orca-sdk 0.1.3__py3-none-any.whl → 0.1.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- orca_sdk/async_client.py +448 -301
- orca_sdk/classification_model.py +53 -17
- orca_sdk/client.py +448 -301
- orca_sdk/datasource.py +45 -2
- orca_sdk/datasource_test.py +120 -0
- orca_sdk/embedding_model.py +32 -24
- orca_sdk/job.py +17 -17
- orca_sdk/memoryset.py +318 -30
- orca_sdk/memoryset_test.py +185 -1
- orca_sdk/regression_model.py +38 -4
- orca_sdk/telemetry.py +52 -13
- {orca_sdk-0.1.3.dist-info → orca_sdk-0.1.4.dist-info}/METADATA +1 -1
- {orca_sdk-0.1.3.dist-info → orca_sdk-0.1.4.dist-info}/RECORD +14 -14
- {orca_sdk-0.1.3.dist-info → orca_sdk-0.1.4.dist-info}/WHEEL +0 -0
orca_sdk/client.py
CHANGED
|
@@ -133,6 +133,8 @@ class ClassificationEvaluationRequest(TypedDict):
|
|
|
133
133
|
datasource_value_column: str
|
|
134
134
|
record_telemetry: NotRequired[bool]
|
|
135
135
|
telemetry_tags: NotRequired[list[str] | None]
|
|
136
|
+
subsample: NotRequired[int | float | None]
|
|
137
|
+
ignore_unlabeled: NotRequired[bool]
|
|
136
138
|
|
|
137
139
|
|
|
138
140
|
class CleanupResponse(TypedDict):
|
|
@@ -161,6 +163,7 @@ class CountPredictionsRequest(TypedDict):
|
|
|
161
163
|
prediction_ids: NotRequired[list[str] | None]
|
|
162
164
|
start_timestamp: NotRequired[str | None]
|
|
163
165
|
end_timestamp: NotRequired[str | None]
|
|
166
|
+
memory_id: NotRequired[str | None]
|
|
164
167
|
|
|
165
168
|
|
|
166
169
|
class CreateApiKeyRequest(TypedDict):
|
|
@@ -191,6 +194,12 @@ class CreateOrgPlanRequest(TypedDict):
|
|
|
191
194
|
tier: Literal["FREE", "PRO", "ENTERPRISE", "CANCELLED"]
|
|
192
195
|
|
|
193
196
|
|
|
197
|
+
class DatasetFilterItem(TypedDict):
|
|
198
|
+
field: str
|
|
199
|
+
op: Literal["==", "!=", ">", ">=", "<", "<=", "in", "not in", "like"]
|
|
200
|
+
value: Any
|
|
201
|
+
|
|
202
|
+
|
|
194
203
|
class DeleteMemoriesRequest(TypedDict):
|
|
195
204
|
memory_ids: list[str]
|
|
196
205
|
|
|
@@ -208,7 +217,7 @@ class EmbedRequest(TypedDict):
|
|
|
208
217
|
class EmbeddingEvaluationRequest(TypedDict):
|
|
209
218
|
datasource_name_or_id: str
|
|
210
219
|
eval_datasource_name_or_id: NotRequired[str | None]
|
|
211
|
-
subsample: NotRequired[int | None]
|
|
220
|
+
subsample: NotRequired[int | float | None]
|
|
212
221
|
datasource_value_column: NotRequired[str]
|
|
213
222
|
datasource_label_column: NotRequired[str | None]
|
|
214
223
|
datasource_score_column: NotRequired[str | None]
|
|
@@ -217,7 +226,7 @@ class EmbeddingEvaluationRequest(TypedDict):
|
|
|
217
226
|
weigh_memories: NotRequired[bool]
|
|
218
227
|
|
|
219
228
|
|
|
220
|
-
EmbeddingFinetuningMethod = Literal["classification", "batch_triplet_loss"]
|
|
229
|
+
EmbeddingFinetuningMethod = Literal["classification", "regression", "batch_triplet_loss"]
|
|
221
230
|
|
|
222
231
|
|
|
223
232
|
class FeedbackMetrics(TypedDict):
|
|
@@ -231,7 +240,19 @@ FeedbackType = Literal["CONTINUOUS", "BINARY"]
|
|
|
231
240
|
class FilterItem(TypedDict):
|
|
232
241
|
field: list
|
|
233
242
|
op: Literal["==", "!=", ">", ">=", "<", "<=", "in", "not in", "like"]
|
|
234
|
-
value: str | int | float | bool | list[str] | list[int] | list[float] | list[bool] | None
|
|
243
|
+
value: str | int | float | bool | list[str | None] | list[int] | list[float] | list[bool] | None
|
|
244
|
+
|
|
245
|
+
|
|
246
|
+
class GetDatasourceRowCountRequest(TypedDict):
|
|
247
|
+
filters: NotRequired[list[DatasetFilterItem]]
|
|
248
|
+
|
|
249
|
+
|
|
250
|
+
class GetDatasourceRowsRequest(TypedDict):
|
|
251
|
+
filters: NotRequired[list[DatasetFilterItem]]
|
|
252
|
+
limit: NotRequired[int]
|
|
253
|
+
offset: NotRequired[int]
|
|
254
|
+
shuffle: NotRequired[bool]
|
|
255
|
+
shuffle_seed: NotRequired[int | None]
|
|
235
256
|
|
|
236
257
|
|
|
237
258
|
class GetMemoriesRequest(TypedDict):
|
|
@@ -252,6 +273,18 @@ class InternalServerErrorResponse(TypedDict):
|
|
|
252
273
|
request_id: str
|
|
253
274
|
|
|
254
275
|
|
|
276
|
+
JobStatus = Literal["INITIALIZED", "DISPATCHED", "WAITING", "PROCESSING", "COMPLETED", "FAILED", "ABORTING", "ABORTED"]
|
|
277
|
+
|
|
278
|
+
|
|
279
|
+
class JobStatusInfo(TypedDict):
|
|
280
|
+
status: JobStatus
|
|
281
|
+
steps_total: int | None
|
|
282
|
+
steps_completed: int | None
|
|
283
|
+
exception: str | None
|
|
284
|
+
updated_at: str
|
|
285
|
+
created_at: str
|
|
286
|
+
|
|
287
|
+
|
|
255
288
|
class LabelClassMetrics(TypedDict):
|
|
256
289
|
label: int | None
|
|
257
290
|
label_name: NotRequired[str | None]
|
|
@@ -274,6 +307,7 @@ class LabeledMemoryInsert(TypedDict):
|
|
|
274
307
|
value: str | bytes
|
|
275
308
|
metadata: NotRequired[dict[str, str | int | float | bool | None]]
|
|
276
309
|
source_id: NotRequired[str | None]
|
|
310
|
+
partition_id: NotRequired[str | None]
|
|
277
311
|
label: int | None
|
|
278
312
|
|
|
279
313
|
|
|
@@ -338,8 +372,6 @@ class MemorysetClassPatternsMetrics(TypedDict):
|
|
|
338
372
|
class MemorysetClusterAnalysisConfig(TypedDict):
|
|
339
373
|
min_cluster_size: NotRequired[int | None]
|
|
340
374
|
max_cluster_size: NotRequired[int | None]
|
|
341
|
-
clustering_method: NotRequired[Literal["density", "graph"]]
|
|
342
|
-
min_cluster_distance: NotRequired[float]
|
|
343
375
|
partitioning_method: NotRequired[Literal["ng", "rb", "cpm"]]
|
|
344
376
|
resolution: NotRequired[float | None]
|
|
345
377
|
num_iterations: NotRequired[int]
|
|
@@ -368,6 +400,7 @@ class MemorysetConceptAnalysisConfig(TypedDict):
|
|
|
368
400
|
use_generative_naming: NotRequired[bool]
|
|
369
401
|
naming_examples_count: NotRequired[int]
|
|
370
402
|
naming_counterexample_count: NotRequired[int]
|
|
403
|
+
primary_label_pct_threshold: NotRequired[float]
|
|
371
404
|
seed: NotRequired[int]
|
|
372
405
|
|
|
373
406
|
|
|
@@ -437,7 +470,7 @@ class NotFoundErrorResponse(TypedDict):
|
|
|
437
470
|
"memory",
|
|
438
471
|
"evaluation",
|
|
439
472
|
"analysis",
|
|
440
|
-
"
|
|
473
|
+
"job",
|
|
441
474
|
"pretrained_embedding_model",
|
|
442
475
|
"finetuned_embedding_model",
|
|
443
476
|
"feedback_category",
|
|
@@ -551,6 +584,8 @@ class RegressionEvaluationRequest(TypedDict):
|
|
|
551
584
|
datasource_value_column: str
|
|
552
585
|
record_telemetry: NotRequired[bool]
|
|
553
586
|
telemetry_tags: NotRequired[list[str] | None]
|
|
587
|
+
subsample: NotRequired[int | float | None]
|
|
588
|
+
ignore_unlabeled: NotRequired[bool]
|
|
554
589
|
|
|
555
590
|
|
|
556
591
|
class RegressionMetrics(TypedDict):
|
|
@@ -593,12 +628,14 @@ class RegressionPredictionRequest(TypedDict):
|
|
|
593
628
|
prompt: NotRequired[str | None]
|
|
594
629
|
use_lookup_cache: NotRequired[bool]
|
|
595
630
|
consistency_level: NotRequired[Literal["Bounded", "Session", "Strong", "Eventual"] | None]
|
|
631
|
+
ignore_unlabeled: NotRequired[bool]
|
|
596
632
|
|
|
597
633
|
|
|
598
634
|
class ScorePredictionMemoryLookup(TypedDict):
|
|
599
635
|
value: str | bytes
|
|
600
636
|
embedding: list[float]
|
|
601
637
|
source_id: str | None
|
|
638
|
+
partition_id: str | None
|
|
602
639
|
