0 -598
- paddlex/inference/components/transforms/image/funcs.py +0 -58
- paddlex/inference/components/transforms/read_data.py +0 -67
- paddlex/inference/components/transforms/ts/__init__.py +0 -15
- paddlex/inference/components/transforms/ts/common.py +0 -393
- paddlex/inference/components/transforms/ts/funcs.py +0 -424
- paddlex/inference/models/anomaly_detection.py +0 -87
- paddlex/inference/models/base/base_predictor.py +0 -76
- paddlex/inference/models/base/basic_predictor.py +0 -122
- paddlex/inference/models/face_recognition.py +0 -21
- paddlex/inference/models/formula_recognition.py +0 -55
- paddlex/inference/models/general_recognition.py +0 -99
- paddlex/inference/models/image_classification.py +0 -101
- paddlex/inference/models/image_unwarping.py +0 -43
- paddlex/inference/models/instance_segmentation.py +0 -66
- paddlex/inference/models/multilabel_classification.py +0 -33
- paddlex/inference/models/object_detection.py +0 -129
- paddlex/inference/models/semantic_segmentation.py +0 -86
- paddlex/inference/models/table_recognition.py +0 -106
- paddlex/inference/models/text_detection.py +0 -105
- paddlex/inference/models/text_recognition.py +0 -78
- paddlex/inference/models/ts_ad.py +0 -68
- paddlex/inference/models/ts_cls.py +0 -57
- paddlex/inference/models/ts_fc.py +0 -73
- paddlex/inference/pipelines/attribute_recognition.py +0 -92
- paddlex/inference/pipelines/face_recognition.py +0 -49
- paddlex/inference/pipelines/formula_recognition.py +0 -102
- paddlex/inference/pipelines/layout_parsing/layout_parsing.py +0 -362
- paddlex/inference/pipelines/ocr.py +0 -80
- paddlex/inference/pipelines/pp_shitu_v2.py +0 -152
- paddlex/inference/pipelines/ppchatocrv3/__init__.py +0 -15
- paddlex/inference/pipelines/ppchatocrv3/ch_prompt.yaml +0 -14
- paddlex/inference/pipelines/ppchatocrv3/ppchatocrv3.py +0 -717
- paddlex/inference/pipelines/ppchatocrv3/utils.py +0 -168
- paddlex/inference/pipelines/seal_recognition.py +0 -152
- paddlex/inference/pipelines/serving/__init__.py +0 -17
- paddlex/inference/pipelines/serving/_pipeline_apps/__init__.py +0 -205
- paddlex/inference/pipelines/serving/_pipeline_apps/anomaly_detection.py +0 -80
- paddlex/inference/pipelines/serving/_pipeline_apps/face_recognition.py +0 -317
- paddlex/inference/pipelines/serving/_pipeline_apps/formula_recognition.py +0 -119
- paddlex/inference/pipelines/serving/_pipeline_apps/image_classification.py +0 -101
- paddlex/inference/pipelines/serving/_pipeline_apps/instance_segmentation.py +0 -112
- paddlex/inference/pipelines/serving/_pipeline_apps/layout_parsing.py +0 -205
- paddlex/inference/pipelines/serving/_pipeline_apps/multi_label_image_classification.py +0 -90
- paddlex/inference/pipelines/serving/_pipeline_apps/object_detection.py +0 -90
- paddlex/inference/pipelines/serving/_pipeline_apps/ocr.py +0 -98
- paddlex/inference/pipelines/serving/_pipeline_apps/pedestrian_attribute_recognition.py +0 -102
- paddlex/inference/pipelines/serving/_pipeline_apps/pp_shitu_v2.py +0 -319
- paddlex/inference/pipelines/serving/_pipeline_apps/ppchatocrv3.py +0 -445
- paddlex/inference/pipelines/serving/_pipeline_apps/seal_recognition.py +0 -110
- paddlex/inference/pipelines/serving/_pipeline_apps/semantic_segmentation.py +0 -82
- paddlex/inference/pipelines/serving/_pipeline_apps/small_object_detection.py +0 -92
- paddlex/inference/pipelines/serving/_pipeline_apps/table_recognition.py +0 -110
- paddlex/inference/pipelines/serving/_pipeline_apps/ts_ad.py +0 -68
- paddlex/inference/pipelines/serving/_pipeline_apps/ts_cls.py +0 -68
- paddlex/inference/pipelines/serving/_pipeline_apps/ts_fc.py +0 -68
- paddlex/inference/pipelines/serving/_pipeline_apps/vehicle_attribute_recognition.py +0 -102
- paddlex/inference/pipelines/serving/app.py +0 -164
- paddlex/inference/pipelines/serving/models.py +0 -30
- paddlex/inference/pipelines/serving/server.py +0 -25
- paddlex/inference/pipelines/serving/storage.py +0 -161
- paddlex/inference/pipelines/serving/utils.py +0 -190
- paddlex/inference/pipelines/single_model_pipeline.py +0 -76
- paddlex/inference/pipelines/table_recognition/table_recognition.py +0 -193
- paddlex/inference/results/__init__.py +0 -31
- paddlex/inference/results/attribute_rec.py +0 -89
- paddlex/inference/results/base.py +0 -43
- paddlex/inference/results/chat_ocr.py +0 -158
- paddlex/inference/results/clas.py +0 -133
- paddlex/inference/results/det.py +0 -86
- paddlex/inference/results/face_rec.py +0 -34
- paddlex/inference/results/formula_rec.py +0 -363
- paddlex/inference/results/instance_seg.py +0 -152
- paddlex/inference/results/ocr.py +0 -157
- paddlex/inference/results/seal_rec.py +0 -50
- paddlex/inference/results/seg.py +0 -72
- paddlex/inference/results/shitu.py +0 -35
- paddlex/inference/results/table_rec.py +0 -109
- paddlex/inference/results/text_det.py +0 -33
- paddlex/inference/results/text_rec.py +0 -66
- paddlex/inference/results/ts.py +0 -37
- paddlex/inference/results/utils/mixin.py +0 -204
- paddlex/inference/results/warp.py +0 -31
- paddlex/inference/utils/process_hook.py +0 -54
- paddlex/pipelines/OCR.yaml +0 -8
- paddlex/pipelines/PP-ChatOCRv3-doc.yaml +0 -27
- paddlex/pipelines/PP-ShiTuV2.yaml +0 -13
- paddlex/pipelines/anomaly_detection.yaml +0 -7
- paddlex/pipelines/face_recognition.yaml +0 -13
- paddlex/pipelines/formula_recognition.yaml +0 -8
- paddlex/pipelines/image_classification.yaml +0 -7
- paddlex/pipelines/instance_segmentation.yaml +0 -7
- paddlex/pipelines/layout_parsing.yaml +0 -14
- paddlex/pipelines/multi_label_image_classification.yaml +0 -7
- paddlex/pipelines/object_detection.yaml +0 -7
- paddlex/pipelines/pedestrian_attribute_recognition.yaml +0 -7
- paddlex/pipelines/seal_recognition.yaml +0 -10
- paddlex/pipelines/semantic_segmentation.yaml +0 -7
- paddlex/pipelines/small_object_detection.yaml +0 -7
- paddlex/pipelines/table_recognition.yaml +0 -12
- paddlex/pipelines/ts_ad.yaml +0 -7
- paddlex/pipelines/ts_cls.yaml +0 -7
- paddlex/pipelines/ts_fc.yaml +0 -7
- paddlex/pipelines/vehicle_attribute_recognition.yaml +0 -7
- paddlex/utils/fonts/PingFang-SC-Regular.ttf +0 -0
- paddlex-3.0.0b2.dist-info/METADATA +0 -760
- paddlex-3.0.0b2.dist-info/RECORD +0 -646
- paddlex-3.0.0b2.dist-info/WHEEL +0 -5
- /paddlex/configs/{doc_text_orientation → modules/doc_text_orientation}/PP-LCNet_x1_0_doc_ori.yaml +0 -0
- /paddlex/configs/{face_detection → modules/face_detection}/BlazeFace-FPN-SSH.yaml +0 -0
- /paddlex/configs/{face_detection → modules/face_detection}/BlazeFace.yaml +0 -0
- /paddlex/configs/{face_detection → modules/face_detection}/PP-YOLOE_plus-S_face.yaml +0 -0
- /paddlex/configs/{face_detection → modules/face_detection}/PicoDet_LCNet_x2_5_face.yaml +0 -0
- /paddlex/configs/{human_detection → modules/human_detection}/PP-YOLOE-L_human.yaml +0 -0
- /paddlex/configs/{human_detection → modules/human_detection}/PP-YOLOE-S_human.yaml +0 -0
- /paddlex/configs/{anomaly_detection → modules/image_anomaly_detection}/STFPM.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/ConvNeXt_base_224.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/ConvNeXt_base_384.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/ConvNeXt_large_224.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/ConvNeXt_small.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/ConvNeXt_tiny.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/FasterNet-L.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/FasterNet-M.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/FasterNet-S.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/FasterNet-T0.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/FasterNet-T1.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/FasterNet-T2.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV1_x0_25.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV1_x0_5.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV1_x0_75.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV1_x1_0.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV2_x0_25.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV2_x0_5.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV2_x1_0.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV2_x1_5.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV2_x2_0.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_large_x0_35.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_large_x0_5.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_large_x0_75.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_large_x1_0.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_large_x1_25.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_small_x0_35.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_small_x0_5.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_small_x0_75.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_small_x1_0.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV3_small_x1_25.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV4_conv_large.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV4_conv_medium.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV4_conv_small.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV4_hybrid_large.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/MobileNetV4_hybrid_medium.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNetV2-B0.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNetV2-B1.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNetV2-B2.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNetV2-B3.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNetV2-B4.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNetV2-B5.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNetV2-B6.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNet_base.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNet_small.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/PP-HGNet_tiny.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNetV2_base.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNetV2_large.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNetV2_small.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x0_25.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x0_35.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x0_5.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x0_75.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x1_0.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x1_5.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x2_0.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/PP-LCNet_x2_5.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/ResNet101.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/ResNet101_vd.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/ResNet152.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/ResNet152_vd.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/ResNet18.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/ResNet18_vd.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/ResNet200_vd.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/ResNet34.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/ResNet34_vd.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/ResNet50.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/ResNet50_vd.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/StarNet-S1.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/StarNet-S2.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/StarNet-S3.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/StarNet-S4.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/SwinTransformer_base_patch4_window12_384.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/SwinTransformer_base_patch4_window7_224.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/SwinTransformer_large_patch4_window12_384.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/SwinTransformer_large_patch4_window7_224.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/SwinTransformer_small_patch4_window7_224.yaml +0 -0
- /paddlex/configs/{image_classification → modules/image_classification}/SwinTransformer_tiny_patch4_window7_224.yaml +0 -0
- /paddlex/configs/{general_recognition → modules/image_feature}/PP-ShiTuV2_rec.yaml +0 -0
- /paddlex/configs/{general_recognition → modules/image_feature}/PP-ShiTuV2_rec_CLIP_vit_base.yaml +0 -0
- /paddlex/configs/{general_recognition → modules/image_feature}/PP-ShiTuV2_rec_CLIP_vit_large.yaml +0 -0
- /paddlex/configs/{multilabel_classification → modules/image_multilabel_classification}/CLIP_vit_base_patch16_448_ML.yaml +0 -0
- /paddlex/configs/{multilabel_classification → modules/image_multilabel_classification}/PP-HGNetV2-B0_ML.yaml +0 -0
- /paddlex/configs/{multilabel_classification → modules/image_multilabel_classification}/PP-HGNetV2-B4_ML.yaml +0 -0
- /paddlex/configs/{multilabel_classification → modules/image_multilabel_classification}/PP-HGNetV2-B6_ML.yaml +0 -0
- /paddlex/configs/{multilabel_classification → modules/image_multilabel_classification}/PP-LCNet_x1_0_ML.yaml +0 -0
- /paddlex/configs/{multilabel_classification → modules/image_multilabel_classification}/ResNet50_ML.yaml +0 -0
- /paddlex/configs/{image_unwarping → modules/image_unwarping}/UVDoc.yaml +0 -0
- /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/Cascade-MaskRCNN-ResNet50-FPN.yaml +0 -0
- /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +0 -0
- /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/Mask-RT-DETR-H.yaml +0 -0
- /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/Mask-RT-DETR-L.yaml +0 -0
- /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/Mask-RT-DETR-M.yaml +0 -0
- /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/Mask-RT-DETR-S.yaml +0 -0
- /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/Mask-RT-DETR-X.yaml +0 -0
- /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/MaskRCNN-ResNeXt101-vd-FPN.yaml +0 -0
- /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/MaskRCNN-ResNet101-FPN.yaml +0 -0
- /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/MaskRCNN-ResNet101-vd-FPN.yaml +0 -0
- /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/MaskRCNN-ResNet50-FPN.yaml +0 -0
- /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/MaskRCNN-ResNet50-vd-FPN.yaml +0 -0