metadata: dict[str, str | int | float | bool | None]
|
|
603
640
|
memory_id: str
|
|
604
641
|
memory_version: int
|
|
@@ -636,6 +673,7 @@ class ScoredMemory(TypedDict):
|
|
|
636
673
|
value: str | bytes
|
|
637
674
|
embedding: list[float]
|
|
638
675
|
source_id: str | None
|
|
676
|
+
partition_id: str | None
|
|
639
677
|
metadata: dict[str, str | int | float | bool | None]
|
|
640
678
|
memory_id: str
|
|
641
679
|
memory_version: int
|
|
@@ -651,6 +689,7 @@ class ScoredMemoryInsert(TypedDict):
|
|
|
651
689
|
value: str | bytes
|
|
652
690
|
metadata: NotRequired[dict[str, str | int | float | bool | None]]
|
|
653
691
|
source_id: NotRequired[str | None]
|
|
692
|
+
partition_id: NotRequired[str | None]
|
|
654
693
|
score: float | None
|
|
655
694
|
|
|
656
695
|
|
|
@@ -658,6 +697,7 @@ class ScoredMemoryLookup(TypedDict):
|
|
|
658
697
|
value: str | bytes
|
|
659
698
|
embedding: list[float]
|
|
660
699
|
source_id: str | None
|
|
700
|
+
partition_id: str | None
|
|
661
701
|
metadata: dict[str, str | int | float | bool | None]
|
|
662
702
|
memory_id: str
|
|
663
703
|
memory_version: int
|
|
@@ -674,6 +714,7 @@ class ScoredMemoryUpdate(TypedDict):
|
|
|
674
714
|
value: NotRequired[str | bytes]
|
|
675
715
|
metadata: NotRequired[dict[str, str | int | float | bool | None] | None]
|
|
676
716
|
source_id: NotRequired[str | None]
|
|
717
|
+
partition_id: NotRequired[str | None]
|
|
677
718
|
metrics: NotRequired[MemoryMetrics | None]
|
|
678
719
|
score: NotRequired[float | None]
|
|
679
720
|
|
|
@@ -682,6 +723,7 @@ class ScoredMemoryWithFeedbackMetrics(TypedDict):
|
|
|
682
723
|
value: str | bytes
|
|
683
724
|
embedding: list[float]
|
|
684
725
|
source_id: str | None
|
|
726
|
+
partition_id: str | None
|
|
685
727
|
metadata: dict[str, str | int | float | bool | None]
|
|
686
728
|
memory_id: str
|
|
687
729
|
memory_version: int
|
|
@@ -707,18 +749,6 @@ class SubConceptMetrics(TypedDict):
|
|
|
707
749
|
memory_count: int
|
|
708
750
|
|
|
709
751
|
|
|
710
|
-
TaskStatus = Literal["INITIALIZED", "DISPATCHED", "WAITING", "PROCESSING", "COMPLETED", "FAILED", "ABORTING", "ABORTED"]
|
|
711
|
-
|
|
712
|
-
|
|
713
|
-
class TaskStatusInfo(TypedDict):
|
|
714
|
-
status: TaskStatus
|
|
715
|
-
steps_total: int | None
|
|
716
|
-
steps_completed: int | None
|
|
717
|
-
exception: str | None
|
|
718
|
-
updated_at: str
|
|
719
|
-
created_at: str
|
|
720
|
-
|
|
721
|
-
|
|
722
752
|
TelemetryField = list
|
|
723
753
|
|
|
724
754
|
|
|
@@ -791,6 +821,10 @@ class DeleteMemorysetByNameOrIdParams(TypedDict):
|
|
|
791
821
|
name_or_id: str
|
|
792
822
|
|
|
793
823
|
|
|
824
|
+
class PostGpuMemorysetByNameOrIdLookupParams(TypedDict):
|
|
825
|
+
name_or_id: str
|
|
826
|
+
|
|
827
|
+
|
|
794
828
|
class GetMemorysetByNameOrIdMemoryByMemoryIdParams(TypedDict):
|
|
795
829
|
name_or_id: str
|
|
796
830
|
memory_id: str
|
|
@@ -823,20 +857,35 @@ class PostMemorysetByNameOrIdMemoriesDeleteParams(TypedDict):
|
|
|
823
857
|
name_or_id: str
|
|
824
858
|
|
|
825
859
|
|
|
860
|
+
class PatchGpuMemorysetByNameOrIdMemoryParams(TypedDict):
|
|
861
|
+
name_or_id: str
|
|
862
|
+
|
|
863
|
+
|
|
864
|
+
class PostGpuMemorysetByNameOrIdMemoryParams(TypedDict):
|
|
865
|
+
name_or_id: str
|
|
866
|
+
|
|
867
|
+
|
|
868
|
+
PostGpuMemorysetByNameOrIdMemoryRequest = list[LabeledMemoryInsert] | list[ScoredMemoryInsert]
|
|
869
|
+
|
|
870
|
+
|
|
871
|
+
class PatchGpuMemorysetByNameOrIdMemoriesParams(TypedDict):
|
|
872
|
+
name_or_id: str
|
|
873
|
+
|
|
874
|
+
|
|
826
875
|
class PostMemorysetByNameOrIdAnalysisParams(TypedDict):
|
|
827
876
|
name_or_id: str
|
|
828
877
|
|
|
829
878
|
|
|
830
879
|
class GetMemorysetByNameOrIdAnalysisParams(TypedDict):
|
|
831
880
|
name_or_id: str
|
|
832
|
-
status: NotRequired[
|
|
881
|
+
status: NotRequired[JobStatus | None]
|
|
833
882
|
limit: NotRequired[int | None]
|
|
834
883
|
offset: NotRequired[int | None]
|
|
835
884
|
|
|
836
885
|
|
|
837
|
-
class
|
|
886
|
+
class GetMemorysetByNameOrIdAnalysisByAnalysisJobIdParams(TypedDict):
|
|
838
887
|
name_or_id: str
|
|
839
|
-
|
|
888
|
+
analysis_job_id: str
|
|
840
889
|
|
|
841
890
|
|
|
842
891
|
class PostMemorysetByNameOrIdMemoryByMemoryIdCascadingEditsParams(TypedDict):
|
|
@@ -852,34 +901,42 @@ class DeleteFinetunedEmbeddingModelByNameOrIdParams(TypedDict):
|
|
|
852
901
|
name_or_id: str
|
|
853
902
|
|
|
854
903
|
|
|
855
|
-
class
|
|
904
|
+
class PostGpuFinetunedEmbeddingModelByNameOrIdEmbeddingParams(TypedDict):
|
|
856
905
|
name_or_id: str
|
|
857
906
|
|
|
858
907
|
|
|
859
|
-
class
|
|
860
|
-
|
|
861
|
-
task_id: str
|
|
908
|
+
class GetPretrainedEmbeddingModelByModelNameParams(TypedDict):
|
|
909
|
+
model_name: PretrainedEmbeddingModelName
|
|
862
910
|
|
|
863
911
|
|
|
864
|
-
class
|
|
865
|
-
|
|
866
|
-
datasource: NotRequired[str | None]
|
|
867
|
-
value_column: NotRequired[str | None]
|
|
868
|
-
label_column: NotRequired[str | None]
|
|
869
|
-
score_column: NotRequired[str | None]
|
|
912
|
+
class PostGpuPretrainedEmbeddingModelByModelNameEmbeddingParams(TypedDict):
|
|
913
|
+
model_name: PretrainedEmbeddingModelName
|
|
870
914
|
|
|
871
915
|
|
|
872
|
-
class
|
|
873
|
-
|
|
916
|
+
class PostFinetunedEmbeddingModelByNameOrIdEvaluationParams(TypedDict):
|
|
917
|
+
name_or_id: str
|
|
874
918
|
|
|
875
919
|
|
|
876
920
|
class PostPretrainedEmbeddingModelByModelNameEvaluationParams(TypedDict):
|
|
877
921
|
model_name: PretrainedEmbeddingModelName
|
|
878
922
|
|
|
879
923
|
|
|
880
|
-
class
|
|
924
|
+
class GetFinetunedEmbeddingModelByNameOrIdEvaluationByJobIdParams(TypedDict):
|
|
925
|
+
name_or_id: str
|
|
926
|
+
job_id: str
|
|
927
|
+
|
|
928
|
+
|
|
929
|
+
class GetPretrainedEmbeddingModelByModelNameEvaluationByJobIdParams(TypedDict):
|
|
881
930
|
model_name: PretrainedEmbeddingModelName
|
|
882
|
-
|
|
931
|
+
job_id: str
|
|
932
|
+
|
|
933
|
+
|
|
934
|
+
class GetFinetunedEmbeddingModelByNameOrIdEvaluationsParams(TypedDict):
|
|
935
|
+
name_or_id: str
|
|
936
|
+
datasource: NotRequired[str | None]
|
|
937
|
+
value_column: NotRequired[str | None]
|
|
938
|
+
label_column: NotRequired[str | None]
|
|
939
|
+
score_column: NotRequired[str | None]
|
|
883
940
|
|
|
884
941
|
|
|
885
942
|
class GetPretrainedEmbeddingModelByModelNameEvaluationsParams(TypedDict):
|
|
@@ -909,6 +966,14 @@ class DeleteDatasourceByNameOrIdParams(TypedDict):
|
|
|
909
966
|
name_or_id: str
|
|
910
967
|
|
|
911
968
|
|
|
969
|
+
class PostDatasourceByNameOrIdRowsParams(TypedDict):
|
|
970
|
+
name_or_id: str
|
|
971
|
+
|
|
972
|
+
|
|
973
|
+
class PostDatasourceByNameOrIdRowsCountParams(TypedDict):
|
|
974
|
+
name_or_id: str
|
|
975
|
+
|
|
976
|
+
|
|
912
977
|
class GetDatasourceByNameOrIdEmbeddingModelEvaluationsParams(TypedDict):
|
|
913
978
|
name_or_id: str
|
|
914
979
|
value_column: NotRequired[str | None]
|
|
@@ -939,36 +1004,42 @@ class DeleteClassificationModelByNameOrIdParams(TypedDict):
|
|
|
939
1004
|
name_or_id: str
|
|
940
1005
|
|
|
941
1006
|
|
|
942
|
-
class
|
|