- /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/MaskRCNN-ResNet50.yaml +0 -0
- /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/PP-YOLOE_seg-S.yaml +0 -0
- /paddlex/configs/{instance_segmentation → modules/instance_segmentation}/SOLOv2.yaml +0 -0
- /paddlex/configs/{structure_analysis → modules/layout_detection}/PicoDet-L_layout_17cls.yaml +0 -0
- /paddlex/configs/{structure_analysis → modules/layout_detection}/PicoDet-L_layout_3cls.yaml +0 -0
- /paddlex/configs/{structure_analysis → modules/layout_detection}/PicoDet-S_layout_17cls.yaml +0 -0
- /paddlex/configs/{structure_analysis → modules/layout_detection}/PicoDet-S_layout_3cls.yaml +0 -0
- /paddlex/configs/{structure_analysis → modules/layout_detection}/PicoDet_layout_1x.yaml +0 -0
- /paddlex/configs/{structure_analysis → modules/layout_detection}/PicoDet_layout_1x_table.yaml +0 -0
- /paddlex/configs/{structure_analysis → modules/layout_detection}/RT-DETR-H_layout_17cls.yaml +0 -0
- /paddlex/configs/{structure_analysis → modules/layout_detection}/RT-DETR-H_layout_3cls.yaml +0 -0
- /paddlex/configs/{mainbody_detection → modules/mainbody_detection}/PP-ShiTuV2_det.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/Cascade-FasterRCNN-ResNet50-FPN.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/CenterNet-DLA-34.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/CenterNet-ResNet50.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/DETR-R50.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/FCOS-ResNet50.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNeXt101-vd-FPN.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNet101-FPN.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNet101.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNet34-FPN.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNet50-FPN.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNet50-vd-FPN.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-ResNet50.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/FasterRCNN-Swin-Tiny-FPN.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/PP-YOLOE_plus-L.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/PP-YOLOE_plus-M.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/PP-YOLOE_plus-S.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/PP-YOLOE_plus-X.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/PicoDet-L.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/PicoDet-M.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/PicoDet-S.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/PicoDet-XS.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/RT-DETR-H.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/RT-DETR-L.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/RT-DETR-R18.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/RT-DETR-R50.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/RT-DETR-X.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/YOLOX-L.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/YOLOX-M.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/YOLOX-N.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/YOLOX-S.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/YOLOX-T.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/YOLOv3-DarkNet53.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/YOLOv3-MobileNetV3.yaml +0 -0
- /paddlex/configs/{object_detection → modules/object_detection}/YOLOv3-ResNet50_vd_DCN.yaml +0 -0
- /paddlex/configs/{pedestrian_attribute → modules/pedestrian_attribute_recognition}/PP-LCNet_x1_0_pedestrian_attribute.yaml +0 -0
- /paddlex/configs/{text_detection_seal → modules/seal_text_detection}/PP-OCRv4_mobile_seal_det.yaml +0 -0
- /paddlex/configs/{text_detection_seal → modules/seal_text_detection}/PP-OCRv4_server_seal_det.yaml +0 -0
- /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/Deeplabv3-R101.yaml +0 -0
- /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/Deeplabv3-R50.yaml +0 -0
- /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/Deeplabv3_Plus-R101.yaml +0 -0
- /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/Deeplabv3_Plus-R50.yaml +0 -0
- /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/OCRNet_HRNet-W18.yaml +0 -0
- /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/OCRNet_HRNet-W48.yaml +0 -0
- /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/PP-LiteSeg-B.yaml +0 -0
- /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/PP-LiteSeg-T.yaml +0 -0
- /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/SegFormer-B0.yaml +0 -0
- /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/SegFormer-B1.yaml +0 -0
- /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/SegFormer-B2.yaml +0 -0
- /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/SegFormer-B3.yaml +0 -0
- /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/SegFormer-B4.yaml +0 -0
- /paddlex/configs/{semantic_segmentation → modules/semantic_segmentation}/SegFormer-B5.yaml +0 -0
- /paddlex/configs/{small_object_detection → modules/small_object_detection}/PP-YOLOE_plus_SOD-L.yaml +0 -0
- /paddlex/configs/{small_object_detection → modules/small_object_detection}/PP-YOLOE_plus_SOD-S.yaml +0 -0
- /paddlex/configs/{small_object_detection → modules/small_object_detection}/PP-YOLOE_plus_SOD-largesize-L.yaml +0 -0
- /paddlex/configs/{table_recognition → modules/table_structure_recognition}/SLANet.yaml +0 -0
- /paddlex/configs/{table_recognition → modules/table_structure_recognition}/SLANet_plus.yaml +0 -0
- /paddlex/configs/{text_detection → modules/text_detection}/PP-OCRv4_mobile_det.yaml +0 -0
- /paddlex/configs/{text_detection → modules/text_detection}/PP-OCRv4_server_det.yaml +0 -0
- /paddlex/configs/{text_recognition → modules/text_recognition}/PP-OCRv4_mobile_rec.yaml +0 -0
- /paddlex/configs/{text_recognition → modules/text_recognition}/PP-OCRv4_server_rec.yaml +0 -0
- /paddlex/configs/{text_recognition → modules/text_recognition}/ch_RepSVTR_rec.yaml +0 -0
- /paddlex/configs/{text_recognition → modules/text_recognition}/ch_SVTRv2_rec.yaml +0 -0
- /paddlex/configs/{ts_anomaly_detection → modules/ts_anomaly_detection}/AutoEncoder_ad.yaml +0 -0
- /paddlex/configs/{ts_anomaly_detection → modules/ts_anomaly_detection}/DLinear_ad.yaml +0 -0
- /paddlex/configs/{ts_anomaly_detection → modules/ts_anomaly_detection}/Nonstationary_ad.yaml +0 -0
- /paddlex/configs/{ts_anomaly_detection → modules/ts_anomaly_detection}/PatchTST_ad.yaml +0 -0
- /paddlex/configs/{ts_anomaly_detection → modules/ts_anomaly_detection}/TimesNet_ad.yaml +0 -0
- /paddlex/configs/{ts_classification → modules/ts_classification}/TimesNet_cls.yaml +0 -0
- /paddlex/configs/{ts_forecast → modules/ts_forecast}/DLinear.yaml +0 -0
- /paddlex/configs/{ts_forecast → modules/ts_forecast}/NLinear.yaml +0 -0
- /paddlex/configs/{ts_forecast → modules/ts_forecast}/Nonstationary.yaml +0 -0
- /paddlex/configs/{ts_forecast → modules/ts_forecast}/PatchTST.yaml +0 -0
- /paddlex/configs/{ts_forecast → modules/ts_forecast}/RLinear.yaml +0 -0
- /paddlex/configs/{ts_forecast → modules/ts_forecast}/TiDE.yaml +0 -0
- /paddlex/configs/{ts_forecast → modules/ts_forecast}/TimesNet.yaml +0 -0
- /paddlex/configs/{vehicle_attribute → modules/vehicle_attribute_recognition}/PP-LCNet_x1_0_vehicle_attribute.yaml +0 -0
- /paddlex/configs/{vehicle_detection → modules/vehicle_detection}/PP-YOLOE-L_vehicle.yaml +0 -0
- /paddlex/configs/{vehicle_detection → modules/vehicle_detection}/PP-YOLOE-S_vehicle.yaml +0 -0
- /paddlex/inference/{results/utils → common}/__init__.py +0 -0
- {paddlex-3.0.0b2.dist-info → paddlex-3.0.0rc0.dist-info}/LICENSE +0 -0
- {paddlex-3.0.0b2.dist-info → paddlex-3.0.0rc0.dist-info}/entry_points.txt +0 -0
- {paddlex-3.0.0b2.dist-info → paddlex-3.0.0rc0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1941 @@
|
|
1
|
+
# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# Modified from OpenAI Whisper 2022 (https://github.com/openai/whisper/whisper)
|
15
|
+
import os
|
16
|
+
import tqdm
|
17
|
+
import zlib
|
18
|
+
import soundfile
|
19
|
+
import numpy as np
|
20
|
+
import lazy_paddle as paddle
|
21
|
+
|
22
|
+
from dataclasses import dataclass
|
23
|
+
from dataclasses import field
|
24
|
+
from functools import lru_cache
|
25
|
+
from typing import Dict, Iterable, List, Optional, Sequence, Tuple, Union
|
26
|
+
|
27
|
+
from ..common.tokenizer import GPTTokenizer
|
28
|
+
|
29
|
+
__all__ = [
|
30
|
+
"Whisper",
|
31
|
+
"Tokenizer",
|
32
|
+
]
|
33
|
+
|
34
|
+
|
35
|
+
def exact_div(x, y):
|
36
|
+
assert x % y == 0
|
37
|
+
return x // y
|
38
|
+
|
39
|
+
|
40
|
+
_MODELS = ["large"]
|
41
|
+
SAMPLE_RATE = 16000
|
42
|
+
N_FFT = 400
|
43
|
+
N_MELS = 80
|
44
|
+
HOP_LENGTH = 160
|
45
|
+
CHUNK_LENGTH = 30
|
46
|
+
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000: number of samples in a chunk
|
47
|
+
N_FRAMES = exact_div(
|
48
|
+
N_SAMPLES, HOP_LENGTH
|
49
|
+
) # 3000: number of frames in a mel spectrogram input
|
50
|
+
|
51
|
+
|
52
|
+
@dataclass
|
53
|
+
class ModelDimensions:
|
54
|
+
n_mels: int
|
55
|
+
n_audio_ctx: int
|
56
|
+
n_audio_state: int
|
57
|
+
n_audio_head: int
|
58
|
+
n_audio_layer: int
|
59
|
+
n_vocab: int
|
60
|
+
n_text_ctx: int
|
61
|
+
n_text_state: int
|
62
|
+
n_text_head: int
|
63
|
+
n_text_layer: int
|
64
|
+
|
65
|
+
|
66
|
+
LANGUAGES = {
|
67
|
+
"en": "english",
|
68
|
+
"zh": "chinese",
|
69
|
+
"de": "german",
|
70
|
+
"es": "spanish",
|
71
|
+
"ru": "russian",
|
72
|
+
"ko": "korean",
|
73
|
+
"fr": "french",
|
74
|
+
"ja": "japanese",
|
75
|
+
"pt": "portuguese",
|
76
|
+
"tr": "turkish",
|
77
|
+
"pl": "polish",
|
78
|
+
"ca": "catalan",
|
79
|
+
"nl": "dutch",
|
80
|
+
"ar": "arabic",
|
81
|
+
"sv": "swedish",
|
82
|
+
"it": "italian",
|
83
|
+
"id": "indonesian",
|
84
|
+
"hi": "hindi",
|
85
|
+
"fi": "finnish",
|
86
|
+
"vi": "vietnamese",
|
87
|
+
"iw": "hebrew",
|
88
|
+
"uk": "ukrainian",
|
89
|
+
"el": "greek",
|
90
|
+
"ms": "malay",
|
91
|
+
"cs": "czech",
|
92
|
+
"ro": "romanian",
|
93
|
+
"da": "danish",
|
94
|
+
"hu": "hungarian",
|
95
|
+
"ta": "tamil",
|
96
|
+
"no": "norwegian",
|
97
|
+
"th": "thai",
|
98
|
+
"ur": "urdu",
|
99
|
+
"hr": "croatian",
|
100
|
+
"bg": "bulgarian",
|
101
|
+
"lt": "lithuanian",
|
102
|
+
"la": "latin",
|
103
|
+
"mi": "maori",
|
104
|
+
"ml": "malayalam",
|
105
|
+
"cy": "welsh",
|
106
|
+
"sk": "slovak",
|
107
|
+
"te": "telugu",
|
108
|
+
"fa": "persian",
|
109
|
+
"lv": "latvian",
|
110
|
+
"bn": "bengali",
|
111
|
+
"sr": "serbian",
|
112
|
+
"az": "azerbaijani",
|
113
|
+
"sl": "slovenian",
|
114
|
+
"kn": "kannada",
|
115
|
+
"et": "estonian",
|
116
|
+
"mk": "macedonian",
|
117
|
+
"br": "breton",
|
118
|
+
"eu": "basque",
|
119
|
+
"is": "icelandic",
|
120
|
+
"hy": "armenian",
|
121
|
+
"ne": "nepali",
|
122
|
+
"mn": "mongolian",
|
123
|
+
"bs": "bosnian",
|
124
|
+
"kk": "kazakh",
|
125
|
+
"sq": "albanian",
|
126
|
+
"sw": "swahili",
|
127
|
+
"gl": "galician",
|
128
|
+
"mr": "marathi",
|
129
|
+
"pa": "punjabi",
|
130
|
+
"si": "sinhala",
|
131
|
+
"km": "khmer",
|
132
|
+
"sn": "shona",
|
133
|
+
"yo": "yoruba",
|
134
|
+
"so": "somali",
|
135
|
+
"af": "afrikaans",
|
136
|
+
"oc": "occitan",
|
137
|
+
"ka": "georgian",
|
138
|
+
"be": "belarusian",
|
139
|
+
"tg": "tajik",
|
140
|
+
"sd": "sindhi",
|
141
|
+
"gu": "gujarati",
|
142
|
+
"am": "amharic",
|
143
|
+
"yi": "yiddish",
|
144
|
+
"lo": "lao",
|
145
|
+
"uz": "uzbek",
|
146
|
+
"fo": "faroese",
|
147
|
+
"ht": "haitian creole",
|
148
|
+
"ps": "pashto",
|
149
|
+
"tk": "turkmen",
|
150
|
+
"nn": "nynorsk",
|
151
|
+
"mt": "maltese",
|
152
|
+
"sa": "sanskrit",
|
153
|
+
"lb": "luxembourgish",
|
154
|
+
"my": "myanmar",
|
155
|
+
"bo": "tibetan",
|
156
|
+
"tl": "tagalog",
|
157
|
+
"mg": "malagasy",
|
158
|
+
"as": "assamese",
|
159
|
+
"tt": "tatar",
|
160
|
+
"haw": "hawaiian",
|
161
|
+
"ln": "lingala",
|
162
|
+
"ha": "hausa",
|
163
|
+
"ba": "bashkir",
|
164
|
+
"jw": "javanese",
|
165
|
+
"su": "sundanese",
|
166
|
+
}
|
167
|
+
|
168
|
+
# language code lookup by name, with a few language aliases
|
169
|
+
TO_LANGUAGE_CODE = {
|
170
|
+
**{language: code for code, language in LANGUAGES.items()},
|
171
|
+
"burmese": "my",
|
172
|
+
"valencian": "ca",
|
173
|
+
"flemish": "nl",
|
174
|
+
"haitian": "ht",
|
175
|
+
"letzeburgesch": "lb",
|
176
|
+
"pushto": "ps",
|
177
|
+
"panjabi": "pa",
|
178
|
+
"moldavian": "ro",
|
179
|
+
"moldovan": "ro",
|
180
|
+
"sinhalese": "si",
|
181
|
+
"castilian": "es",
|
182
|
+
}
|
183
|
+
|
184
|
+
|
185
|
+
def compression_ratio(text) -> float:
|
186
|
+
return len(text) / len(zlib.compress(text.encode("utf-8")))
|
187
|
+
|
188
|
+
|
189
|
+
def format_timestamp(
|
190
|
+
seconds: float, always_include_hours: bool = False, decimal_marker: str = "."
|
191
|
+
):
|
192
|
+
assert seconds >= 0, "non-negative timestamp expected"
|
193
|
+
milliseconds = round(seconds * 1000.0)
|
194
|
+
|
195
|
+
hours = milliseconds // 3_600_000
|
196
|
+
milliseconds -= hours * 3_600_000
|
197
|
+
|
198
|
+
minutes = milliseconds // 60_000
|
199
|
+
milliseconds -= minutes * 60_000
|
200
|
+
|
201
|
+
seconds = milliseconds // 1_000
|
202
|
+
milliseconds -= seconds * 1_000
|
203
|
+
|
204
|
+
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
|
205
|
+
return (
|
206
|
+
f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
207
|
+
)
|
208
|
+
|
209
|
+
|
210
|
+
@dataclass(frozen=True)
|
211
|
+
class Tokenizer:
|
212
|
+
"""A thin wrapper around `GPTTokenizer` providing quick access to special tokens"""
|
213
|
+
|
214
|
+
tokenizer: "GPTTokenizer"
|
215
|
+
language: Optional[str]
|
216
|
+
sot_sequence: Tuple[int]
|
217
|
+
|
218
|
+
def encode(self, text, **kwargs):
|
219
|
+
return self.tokenizer.encode(text, **kwargs)
|
220
|
+
|
221
|
+
def decode(
|
222
|
+
self, token_ids: Union[int, List[int], np.ndarray, paddle.Tensor], **kwargs
|
223
|
+
):
|
224
|
+
if len(token_ids) > 1:
|
225
|
+
ids_list = []
|
226
|
+
for ids in token_ids:
|
227
|
+
if paddle.is_tensor(ids):
|
228
|
+
ids = ids.item()
|
229
|
+
if ids < len(self.tokenizer):
|
230
|
+
ids_list.append(ids)
|
231
|
+
token_ids = ids_list
|
232
|
+
elif len(token_ids) == 1:
|
233
|
+
token_ids = token_ids[0]
|
234
|
+
else:
|
235
|
+
raise ValueError(f"token_ids {token_ids} load error.")