943
|
-
|
|
1007
|
+
class PatchRegressionModelByNameOrIdParams(TypedDict):
|
|
1008
|
+
name_or_id: str
|
|
944
1009
|
|
|
945
1010
|
|
|
946
|
-
class
|
|
947
|
-
|
|
1011
|
+
class GetRegressionModelByNameOrIdParams(TypedDict):
|
|
1012
|
+
name_or_id: str
|
|
948
1013
|
|
|
949
1014
|
|
|
950
|
-
class
|
|
951
|
-
|
|
952
|
-
task_id: str
|
|
1015
|
+
class DeleteRegressionModelByNameOrIdParams(TypedDict):
|
|
1016
|
+
name_or_id: str
|
|
953
1017
|
|
|
954
1018
|
|
|
955
|
-
class
|
|
956
|
-
|
|
957
|
-
task_id: str
|
|
1019
|
+
class PostGpuClassificationModelByNameOrIdPredictionParams(TypedDict):
|
|
1020
|
+
name_or_id: str
|
|
958
1021
|
|
|
959
1022
|
|
|
960
|
-
class
|
|
1023
|
+
class PostClassificationModelByNameOrIdPredictionParams(TypedDict):
|
|
961
1024
|
name_or_id: str
|
|
962
1025
|
|
|
963
1026
|
|
|
964
|
-
class
|
|
1027
|
+
class PostGpuRegressionModelByNameOrIdPredictionParams(TypedDict):
|
|
965
1028
|
name_or_id: str
|
|
966
1029
|
|
|
967
1030
|
|
|
968
|
-
class
|
|
1031
|
+
class PostRegressionModelByNameOrIdPredictionParams(TypedDict):
|
|
969
1032
|
name_or_id: str
|
|
970
1033
|
|
|
971
1034
|
|
|
1035
|
+
class PostClassificationModelByModelNameOrIdEvaluationParams(TypedDict):
|
|
1036
|
+
model_name_or_id: str
|
|
1037
|
+
|
|
1038
|
+
|
|
1039
|
+
class GetClassificationModelByModelNameOrIdEvaluationParams(TypedDict):
|
|
1040
|
+
model_name_or_id: str
|
|
1041
|
+
|
|
1042
|
+
|
|
972
1043
|
class PostRegressionModelByModelNameOrIdEvaluationParams(TypedDict):
|
|
973
1044
|
model_name_or_id: str
|
|
974
1045
|
|
|
@@ -977,26 +1048,36 @@ class GetRegressionModelByModelNameOrIdEvaluationParams(TypedDict):
|
|
|
977
1048
|
model_name_or_id: str
|
|
978
1049
|
|
|
979
1050
|
|
|
980
|
-
class
|
|
1051
|
+
class GetClassificationModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
|
|
981
1052
|
model_name_or_id: str
|
|
982
|
-
|
|
1053
|
+
job_id: str
|
|
983
1054
|
|
|
984
1055
|
|
|
985
|
-
class
|
|
1056
|
+
class DeleteClassificationModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
|
|
986
1057
|
model_name_or_id: str
|
|
987
|
-
|
|
1058
|
+
job_id: str
|
|
988
1059
|
|
|
989
1060
|
|
|
990
|
-
class
|
|
991
|
-
|
|
1061
|
+
class GetRegressionModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
|
|
1062
|
+
model_name_or_id: str
|
|
1063
|
+
job_id: str
|
|
992
1064
|
|
|
993
1065
|
|
|
994
|
-
class
|
|
995
|
-
|
|
1066
|
+
class DeleteRegressionModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
|
|
1067
|
+
model_name_or_id: str
|
|
1068
|
+
job_id: str
|
|
1069
|
+
|
|
1070
|
+
|
|
1071
|
+
class GetJobByJobIdParams(TypedDict):
|
|
1072
|
+
job_id: str
|
|
1073
|
+
|
|
996
1074
|
|
|
1075
|
+
class GetJobByJobIdStatusParams(TypedDict):
|
|
1076
|
+
job_id: str
|
|
997
1077
|
|
|
998
|
-
|
|
999
|
-
|
|
1078
|
+
|
|
1079
|
+
class GetJobParams(TypedDict):
|
|
1080
|
+
status: NotRequired[JobStatus | list[JobStatus] | None]
|
|
1000
1081
|
type: NotRequired[str | list[str] | None]
|
|
1001
1082
|
limit: NotRequired[int | None]
|
|
1002
1083
|
offset: NotRequired[int]
|
|
@@ -1004,8 +1085,8 @@ class GetTaskParams(TypedDict):
|
|
|
1004
1085
|
end_timestamp: NotRequired[str | None]
|
|
1005
1086
|
|
|
1006
1087
|
|
|
1007
|
-
class
|
|
1008
|
-
|
|
1088
|
+
class DeleteJobByJobIdAbortParams(TypedDict):
|
|
1089
|
+
job_id: str
|
|
1009
1090
|
|
|
1010
1091
|
|
|
1011
1092
|
class GetWorkerParams(TypedDict):
|
|
@@ -1061,43 +1142,8 @@ class DeleteTelemetryFeedbackCategoryByNameOrIdParams(TypedDict):
|
|
|
1061
1142
|
PutTelemetryPredictionFeedbackRequest = list[PredictionFeedbackRequest]
|
|
1062
1143
|
|
|
1063
1144
|
|
|
1064
|
-
class
|
|
1065
|
-
|
|
1066
|
-
|
|
1067
|
-
|
|
1068
|
-
class PostGpuMemorysetByNameOrIdLookupParams(TypedDict):
|
|
1069
|
-
name_or_id: str
|
|
1070
|
-
|
|
1071
|
-
|
|
1072
|
-
class PatchGpuMemorysetByNameOrIdMemoryParams(TypedDict):
|
|
1073
|
-
name_or_id: str
|
|
1074
|
-
|
|
1075
|
-
|
|
1076
|
-
class PostGpuMemorysetByNameOrIdMemoryParams(TypedDict):
|
|
1077
|
-
name_or_id: str
|
|
1078
|
-
|
|
1079
|
-
|
|
1080
|
-
PostGpuMemorysetByNameOrIdMemoryRequest = list[LabeledMemoryInsert] | list[ScoredMemoryInsert]
|
|
1081
|
-
|
|
1082
|
-
|
|
1083
|
-
class PatchGpuMemorysetByNameOrIdMemoriesParams(TypedDict):
|
|
1084
|
-
name_or_id: str
|
|
1085
|
-
|
|
1086
|
-
|
|
1087
|
-
class PostGpuClassificationModelByNameOrIdPredictionParams(TypedDict):
|
|
1088
|
-
name_or_id: str
|
|
1089
|
-
|
|
1090
|
-
|
|
1091
|
-
class PostGpuRegressionModelByNameOrIdPredictionParams(TypedDict):
|
|
1092
|
-
name_or_id: str
|
|
1093
|
-
|
|
1094
|
-
|
|
1095
|
-
class PostGpuFinetunedEmbeddingModelByNameOrIdEmbeddingParams(TypedDict):
|
|
1096
|
-
name_or_id: str
|
|
1097
|
-
|
|
1098
|
-
|
|
1099
|
-
class PostGpuPretrainedEmbeddingModelByModelNameEmbeddingParams(TypedDict):
|
|
1100
|
-
model_name: PretrainedEmbeddingModelName
|
|
1145
|
+
class GetAgentsBootstrapClassificationModelByJobIdParams(TypedDict):
|
|
1146
|
+
job_id: str
|
|
1101
1147
|
|
|
1102
1148
|
|
|
1103
1149
|
class FieldValidationError(TypedDict):
|
|
@@ -1169,6 +1215,7 @@ class ClassificationPredictionRequest(TypedDict):
|
|
|
1169
1215
|
prompt: NotRequired[str | None]
|
|
1170
1216
|
use_lookup_cache: NotRequired[bool]
|
|
1171
1217
|
consistency_level: NotRequired[Literal["Bounded", "Session", "Strong", "Eventual"] | None]
|
|
1218
|
+
ignore_unlabeled: NotRequired[bool]
|
|
1172
1219
|
|
|
1173
1220
|
|
|
1174
1221
|
class CloneMemorysetRequest(TypedDict):
|
|
@@ -1185,6 +1232,7 @@ class ColumnInfo(TypedDict):
|
|
|
1185
1232
|
name: str
|
|
1186
1233
|
type: ColumnType
|
|
1187
1234
|
enum_options: NotRequired[list[str] | None]
|
|
1235
|
+
string_values: NotRequired[list[str] | None]
|
|
1188
1236
|
int_values: NotRequired[list[int] | None]
|
|
1189
1237
|
contains_nones: NotRequired[bool]
|
|
1190
1238
|
|
|
@@ -1231,6 +1279,8 @@ class CreateMemorysetRequest(TypedDict):
|
|
|
1231
1279
|
prompt: NotRequired[str]
|
|
1232
1280
|
hidden: NotRequired[bool]
|
|
1233
1281
|
batch_size: NotRequired[int]
|
|
1282
|
+
subsample: NotRequired[int | float | None]
|
|
1283
|
+
memory_type: NotRequired[MemoryType]
|
|
1234
1284
|
|
|
1235
1285
|
|
|
1236
1286
|
class CreateRegressionModelRequest(TypedDict):
|
|
@@ -1255,48 +1305,52 @@ class DatasourceMetadata(TypedDict):
|
|
|
1255
1305
|
|
|
1256
1306
|
|
|
1257
1307
|
class EmbeddingEvaluationResponse(TypedDict):
|
|
1258
|
-
|
|
1308
|
+
job_id: str
|
|
1259
1309
|
org_id: str
|
|
1260
1310
|
finetuned_embedding_model_id: str | None
|
|
1261
1311
|
pretrained_embedding_model_name: PretrainedEmbeddingModelName | None
|
|
1262
1312
|
datasource_id: str
|
|
1263
|
-
subsample: int | None
|
|
1313
|
+
subsample: int | float | None
|
|
1264
1314
|
datasource_value_column: str
|
|
1265
1315
|
datasource_label_column: NotRequired[str | None]
|
|
1266
1316
|
datasource_score_column: NotRequired[str | None]
|
|
1267
1317
|
neighbor_count: int
|
|
1268
1318
|
weigh_memories: bool
|
|
1269
|
-
status:
|
|
1319
|
+