|
236
|
+
|
237
|
+
return self.tokenizer.decode(token_ids, **kwargs)
|
238
|
+
|
239
|
+
def decode_with_timestamps(self, tokens) -> str:
|
240
|
+
"""
|
241
|
+
Timestamp tokens are above the special tokens' id range and are ignored by `decode()`.
|
242
|
+
This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>".
|
243
|
+
"""
|
244
|
+
outputs = [[]]
|
245
|
+
for token in tokens:
|
246
|
+
if token >= self.timestamp_begin:
|
247
|
+
timestamp = f"<|{(token - self.timestamp_begin) * 0.02:.2f}|>"
|
248
|
+
outputs.append(timestamp)
|
249
|
+
outputs.append([])
|
250
|
+
else:
|
251
|
+
outputs[-1].append(token)
|
252
|
+
outputs = [
|
253
|
+
s if isinstance(s, str) else self.tokenizer.decode(s) for s in outputs
|
254
|
+
]
|
255
|
+
return "".join(outputs)
|
256
|
+
|
257
|
+
@property
|
258
|
+
@lru_cache()
|
259
|
+
def eot(self) -> int:
|
260
|
+
return self.tokenizer.eos_token_id
|
261
|
+
|
262
|
+
@property
|
263
|
+
@lru_cache()
|
264
|
+
def sot(self) -> int:
|
265
|
+
return self._get_single_token_id("<|startoftranscript|>")
|
266
|
+
|
267
|
+
@property
|
268
|
+
@lru_cache()
|
269
|
+
def sot_lm(self) -> int:
|
270
|
+
return self._get_single_token_id("<|startoflm|>")
|
271
|
+
|
272
|
+
@property
|
273
|
+
@lru_cache()
|
274
|
+
def sot_prev(self) -> int:
|
275
|
+
return self._get_single_token_id("<|startofprev|>")
|
276
|
+
|
277
|
+
@property
|
278
|
+
@lru_cache()
|
279
|
+
def no_speech(self) -> int:
|
280
|
+
return self._get_single_token_id("<|nospeech|>")
|
281
|
+
|
282
|
+
@property
|
283
|
+
@lru_cache()
|
284
|
+
def no_timestamps(self) -> int:
|
285
|
+
return self._get_single_token_id("<|notimestamps|>")
|
286
|
+
|
287
|
+
@property
|
288
|
+
@lru_cache()
|
289
|
+
def timestamp_begin(self) -> int:
|
290
|
+
return self.tokenizer.all_special_ids[-1] + 1
|
291
|
+
|
292
|
+
@property
|
293
|
+
@lru_cache()
|
294
|
+
def language_token(self) -> int:
|
295
|
+
"""Returns the token id corresponding to the value of the `language` field"""
|
296
|
+
if self.language is None:
|
297
|
+
raise ValueError("This tokenizer does not have language token configured")
|
298
|
+
|
299
|
+
additional_tokens = dict(
|
300
|
+
zip(
|
301
|
+
self.tokenizer.additional_special_tokens,
|
302
|
+
self.tokenizer.additional_special_tokens_ids,
|
303
|
+
)
|
304
|
+
)
|
305
|
+
candidate = f"<|{self.language}|>"
|
306
|
+
if candidate in additional_tokens:
|
307
|
+
return additional_tokens[candidate]
|
308
|
+
|
309
|
+
raise KeyError(f"Language {self.language} not found in tokenizer.")
|
310
|
+
|
311
|
+
@property
|
312
|
+
@lru_cache()
|
313
|
+
def all_language_tokens(self) -> Tuple[int]:
|
314
|
+
result = []
|
315
|
+
for token, token_id in zip(
|
316
|
+
self.tokenizer.additional_special_tokens,
|
317
|
+
self.tokenizer.additional_special_tokens_ids,
|
318
|
+
):
|
319
|
+
if token.strip("<|>") in LANGUAGES:
|
320
|
+
result.append(token_id)
|
321
|
+
return tuple(result)
|
322
|
+
|
323
|
+
@property
|
324
|
+
@lru_cache()
|
325
|
+
def all_language_codes(self) -> Tuple[str]:
|
326
|
+
return tuple(self.decode([l]).strip("<|>") for l in self.all_language_tokens)
|
327
|
+
|
328
|
+
@property
|
329
|
+
@lru_cache()
|
330
|
+
def sot_sequence_including_notimestamps(self) -> Tuple[int]:
|
331
|
+
return tuple(list(self.sot_sequence) + [self.no_timestamps])
|
332
|
+
|
333
|
+
@property
|
334
|
+
@lru_cache()
|
335
|
+
def non_speech_tokens(self) -> Tuple[int]:
|
336
|
+
"""
|
337
|
+
Returns the list of tokens to suppress in order to avoid any speaker tags or non-speech
|
338
|
+
annotations, to prevent sampling texts that are not actually spoken in the audio, e.g.
|
339
|
+
|
340
|
+
- ♪♪♪
|
341
|
+
- ( SPEAKING FOREIGN LANGUAGE )
|
342
|
+
- [DAVID] Hey there,
|
343
|
+
|
344
|
+
keeping basic punctuations like commas, periods, question marks, exclamation points, etc.
|
345
|
+
"""
|
346
|
+
symbols = list('"#()*+/:;<=>@[\\]^_`{|}~「」『』')
|
347
|
+
symbols += (
|
348
|
+
"<< >> <<< >>> -- --- -( -[ (' (\" (( )) ((( ))) [[ ]] {{ }} ♪♪ ♪♪♪".split()
|
349
|
+
)
|
350
|
+
|
351
|
+
# symbols that may be a single token or multiple tokens depending on the tokenizer.
|
352
|
+
# In case they're multiple tokens, suppress the first token, which is safe because:
|
353
|
+
# These are between U+2640 and U+267F miscellaneous symbols that are okay to suppress
|
354
|
+
# in generations, and in the 3-byte UTF-8 representation they share the first two bytes.
|
355
|
+
miscellaneous = set("♩♪♫♬♭♮♯")
|
356
|
+
assert all(0x2640 <= ord(c) <= 0x267F for c in miscellaneous)
|
357
|
+
|
358
|
+
# allow hyphens "-" and single quotes "'" between words, but not at the beginning of a word
|
359
|
+
result = {
|
360
|
+
self.tokenizer.encode(" -").input_ids[0],
|
361
|
+
self.tokenizer.encode(" '").input_ids[0],
|
362
|
+
}
|
363
|
+
for symbol in symbols + list(miscellaneous):
|
364
|
+
for tokens in [
|
365
|
+
self.tokenizer.encode(symbol).input_ids,
|
366
|
+
self.tokenizer.encode(" " + symbol).input_ids,
|
367
|
+
]:
|
368
|
+
if len(tokens) == 1 or symbol in miscellaneous:
|
369
|
+
result.add(tokens[0])
|
370
|
+
|
371
|
+
return tuple(sorted(result))
|
372
|
+
|
373
|
+
def _get_single_token_id(self, text) -> int:
|
374
|
+
tokens = self.tokenizer.encode(text).input_ids
|
375
|
+
assert len(tokens) == 1, f"{text} is not encoded as a single token"
|
376
|
+
return tokens[0]
|
377
|
+
|
378
|
+
|
379
|
+
@lru_cache(maxsize=None)
|
380
|
+
def build_tokenizer(resource_path: str, name: str = "gpt2"):
|
381
|
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
382
|
+
path = os.path.join(resource_path, "assets", name)
|
383
|
+
tokenizer = GPTTokenizer.from_pretrained(path)
|
384
|
+
|
385
|
+
specials = [
|
386
|
+
"<|startoftranscript|>",
|
387
|
+
*[f"<|{lang}|>" for lang in LANGUAGES.keys()],
|
388
|
+
"<|translate|>",
|
389
|
+
"<|transcribe|>",
|
390
|
+
"<|startoflm|>",
|
391
|
+
"<|startofprev|>",
|
392
|
+
"<|nospeech|>",
|
393
|
+
"<|notimestamps|>",
|
394
|
+
]
|
395
|
+
|
396
|
+
tokenizer.add_special_tokens(dict(additional_special_tokens=specials))
|
397
|
+
return tokenizer
|
398
|
+
|
399
|
+
|
400
|
+
@lru_cache(maxsize=None)
|
401
|
+
def get_tokenizer(
|
402
|
+
multilingual: bool,
|
403
|
+
resource_path: str,
|
404
|
+
*,
|
405
|
+
task: Optional[str] = None, # Literal["transcribe", "translate", None]
|
406
|
+
language: Optional[str] = None,
|
407
|
+
) -> Tokenizer:
|
408
|
+
if language is not None:
|
409
|
+
language = language.lower()
|
410
|
+
if language not in LANGUAGES:
|
411
|
+
if language in TO_LANGUAGE_CODE:
|
412
|
+
language = TO_LANGUAGE_CODE[language]
|
413
|
+
else:
|
414
|
+
raise ValueError(f"Unsupported language: {language}")
|
415
|
+
|
416
|
+
if multilingual:
|
417
|
+
tokenizer_name = "multilingual"
|
418
|
+
task = task or "transcribe"
|
419
|
+
language = language or "en"
|
420
|
+
else:
|
421
|
+
tokenizer_name = "gpt2"
|
422
|
+
task = None
|
423
|
+
language = None
|
424
|
+
|
425
|
+
tokenizer = build_tokenizer(resource_path=resource_path, name=tokenizer_name)
|
426
|
+
all_special_ids: List[int] = tokenizer.all_special_ids
|
427
|
+
sot: int = all_special_ids[1]
|
428
|
+
translate: int = all_special_ids[-6]
|
429
|
+
transcribe: int = all_special_ids[-5]
|
430
|
+
|
431
|
+
langs = tuple(LANGUAGES.keys())
|
432
|
+
sot_sequence = [sot]
|
433
|
+
if language is not None:
|
434
|
+
sot_sequence.append(sot + 1 + langs.index(language))
|
435
|
+
if task is not None:
|
436
|
+
sot_sequence.append(transcribe if task == "transcribe" else translate)
|
437
|
+
|
438
|
+
return Tokenizer(
|
439
|
+
tokenizer=tokenizer, language=language, sot_sequence=tuple(sot_sequence)
|
440
|
+
)
|
441
|
+
|
442
|
+
|
443
|
+
class MultiHeadAttention(paddle.nn.Layer):
|
444
|
+
def __init__(self, n_state: int, n_head: int):
|
445
|
+
super().__init__()
|
446
|
+
self.n_head = n_head
|
447
|
+
self.query = paddle.nn.Linear(n_state, n_state, bias_attr=True)
|
448
|
+
self.key = paddle.nn.Linear(n_state, n_state, bias_attr=False)
|
449
|
+
self.value = paddle.nn.Linear(n_state, n_state, bias_attr=True)
|
450
|
+
self.out = paddle.nn.Linear(n_state, n_state, bias_attr=True)
|
451
|
+
|
452
|
+
def forward(
|
453
|
+
self,
|
454
|
+
x: paddle.Tensor,
|
455
|
+
xa: Optional[paddle.Tensor] = None,
|
456
|
+
mask: Optional[paddle.Tensor] = None,
|
457
|
+
kv_cache: Optional[dict] = None,
|
458
|
+
):
|
459
|
+
q = self.query(x)
|
460
|
+
|
461
|
+
if kv_cache is None or xa is None or self.key not in kv_cache:
|
462
|
+
# hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
|
463
|
+
# otherwise, perform key/value projections for self- or cross-attention as usual.
|
464
|
+
k = self.key(x if xa is None else xa)
|
465
|
+
v = self.value(x if xa is None else xa)
|
466
|
+
else:
|
467
|
+
# for cross-attention, calculate keys and values once and reuse in subsequent calls.
|
468
|
+
k = kv_cache[self.key]
|
469
|
+
v = kv_cache[self.value]
|
470
|
+
|
471
|
+
wv = self.qkv_attention(q, k, v, mask)
|
472
|
+
return self.out(wv)
|
473
|
+
|
474
|
+
def qkv_attention(
|
475
|
+
self,
|
476
|
+
q: paddle.Tensor,
|
477
|
+
k: paddle.Tensor,
|
478
|
+
v: paddle.Tensor,
|
479
|
+
mask: Optional[paddle.Tensor] = None,
|
480
|
+
):
|
481
|
+
n_batch, n_ctx, n_state = q.shape
|
482
|
+
scale = (n_state // self.n_head) ** -0.25
|
483
|
+
q = (
|
484
|
+
paddle.transpose(q.reshape([*q.shape[:2], self.n_head, -1]), (0, 2, 1, 3))
|
485
|
+
* scale
|
486
|
+
)
|
487
|
+
k = (
|
488
|
+
paddle.transpose(k.reshape([*k.shape[:2], self.n_head, -1]), (0, 2, 3, 1))
|
489
|
+
* scale
|
490
|
+
)
|
491
|
+
v = paddle.transpose(v.reshape([*v.shape[:2], self.n_head, -1]), (0, 2, 1, 3))
|
492
|
+
|
493
|
+
qk = q @ k
|
494
|
+
if mask is not None:
|
495
|
+
qk = qk + mask[:n_ctx, :n_ctx]
|
496
|
+
|
497
|
+
w = paddle.nn.functional.softmax(qk.astype(q.dtype), axis=-1)
|
498
|
+
return paddle.transpose((w @ v), (0, 2, 1, 3)).flatten(start_axis=2)
|
499
|
+
|
500
|
+
|
501
|
+
class ResidualAttentionBlock(paddle.nn.Layer):
|
502
|
+
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
|
503
|
+
super().__init__()
|
504
|
+
|
505
|
+
self.attn = MultiHeadAttention(n_state, n_head)
|
506
|
+
self.attn_ln = paddle.nn.LayerNorm(n_state)
|
507
|
+
|
508
|
+
self.cross_attn = (
|
509
|
+
MultiHeadAttention(n_state, n_head) if cross_attention else None
|
510
|
+
)
|
511
|
+
self.cross_attn_ln = paddle.nn.LayerNorm(n_state) if cross_attention else None
|
512
|
+
|
513
|
+
n_mlp = n_state * 4
|
514
|
+
self.mlp = paddle.nn.Sequential(
|
515
|
+
paddle.nn.Linear(n_state, n_mlp, bias_attr=True),
|
516
|
+
paddle.nn.GELU(),
|
517
|
+
paddle.nn.Linear(n_mlp, n_state, bias_attr=True),
|
518
|
+
)
|
519
|
+
self.mlp_ln = paddle.nn.LayerNorm(n_state)
|
520
|
+
|
521
|
+
def forward(
|
522
|
+
self,
|
523
|
+
x: paddle.Tensor,
|
524
|
+
xa: Optional[paddle.Tensor] = None,
|
525
|
+
mask: Optional[paddle.Tensor] = None,
|
526
|
+
kv_cache: Optional[dict] = None,
|
527
|
+
):
|
528
|
+
x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)
|
529
|
+
if self.cross_attn:
|
530
|
+
x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)
|
531
|
+
x = x + self.mlp(self.mlp_ln(x))
|
532
|
+
return x
|
533
|
+
|
534
|
+
|
535
|
+
def sinusoids(length, channels, max_timescale=10000):
|
536
|
+
"""Returns sinusoids for positional embedding"""
|
537
|
+
assert channels % 2 == 0
|
538
|
+
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
|
539
|
+
inv_timescales = paddle.exp(
|
540
|
+
-log_timescale_increment * paddle.arange(channels // 2, dtype=paddle.float32)
|
541
|
+
)
|
542
|
+
scaled_time = (
|
543
|
+
paddle.arange(length, dtype=paddle.float32)[:, np.newaxis]
|
544
|
+
* inv_timescales[np.newaxis, :]
|
545
|
+
)
|
546
|
+
return paddle.to_tensor(
|
547
|
+
paddle.concat([paddle.sin(scaled_time), paddle.cos(scaled_time)], axis=1)
|
548
|
+
)
|
549
|
+
|
550
|
+
|
551
|
+
class AudioEncoder(paddle.nn.Layer):
|
552
|
+
def __init__(
|
553
|
+
self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int
|
554
|
+
):
|
555
|
+
super().__init__()
|
556
|
+
self.conv1 = paddle.nn.Conv1D(
|
557
|
+
n_mels, n_state, kernel_size=3, stride=1, padding=1, bias_attr=True
|
558
|
+
)
|
559
|
+
self.conv2 = paddle.nn.Conv1D(
|
560
|
+
n_state, n_state, kernel_size=3, stride=2, padding=1, bias_attr=True
|
561
|
+
)
|
562
|
+
self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state))
|
563
|
+
|
564
|
+
self.blocks: Iterable[ResidualAttentionBlock] = paddle.nn.LayerList(
|
565
|
+
[ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
|
566
|
+
)
|
567
|
+
self.ln_post = paddle.nn.LayerNorm(n_state)
|
568
|
+
|
569
|
+
def forward(self, x: paddle.Tensor):
|
570
|
+
"""
|
571
|
+
x : paddle.Tensor, shape = (batch_size, n_mels, n_ctx)
|
572
|
+
the mel spectrogram of the audio
|
573
|
+
"""
|
574
|
+
x = paddle.nn.functional.gelu(self.conv1(x))
|
575
|
+
x = paddle.nn.functional.gelu(self.conv2(x))
|
576
|
+
x = paddle.transpose(x, (0, 2, 1))
|
577
|
+
|
578
|
+
assert x.shape[1:] == self.positional_embedding.shape, "incorrect audio shape"
|
579
|
+
x = x + self.positional_embedding
|
580
|
+
|
581
|
+
for block in self.blocks:
|
582
|
+
x = block(x)
|
583
|
+
|
584
|
+
x = self.ln_post(x)
|
585
|
+
return x
|
586
|
+
|
587
|
+
|
588
|
+
class TextDecoder(paddle.nn.Layer):
|
589
|
+
def __init__(
|
590
|
+
self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int
|
591
|
+
):
|
592
|
+
super().__init__()
|
593
|
+
|
594
|
+
self.token_embedding = paddle.nn.Embedding(n_vocab, n_state)
|
595
|
+
self.positional_embedding = paddle.create_parameter(
|
596
|
+
shape=[n_ctx, n_state], dtype="float32"
|
597
|
+
)
|
598
|
+
|
599
|
+
self.blocks: Iterable[ResidualAttentionBlock] = paddle.nn.LayerList(
|
600
|
+
[
|
601
|
+
ResidualAttentionBlock(n_state, n_head, cross_attention=True)
|
602
|
+
for _ in range(n_layer)
|
603
|
+
]
|
604
|
+
)
|
605
|
+
self.ln = paddle.nn.LayerNorm(n_state)
|
606
|
+
|
607
|
+
mask = paddle.full(shape=[n_ctx, n_state], fill_value=-np.inf, dtype="float32")
|
608
|
+
mask = paddle.triu(mask, diagonal=1)
|
609
|
+
self.register_buffer("mask", mask, persistable=False)
|
610
|
+
|
611
|
+
def forward(
|
612
|
+
self, x: paddle.Tensor, xa: paddle.Tensor, kv_cache: Optional[dict] = None
|
613
|
+
):
|
614
|
+
"""
|
615
|
+
x : paddle.LongTensor, shape = (batch_size, <= n_ctx)
|
616
|
+
the text tokens
|
617
|
+
xa : paddle.Tensor, shape = (batch_size, n_mels, n_audio_ctx)
|
618
|
+
the encoded audio features to be attended on
|
619
|
+
"""
|
620
|
+
offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0
|
621
|
+
x = (
|
622
|
+
self.token_embedding(x)
|
623
|
+
+ self.positional_embedding[offset : offset + x.shape[-1]]
|
624
|
+
)
|
625
|
+
x = x.to(xa.dtype)
|
626
|
+
|
627
|
+
for block in self.blocks:
|
628
|
+
x = block(x, xa, mask=self.mask, kv_cache=kv_cache)
|
629
|
+
|
630
|
+
x = self.ln(x)
|
631
|
+
logits = x @ paddle.transpose(self.token_embedding.weight, (1, 0))
|
632
|
+
|
633
|
+
return logits
|
634
|
+
|
635
|
+
|
636
|
+
@dataclass(frozen=True)
|
637
|
+
class DecodingOptions:
|
638
|
+
task: str = (
|
639
|
+
"transcribe" # whether to perform X->X "transcribe" or X->English "translate"
|
640
|
+
)
|
641
|
+
language: Optional[str] = (
|
642
|
+
None # language that the audio is in; uses detected language if None
|
643
|
+
)
|
644
|
+
# sampling-related options
|
645
|
+
temperature: float = 0.0
|
646
|
+
sample_len: Optional[int] = None # maximum number of tokens to sample
|
647
|
+
best_of: Optional[int] = (
|
648
|
+
None # number of independent samples to collect, when t > 0
|
649
|
+
)
|
650
|
+
beam_size: Optional[int] = None # number of beams in beam search, when t == 0
|
651
|
+
patience: Optional[float] = (
|
652
|
+
None # patience in beam search (https://arxiv.org/abs/2204.05424)
|
653
|
+
)
|
654
|
+
|
655
|
+
# options for ranking generations (either beams or best-of-N samples)
|
656
|
+
length_penalty: Optional[float] = (
|
657
|
+
None # "alpha" in Google NMT, None defaults to length norm
|
658
|
+
)
|
659
|
+
|
660
|
+
# prompt, prefix, and token suppression
|
661
|
+
prompt: Optional[Union[str, List[int]]] = (
|
662
|
+
None # text or tokens for the previous context
|
663
|
+
)
|
664
|
+
prefix: Optional[Union[str, List[int]]] = (
|
665
|
+
None # text or tokens to prefix the current context
|
666
|
+
)
|
667
|
+
suppress_blank: bool = True # this will suppress blank outputs
|
668
|
+
|
669
|
+
# list of tokens ids (or comma-separated token ids) to suppress
|
670
|
+
# "-1" will suppress a set of symbols as defined in `tokenizer.non_speech_tokens()`
|
671
|
+
suppress_tokens: Optional[Union[str, Iterable[int]]] = "-1"
|
672
|
+
|
673
|
+
# timestamp sampling options
|
674
|
+
without_timestamps: bool = False # use <|notimestamps|> to sample text tokens only
|
675
|
+
max_initial_timestamp: Optional[float] = (
|
676
|
+
1.0 # the initial timestamp cannot be later than this
|
677
|
+
)
|
678
|
+
|
679
|
+
# implementation details
|
680
|
+
fp16: bool = False # use fp16 for most of the calculation
|
681
|
+
|
682
|
+
|
683
|
+
@dataclass(frozen=True)
|
684
|
+
class DecodingResult:
|
685
|
+
audio_features: paddle.Tensor
|
686
|
+
language: str
|
687
|
+
language_probs: Optional[Dict[str, float]] = None
|
688
|
+
tokens: List[int] = field(default_factory=list)
|
689
|
+
text: str = ""
|
690
|
+
avg_logprob: float = np.nan
|
691
|
+
no_speech_prob: float = np.nan
|
692
|
+
temperature: float = np.nan
|
693
|
+
compression_ratio: float = np.nan
|
694
|
+
|
695
|
+
|
696
|
+
class Inference:
|
697
|
+
def logits(
|
698
|
+
self, tokens: paddle.Tensor, audio_features: paddle.Tensor
|
699
|
+
) -> paddle.Tensor:
|
700
|
+
"""Perform a forward pass on the decoder and return per-token logits"""
|
701
|
+
raise NotImplementedError
|
702
|
+
|
703
|
+
def rearrange_kv_cache(self, source_indices) -> None:
|
704
|
+
"""Update the key-value cache according to the updated beams"""
|
705
|
+
raise NotImplementedError
|
706
|
+
|
707
|
+
def cleanup_caching(self) -> None:
|
708
|
+
"""Clean up any resources or hooks after decoding is finished"""
|
709
|
+
pass
|
710
|
+
|
711
|
+
|
712
|
+
class WhisperInference(Inference):
|
713
|
+
def __init__(self, model: "Whisper", initial_token_length: int):
|
714
|
+
self.model: "Whisper" = model
|
715
|
+
self.initial_token_length = initial_token_length
|
716
|
+
self.kv_cache = {}
|
717
|
+
self.hooks = []
|
718
|
+
|
719
|
+
def logits(
|
720
|
+
self, tokens: paddle.Tensor, audio_features: paddle.Tensor
|
721
|
+
) -> paddle.Tensor:
|
722
|
+
if not self.kv_cache:
|
723
|
+
self.kv_cache, self.hooks = self.model.install_kv_cache_hooks()
|
724
|
+
|
725
|
+
if tokens.shape[-1] > self.initial_token_length:
|
726
|
+
# only need to use the last token except in the first forward pass
|
727
|
+
tokens = tokens[:, -1:]
|
728
|
+
|
729
|
+
return self.model.decoder(tokens, audio_features, kv_cache=self.kv_cache)
|
730
|
+
|
731
|
+
def cleanup_caching(self):
|
732
|
+
for hook in self.hooks:
|
733
|
+
hook.remove()
|
734
|
+
|
735
|
+
self.kv_cache = {}
|
736
|
+
self.hooks = []
|
737
|
+
|
738
|
+
def rearrange_kv_cache(self, source_indices):
|
739
|
+
for module, tensor in self.kv_cache.items():
|
740
|
+
# update the key/value cache to contain the selected sequences
|
741
|
+
self.kv_cache[module] = tensor[source_indices].detach()
|
742
|
+
|
743
|
+
|
744
|
+
@paddle.no_grad()
|
745
|
+
def detect_language(
|
746
|
+
model: "Whisper",
|
747
|
+
mel: paddle.Tensor,
|
748
|
+
resource_path: str,
|
749
|
+
tokenizer: Tokenizer = None,
|
750
|
+
) -> Tuple[paddle.Tensor, List[dict]]:
|
751
|
+
"""
|
752
|
+
Detect the spoken language in the audio, and return them as list of strings, along with the ids
|
753
|
+
of the most probable language tokens and the probability distribution over all language tokens.
|
754
|
+
This is performed outside the main decode loop in order to not interfere with kv-caching.
|
755
|
+
|
756
|
+
Returns
|
757
|
+
-------
|
758
|
+
language_tokens : Tensor, shape = (batch_size,)
|
759
|
+
ids of the most probable language tokens, which appears after the startoftranscript token.
|
760
|
+
language_probs : List[Dict[str, float]], length = batch_size
|
761
|
+
list of dictionaries containing the probability distribution over all languages.
|
762
|
+
"""
|
763
|
+
if tokenizer is None:
|
764
|
+
tokenizer = get_tokenizer(model.is_multilingual, resource_path=resource_path)
|
765
|
+
if (
|
766
|
+
tokenizer.language is None
|
767
|
+
or tokenizer.language_token not in tokenizer.sot_sequence
|
768
|
+
):
|
769
|
+
raise ValueError(
|
770
|
+
"This model doesn't have language tokens so it can't perform lang id"
|
771
|
+
)
|
772
|
+
|
773
|
+
single = mel.ndim == 2
|
774
|
+
if single:
|
775
|
+
mel = mel.unsqueeze(0)
|
776
|
+
|
777
|
+
# skip encoder forward pass if already-encoded audio features were given
|
778
|
+
if mel.shape[-2:] != (model.dims.n_audio_ctx, model.dims.n_audio_state):
|
779
|
+
mel = model.encoder(mel)
|
780
|
+
|
781
|
+
# forward pass using a single token, startoftranscript
|
782
|
+
batch_size = mel.shape[0]
|
783
|
+
x = paddle.to_tensor([[tokenizer.sot]] * batch_size) # [batch_size, 1]
|
784
|
+
logits = model.logits(x, mel)[:, 0]
|
785
|
+
|
786
|
+
# collect detected languages; suppress all non-language tokens
|
787
|
+
mask = paddle.ones(paddle.to_tensor(logits.shape[-1]), dtype=bool)
|
788
|
+
mask[list(tokenizer.all_language_tokens)] = False
|
789
|
+
logits[:, mask] = -np.inf
|
790
|
+
language_tokens = paddle.argmax(logits, axis=-1)
|
791
|
+
language_token_probs = paddle.nn.functional.softmax(logits, axis=-1)
|
792
|
+
language_probs = [
|
793
|
+
{
|
794
|
+
c: language_token_probs[i, j].tolist()
|
795
|
+
for j, c in zip(tokenizer.all_language_tokens, tokenizer.all_language_codes)
|
796
|
+
}
|
797
|
+
for i in range(batch_size)
|
798
|
+
]
|
799
|
+
|
800
|
+
if single:
|
801
|
+
language_tokens = language_tokens[0]
|
802
|
+
language_probs = language_probs[0]
|
803
|
+
|
804
|
+
return language_tokens, language_probs
|
805
|
+
|
806
|
+
|
807
|
+
def transcribe(
|
808
|
+
model: "Whisper",
|
809
|
+
mel: paddle.Tensor,
|
810
|
+
resource_path: str,
|
811
|
+
*,
|
812
|
+
verbose: Optional[bool] = None,
|
813
|
+
temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
814
|
+
compression_ratio_threshold: Optional[float] = 2.4,
|
815
|
+
logprob_threshold: Optional[float] = -1.0,
|
816
|
+
no_speech_threshold: Optional[float] = 0.6,
|
817
|
+
condition_on_previous_text: bool = True,
|
818
|
+
**decode_options,
|
819
|
+
):
|
820
|
+
"""
|
821
|
+
Transcribe an audio file using Whisper
|
822
|
+
|
823
|
+
Parameters
|
824
|
+
----------
|
825
|
+
model: Whisper
|
826
|
+
The Whisper model instance
|
827
|
+
|
828
|
+
mel: paddle.Tensor
|
829
|
+
The audio feature
|
830
|
+
|
831
|
+
verbose: bool
|
832
|
+
Whether to display the text being decoded to the console. If True, displays all the details,
|
833
|
+
If False, displays minimal details. If None, does not display anything
|
834
|
+
|
835
|
+
temperature: Union[float, Tuple[float, ...]]