status: JobStatus
|
|
1270
1320
|
result: ClassificationMetrics | RegressionMetrics | None
|
|
1271
1321
|
created_at: str
|
|
1272
1322
|
updated_at: str
|
|
1323
|
+
task_id: str
|
|
1273
1324
|
|
|
1274
1325
|
|
|
1275
1326
|
class EvaluationResponse(TypedDict):
|
|
1276
|
-
|
|
1327
|
+
job_id: str
|
|
1277
1328
|
org_id: str
|
|
1278
|
-
status:
|
|
1329
|
+
status: JobStatus
|
|
1279
1330
|
result: ClassificationMetrics | RegressionMetrics | None
|
|
1280
1331
|
created_at: str
|
|
1281
1332
|
updated_at: str
|
|
1333
|
+
task_id: str
|
|
1282
1334
|
|
|
1283
1335
|
|
|
1284
1336
|
class EvaluationResponseClassificationMetrics(TypedDict):
|
|
1285
|
-
|
|
1337
|
+
job_id: str
|
|
1286
1338
|
org_id: str
|
|
1287
|
-
status:
|
|
1339
|
+
status: JobStatus
|
|
1288
1340
|
result: ClassificationMetrics | None
|
|
1289
1341
|
created_at: str
|
|
1290
1342
|
updated_at: str
|
|
1343
|
+
task_id: str
|
|
1291
1344
|
|
|
1292
1345
|
|
|
1293
1346
|
class EvaluationResponseRegressionMetrics(TypedDict):
|
|
1294
|
-
|
|
1347
|
+
job_id: str
|
|
1295
1348
|
org_id: str
|
|
1296
|
-
status:
|
|
1349
|
+
status: JobStatus
|
|
1297
1350
|
result: RegressionMetrics | None
|
|
1298
1351
|
created_at: str
|
|
1299
1352
|
updated_at: str
|
|
1353
|
+
task_id: str
|
|
1300
1354
|
|
|
1301
1355
|
|
|
1302
1356
|
class FinetuneEmbeddingModelRequest(TypedDict):
|
|
@@ -1305,7 +1359,8 @@ class FinetuneEmbeddingModelRequest(TypedDict):
|
|
|
1305
1359
|
train_memoryset_name_or_id: NotRequired[str | None]
|
|
1306
1360
|
train_datasource_name_or_id: NotRequired[str | None]
|
|
1307
1361
|
eval_datasource_name_or_id: NotRequired[str | None]
|
|
1308
|
-
label_column: NotRequired[str]
|
|
1362
|
+
label_column: NotRequired[str | None]
|
|
1363
|
+
score_column: NotRequired[str | None]
|
|
1309
1364
|
value_column: NotRequired[str]
|
|
1310
1365
|
training_method: NotRequired[EmbeddingFinetuningMethod]
|
|
1311
1366
|
training_args: NotRequired[dict[str, str | int | float | bool]]
|
|
@@ -1322,8 +1377,9 @@ class FinetunedEmbeddingModelMetadata(TypedDict):
|
|
|
1322
1377
|
created_at: str
|
|
1323
1378
|
updated_at: str
|
|
1324
1379
|
base_model: PretrainedEmbeddingModelName
|
|
1380
|
+
finetuning_job_id: str
|
|
1381
|
+
finetuning_status: JobStatus
|
|
1325
1382
|
finetuning_task_id: str
|
|
1326
|
-
finetuning_status: TaskStatus
|
|
1327
1383
|
|
|
1328
1384
|
|
|
1329
1385
|
class HTTPValidationError(TypedDict):
|
|
@@ -1335,10 +1391,28 @@ class InvalidInputErrorResponse(TypedDict):
|
|
|
1335
1391
|
validation_issues: list[FieldValidationError]
|
|
1336
1392
|
|
|
1337
1393
|
|
|
1394
|
+
class Job(TypedDict):
|
|
1395
|
+
status: JobStatus
|
|
1396
|
+
steps_total: int | None
|
|
1397
|
+
steps_completed: int | None
|
|
1398
|
+
exception: str | None
|
|
1399
|
+
updated_at: str
|
|
1400
|
+
created_at: str
|
|
1401
|
+
id: str
|
|
1402
|
+
org_id: str
|
|
1403
|
+
worker_id: str | None
|
|
1404
|
+
type: str
|
|
1405
|
+
payload: BaseModel
|
|
1406
|
+
result: BaseModel | None
|
|
1407
|
+
depends_on: NotRequired[list[str]]
|
|
1408
|
+
lease_token: str | None
|
|
1409
|
+
|
|
1410
|
+
|
|
1338
1411
|
class LabelPredictionMemoryLookup(TypedDict):
|
|
1339
1412
|
value: str | bytes
|
|
1340
1413
|
embedding: list[float]
|
|
1341
1414
|
source_id: str | None
|
|
1415
|
+
partition_id: str | None
|
|
1342
1416
|
metadata: dict[str, str | int | float | bool | None]
|
|
1343
1417
|
memory_id: str
|
|
1344
1418
|
memory_version: int
|
|
@@ -1380,6 +1454,7 @@ class LabeledMemory(TypedDict):
|
|
|
1380
1454
|
value: str | bytes
|
|
1381
1455
|
embedding: list[float]
|
|
1382
1456
|
source_id: str | None
|
|
1457
|
+
partition_id: str | None
|
|
1383
1458
|
metadata: dict[str, str | int | float | bool | None]
|
|
1384
1459
|
memory_id: str
|
|
1385
1460
|
memory_version: int
|
|
@@ -1395,6 +1470,7 @@ class LabeledMemoryLookup(TypedDict):
|
|
|
1395
1470
|
value: str | bytes
|
|
1396
1471
|
embedding: list[float]
|
|
1397
1472
|
source_id: str | None
|
|
1473
|
+
partition_id: str | None
|
|
1398
1474
|
metadata: dict[str, str | int | float | bool | None]
|
|
1399
1475
|
memory_id: str
|
|
1400
1476
|
memory_version: int
|
|
@@ -1412,6 +1488,7 @@ class LabeledMemoryUpdate(TypedDict):
|
|
|
1412
1488
|
value: NotRequired[str | bytes]
|
|
1413
1489
|
metadata: NotRequired[dict[str, str | int | float | bool | None] | None]
|
|
1414
1490
|
source_id: NotRequired[str | None]
|
|
1491
|
+
partition_id: NotRequired[str | None]
|
|
1415
1492
|
metrics: NotRequired[MemoryMetrics | None]
|
|
1416
1493
|
label: NotRequired[int | None]
|
|
1417
1494
|
|
|
@@ -1420,6 +1497,7 @@ class LabeledMemoryWithFeedbackMetrics(TypedDict):
|
|
|
1420
1497
|
value: str | bytes
|
|
1421
1498
|
embedding: list[float]
|
|
1422
1499
|
source_id: str | None
|
|
1500
|
+
partition_id: str | None
|
|
1423
1501
|
metadata: dict[str, str | int | float | bool | None]
|
|
1424
1502
|
memory_id: str
|
|
1425
1503
|
memory_version: int
|
|
@@ -1439,7 +1517,8 @@ class ListPredictionsRequest(TypedDict):
|
|
|
1439
1517
|
prediction_ids: NotRequired[list[str] | None]
|
|
1440
1518
|
start_timestamp: NotRequired[str | None]
|
|
1441
1519
|
end_timestamp: NotRequired[str | None]
|
|
1442
|
-
|
|
1520
|
+
memory_id: NotRequired[str | None]
|
|
1521
|
+
limit: NotRequired[int]
|
|
1443
1522
|
offset: NotRequired[int | None]
|
|
1444
1523
|
sort: NotRequired[PredictionSort]
|
|
1445
1524
|
expected_label_match: NotRequired[bool | None]
|
|
@@ -1478,6 +1557,13 @@ class MemorysetMetrics(TypedDict):
|
|
|
1478
1557
|
concepts: NotRequired[MemorysetConceptMetrics | None]
|
|
1479
1558
|
|
|
1480
1559
|
|
|
1560
|
+
class PaginatedJob(TypedDict):
|
|
1561
|
+
items: list[Job]
|
|
1562
|
+
total: int
|
|
1563
|
+
offset: int
|
|
1564
|
+
limit: int
|
|
1565
|
+
|
|
1566
|
+
|
|
1481
1567
|
class PaginatedUnionLabeledMemoryWithFeedbackMetricsScoredMemoryWithFeedbackMetrics(TypedDict):
|
|
1482
1568
|
items: list[LabeledMemoryWithFeedbackMetrics | ScoredMemoryWithFeedbackMetrics]
|
|
1483
1569
|
total: int
|
|
@@ -1495,23 +1581,6 @@ class PretrainedEmbeddingModelMetadata(TypedDict):
|
|
|
1495
1581
|
num_params: int
|
|
1496
1582
|
|
|
1497
1583
|
|
|
1498
|
-
class Task(TypedDict):
|
|
1499
|
-
status: TaskStatus
|
|
1500
|
-
steps_total: int | None
|
|
1501
|
-
steps_completed: int | None
|
|
1502
|
-
exception: str | None
|
|
1503
|
-
updated_at: str
|
|
1504
|
-
created_at: str
|
|
1505
|
-
id: str
|
|
1506
|
-
org_id: str
|
|
1507
|
-
worker_id: str | None
|
|
1508
|
-
type: str
|
|
1509
|
-
payload: BaseModel
|
|
1510
|
-
result: BaseModel | None
|
|
1511
|
-
depends_on: list[str]
|
|
1512
|
-
lease_token: str | None
|
|
1513
|
-
|
|
1514
|
-
|
|
1515
1584
|
class TelemetryMemoriesRequest(TypedDict):
|
|
1516
1585
|
memoryset_id: str
|
|
1517
1586
|
offset: NotRequired[int]
|
|
@@ -1543,10 +1612,10 @@ class CascadingEditSuggestion(TypedDict):
|
|
|
1543
1612
|
|
|
1544
1613
|
|
|
1545
1614
|
class MemorysetAnalysisResponse(TypedDict):
|
|
1546
|
-
|
|
1615
|
+
job_id: str
|
|
1547