|
836
|
+
Temperature for sampling. It can be a tuple of temperatures, which will be successfully used
|
837
|
+
upon failures according to either `compression_ratio_threshold` or `logprob_threshold`.
|
838
|
+
|
839
|
+
compression_ratio_threshold: float
|
840
|
+
If the gzip compression ratio is above this value, treat as failed
|
841
|
+
|
842
|
+
logprob_threshold: float
|
843
|
+
If the average log probability over sampled tokens is below this value, treat as failed
|
844
|
+
|
845
|
+
no_speech_threshold: float
|
846
|
+
If the no_speech probability is higher than this value AND the average log probability
|
847
|
+
over sampled tokens is below `logprob_threshold`, consider the segment as silent
|
848
|
+
|
849
|
+
condition_on_previous_text: bool
|
850
|
+
if True, the previous output of the model is provided as a prompt for the next window;
|
851
|
+
disabling may make the text inconsistent across windows, but the model becomes less prone to
|
852
|
+
getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.
|
853
|
+
|
854
|
+
decode_options: dict
|
855
|
+
Keyword arguments to construct `DecodingOptions` instances
|
856
|
+
|
857
|
+
Returns
|
858
|
+
-------
|
859
|
+
A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
|
860
|
+
the spoken language ("language"), which is detected when `decode_options["language"]` is None.
|
861
|
+
"""
|
862
|
+
dtype = np.float32 # paddle only support float32
|
863
|
+
|
864
|
+
if dtype == np.float32:
|
865
|
+
decode_options["fp16"] = False
|
866
|
+
|
867
|
+
if (
|
868
|
+
decode_options.get("language") == "None"
|
869
|
+
or decode_options.get("language", None) is None
|
870
|
+
):
|
871
|
+
if not model.is_multilingual:
|
872
|
+
decode_options["language"] = "en"
|
873
|
+
else:
|
874
|
+
if verbose:
|
875
|
+
print(
|
876
|
+
"Detecting language using up to the first 30 seconds. Use `--language` to specify the language"
|
877
|
+
)
|
878
|
+
segment = pad_or_trim(mel, N_FRAMES)
|
879
|
+
_, probs = model.detect_language(segment, resource_path)
|
880
|
+
decode_options["language"] = max(probs, key=probs.get)
|
881
|
+
if verbose is not None:
|
882
|
+
print(
|
883
|
+
f"Detected language: {LANGUAGES[decode_options['language']].title()}"
|
884
|
+
)
|
885
|
+
|
886
|
+
language = decode_options["language"]
|
887
|
+
task = decode_options.get("task", "transcribe")
|
888
|
+
tokenizer = get_tokenizer(
|
889
|
+
model.is_multilingual, resource_path=resource_path, language=language, task=task
|
890
|
+
)
|
891
|
+
|
892
|
+
def decode_with_fallback(segment: paddle.Tensor) -> DecodingResult:
|
893
|
+
temperatures = (
|
894
|
+
[temperature] if isinstance(temperature, (int, float)) else temperature
|
895
|
+
)
|
896
|
+
decode_result = None
|
897
|
+
|
898
|
+
for t in temperatures:
|
899
|
+
kwargs = {**decode_options}
|
900
|
+
if t > 0:
|
901
|
+
# disable beam_size and patience when t > 0
|
902
|
+
kwargs.pop("beam_size", None)
|
903
|
+
kwargs.pop("patience", None)
|
904
|
+
else:
|
905
|
+
# disable best_of when t == 0
|
906
|
+
kwargs.pop("best_of", None)
|
907
|
+
|
908
|
+
options = DecodingOptions(**kwargs, temperature=t)
|
909
|
+
decode_result = model.decode(segment, options, resource_path)
|
910
|
+
|
911
|
+
needs_fallback = False
|
912
|
+
if (
|
913
|
+
compression_ratio_threshold is not None
|
914
|
+
and decode_result.compression_ratio > compression_ratio_threshold
|
915
|
+
):
|
916
|
+
needs_fallback = True # too repetitive
|
917
|
+
if (
|
918
|
+
logprob_threshold is not None
|
919
|
+
and decode_result.avg_logprob < logprob_threshold
|
920
|
+
):
|
921
|
+
needs_fallback = True # average log probability is too low
|
922
|
+
|
923
|
+
if not needs_fallback:
|
924
|
+
break
|
925
|
+
|
926
|
+
return decode_result
|
927
|
+
|
928
|
+
seek = 0
|
929
|
+
input_stride = exact_div(
|
930
|
+
N_FRAMES, model.dims.n_audio_ctx
|
931
|
+
) # mel frames per output token: 2
|
932
|
+
time_precision = (
|
933
|
+
input_stride * HOP_LENGTH / SAMPLE_RATE
|
934
|
+
) # time per output token: 0.02 (seconds)
|
935
|
+
all_tokens = []
|
936
|
+
all_segments = []
|
937
|
+
prompt_reset_since = 0
|
938
|
+
|
939
|
+
initial_prompt = decode_options.pop("initial_prompt", None)
|
940
|
+
if initial_prompt and initial_prompt != "None":
|
941
|
+
initial_prompt = tokenizer.encode(" " + initial_prompt.strip()).input_ids
|
942
|
+
all_tokens.extend(initial_prompt)
|
943
|
+
else:
|
944
|
+
initial_prompt = []
|
945
|
+
|
946
|
+
def add_segment(
|
947
|
+
*, start: float, end: float, text_tokens: paddle.Tensor, result: DecodingResult
|
948
|
+
):
|
949
|
+
text = tokenizer.decode(
|
950
|
+
[token for token in text_tokens if token < tokenizer.eot]
|
951
|
+
)
|
952
|
+
if len(text.strip()) == 0: # skip empty text output
|
953
|
+
return
|
954
|
+
|
955
|
+
all_segments.append(
|
956
|
+
{
|
957
|
+
"id": len(all_segments),
|
958
|
+
"seek": seek,
|
959
|
+
"start": start,
|
960
|
+
"end": end,
|
961
|
+
"text": text,
|
962
|
+
"tokens": result.tokens,
|
963
|
+
"temperature": result.temperature,
|
964
|
+
"avg_logprob": result.avg_logprob,
|
965
|
+
"compression_ratio": result.compression_ratio,
|
966
|
+
"no_speech_prob": result.no_speech_prob,
|
967
|
+
}
|
968
|
+
)
|
969
|
+
if verbose:
|
970
|
+
print(f"[{format_timestamp(start)} --> {format_timestamp(end)}] {text}")
|
971
|
+
|
972
|
+
# show the progress bar when verbose is False (otherwise the transcribed text will be printed)
|
973
|
+
num_frames = mel.shape[-1]
|
974
|
+
previous_seek_value = seek
|
975
|
+
|
976
|
+
with tqdm.tqdm(
|
977
|
+
total=num_frames, unit="frames", disable=verbose is not False
|
978
|
+
) as pbar:
|
979
|
+
while seek < num_frames:
|
980
|
+
timestamp_offset = float(seek * HOP_LENGTH / SAMPLE_RATE)
|
981
|
+
segment = pad_or_trim(mel[:, seek:], N_FRAMES)
|
982
|
+
segment_duration = segment.shape[-1] * HOP_LENGTH / SAMPLE_RATE
|
983
|
+
|
984
|
+
decode_options["prompt"] = all_tokens[prompt_reset_since:]
|
985
|
+
result: DecodingResult = decode_with_fallback(segment)
|
986
|
+
tokens = paddle.to_tensor(result.tokens)
|
987
|
+
|
988
|
+
if no_speech_threshold is not None:
|
989
|
+
# no voice activity check
|
990
|
+
should_skip = result.no_speech_prob > no_speech_threshold
|
991
|
+
if (
|
992
|
+
logprob_threshold is not None
|
993
|
+
and result.avg_logprob > logprob_threshold
|
994
|
+
):
|
995
|
+
# don't skip if the logprob is high enough, despite the no_speech_prob
|
996
|
+
should_skip = False
|
997
|
+
|
998
|
+
if should_skip:
|
999
|
+
seek += segment.shape[
|
1000
|
+
-1
|
1001
|
+
] # fast-forward to the next segment boundary
|
1002
|
+
continue
|
1003
|
+
|
1004
|
+
timestamp_tokens: paddle.Tensor = tokens.greater_equal(
|
1005
|
+
paddle.to_tensor(tokenizer.timestamp_begin)
|
1006
|
+
)
|
1007
|
+
|
1008
|
+
consecutive = paddle.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0]
|
1009
|
+
if (
|
1010
|
+
len(consecutive) > 0
|
1011
|
+
): # if the output contains two consecutive timestamp tokens
|
1012
|
+
consecutive = paddle.add(consecutive, paddle.to_tensor(1))
|
1013
|
+
last_slice = 0
|
1014
|
+
for current_slice in consecutive:
|
1015
|
+
sliced_tokens = tokens[last_slice:current_slice]
|
1016
|
+
start_timestamp_position = (
|
1017
|
+
sliced_tokens[0].item() - tokenizer.timestamp_begin
|
1018
|
+
)
|
1019
|
+
end_timestamp_position = (
|
1020
|
+
sliced_tokens[-1].item() - tokenizer.timestamp_begin
|
1021
|
+
)
|
1022
|
+
add_segment(
|
1023
|
+
start=timestamp_offset
|
1024
|
+
+ start_timestamp_position * time_precision,
|
1025
|
+
end=timestamp_offset + end_timestamp_position * time_precision,
|
1026
|
+
text_tokens=sliced_tokens[1:-1],
|
1027
|
+
result=result,
|
1028
|
+
)
|
1029
|
+
last_slice = current_slice
|
1030
|
+
last_timestamp_position = (
|
1031
|
+
tokens[last_slice - 1].item() - tokenizer.timestamp_begin
|
1032
|
+
)
|
1033
|
+
seek += last_timestamp_position * input_stride
|
1034
|
+
all_tokens.extend(tokens[: last_slice + 1].tolist())
|
1035
|
+
else:
|
1036
|
+
duration = segment_duration
|
1037
|
+
timestamps = tokens[timestamp_tokens.nonzero().flatten()]
|
1038
|
+
if (
|
1039
|
+
len(timestamps) > 0
|
1040
|
+
and timestamps[-1].item() != tokenizer.timestamp_begin
|
1041
|
+
):