1616
|
org_id: str
|
|
1548
1617
|
memoryset_id: str
|
|
1549
|
-
status:
|
|
1618
|
+
status: JobStatus
|
|
1550
1619
|
lookup_count: int
|
|
1551
1620
|
batch_size: int
|
|
1552
1621
|
clear_metrics: bool
|
|
@@ -1554,6 +1623,7 @@ class MemorysetAnalysisResponse(TypedDict):
|
|
|
1554
1623
|
results: MemorysetMetrics | None
|
|
1555
1624
|
created_at: str
|
|
1556
1625
|
updated_at: str
|
|
1626
|
+
task_id: str
|
|
1557
1627
|
|
|
1558
1628
|
|
|
1559
1629
|
class MemorysetMetadata(TypedDict):
|
|
@@ -1569,8 +1639,8 @@ class MemorysetMetadata(TypedDict):
|
|
|
1569
1639
|
created_at: str
|
|
1570
1640
|
updated_at: str
|
|
1571
1641
|
memories_updated_at: str
|
|
1572
|
-
|
|
1573
|
-
insertion_status:
|
|
1642
|
+
insertion_job_id: str
|
|
1643
|
+
insertion_status: JobStatus
|
|
1574
1644
|
metrics: MemorysetMetrics
|
|
1575
1645
|
memory_type: MemoryType
|
|
1576
1646
|
label_names: list[str] | None
|
|
@@ -1580,13 +1650,7 @@ class MemorysetMetadata(TypedDict):
|
|
|
1580
1650
|
document_prompt_override: str | None
|
|
1581
1651
|
query_prompt_override: str | None
|
|
1582
1652
|
hidden: bool
|
|
1583
|
-
|
|
1584
|
-
|
|
1585
|
-
class PaginatedTask(TypedDict):
|
|
1586
|
-
items: list[Task]
|
|
1587
|
-
total: int
|
|
1588
|
-
offset: int
|
|
1589
|
-
limit: int
|
|
1653
|
+
insertion_task_id: str
|
|
1590
1654
|
|
|
1591
1655
|
|
|
1592
1656
|
class PaginatedWorkerInfo(TypedDict):
|
|
@@ -1604,11 +1668,12 @@ class BootstrapClassificationModelMeta(TypedDict):
|
|
|
1604
1668
|
|
|
1605
1669
|
|
|
1606
1670
|
class BootstrapClassificationModelResponse(TypedDict):
|
|
1607
|
-
|
|
1671
|
+
job_id: str
|
|
1608
1672
|
org_id: str
|
|
1609
|
-
status:
|
|
1673
|
+
status: JobStatus
|
|
1610
1674
|
result: BootstrapClassificationModelMeta | None
|
|
1611
1675
|
input: BootstrapClassificationModelRequest | None
|
|
1676
|
+
task_id: str
|
|
1612
1677
|
|
|
1613
1678
|
|
|
1614
1679
|
class OrcaClient(Client):
|
|
@@ -1887,9 +1952,9 @@ class OrcaClient(Client):
|
|
|
1887
1952
|
@overload
|
|
1888
1953
|
def GET(
|
|
1889
1954
|
self,
|
|
1890
|
-
path: Literal["/memoryset/{name_or_id}/analysis/{
|
|
1955
|
+
path: Literal["/memoryset/{name_or_id}/analysis/{analysis_job_id}"],
|
|
1891
1956
|
*,
|
|
1892
|
-
params:
|
|
1957
|
+
params: GetMemorysetByNameOrIdAnalysisByAnalysisJobIdParams,
|
|
1893
1958
|
parse_as: Literal["json"] = "json",
|
|
1894
1959
|
headers: HeaderTypes | None = None,
|
|
1895
1960
|
cookies: CookieTypes | None = None,
|
|
@@ -1937,9 +2002,9 @@ class OrcaClient(Client):
|
|
|
1937
2002
|
@overload
|
|
1938
2003
|
def GET(
|
|
1939
2004
|
self,
|
|
1940
|
-
path: Literal["/
|
|
2005
|
+
path: Literal["/pretrained_embedding_model"],
|
|
1941
2006
|
*,
|
|
1942
|
-
params:
|
|
2007
|
+
params: None = None,
|
|
1943
2008
|
parse_as: Literal["json"] = "json",
|
|
1944
2009
|
headers: HeaderTypes | None = None,
|
|
1945
2010
|
cookies: CookieTypes | None = None,
|
|
@@ -1947,16 +2012,16 @@ class OrcaClient(Client):
|
|
|
1947
2012
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
1948
2013
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
1949
2014
|
extensions: RequestExtensions | None = None,
|
|
1950
|
-
) ->
|
|
1951
|
-
"""
|
|
2015
|
+
) -> list[PretrainedEmbeddingModelMetadata]:
|
|
2016
|
+
"""List all available pretrained embedding models."""
|
|
1952
2017
|
pass
|
|
1953
2018
|
|
|
1954
2019
|
@overload
|
|
1955
2020
|
def GET(
|
|
1956
2021
|
self,
|
|
1957
|
-
path: Literal["/
|
|
2022
|
+
path: Literal["/pretrained_embedding_model/{model_name}"],
|
|
1958
2023
|
*,
|
|
1959
|
-
params:
|
|
2024
|
+
params: GetPretrainedEmbeddingModelByModelNameParams,
|
|
1960
2025
|
parse_as: Literal["json"] = "json",
|
|
1961
2026
|
headers: HeaderTypes | None = None,
|
|
1962
2027
|
cookies: CookieTypes | None = None,
|
|
@@ -1964,16 +2029,16 @@ class OrcaClient(Client):
|
|
|
1964
2029
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
1965
2030
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
1966
2031
|
extensions: RequestExtensions | None = None,
|
|
1967
|
-
) ->
|
|
1968
|
-
"""
|
|
2032
|
+
) -> PretrainedEmbeddingModelMetadata:
|
|
2033
|
+
"""Get metadata for a specific pretrained embedding model."""
|
|
1969
2034
|
pass
|
|
1970
2035
|
|
|
1971
2036
|
@overload
|
|
1972
2037
|
def GET(
|
|
1973
2038
|
self,
|
|
1974
|
-
path: Literal["/
|
|
2039
|
+
path: Literal["/finetuned_embedding_model/{name_or_id}/evaluation/{job_id}"],
|
|
1975
2040
|
*,
|
|
1976
|
-
params:
|
|
2041
|
+
params: GetFinetunedEmbeddingModelByNameOrIdEvaluationByJobIdParams,
|
|
1977
2042
|
parse_as: Literal["json"] = "json",
|
|
1978
2043
|
headers: HeaderTypes | None = None,
|
|
1979
2044
|
cookies: CookieTypes | None = None,
|
|
@@ -1981,16 +2046,16 @@ class OrcaClient(Client):
|
|
|
1981
2046
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
1982
2047
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
1983
2048
|
extensions: RequestExtensions | None = None,
|
|
1984
|
-
) ->
|
|
1985
|
-
"""
|
|
2049
|
+
) -> EmbeddingEvaluationResponse:
|
|
2050
|
+
"""Get evaluation results for a finetuned embedding model by job ID."""
|
|
1986
2051
|
pass
|
|
1987
2052
|
|
|
1988
2053
|
@overload
|
|
1989
2054
|
def GET(
|
|
1990
2055
|
self,
|
|
1991
|
-
path: Literal["/pretrained_embedding_model/{model_name}"],
|
|
2056
|
+
path: Literal["/pretrained_embedding_model/{model_name}/evaluation/{job_id}"],
|
|
1992
2057
|
*,
|
|
1993
|
-
params:
|
|
2058
|
+
params: GetPretrainedEmbeddingModelByModelNameEvaluationByJobIdParams,
|
|
1994
2059
|
parse_as: Literal["json"] = "json",
|
|
1995
2060
|
headers: HeaderTypes | None = None,
|
|
1996
2061
|
cookies: CookieTypes | None = None,
|
|
@@ -1998,16 +2063,16 @@ class OrcaClient(Client):
|
|
|
1998
2063
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
1999
2064
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2000
2065
|
extensions: RequestExtensions | None = None,
|
|
2001
|
-
) ->
|
|
2002
|
-
"""Get
|
|
2066
|
+
) -> EmbeddingEvaluationResponse:
|
|
2067
|
+
"""Get evaluation results for a pretrained embedding model by job ID."""
|
|
2003
2068
|
pass
|
|
2004
2069
|
|
|
2005
2070
|
@overload
|
|
2006
2071
|
def GET(
|
|
2007
2072
|
self,
|
|
2008
|
-
path: Literal["/
|
|
2073
|
+
path: Literal["/finetuned_embedding_model/{name_or_id}/evaluations"],
|
|
2009
2074
|
*,
|
|
2010
|
-
params:
|
|
2075
|
+
params: GetFinetunedEmbeddingModelByNameOrIdEvaluationsParams,
|
|
2011
2076
|
parse_as: Literal["json"] = "json",
|
|
2012
2077
|
headers: HeaderTypes | None = None,
|
|
2013
2078
|
cookies: CookieTypes | None = None,
|
|
@@ -2015,8 +2080,8 @@ class OrcaClient(Client):
|
|
|
2015
2080
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2016
2081
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2017
2082
|
extensions: RequestExtensions | None = None,
|
|
2018
|
-
) -> EmbeddingEvaluationResponse:
|
|
2019
|
-
"""
|
|
2083
|
+
) -> list[EmbeddingEvaluationResponse]:
|
|
2084
|
+
"""List all evaluation results for a finetuned embedding model."""