|
1042
|
+
# no consecutive timestamps but it has a timestamp; use the last one.
|
1043
|
+
# single timestamp at the end means no speech after the last timestamp.
|
1044
|
+
last_timestamp_position = (
|
1045
|
+
timestamps[-1].item() - tokenizer.timestamp_begin
|
1046
|
+
)
|
1047
|
+
duration = last_timestamp_position * time_precision
|
1048
|
+
|
1049
|
+
add_segment(
|
1050
|
+
start=timestamp_offset,
|
1051
|
+
end=timestamp_offset + duration,
|
1052
|
+
text_tokens=tokens,
|
1053
|
+
result=result,
|
1054
|
+
)
|
1055
|
+
|
1056
|
+
seek += segment.shape[-1]
|
1057
|
+
all_tokens.extend(tokens.tolist())
|
1058
|
+
|
1059
|
+
if not condition_on_previous_text or result.temperature > 0.5:
|
1060
|
+
# do not feed the prompt tokens if a high temperature was used
|
1061
|
+
prompt_reset_since = len(all_tokens)
|
1062
|
+
|
1063
|
+
# update progress bar
|
1064
|
+
pbar.update(min(num_frames, seek) - previous_seek_value)
|
1065
|
+
previous_seek_value = seek
|
1066
|
+
|
1067
|
+
return dict(
|
1068
|
+
text=tokenizer.decode(all_tokens[len(initial_prompt) :]),
|
1069
|
+
segments=all_segments,
|
1070
|
+
language=language,
|
1071
|
+
)
|
1072
|
+
|
1073
|
+
|
1074
|
+
class SequenceRanker:
|
1075
|
+
def rank(
|
1076
|
+
self, tokens: List[List[paddle.Tensor]], sum_logprobs: List[List[float]]
|
1077
|
+
) -> List[int]:
|
1078
|
+
"""
|
1079
|
+
Given a list of groups of samples and their cumulative log probabilities,
|
1080
|
+
return the indices of the samples in each group to select as the final result
|
1081
|
+
"""
|
1082
|
+
raise NotImplementedError
|
1083
|
+
|
1084
|
+
|
1085
|
+
class MaximumLikelihoodRanker(SequenceRanker):
|
1086
|
+
"""
|
1087
|
+
Select the sample with the highest log probabilities, penalized using either
|
1088
|
+
a simple length normalization or Google NMT paper's length penalty
|
1089
|
+
"""
|
1090
|
+
|
1091
|
+
def __init__(self, length_penalty: Optional[float]):
|
1092
|
+
self.length_penalty = length_penalty
|
1093
|
+
|
1094
|
+
def rank(self, tokens: List[List[paddle.Tensor]], sum_logprobs: List[List[float]]):
|
1095
|
+
def scores(logprobs, lengths):
|
1096
|
+
result = []
|
1097
|
+
for logprob, length in zip(logprobs, lengths):
|
1098
|
+
if self.length_penalty is None or self.length_penalty == "None":
|
1099
|
+
penalty = length
|
1100
|
+
else:
|
1101
|
+
# from the Google NMT paper
|
1102
|
+
penalty = ((5 + length) / 6) ** self.length_penalty
|
1103
|
+
result.append(logprob / penalty)
|
1104
|
+
return result
|
1105
|
+
|
1106
|
+
# get the sequence with the highest score
|
1107
|
+
lengths = [[len(t) for t in s] for s in tokens]
|
1108
|
+
return [np.argmax(scores(p, l)) for p, l in zip(sum_logprobs, lengths)]
|
1109
|
+
|
1110
|
+
|
1111
|
+
class TokenDecoder:
|
1112
|
+
def reset(self):
|
1113
|
+
"""Initialize any stateful variables for decoding a new sequence"""
|
1114
|
+
|
1115
|
+
def update(
|
1116
|
+
self, tokens: paddle.Tensor, logits: paddle.Tensor, sum_logprobs: paddle.Tensor
|
1117
|
+
) -> Tuple[paddle.Tensor, bool]:
|
1118
|
+
"""Specify how to select the next token, based on the current trace and logits
|
1119
|
+
|
1120
|
+
Parameters
|
1121
|
+
----------
|
1122
|
+
tokens : Tensor, shape = (n_batch, current_sequence_length)
|
1123
|
+
all tokens in the context so far, including the prefix and sot_sequence tokens
|
1124
|
+
|
1125
|
+
logits : Tensor, shape = (n_batch, vocab_size)
|
1126
|
+
per-token logits of the probability distribution at the current step
|
1127
|
+
|
1128
|
+
sum_logprobs : Tensor, shape = (n_batch)
|
1129
|
+
cumulative log probabilities for each sequence
|
1130
|
+
|
1131
|
+
Returns
|
1132
|
+
-------
|
1133
|
+
tokens : Tensor, shape = (n_batch, current_sequence_length + 1)
|
1134
|
+
the tokens, appended with the selected next token
|
1135
|
+
|
1136
|
+
completed : bool
|
1137
|
+
True if all sequences has reached the end of text
|
1138
|
+
|
1139
|
+
"""
|
1140
|
+
raise NotImplementedError
|
1141
|
+
|
1142
|
+
def finalize(
|
1143
|
+
self, tokens: paddle.Tensor, sum_logprobs: paddle.Tensor
|
1144
|
+
) -> Tuple[Sequence[Sequence[paddle.Tensor]], List[List[float]]]:
|
1145
|
+
"""Finalize search and return the final candidate sequences
|
1146
|
+
|
1147
|
+
Parameters
|
1148
|
+
----------
|
1149
|
+
tokens : Tensor, shape = (batch_size, beam_size, current_sequence_length)
|
1150
|
+
all tokens in the context so far, including the prefix and sot_sequence
|
1151
|
+
|
1152
|
+
sum_logprobs : Tensor, shape = (batch_size, beam_size)
|
1153
|
+
cumulative log probabilities for each sequence
|
1154
|
+
|
1155
|
+
Returns
|
1156
|
+
-------
|
1157
|
+
tokens : Sequence[Sequence[Tensor]], length = batch_size
|
1158
|
+
sequence of Tensors containing candidate token sequences, for each audio input
|
1159
|
+
|
1160
|
+
sum_logprobs : List[List[float]], length = batch_size
|
1161
|
+
sequence of cumulative log probabilities corresponding to the above
|
1162
|
+
|
1163
|
+
"""
|
1164
|
+
raise NotImplementedError
|
1165
|
+
|
1166
|
+
|
1167
|
+
class GreedyDecoder(TokenDecoder):
|
1168
|
+
def __init__(self, temperature: float, eot: int):
|
1169
|
+
self.temperature = temperature
|
1170
|
+
self.eot = eot
|
1171
|
+
|
1172
|
+
def update(
|
1173
|
+
self, tokens: paddle.Tensor, logits: paddle.Tensor, sum_logprobs: paddle.Tensor
|
1174
|
+
) -> Tuple[paddle.Tensor, bool]:
|
1175
|
+
temperature = self.temperature
|
1176
|
+
if temperature == 0:
|
1177
|
+
next_tokens = paddle.argmax(logits, axis=-1)
|
1178
|
+
else:
|
1179
|
+
next_tokens = paddle.distribution.Categorical(
|
1180
|
+
logits=logits / temperature
|
1181
|
+
).sample([1])
|
1182
|
+
next_tokens = paddle.reshape(
|
1183
|
+
next_tokens,
|
1184
|
+
[
|
1185
|
+
next_tokens.shape[0] * next_tokens.shape[1],
|
1186
|
+
],
|
1187
|
+
)
|
1188
|
+
|
1189
|
+
logprobs = paddle.nn.functional.log_softmax(
|
1190
|
+
logits, axis=-1, dtype=paddle.float32
|
1191
|
+
)
|
1192
|
+
current_logprobs = logprobs[paddle.arange(logprobs.shape[0]), next_tokens]
|
1193
|
+
sum_logprobs += current_logprobs * paddle.to_tensor(
|
1194
|
+
(tokens[:, -1] != self.eot), dtype=paddle.float32
|
1195
|
+
)
|
1196
|
+
|
1197
|
+
next_tokens[tokens[:, -1] == self.eot] = self.eot
|
1198
|
+
tokens = paddle.concat([tokens, next_tokens[:, None]], axis=-1)
|
1199
|
+
|
1200
|
+
completed = paddle.all((tokens[:, -1] == self.eot))
|
1201
|
+
return tokens, completed
|
1202
|
+
|
1203
|
+
def finalize(self, tokens: paddle.Tensor, sum_logprobs: paddle.Tensor):
|
1204
|
+
# make sure each sequence has at least one EOT token at the end
|
1205
|
+
tokens = paddle.nn.functional.pad(
|
1206
|
+
tokens, (0, 1), value=self.eot, data_format="NCL"
|
1207
|
+
)
|
1208
|
+
return tokens, sum_logprobs.tolist()
|
1209
|
+
|
1210
|
+
|
1211
|
+
class BeamSearchDecoder(TokenDecoder):
|
1212
|
+
def __init__(
|
1213
|
+
self,
|
1214
|
+
beam_size: int,
|
1215
|
+
eot: int,
|
1216
|
+
inference: Inference,
|
1217
|
+
patience: Optional[float] = None,
|
1218
|
+
):
|
1219
|
+
self.beam_size = beam_size
|
1220
|
+
self.eot = eot
|
1221
|
+
self.inference = inference
|
1222
|
+
self.patience = patience or 1.0
|
1223
|
+
if patience is None or patience == "None":
|
1224
|
+
self.patience = 1.0
|
1225
|
+
else:
|
1226
|
+
self.patience = patience
|
1227
|
+
self.max_candidates: int = round(beam_size * self.patience)
|
1228
|
+
self.finished_sequences = None
|
1229
|
+
|
1230
|
+
assert (
|
1231
|
+
self.max_candidates > 0
|
1232
|
+
), f"Invalid beam size ({beam_size}) or patience ({patience})"
|
1233
|
+
|
1234
|
+
def reset(self):
|
1235
|
+
self.finished_sequences = None
|
1236
|
+
|
1237
|
+
def update(
|
1238
|
+
self, tokens: paddle.Tensor, logits: paddle.Tensor, sum_logprobs: paddle.Tensor
|
1239
|
+
) -> Tuple[paddle.Tensor, bool]:
|
1240
|
+
if tokens.shape[0] % self.beam_size != 0:
|
1241
|
+
raise ValueError(f"{tokens.shape}[0] % {self.beam_size} != 0")
|
1242
|
+
|
1243
|
+
batch_size = tokens.shape[0] // self.beam_size
|
1244
|
+
if self.finished_sequences is None: # for the first update
|
1245
|
+
self.finished_sequences = [{} for _ in range(batch_size)]
|
1246
|
+
|
1247
|
+
logprobs = paddle.nn.functional.log_softmax(logits, axis=-1, dtype="float32")
|
1248
|
+
next_tokens, source_indices, finished_sequences = [], [], []
|
1249
|
+
for i in range(batch_size):
|
1250
|
+
scores, sources, finished = {}, {}, {}
|
1251
|
+
|
1252
|
+
# STEP 1: calculate the cumulative log probabilities for possible candidates
|
1253
|
+
for j in range(self.beam_size):
|
1254
|
+
idx = i * self.beam_size + j
|
1255
|
+
prefix = tokens[idx].tolist()
|
1256
|
+
logprob, token = paddle.topk(logprobs[idx], k=self.beam_size + 1)
|
1257
|
+
for logprob, token in zip(logprob, token):
|
1258
|
+
new_logprob = (sum_logprobs[idx] + logprob).item()
|
1259
|
+
sequence = tuple(prefix + [token.item()])
|
1260
|
+
scores[sequence] = new_logprob
|
1261
|
+
sources[sequence] = idx
|
1262
|
+
|
1263
|
+
# STEP 2: rank the candidates and keep the top beam_size sequences for each audio
|
1264
|
+
saved = 0
|
1265
|
+
for sequence in sorted(scores, key=scores.get, reverse=True):
|
1266
|
+
if sequence[-1] == self.eot:
|
1267
|
+
finished[sequence] = scores[sequence]
|
1268
|
+
else:
|
1269
|
+
sum_logprobs[len(next_tokens)] = scores[sequence]
|
1270
|
+
next_tokens.append(sequence)
|
1271
|
+
source_indices.append(sources[sequence])
|
1272
|
+
|
1273
|
+
saved += 1
|
1274
|
+
if saved == self.beam_size:
|
1275
|
+
break
|
1276
|
+
|
1277
|
+
finished_sequences.append(finished)
|
1278
|
+
|
1279
|
+
tokens = paddle.to_tensor(next_tokens)
|
1280
|
+
self.inference.rearrange_kv_cache(source_indices)
|
1281
|
+
|
1282
|
+
# add newly finished sequences to self.finished_sequences
|
1283
|
+
assert len(self.finished_sequences) == len(finished_sequences)
|
1284
|
+
for previously_finished, newly_finished in zip(
|
1285
|
+
self.finished_sequences, finished_sequences
|
1286
|
+
):
|
1287
|
+
for seq in sorted(newly_finished, key=newly_finished.get, reverse=True):
|
1288
|
+
if len(previously_finished) >= self.max_candidates:
|
1289
|
+
break # the candidate list is full
|
1290
|
+
previously_finished[seq] = newly_finished[seq]
|
1291
|
+
|
1292
|
+
# mark as completed if all audio has enough number of samples
|
1293
|
+
completed = all(
|
1294
|
+
len(sequences) >= self.max_candidates
|
1295
|
+
for sequences in self.finished_sequences
|
1296
|
+
)
|
1297
|
+
return tokens, completed
|
1298
|
+
|
1299
|
+
def finalize(self, preceding_tokens: paddle.Tensor, sum_logprobs: paddle.Tensor):
|
1300
|
+
# collect all finished sequences, including patience, and add unfinished ones if not enough
|
1301
|
+
sum_logprobs = sum_logprobs.cpu()
|
1302
|
+
for i, sequences in enumerate(self.finished_sequences):
|
1303
|
+
if (
|
1304
|
+
len(sequences) < self.beam_size
|
1305
|
+
): # when not enough sequences are finished
|
1306
|
+
for j in list(np.argsort(sum_logprobs[i]))[::-1]:
|
1307
|
+
sequence = preceding_tokens[i, j].tolist() + [self.eot]
|
1308
|
+
sequences[tuple(sequence)] = sum_logprobs[i][j].item()
|
1309
|
+
if len(sequences) >= self.beam_size:
|
1310
|
+
break
|
1311
|
+
|
1312
|
+
tokens: List[List[paddle.Tensor]] = [
|
1313
|
+
[paddle.to_tensor(seq) for seq in sequences.keys()]
|
1314
|
+
for sequences in self.finished_sequences
|
1315
|
+
]
|
1316
|
+
sum_logprobs: List[List[float]] = [
|
1317
|
+
list(sequences.values()) for sequences in self.finished_sequences
|
1318
|
+
]
|
1319
|
+
return tokens, sum_logprobs
|
1320
|
+
|
1321
|
+
|
1322
|
+
class LogitFilter:
|
1323
|
+
def apply(self, logits: paddle.Tensor, tokens: paddle.Tensor) -> None:
|
1324
|
+
"""Apply any filtering or masking to logits in-place
|
1325
|
+
|
1326
|
+
Parameters
|
1327
|
+
----------
|
1328
|
+
logits : Tensor, shape = (n_batch, vocab_size)
|
1329
|
+
per-token logits of the probability distribution at the current step
|
1330
|
+
|
1331
|
+
tokens : Tensor, shape = (n_batch, current_sequence_length)
|
1332
|
+
all tokens in the context so far, including the prefix and sot_sequence tokens
|
1333
|
+
|
1334
|
+
"""
|
1335
|
+
raise NotImplementedError
|
1336
|
+
|
1337
|
+
|
1338
|
+
class SuppressBlank(LogitFilter):
|
1339
|
+
def __init__(self, tokenizer: Tokenizer, sample_begin: int):
|
1340
|
+
self.tokenizer = tokenizer
|
1341
|
+
self.sample_begin = sample_begin
|
1342
|
+
|
1343
|
+
def apply(self, logits: paddle.Tensor, tokens: paddle.Tensor):
|
1344
|
+
if tokens.shape[1] == self.sample_begin:
|
1345
|
+
logits[:, self.tokenizer.encode(" ").input_ids + [self.tokenizer.eot]] = (
|
1346
|
+
-np.inf
|
1347
|
+
)
|
1348
|
+
|
1349
|
+
|
1350
|
+
class SuppressTokens(LogitFilter):
|
1351
|
+
def __init__(self, suppress_tokens: Sequence[int]):
|
1352
|
+
self.suppress_tokens = list(suppress_tokens)
|
1353
|
+
|
1354
|
+
def apply(self, logits: paddle.Tensor, tokens: paddle.Tensor):
|
1355
|
+
logits[:, self.suppress_tokens] = -np.inf
|
1356
|
+
|
1357
|
+
|
1358
|
+
class ApplyTimestampRules(LogitFilter):
|
1359
|
+
def __init__(
|
1360
|
+
self,
|
1361
|
+
tokenizer: Tokenizer,
|
1362
|
+
sample_begin: int,
|
1363
|
+
max_initial_timestamp_index: Optional[int],
|
1364
|
+
):
|
1365
|
+
self.tokenizer = tokenizer
|
1366
|
+
self.sample_begin = sample_begin
|
1367
|
+
self.max_initial_timestamp_index = max_initial_timestamp_index
|
1368
|
+
|
1369
|
+
def apply(self, logits: paddle.Tensor, tokens: paddle.Tensor):
|
1370
|
+
# suppress <|notimestamps|> which is handled by without_timestamps
|
1371
|
+
if self.tokenizer.no_timestamps is not None:
|
1372
|
+
logits[:, self.tokenizer.no_timestamps] = -np.inf
|
1373
|
+
|
1374
|
+
# timestamps have to appear in pairs, except directly before EOT; mask logits accordingly
|
1375
|
+
for k in range(tokens.shape[0]):
|
1376
|
+
seq = [t for t in tokens[k, self.sample_begin :].tolist()]
|
1377
|
+
last_was_timestamp = (
|
1378
|
+
len(seq) >= 1 and seq[-1] >= self.tokenizer.timestamp_begin
|
1379
|
+
)
|
1380
|
+
penultimate_was_timestamp = (
|
1381
|
+
len(seq) < 2 or seq[-2] >= self.tokenizer.timestamp_begin
|
1382
|
+
)
|
1383
|
+
|
1384
|
+
if last_was_timestamp:
|
1385
|
+
if penultimate_was_timestamp: # has to be non-timestamp
|
1386
|
+
logits[k, self.tokenizer.timestamp_begin :] = -np.inf
|
1387
|
+
else: # cannot be normal text tokens
|
1388
|
+
logits[k, : self.tokenizer.eot] = -np.inf
|
1389
|
+
|
1390
|
+
# apply the `max_initial_timestamp` option
|
1391
|
+
if (
|
1392
|
+
tokens.shape[1] == self.sample_begin
|
1393
|
+
and self.max_initial_timestamp_index is not None
|
1394
|
+
):
|
1395
|
+
last_allowed = (
|
1396
|
+
self.tokenizer.timestamp_begin + self.max_initial_timestamp_index
|
1397
|
+
)
|
1398
|
+
logits[:, last_allowed + 1 :] = -np.inf
|
1399
|
+
|
1400
|
+
# if sum of probability over timestamps is above any other token, sample timestamp
|
1401
|
+
logprobs = paddle.nn.functional.log_softmax(logits, axis=-1, dtype="float32")
|
1402
|
+
for k in range(tokens.shape[0]):