|
|
2020
2085
|
pass
|
|
2021
2086
|
|
|
2022
2087
|
@overload
|
|
@@ -2141,7 +2206,7 @@ class OrcaClient(Client):
|
|
|
2141
2206
|
@overload
|
|
2142
2207
|
def GET(
|
|
2143
2208
|
self,
|
|
2144
|
-
path: Literal["/
|
|
2209
|
+
path: Literal["/classification_model"],
|
|
2145
2210
|
*,
|
|
2146
2211
|
params: None = None,
|
|
2147
2212
|
parse_as: Literal["json"] = "json",
|
|
@@ -2151,13 +2216,13 @@ class OrcaClient(Client):
|
|
|
2151
2216
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2152
2217
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2153
2218
|
extensions: RequestExtensions | None = None,
|
|
2154
|
-
) -> list[ClassificationModelMetadata
|
|
2219
|
+
) -> list[ClassificationModelMetadata]:
|
|
2155
2220
|
pass
|
|
2156
2221
|
|
|
2157
2222
|
@overload
|
|
2158
2223
|
def GET(
|
|
2159
2224
|
self,
|
|
2160
|
-
path: Literal["/
|
|
2225
|
+
path: Literal["/regression_model"],
|
|
2161
2226
|
*,
|
|
2162
2227
|
params: None = None,
|
|
2163
2228
|
parse_as: Literal["json"] = "json",
|
|
@@ -2167,7 +2232,7 @@ class OrcaClient(Client):
|
|
|
2167
2232
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2168
2233
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2169
2234
|
extensions: RequestExtensions | None = None,
|
|
2170
|
-
) -> list[
|
|
2235
|
+
) -> list[RegressionModelMetadata]:
|
|
2171
2236
|
pass
|
|
2172
2237
|
|
|
2173
2238
|
@overload
|
|
@@ -2189,9 +2254,9 @@ class OrcaClient(Client):
|
|
|
2189
2254
|
@overload
|
|
2190
2255
|
def GET(
|
|
2191
2256
|
self,
|
|
2192
|
-
path: Literal["/
|
|
2257
|
+
path: Literal["/regression_model/{name_or_id}"],
|
|
2193
2258
|
*,
|
|
2194
|
-
params:
|
|
2259
|
+
params: GetRegressionModelByNameOrIdParams,
|
|
2195
2260
|
parse_as: Literal["json"] = "json",
|
|
2196
2261
|
headers: HeaderTypes | None = None,
|
|
2197
2262
|
cookies: CookieTypes | None = None,
|
|
@@ -2199,15 +2264,15 @@ class OrcaClient(Client):
|
|
|
2199
2264
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2200
2265
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2201
2266
|
extensions: RequestExtensions | None = None,
|
|
2202
|
-
) ->
|
|
2267
|
+
) -> RegressionModelMetadata:
|
|
2203
2268
|
pass
|
|
2204
2269
|
|
|
2205
2270
|
@overload
|
|
2206
2271
|
def GET(
|
|
2207
2272
|
self,
|
|
2208
|
-
path: Literal["/
|
|
2273
|
+
path: Literal["/predictive_model"],
|
|
2209
2274
|
*,
|
|
2210
|
-
params:
|
|
2275
|
+
params: None = None,
|
|
2211
2276
|
parse_as: Literal["json"] = "json",
|
|
2212
2277
|
headers: HeaderTypes | None = None,
|
|
2213
2278
|
cookies: CookieTypes | None = None,
|
|
@@ -2215,15 +2280,15 @@ class OrcaClient(Client):
|
|
|
2215
2280
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2216
2281
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2217
2282
|
extensions: RequestExtensions | None = None,
|
|
2218
|
-
) ->
|
|
2283
|
+
) -> list[ClassificationModelMetadata | RegressionModelMetadata]:
|
|
2219
2284
|
pass
|
|
2220
2285
|
|
|
2221
2286
|
@overload
|
|
2222
2287
|
def GET(
|
|
2223
2288
|
self,
|
|
2224
|
-
path: Literal["/
|
|
2289
|
+
path: Literal["/classification_model/{model_name_or_id}/evaluation"],
|
|
2225
2290
|
*,
|
|
2226
|
-
params:
|
|
2291
|
+
params: GetClassificationModelByModelNameOrIdEvaluationParams,
|
|
2227
2292
|
parse_as: Literal["json"] = "json",
|
|
2228
2293
|
headers: HeaderTypes | None = None,
|
|
2229
2294
|
cookies: CookieTypes | None = None,
|
|
@@ -2231,15 +2296,15 @@ class OrcaClient(Client):
|
|
|
2231
2296
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2232
2297
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2233
2298
|
extensions: RequestExtensions | None = None,
|
|
2234
|
-
) -> list[
|
|
2299
|
+
) -> list[EvaluationResponseClassificationMetrics]:
|
|
2235
2300
|
pass
|
|
2236
2301
|
|
|
2237
2302
|
@overload
|
|
2238
2303
|
def GET(
|
|
2239
2304
|
self,
|
|
2240
|
-
path: Literal["/regression_model/{
|
|
2305
|
+
path: Literal["/regression_model/{model_name_or_id}/evaluation"],
|
|
2241
2306
|
*,
|
|
2242
|
-
params:
|
|
2307
|
+
params: GetRegressionModelByModelNameOrIdEvaluationParams,
|
|
2243
2308
|
parse_as: Literal["json"] = "json",
|
|
2244
2309
|
headers: HeaderTypes | None = None,
|
|
2245
2310
|
cookies: CookieTypes | None = None,
|
|
@@ -2247,15 +2312,15 @@ class OrcaClient(Client):
|
|
|
2247
2312
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2248
2313
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2249
2314
|
extensions: RequestExtensions | None = None,
|
|
2250
|
-
) ->
|
|
2315
|
+
) -> list[EvaluationResponseRegressionMetrics]:
|
|
2251
2316
|
pass
|
|
2252
2317
|
|
|
2253
2318
|
@overload
|
|
2254
2319
|
def GET(
|
|
2255
2320
|
self,
|
|
2256
|
-
path: Literal["/
|
|
2321
|
+
path: Literal["/classification_model/{model_name_or_id}/evaluation/{job_id}"],
|
|
2257
2322
|
*,
|
|
2258
|
-
params:
|
|
2323
|
+
params: GetClassificationModelByModelNameOrIdEvaluationByJobIdParams,
|
|
2259
2324
|
parse_as: Literal["json"] = "json",
|
|
2260
2325
|
headers: HeaderTypes | None = None,
|
|
2261
2326
|
cookies: CookieTypes | None = None,
|
|
@@ -2263,15 +2328,15 @@ class OrcaClient(Client):
|
|
|
2263
2328
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2264
2329
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2265
2330
|
extensions: RequestExtensions | None = None,
|
|
2266
|
-
) ->
|
|
2331
|
+
) -> EvaluationResponseClassificationMetrics:
|
|
2267
2332
|
pass
|
|
2268
2333
|
|
|
2269
2334
|
@overload
|
|
2270
2335
|
def GET(
|
|
2271
2336
|
self,
|
|
2272
|
-
path: Literal["/regression_model/{model_name_or_id}/evaluation/{
|
|
2337
|
+
path: Literal["/regression_model/{model_name_or_id}/evaluation/{job_id}"],
|
|
2273
2338
|
*,
|
|
2274
|
-
params:
|
|
2339
|
+
params: GetRegressionModelByModelNameOrIdEvaluationByJobIdParams,
|
|
2275
2340
|
parse_as: Literal["json"] = "json",
|
|
2276
2341
|
headers: HeaderTypes | None = None,
|
|
2277
2342
|
cookies: CookieTypes | None = None,
|
|
@@ -2285,9 +2350,9 @@ class OrcaClient(Client):
|
|
|
2285
2350
|
@overload
|
|
2286
2351
|
def GET(
|
|
2287
2352
|
self,
|
|
2288
|
-
path: Literal["/
|
|
2353
|
+
path: Literal["/job/{job_id}"],
|
|
2289
2354
|
*,
|
|
2290
|
-
params:
|
|
2355
|
+
params: GetJobByJobIdParams,
|
|
2291
2356
|
parse_as: Literal["json"] = "json",
|
|
2292
2357
|
headers: HeaderTypes | None = None,
|
|
2293
2358
|
cookies: CookieTypes | None = None,
|
|
@@ -2295,15 +2360,15 @@ class OrcaClient(Client):
|
|
|
2295
2360
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2296
2361
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2297
2362
|
extensions: RequestExtensions | None = None,
|
|
2298
|
-
) ->
|
|
2363
|
+
) -> Job:
|
|
2299
2364
|
pass
|
|
2300
2365
|
|
|
2301
2366
|
@overload
|
|
2302
2367
|
def GET(
|
|
2303
2368
|
self,
|
|
2304
|
-
path: Literal["/
|
|
2369
|
+
path: Literal["/job/{job_id}/status"],
|
|
2305
2370
|
*,
|
|
2306
|
-
params:
|
|
2371
|
+
params: GetJobByJobIdStatusParams,
|
|
2307
2372
|
parse_as: Literal["json"] = "json",
|
|
2308
2373
|
headers: HeaderTypes | None = None,
|
|
2309
2374
|
cookies: CookieTypes | None = None,
|
|
@@ -2311,15 +2376,15 @@ class OrcaClient(Client):
|
|
|
2311
2376
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2312
2377
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2313
2378
|
extensions: RequestExtensions | None = None,
|
|
2314
|
-
) ->
|
|
2379
|
+
) -> JobStatusInfo:
|
|
2315
2380
|
pass
|
|
2316
2381
|
|
|
2317
2382
|
@overload
|
|
2318
2383
|
def GET(
|
|
2319
2384
|
self,
|
|
2320
|
-
path: Literal["/
|
|
2385
|
+
path: Literal["/job"],
|
|
2321
2386
|
*,
|
|
2322
|
-
params:
|
|
2387
|
+
params: GetJobParams,
|
|
2323
2388
|
parse_as: Literal["json"] = "json",
|
|
2324
2389
|
headers: HeaderTypes | None = None,
|
|
2325
2390
|
cookies: CookieTypes | None = None,
|
|
@@ -2327,7 +2392,7 @@ class OrcaClient(Client):
|
|
|
2327
2392
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2328
2393
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2329
2394
|
extensions: RequestExtensions | None = None,
|
|
2330