|
1403
|
+
# When using paddle.logsumexp on a 32GB Tesla-V100 GPU, we encountered CUDA error 700.
|
1404
|
+
# To bypass this issue in CI, we have decomposed the operation into separate steps.
|
1405
|
+
# It will raise 2e-6 difference in precision.
|
1406
|
+
# TODO: revert this after logsumexp been fixed.
|
1407
|
+
timestamp_logprob = paddle.exp(
|
1408
|
+
logprobs[k, self.tokenizer.timestamp_begin :]
|
1409
|
+
)
|
1410
|
+
timestamp_logprob = paddle.sum(timestamp_logprob, axis=-1)
|
1411
|
+
timestamp_logprob = paddle.log(timestamp_logprob)
|
1412
|
+
max_text_token_logprob = paddle.max(
|
1413
|
+
logprobs[k, : self.tokenizer.timestamp_begin]
|
1414
|
+
)
|
1415
|
+
if timestamp_logprob > max_text_token_logprob:
|
1416
|
+
logits[k, : self.tokenizer.timestamp_begin] = -np.inf
|
1417
|
+
|
1418
|
+
|
1419
|
+
class DecodingTask:
|
1420
|
+
inference: Inference
|
1421
|
+
sequence_ranker: SequenceRanker
|
1422
|
+
decoder: TokenDecoder
|
1423
|
+
logit_filters: List[LogitFilter]
|
1424
|
+
|
1425
|
+
def __init__(self, model: "Whisper", options: DecodingOptions, resource_path: str):
|
1426
|
+
self.model = model
|
1427
|
+
|
1428
|
+
language = options.language or "en"
|
1429
|
+
tokenizer = get_tokenizer(
|
1430
|
+
model.is_multilingual,
|
1431
|
+
resource_path=resource_path,
|
1432
|
+
language=language,
|
1433
|
+
task=options.task,
|
1434
|
+
)
|
1435
|
+
self.tokenizer: Tokenizer = tokenizer
|
1436
|
+
self.options: DecodingOptions = self._verify_options(options)
|
1437
|
+
self.resource_path: str = resource_path
|
1438
|
+
|
1439
|
+
self.beam_size: int = options.beam_size or options.best_of or 1
|
1440
|
+
self.n_ctx: int = model.dims.n_text_ctx
|
1441
|
+
self.sample_len: int = options.sample_len or model.dims.n_text_ctx // 2
|
1442
|
+
|
1443
|
+
self.sot_sequence: Tuple[int] = tokenizer.sot_sequence
|
1444
|
+
if self.options.without_timestamps:
|
1445
|
+
self.sot_sequence = tokenizer.sot_sequence_including_notimestamps
|
1446
|
+
|
1447
|
+
self.initial_tokens: Tuple[int] = self._get_initial_tokens()
|
1448
|
+
self.sample_begin: int = len(self.initial_tokens)
|
1449
|
+
self.sot_index: int = self.initial_tokens.index(tokenizer.sot)
|
1450
|
+
|
1451
|
+
# inference: implements the forward pass through the decoder, including kv caching
|
1452
|
+
self.inference = WhisperInference(model, len(self.initial_tokens))
|
1453
|
+
|
1454
|
+
# sequence ranker: implements how to rank a group of sampled sequences
|
1455
|
+
self.sequence_ranker = MaximumLikelihoodRanker(options.length_penalty)
|
1456
|
+
|
1457
|
+
# decoder: implements how to select the next tokens, given the autoregressive distribution
|
1458
|
+
if options.beam_size is not None:
|
1459
|
+
self.decoder = BeamSearchDecoder(
|
1460
|
+
options.beam_size, tokenizer.eot, self.inference, options.patience
|
1461
|
+
)
|
1462
|
+
else:
|
1463
|
+
self.decoder = GreedyDecoder(options.temperature, tokenizer.eot)
|
1464
|
+
|
1465
|
+
# logit filters: applies various rules to suppress or penalize certain tokens
|
1466
|
+
self.logit_filters = []
|
1467
|
+
if self.options.suppress_blank:
|
1468
|
+
self.logit_filters.append(SuppressBlank(self.tokenizer, self.sample_begin))
|
1469
|
+
if self.options.suppress_tokens:
|
1470
|
+
self.logit_filters.append(SuppressTokens(self._get_suppress_tokens()))
|
1471
|
+
if not options.without_timestamps:
|
1472
|
+
precision = CHUNK_LENGTH / model.dims.n_audio_ctx # usually 0.02 seconds
|
1473
|
+
max_initial_timestamp_index = None
|
1474
|
+
if options.max_initial_timestamp:
|
1475
|
+
max_initial_timestamp_index = round(
|
1476
|
+
self.options.max_initial_timestamp / precision
|
1477
|
+
)
|
1478
|
+
self.logit_filters.append(
|
1479
|
+
ApplyTimestampRules(
|
1480
|
+
tokenizer, self.sample_begin, max_initial_timestamp_index
|
1481
|
+
)
|
1482
|
+
)
|
1483
|
+
|
1484
|
+
def _verify_options(self, options: DecodingOptions) -> DecodingOptions:
|
1485
|
+
if options.beam_size is not None and options.best_of is not None:
|
1486
|
+
raise ValueError("beam_size and best_of can't be given together")
|
1487
|
+
if options.temperature == 0:
|
1488
|
+
if options.best_of is not None:
|
1489
|
+
raise ValueError("best_of with greedy sampling (T=0) is not compatible")
|
1490
|
+
if options.patience is not None and options.beam_size is None:
|
1491
|
+
raise ValueError("patience requires beam_size to be given")
|
1492
|
+
if options.length_penalty is not None and options.length_penalty != "None":
|
1493
|
+
if not (0 <= options.length_penalty <= 1):
|
1494
|
+
raise ValueError(
|
1495
|
+
"length_penalty (alpha) should be a value between 0 and 1"
|
1496
|
+
)
|
1497
|
+
|
1498
|
+
return options
|
1499
|
+
|
1500
|
+
def _get_initial_tokens(self) -> Tuple[int]:
|
1501
|
+
tokens = list(self.sot_sequence)
|
1502
|
+
prefix = self.options.prefix
|
1503
|
+
prompt = self.options.prompt
|
1504
|
+
|
1505
|
+
if prefix:
|
1506
|
+
prefix_tokens = (
|
1507
|
+
self.tokenizer.encode(" " + prefix.strip().input_ids)
|
1508
|
+
if isinstance(prefix, str)
|
1509
|
+
else prefix
|
1510
|
+
)
|
1511
|
+
if self.sample_len is not None:
|
1512
|
+
max_prefix_len = self.n_ctx // 2 - self.sample_len
|
1513
|
+
prefix_tokens = prefix_tokens[-max_prefix_len:]
|
1514
|
+
tokens = tokens + prefix_tokens
|
1515
|
+
|
1516
|
+
if prompt:
|
1517
|
+
prompt_tokens = (
|
1518
|
+
self.tokenizer.encode(" " + prompt.strip().input_ids)
|
1519
|
+
if isinstance(prompt, str)
|
1520
|
+
else prompt
|
1521
|
+
)
|
1522
|
+
tokens = (
|
1523
|
+
[self.tokenizer.sot_prev]
|
1524
|
+
+ prompt_tokens[-(self.n_ctx // 2 - 1) :]
|
1525
|
+
+ tokens
|
1526
|
+
)
|
1527
|
+
|
1528
|
+
return tuple(tokens)
|
1529
|
+
|
1530
|
+
def _get_suppress_tokens(self) -> Tuple[int]:
|
1531
|
+
suppress_tokens = self.options.suppress_tokens
|
1532
|
+
|
1533
|
+
if isinstance(suppress_tokens, str):
|
1534
|
+
suppress_tokens = [int(t) for t in suppress_tokens.split(",")]
|
1535
|
+
|
1536
|
+
if -1 in suppress_tokens:
|
1537
|
+
suppress_tokens = [t for t in suppress_tokens if t >= 0]
|
1538
|
+
suppress_tokens.extend(self.tokenizer.non_speech_tokens)
|
1539
|
+
elif suppress_tokens is None or len(suppress_tokens) == 0:
|
1540
|
+
suppress_tokens = [] # interpret empty string as an empty list
|
1541
|
+
else:
|
1542
|
+
assert isinstance(suppress_tokens, list), "suppress_tokens must be a list"
|
1543
|
+
|
1544
|
+
suppress_tokens.extend(
|
1545
|
+
[self.tokenizer.sot, self.tokenizer.sot_prev, self.tokenizer.sot_lm]
|
1546
|
+
)
|
1547
|
+
if self.tokenizer.no_speech is not None:
|
1548
|
+
# no-speech probability is collected separately
|
1549
|
+
suppress_tokens.append(self.tokenizer.no_speech)
|
1550
|
+
|
1551
|
+
return tuple(sorted(set(suppress_tokens)))
|
1552
|
+
|
1553
|
+
def _get_audio_features(self, mel: paddle.Tensor):
|
1554
|
+
|
1555
|
+
if mel.shape[-2:] == (
|
1556
|
+
self.model.dims.n_audio_ctx,
|
1557
|
+
self.model.dims.n_audio_state,
|
1558
|
+
):
|
1559
|
+
# encoded audio features are given; skip audio encoding
|
1560
|
+
audio_features = mel
|
1561
|
+
else:
|
1562
|
+
audio_features = self.model.encoder(mel)
|
1563
|
+
|
1564
|
+
return audio_features
|
1565
|
+
|
1566
|
+
def _detect_language(
|
1567
|
+
self, audio_features: paddle.Tensor, tokens: paddle.Tensor, resource_path: str
|
1568
|
+
):
|
1569
|
+
languages = [self.options.language] * audio_features.shape[0]
|
1570
|
+
lang_probs = None
|
1571
|
+
|
1572
|
+
if self.options.language is None or self.options.task == "lang_id":
|
1573
|
+
lang_tokens, lang_probs = self.model.detect_language(
|
1574
|
+
audio_features, self.tokenizer, self.resource_path
|
1575
|
+
)
|
1576
|
+
languages = [max(probs, key=probs.get) for probs in lang_probs]
|
1577
|
+
if self.options.language is None:
|
1578
|
+
tokens[:, self.sot_index + 1] = lang_tokens # write language tokens
|
1579
|
+
|
1580
|
+
return languages, lang_probs
|
1581
|
+
|
1582
|
+
def _main_loop(self, audio_features: paddle.Tensor, tokens: paddle.Tensor):
|
1583
|
+
assert audio_features.shape[0] == tokens.shape[0]
|
1584
|
+
n_batch = tokens.shape[0]
|
1585
|
+
sum_logprobs: paddle.Tensor = paddle.zeros(
|
1586
|
+
paddle.to_tensor(n_batch), dtype=paddle.float32
|
1587
|
+
)
|
1588
|
+
no_speech_probs = [np.nan] * n_batch
|
1589
|
+
|
1590
|
+
try:
|
1591
|
+
for i in range(self.sample_len):
|
1592
|
+
logits = self.inference.logits(tokens, audio_features)
|
1593
|
+
|
1594
|
+
if (
|
1595
|
+
i == 0 and self.tokenizer.no_speech is not None
|
1596
|
+
): # save no_speech_probs
|
1597
|
+
probs_at_sot = paddle.nn.functional.softmax(
|
1598
|
+
logits[:, self.sot_index], axis=-1, dtype=paddle.float32
|
1599
|
+
)
|
1600
|
+
no_speech_probs = probs_at_sot[:, self.tokenizer.no_speech].tolist()
|
1601
|
+
|
1602
|
+
# now we need to consider the logits at the last token only
|
1603
|
+
logits = logits[:, -1]
|
1604
|
+
|
1605
|
+
# apply the logit filters, e.g. for suppressing or applying penalty to
|
1606
|
+
for logit_filter in self.logit_filters:
|
1607
|
+
logit_filter.apply(logits, tokens)
|
1608
|
+
|
1609
|
+
# expand the tokens tensor with the selected next tokens
|
1610
|
+
tokens, completed = self.decoder.update(tokens, logits, sum_logprobs)
|
1611
|
+
if completed or tokens.shape[-1] > self.n_ctx:
|
1612
|
+
break
|
1613
|
+
finally:
|
1614
|
+
self.inference.cleanup_caching()
|
1615
|
+
|
1616
|
+
return tokens, sum_logprobs, no_speech_probs
|
1617
|
+
|
1618
|
+
@paddle.no_grad()
|
1619
|
+
def run(self, mel: paddle.Tensor) -> List[DecodingResult]:
|
1620
|
+
self.decoder.reset()
|
1621
|
+
tokenizer: Tokenizer = self.tokenizer
|
1622
|
+
batch_size: int = mel.shape[0]
|
1623
|
+
|
1624
|
+
audio_features: paddle.Tensor = self._get_audio_features(
|
1625
|
+
mel
|
1626
|
+
) # encoder forward pass
|
1627
|
+
|
1628
|
+
tokens: paddle.Tensor
|
1629
|
+
if batch_size > 1:
|
1630
|
+
for i in range(batch_size):
|
1631
|
+
tokens = paddle.concat(
|
1632
|
+
x=[
|
1633
|
+
paddle.to_tensor([self.initial_tokens]),
|
1634
|
+
paddle.to_tensor([self.initial_tokens]),
|
1635
|
+
],
|
1636
|
+
axis=0,
|
1637
|
+
)
|
1638
|
+
elif batch_size == 1:
|
1639
|
+
tokens = paddle.to_tensor([self.initial_tokens])
|
1640
|
+
|
1641
|
+
# detect language if requested, overwriting the language token
|
1642
|
+
languages, language_probs = self._detect_language(
|
1643
|
+
paddle.to_tensor(audio_features),
|
1644
|
+
paddle.to_tensor(tokens),
|
1645
|
+
self.resource_path,
|
1646
|
+
)
|
1647
|
+
|
1648
|
+
if self.options.task == "lang_id":
|
1649
|
+
return [
|
1650
|
+
DecodingResult(
|
1651
|
+
audio_features=features, language=language, language_probs=probs
|
1652
|
+
)
|
1653
|
+
for features, language, probs in zip(
|
1654
|
+
audio_features, languages, language_probs
|
1655
|
+
)
|
1656
|
+
]
|
1657
|
+
|
1658
|
+
# repeat the audio & text tensors by the group size, for beam search or best-of-n sampling
|
1659
|
+
|
1660
|
+
audio_features = paddle.repeat_interleave(
|
1661
|
+
audio_features, self.beam_size, axis=0
|
1662
|
+
)
|
1663
|
+
tokens = paddle.repeat_interleave(tokens, self.beam_size, axis=0)
|
1664
|
+
|
1665
|
+
# call the main sampling loop
|
1666
|
+
tokens, sum_logprobs, no_speech_probs = self._main_loop(audio_features, tokens)
|
1667
|
+
|
1668
|
+
# reshape the tensors to have (batch_size, beam_size) as the first two dimensions
|
1669
|
+
audio_features = audio_features[:: self.beam_size]
|
1670
|
+
no_speech_probs = no_speech_probs[:: self.beam_size]
|
1671
|
+
assert audio_features.shape[0] == len(no_speech_probs) == batch_size
|
1672
|
+
|
1673
|
+
tokens = tokens.reshape([batch_size, self.beam_size, -1])
|
1674
|
+
sum_logprobs = sum_logprobs.reshape([batch_size, self.beam_size])
|
1675
|
+
|
1676
|
+
# get the final candidates for each group, and slice between the first sampled token and EOT
|
1677
|
+
tokens, sum_logprobs = self.decoder.finalize(tokens, sum_logprobs)
|
1678
|
+
tokens: List[List[paddle.Tensor]] = [
|
1679
|
+
[t[self.sample_begin : (t == tokenizer.eot).nonzero()[0, 0]] for t in s]
|
1680
|
+
for s in tokens
|
1681
|
+
]
|
1682
|
+
|
1683
|
+
# select the top-ranked sample in each group
|
1684
|
+
selected = self.sequence_ranker.rank(tokens, sum_logprobs)
|
1685
|
+
tokens: List[List[int]] = [t[i].tolist() for i, t in zip(selected, tokens)]
|
1686
|
+
texts: List[str] = [tokenizer.decode(t).strip() for t in tokens]
|
1687
|
+
|
1688
|
+
sum_logprobs: List[float] = [lp[i] for i, lp in zip(selected, sum_logprobs)]
|
1689
|
+
avg_logprobs: List[float] = [
|
1690
|
+
lp / (len(t) + 1) for t, lp in zip(tokens, sum_logprobs)
|
1691
|
+
]
|
1692
|
+
|
1693
|
+
fields = (
|
1694
|
+
texts,
|
1695
|
+
languages,
|
1696
|
+
tokens,
|
1697
|
+
audio_features,
|
1698
|
+
avg_logprobs,
|
1699
|
+
no_speech_probs,
|
1700
|
+
)
|
1701
|
+
if len(set(map(len, fields))) != 1:
|
1702
|
+
raise RuntimeError(f"inconsistent result lengths: {list(map(len, fields))}")
|
1703
|
+
|
1704
|
+
return [
|
1705
|
+
DecodingResult(
|
1706
|
+
audio_features=features,
|
1707
|
+
language=language,
|
1708
|
+
tokens=tokens,
|
1709
|
+
text=text,
|
1710
|
+
avg_logprob=avg_logprob,
|
1711
|
+
no_speech_prob=no_speech_prob,
|
1712
|
+
temperature=self.options.temperature,
|
1713
|
+
compression_ratio=compression_ratio(text),
|
1714
|
+
)
|
1715
|
+
for text, language, tokens, features, avg_logprob, no_speech_prob in zip(
|
1716
|
+
*fields
|
1717
|
+
)
|
1718
|
+
]
|
1719
|
+
|
1720
|
+
|
1721
|
+
@paddle.no_grad()
|
1722
|
+
def decode(
|
1723
|
+
model: "Whisper",
|
1724
|
+
mel: paddle.Tensor,
|
1725
|
+
options: DecodingOptions = DecodingOptions(),
|
1726
|
+
resource_path=str,
|
1727
|
+
) -> Union[DecodingResult, List[DecodingResult]]:
|
1728
|
+
"""
|
1729
|
+
Performs decoding of 30-second audio segment(s), provided as Mel spectrogram(s).
|
1730
|
+
|
1731
|
+
Parameters
|
1732
|
+
----------
|
1733
|
+
model: Whisper
|
1734
|
+
the Whisper model instance
|
1735
|
+
|
1736
|
+
mel: paddle.Tensor, shape = (80, 3000) or (*, 80, 3000)
|
1737
|
+
A tensor containing the Mel spectrogram(s)
|
1738
|
+
|
1739
|
+
options: DecodingOptions
|
1740
|
+
A dataclass that contains all necessary options for decoding 30-second segments
|
1741
|
+
|
1742
|
+
Returns
|
1743
|
+
-------
|
1744
|
+
result: Union[DecodingResult, List[DecodingResult]]
|
1745
|
+
The result(s) of decoding contained in `DecodingResult` dataclass instance(s)
|
1746
|
+
"""
|
1747
|
+
single = mel.ndim == 2
|
1748
|
+
if single:
|
1749
|
+
mel = mel.unsqueeze(0)
|
1750
|
+
|
1751
|
+
result = DecodingTask(model, options, resource_path).run(mel)
|
1752
|
+
|
1753
|
+
if single:
|
1754
|
+
result = result[0]
|
1755
|
+
|
1756
|
+
return result
|
1757
|
+
|
1758
|
+
|
1759
|
+
class Whisper(paddle.nn.Layer):
|
1760
|
+
"""
|
1761
|
+
The `Whisper` module use AudioEncoder and TextDecoder, and return detect_language, transcribe, decode.
|
1762
|
+
"""
|
1763
|
+
|
1764
|
+
def __init__(self, dims: ModelDimensions):
|
1765
|
+
super().__init__()
|
1766
|
+
self.dims = dims
|
1767
|
+
self.encoder = AudioEncoder(
|
1768
|
+
self.dims.n_mels,
|
1769
|
+
self.dims.n_audio_ctx,
|
1770
|
+
self.dims.n_audio_state,
|
1771
|
+
self.dims.n_audio_head,
|
1772
|
+
self.dims.n_audio_layer,
|
1773
|
+
)
|
1774
|
+
self.decoder = TextDecoder(
|
1775
|
+
self.dims.n_vocab,
|
1776
|
+
self.dims.n_text_ctx,
|
1777
|
+
self.dims.n_text_state,
|
1778
|
+
self.dims.n_text_head,
|
1779
|
+
self.dims.n_text_layer,
|
1780
|
+
)
|
1781
|
+
|
1782
|
+
def embed_audio(self, mel: paddle.Tensor):
|
1783
|
+
return self.encoder.forward(mel)
|
1784
|
+
|
1785
|
+
def logits(self, tokens: paddle.Tensor, audio_features: paddle.Tensor):
|
1786
|
+
return self.decoder.forward(tokens, audio_features)
|
1787
|
+
|
1788
|
+
def forward(
|
1789
|
+
self, mel: paddle.Tensor, tokens: paddle.Tensor
|
1790
|
+
) -> Dict[str, paddle.Tensor]:
|
1791
|
+
return self.decoder(tokens, self.encoder(mel))
|
1792
|
+
|
1793
|
+
@property
|
1794
|
+
def device(self):
|
1795
|
+
return paddle.device.get_device()
|
1796
|
+
|
1797
|
+
@property
|
1798
|
+
def is_multilingual(self):
|
1799
|
+
return self.dims.n_vocab == 51865
|
1800
|
+
|
1801
|
+
def install_kv_cache_hooks(self, cache: Optional[dict] = None):
|
1802
|
+
"""
|
1803
|
+
The `MultiHeadAttention` module optionally accepts `kv_cache` which stores the key and value
|
1804
|
+
tensors calculated for the previous positions. This method returns a dictionary that stores
|
1805
|
+
all caches, and the necessary hooks for the key and value projection modules that save the
|
1806
|
+
intermediate tensors to be reused during later calculations.
|
1807
|
+
|
1808
|
+
Returns
|
1809
|
+
-------
|
1810
|
+
cache : Dict[nn.Layer, paddle.Tensor]
|
1811
|
+
A dictionary object mapping the key/value projection modules to its cache
|
1812
|
+
hooks : List[RemovableHandle]
|
1813
|
+
List of PyTorch RemovableHandle objects to stop the hooks to be called
|
1814
|
+
"""
|
1815
|
+
cache = {**cache} if cache is not None else {}
|
1816
|
+
hooks = []
|
1817
|
+
|
1818
|
+
def save_to_cache(module, _, output):
|
1819
|
+
if (
|
1820
|
+
module not in cache
|
1821
|
+
or output.shape[1] > self.decoder.positional_embedding.shape[0]
|
1822
|
+
):
|
1823
|
+
cache[module] = (
|
1824
|
+
output # save as-is, for the first token or cross attention
|
1825
|
+
)
|
1826
|
+
else:
|
1827
|
+
cache[module] = paddle.concat([cache[module], output], axis=1).detach()
|
1828
|
+
return cache[module]
|
1829
|
+
|
1830
|
+
def install_hooks(layer: paddle.nn.Layer):
|
1831
|
+
if isinstance(layer, MultiHeadAttention):
|
1832
|
+
hooks.append(layer.key.register_forward_post_hook(save_to_cache))
|
1833
|
+
hooks.append(layer.value.register_forward_post_hook(save_to_cache))
|
1834
|
+
|
1835
|
+
self.decoder.apply(install_hooks)
|
1836
|
+
return cache, hooks
|
1837
|
+
|
1838
|
+
detect_language = detect_language
|
1839
|
+
transcribe = transcribe
|
1840
|
+
decode = decode
|
1841
|
+
|
1842
|
+
|
1843
|
+
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
1844
|
+
"""
|
1845
|
+
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
|
1846
|
+
"""
|
1847
|
+
if paddle.is_tensor(array):
|
1848
|
+
if array.shape[axis] > length:
|
1849
|
+
array = array.index_select(axis=axis, index=paddle.arange(length))
|
1850
|
+
|
1851
|
+
if array.shape[axis] < length:
|
1852
|
+
pad_widths = [(0, 0)] * array.ndim
|
1853
|
+
pad_widths[axis] = (0, length - array.shape[axis])
|
1854
|
+
array = paddle.transpose(array, (1, 0))
|
1855
|
+
array = paddle.nn.functional.pad(
|
1856
|
+
array,
|
1857
|
+
[pad for sizes in pad_widths[::-1] for pad in sizes],
|
1858
|
+
data_format="NLC",
|
1859
|
+
)
|
1860
|
+
array = paddle.transpose(array, (1, 0))
|
1861
|
+
else:
|
1862
|
+
if array.shape[axis] > length:
|
1863
|
+
array = array.take(indices=range(length), axis=axis)
|
1864
|
+
|
1865
|
+
if array.shape[axis] < length:
|
1866
|
+
pad_widths = [(0, 0)] * array.ndim
|
1867
|
+
pad_widths[axis] = (0, length - array.shape[axis])
|
1868
|
+
array = paddle.transpose(array, (1, 0))
|
1869
|
+
array = np.pad(array, pad_widths)
|
1870
|
+
array = paddle.transpose(array, (1, 0))
|
1871
|
+
|
1872
|
+
return array
|
1873
|
+
|
1874
|
+
|
1875
|
+
def hann_window(n_fft: int = N_FFT):
|
1876
|
+
"""
|
1877
|
+
hanning window
|
1878
|
+
n_fft: The number of frequency components of the discrete Fourier transform.
|
1879
|
+
"""
|
1880
|
+
return paddle.to_tensor(
|
1881
|
+
[0.5 - 0.5 * np.cos(2 * np.pi * n / n_fft) for n in range(n_fft)],
|
1882
|
+
dtype=paddle.float32,
|
1883
|
+
)
|
1884
|
+
|
1885
|
+
|
1886
|
+
@lru_cache(maxsize=None)
|
1887
|
+
def mel_filters(resource_path: str, n_mels: int = N_MELS) -> paddle.Tensor:
|
1888
|
+
"""
|
1889
|
+
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
|
1890
|
+
Allows decoupling librosa dependency; saved using:
|
1891
|
+
|
1892
|
+
np.savez_compressed(
|
1893
|
+
"mel_filters.npz",
|
1894
|
+
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
|
1895
|
+
)
|
1896
|
+
"""
|
1897
|
+
assert n_mels == 80, f"Unsupported n_mels: {n_mels}"
|
1898
|
+
with np.load(os.path.join(resource_path, "assets", "mel_filters.npz")) as f:
|
1899
|
+
return paddle.to_tensor(f[f"mel_{n_mels}"])
|
1900
|
+
|
1901
|
+
|
1902
|
+
def log_mel_spectrogram(
|
1903
|
+
audio: Union[str, np.ndarray, paddle.Tensor],
|
1904
|
+
n_mels: int = N_MELS,
|
1905
|
+
resource_path: str = None,
|
1906
|
+
):
|
1907
|
+
"""
|
1908
|
+
Compute the log-Mel spectrogram of
|
1909
|
+
|
1910
|
+
Parameters
|
1911
|
+
----------
|
1912
|
+
audio: Union[str, np.ndarray, paddle.Tensor], shape = (*)
|
1913
|
+
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
|
1914
|
+
|
1915
|
+
n_mels: int
|
1916
|
+
The number of Mel-frequency filters, only 80 is supported
|
1917
|
+
|
1918
|
+
Returns
|
1919
|
+
-------
|
1920
|
+
paddle.Tensor, shape = (80, n_frames)
|
1921
|
+
A Tensor that contains the Mel spectrogram
|
1922
|
+
"""
|
1923
|
+
if not paddle.is_tensor(audio):
|
1924
|
+
if isinstance(audio, str):
|
1925
|
+
audio, _ = soundfile.read(audio, dtype="float32", always_2d=True)
|
1926
|
+
audio = audio[:, 0]
|
1927
|
+
audio = paddle.to_tensor(audio)
|
1928
|
+
|
1929
|
+
window = hann_window(N_FFT)
|
1930
|
+
stft = paddle.signal.stft(audio, N_FFT, HOP_LENGTH, window=window)
|
1931
|
+
|
1932
|
+
magnitudes = stft[:, :-1].abs() ** 2
|
1933
|
+
|
1934
|
+
filters = mel_filters(resource_path, n_mels)
|
1935
|
+
mel_spec = filters @ magnitudes
|
1936
|
+
mel_spec = paddle.to_tensor(mel_spec.numpy().tolist())
|
1937
|
+
|
1938
|
+
log_spec = paddle.clip(mel_spec, min=1e-10).log10()
|
1939
|
+
log_spec = paddle.maximum(log_spec, log_spec.max() - 8.0)
|
1940
|
+
log_spec = (log_spec + 4.0) / 4.0
|
1941
|
+
return log_spec
|