|
-
) ->
|
|
2395
|
+
) -> PaginatedJob:
|
|
2331
2396
|
pass
|
|
2332
2397
|
|
|
2333
2398
|
@overload
|
|
@@ -2478,9 +2543,9 @@ class OrcaClient(Client):
|
|
|
2478
2543
|
@overload
|
|
2479
2544
|
def GET(
|
|
2480
2545
|
self,
|
|
2481
|
-
path: Literal["/agents/bootstrap_classification_model/{
|
|
2546
|
+
path: Literal["/agents/bootstrap_classification_model/{job_id}"],
|
|
2482
2547
|
*,
|
|
2483
|
-
params:
|
|
2548
|
+
params: GetAgentsBootstrapClassificationModelByJobIdParams,
|
|
2484
2549
|
parse_as: Literal["json"] = "json",
|
|
2485
2550
|
headers: HeaderTypes | None = None,
|
|
2486
2551
|
cookies: CookieTypes | None = None,
|
|
@@ -2489,7 +2554,7 @@ class OrcaClient(Client):
|
|
|
2489
2554
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2490
2555
|
extensions: RequestExtensions | None = None,
|
|
2491
2556
|
) -> BootstrapClassificationModelResponse:
|
|
2492
|
-
"""Get the status of a bootstrap classification model
|
|
2557
|
+
"""Get the status of a bootstrap classification model job"""
|
|
2493
2558
|
pass
|
|
2494
2559
|
|
|
2495
2560
|
def GET(
|
|
@@ -2659,9 +2724,9 @@ class OrcaClient(Client):
|
|
|
2659
2724
|
@overload
|
|
2660
2725
|
def DELETE(
|
|
2661
2726
|
self,
|
|
2662
|
-
path: Literal["/
|
|
2727
|
+
path: Literal["/regression_model/{name_or_id}"],
|
|
2663
2728
|
*,
|
|
2664
|
-
params:
|
|
2729
|
+
params: DeleteRegressionModelByNameOrIdParams,
|
|
2665
2730
|
parse_as: Literal["json"] = "json",
|
|
2666
2731
|
headers: HeaderTypes | None = None,
|
|
2667
2732
|
cookies: CookieTypes | None = None,
|
|
@@ -2675,9 +2740,9 @@ class OrcaClient(Client):
|
|
|
2675
2740
|
@overload
|
|
2676
2741
|
def DELETE(
|
|
2677
2742
|
self,
|
|
2678
|
-
path: Literal["/
|
|
2743
|
+
path: Literal["/classification_model/{model_name_or_id}/evaluation/{job_id}"],
|
|
2679
2744
|
*,
|
|
2680
|
-
params:
|
|
2745
|
+
params: DeleteClassificationModelByModelNameOrIdEvaluationByJobIdParams,
|
|
2681
2746
|
parse_as: Literal["json"] = "json",
|
|
2682
2747
|
headers: HeaderTypes | None = None,
|
|
2683
2748
|
cookies: CookieTypes | None = None,
|
|
@@ -2691,9 +2756,9 @@ class OrcaClient(Client):
|
|
|
2691
2756
|
@overload
|
|
2692
2757
|
def DELETE(
|
|
2693
2758
|
self,
|
|
2694
|
-
path: Literal["/regression_model/{model_name_or_id}/evaluation/{
|
|
2759
|
+
path: Literal["/regression_model/{model_name_or_id}/evaluation/{job_id}"],
|
|
2695
2760
|
*,
|
|
2696
|
-
params:
|
|
2761
|
+
params: DeleteRegressionModelByModelNameOrIdEvaluationByJobIdParams,
|
|
2697
2762
|
parse_as: Literal["json"] = "json",
|
|
2698
2763
|
headers: HeaderTypes | None = None,
|
|
2699
2764
|
cookies: CookieTypes | None = None,
|
|
@@ -2707,9 +2772,9 @@ class OrcaClient(Client):
|
|
|
2707
2772
|
@overload
|
|
2708
2773
|
def DELETE(
|
|
2709
2774
|
self,
|
|
2710
|
-
path: Literal["/
|
|
2775
|
+
path: Literal["/job/{job_id}/abort"],
|
|
2711
2776
|
*,
|
|
2712
|
-
params:
|
|
2777
|
+
params: DeleteJobByJobIdAbortParams,
|
|
2713
2778
|
parse_as: Literal["json"] = "json",
|
|
2714
2779
|
headers: HeaderTypes | None = None,
|
|
2715
2780
|
cookies: CookieTypes | None = None,
|
|
@@ -2870,6 +2935,26 @@ class OrcaClient(Client):
|
|
|
2870
2935
|
) -> None:
|
|
2871
2936
|
pass
|
|
2872
2937
|
|
|
2938
|
+
@overload
|
|
2939
|
+
def POST(
|
|
2940
|
+
self,
|
|
2941
|
+
path: Literal["/gpu/memoryset/{name_or_id}/lookup"],
|
|
2942
|
+
*,
|
|
2943
|
+
params: PostGpuMemorysetByNameOrIdLookupParams,
|
|
2944
|
+
json: LookupRequest,
|
|
2945
|
+
data: None = None,
|
|
2946
|
+
files: None = None,
|
|
2947
|
+
content: None = None,
|
|
2948
|
+
parse_as: Literal["json"] = "json",
|
|
2949
|
+
headers: HeaderTypes | None = None,
|
|
2950
|
+
cookies: CookieTypes | None = None,
|
|
2951
|
+
auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2952
|
+
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2953
|
+
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2954
|
+
extensions: RequestExtensions | None = None,
|
|
2955
|
+
) -> list[list[LabeledMemoryLookup | ScoredMemoryLookup]]:
|
|
2956
|
+
pass
|
|
2957
|
+
|
|
2873
2958
|
@overload
|
|
2874
2959
|
def POST(
|
|
2875
2960
|
self,
|
|
@@ -2930,6 +3015,26 @@ class OrcaClient(Client):
|
|
|
2930
3015
|
) -> None:
|
|
2931
3016
|
pass
|
|
2932
3017
|
|
|
3018
|
+
@overload
|
|
3019
|
+
def POST(
|
|
3020
|
+
self,
|
|
3021
|
+
path: Literal["/gpu/memoryset/{name_or_id}/memory"],
|
|
3022
|
+
*,
|
|
3023
|
+
params: PostGpuMemorysetByNameOrIdMemoryParams,
|
|
3024
|
+
json: PostGpuMemorysetByNameOrIdMemoryRequest,
|
|
3025
|
+
data: None = None,
|
|
3026
|
+
files: None = None,
|
|
3027
|
+
content: None = None,
|
|
3028
|
+
parse_as: Literal["json"] = "json",
|
|
3029
|
+
headers: HeaderTypes | None = None,
|
|
3030
|
+
cookies: CookieTypes | None = None,
|
|
3031
|
+
auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3032
|
+
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3033
|
+
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3034
|
+
extensions: RequestExtensions | None = None,
|
|
3035
|
+
) -> list[str]:
|
|
3036
|
+
pass
|
|
3037
|
+
|
|
2933
3038
|
@overload
|
|
2934
3039
|
def POST(
|
|
2935
3040
|
self,
|
|
@@ -2991,6 +3096,48 @@ class OrcaClient(Client):
|
|
|
2991
3096
|
"""Create a finetuned embedding model."""
|
|
2992
3097
|
pass
|
|
2993
3098
|
|
|
3099
|
+
@overload
|
|
3100
|
+
def POST(
|
|
3101
|
+
self,
|
|
3102
|
+
path: Literal["/gpu/finetuned_embedding_model/{name_or_id}/embedding"],
|
|
3103
|
+
*,
|
|
3104
|
+
params: PostGpuFinetunedEmbeddingModelByNameOrIdEmbeddingParams,
|
|
3105
|
+
json: EmbedRequest,
|
|
3106
|
+
data: None = None,
|
|
3107
|
+
files: None = None,
|
|
3108
|
+
content: None = None,
|
|
3109
|
+
parse_as: Literal["json"] = "json",
|
|
3110
|
+
headers: HeaderTypes | None = None,
|
|
3111
|
+
cookies: CookieTypes | None = None,
|
|
3112
|
+
auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3113
|
+
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3114
|
+
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3115
|
+
extensions: RequestExtensions | None = None,
|
|
3116
|
+
) -> list[list[float]]:
|
|
3117
|
+
"""Embed values using a finetuned embedding model."""
|
|
3118
|
+
pass
|
|
3119
|
+
|
|
3120
|
+
@overload
|
|
3121
|
+
def POST(
|
|
3122
|
+
self,
|
|
3123
|
+
path: Literal["/gpu/pretrained_embedding_model/{model_name}/embedding"],
|
|
3124
|
+
*,
|
|
3125
|
+
params: PostGpuPretrainedEmbeddingModelByModelNameEmbeddingParams,
|
|
3126
|
+
json: EmbedRequest,
|
|
3127
|
+
data: None = None,
|
|
3128
|
+
files: None = None,
|
|
3129
|
+
content: None = None,
|
|
3130
|
+
parse_as: Literal["json"] = "json",
|
|
3131
|
+
headers: HeaderTypes | None = None,
|
|
3132
|
+
cookies: CookieTypes | None = None,
|
|
3133
|
+
auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3134
|
+
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3135
|
+
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3136
|
+
extensions: RequestExtensions | None = None,
|
|
3137
|
+
) -> list[list[float]]:
|
|
3138
|
+
"""Embed values using a pretrained embedding model."""
|
|
3139
|
+
pass
|
|
3140
|
+
|
|
2994
3141
|
@overload
|
|
2995
3142
|
def POST(
|
|
2996
3143
|
self,
|
|
@@ -3090,10 +3237,10 @@ class OrcaClient(Client):
|
|
|
3090
3237
|
@overload
|
|
3091
3238
|
def POST(
|
|
3092
3239
|
self,
|
|
3093
|
-
path: Literal["/
|
|
3240
|
+
path: Literal["/datasource/{name_or_id}/rows"],
|
|
3094
3241
|
*,
|
|
3095
|
-
params:
|
|
3096
|
-
json:
|
|
3242
|
+
params: PostDatasourceByNameOrIdRowsParams,
|
|
3243
|
+
json: GetDatasourceRowsRequest,
|
|
3097
3244
|
data: None = None,
|
|
3098
3245
|
files: None = None,
|
|
3099
3246
|
content: None = None,
|
|
@@ -3104,16 +3251,17 @@ class OrcaClient(Client):
|
|
|
3104
3251
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3105
3252
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3106
3253
|
extensions: RequestExtensions | None = None,
|
|
3107
|
-
) ->
|
|
3254
|
+
) -> list[dict[str, Any]]:
|
|
3255
|
+
"""Get rows from a specific datasource with optional filtering."""
|
|
3108
3256
|
pass
|
|
3109
3257
|
|
|
3110
3258
|
@overload
|
|
3111
3259
|
def POST(
|
|
3112
3260
|
self,
|
|
3113
|
-
path: Literal["/
|
|
3261
|
+
path: Literal["/datasource/{name_or_id}/rows/count"],
|
|
3114
3262
|
*,
|
|
3115
|
-
params:
|
|
3116
|
-
json:
|
|
3263
|
+
params: PostDatasourceByNameOrIdRowsCountParams,
|
|
3264
|
+
json: GetDatasourceRowCountRequest,
|
|
3117
3265
|
data: None = None,
|
|
3118
3266
|
files: None = None,
|
|
3119
3267
|
content: None = None,
|
|
@@ -3124,16 +3272,17 @@ class OrcaClient(Client):
|
|
|
3124
3272
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3125
3273
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3126
3274
|
extensions: RequestExtensions | None = None,
|
|
3127
|
-
) ->
|
|
3275
|
+
) -> int:
|
|
3276
|
+
"""Get row count from a specific datasource with optional filtering."""
|
|
3128
3277
|
pass
|
|
3129
3278
|
|
|
3130
3279
|
@overload
|
|
3131
3280
|
def POST(
|
|
3132
3281
|
self,
|
|
3133
|
-
path: Literal["/
|
|
3282
|
+
path: Literal["/classification_model"],
|
|
3134
3283
|
*,
|
|
3135
3284
|
params: None = None,
|
|
3136
|
-
json:
|
|
3285
|
+
json: CreateClassificationModelRequest,
|
|
3137
3286
|
data: None = None,
|
|
3138
3287
|
files: None = None,
|
|
3139
3288
|
content: None = None,
|
|
@@ -3144,16 +3293,16 @@ class OrcaClient(Client):
|
|
|
3144
3293
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3145
3294
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3146
3295
|
extensions: RequestExtensions | None = None,
|
|
3147
|
-
) ->
|
|
3296
|
+
) -> ClassificationModelMetadata:
|
|
3148
3297
|
pass
|
|
3149
3298
|
|
|
3150
3299
|
@overload
|
|
3151
3300
|
def POST(
|
|
3152
3301
|
self,
|
|
3153
|
-
path: Literal["/regression_model
|
|
3302
|
+
path: Literal["/regression_model"],
|
|
3154
3303
|
*,
|
|
3155
|
-
params:
|
|
3156
|
-
json:
|
|
3304
|
+
params: None = None,
|
|
3305
|
+
json: CreateRegressionModelRequest,
|
|
3157
3306
|
data: None = None,
|
|
3158
3307
|
files: None = None,
|
|
3159
3308
|
content: None = None,
|
|
@@ -3164,16 +3313,16 @@ class OrcaClient(Client):
|
|
|
3164
3313
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3165
3314
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3166
3315
|
extensions: RequestExtensions | None = None,
|
|
3167
|
-
) ->
|
|
3316
|
+
) -> RegressionModelMetadata:
|
|
3168
3317
|
pass
|
|
3169
3318
|
|
|
3170
3319
|
@overload
|
|
3171
3320
|
def POST(
|
|
3172
3321
|
self,
|
|
3173
|
-
path: Literal["/
|
|
3322
|
+
path: Literal["/gpu/classification_model/{name_or_id}/prediction"],
|
|
3174
3323
|
*,
|
|
3175
|
-
params:
|
|
3176
|
-
json:
|
|
3324
|
+
params: PostGpuClassificationModelByNameOrIdPredictionParams,
|
|
3325
|
+
json: ClassificationPredictionRequest,
|
|
3177
3326
|
data: None = None,
|
|
3178
3327
|
files: None = None,
|
|
3179
3328
|
content: None = None,
|
|
@@ -3184,17 +3333,16 @@ class OrcaClient(Client):
|
|
|
3184
3333
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3185
3334
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3186
3335
|
extensions: RequestExtensions | None = None,
|
|
3187
|
-
) -> list[
|
|
3188
|
-
"""List predictions with optional filtering and sorting."""
|
|
3336
|
+
) -> list[BaseLabelPredictionResult]:
|
|
3189
3337
|
pass
|
|
3190
3338
|
|
|
3191
3339
|
@overload
|
|
3192
3340
|
def POST(
|
|
3193
3341
|
self,
|
|
3194
|
-
path: Literal["/
|
|
3342
|
+
path: Literal["/classification_model/{name_or_id}/prediction"],
|
|
3195
3343
|
*,
|
|
3196
|
-
params:
|
|
3197
|
-
json:
|
|
3344
|
+
params: PostClassificationModelByNameOrIdPredictionParams,
|
|
3345
|
+
json: ClassificationPredictionRequest,
|
|
3198
3346
|
data: None = None,
|
|
3199
3347
|
files: None = None,
|
|
3200
3348
|
content: None = None,
|
|
@@ -3205,17 +3353,16 @@ class OrcaClient(Client):
|
|
|
3205
3353
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3206
3354
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3207
3355
|
extensions: RequestExtensions | None = None,
|
|
3208
|
-
) ->
|
|
3209
|
-
"""Count predictions with optional filtering."""
|
|
3356
|
+
) -> list[BaseLabelPredictionResult]:
|
|
3210
3357
|
pass
|
|
3211
3358
|
|
|
3212
3359
|
@overload
|
|
3213
3360
|
def POST(
|
|
3214
3361
|
self,
|
|
3215
|
-
path: Literal["/
|
|
3362
|
+
path: Literal["/gpu/regression_model/{name_or_id}/prediction"],
|
|
3216
3363
|
*,
|
|
3217
|
-
params:
|
|
3218
|
-
json:
|
|
3364
|
+
params: PostGpuRegressionModelByNameOrIdPredictionParams,
|
|
3365
|
+
json: RegressionPredictionRequest,
|
|
3219
3366
|
data: None = None,
|
|
3220
3367
|
files: None = None,
|
|
3221
3368
|
content: None = None,
|
|
@@ -3226,21 +3373,16 @@ class OrcaClient(Client):
|
|
|
3226
3373
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3227
3374
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3228
3375
|
extensions: RequestExtensions | None = None,
|
|
3229
|
-
) ->
|
|
3230
|
-
"""
|
|
3231
|
-
List memories with feedback metrics.
|
|
3232
|
-
**Note**: This endpoint will ONLY return memories that have been used in a prediction.
|
|
3233
|
-
If you want to query ALL memories WITHOUT feedback metrics, use the query_memoryset endpoint.
|
|
3234
|
-
"""
|
|
3376
|
+
) -> list[BaseScorePredictionResult]:
|
|
3235
3377
|
pass
|
|
3236
3378
|
|
|
3237
3379
|
@overload
|
|
3238
3380
|
def POST(
|
|
3239
3381
|
self,
|
|
3240
|
-
path: Literal["/
|
|
3382
|
+
path: Literal["/regression_model/{name_or_id}/prediction"],
|
|
3241
3383
|
*,
|
|
3242
|
-
params:
|
|
3243
|
-
json:
|
|
3384
|
+
params: PostRegressionModelByNameOrIdPredictionParams,
|
|
3385
|
+
json: RegressionPredictionRequest,
|
|
3244
3386
|
data: None = None,
|
|
3245
3387
|
files: None = None,
|
|
3246
3388
|
content: None = None,
|
|
@@ -3251,30 +3393,16 @@ class OrcaClient(Client):
|
|
|
3251
3393
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3252
3394
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3253
3395
|
extensions: RequestExtensions | None = None,
|
|
3254
|
-
) ->
|
|
3255
|
-
"""
|
|
3256
|
-
Bootstrap a classification model by creating a memoryset with generated memories and a classification model.
|
|
3257
|
-
|
|
3258
|
-
This endpoint uses the bootstrap_classification_model agent to generate:
|
|
3259
|
-
1. Memoryset configuration with appropriate settings
|
|
3260
|
-
2. Model configuration with optimal parameters
|
|
3261
|
-
3. High-quality training memories for each label
|
|
3262
|
-
|
|
3263
|
-
The process involves:
|
|
3264
|
-
1. Calling the agent to generate configurations and memories
|
|
3265
|
-
2. Creating a datasource from the generated memories
|
|
3266
|
-
3. Creating a memoryset from the datasource
|
|
3267
|
-
4. Creating a classification model from the memoryset
|
|
3268
|
-
"""
|
|
3396
|
+
) -> list[BaseScorePredictionResult]:
|
|
3269
3397
|
pass
|
|
3270
3398
|
|
|
3271
3399
|
@overload
|
|
3272
3400
|
def POST(
|
|
3273
3401
|
self,
|
|
3274
|
-
path: Literal["/
|
|
3402
|
+
path: Literal["/classification_model/{model_name_or_id}/evaluation"],
|
|
3275
3403
|
*,
|
|
3276
|
-
params:
|
|
3277
|
-
json:
|
|
3404
|
+
params: PostClassificationModelByModelNameOrIdEvaluationParams,
|
|
3405
|
+
json: ClassificationEvaluationRequest,
|
|
3278
3406
|
data: None = None,
|
|
3279
3407
|
files: None = None,
|
|
3280
3408
|
content: None = None,
|
|
@@ -3285,16 +3413,16 @@ class OrcaClient(Client):
|
|
|
3285
3413
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3286
3414
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3287
3415
|
extensions: RequestExtensions | None = None,
|
|
3288
|
-
) ->
|
|
3416
|
+
) -> EvaluationResponse:
|
|
3289
3417
|
pass
|
|
3290
3418
|
|
|
3291
3419
|
@overload
|
|
3292
3420
|
def POST(
|
|
3293
3421
|
self,
|
|
3294
|
-
path: Literal["/
|
|
3422
|
+
path: Literal["/regression_model/{model_name_or_id}/evaluation"],
|
|
3295
3423
|
*,
|
|
3296
|
-
params:
|
|
3297
|
-
json:
|
|
3424
|
+
params: PostRegressionModelByModelNameOrIdEvaluationParams,
|
|
3425
|
+
json: RegressionEvaluationRequest,
|
|
3298
3426
|
data: None = None,
|
|
3299
3427
|
files: None = None,
|
|
3300
3428
|
content: None = None,
|
|
@@ -3305,16 +3433,16 @@ class OrcaClient(Client):
|
|
|
3305
3433
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3306
3434
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3307
3435
|
extensions: RequestExtensions | None = None,
|
|
3308
|
-
) ->
|
|
3436
|
+
) -> EvaluationResponse:
|
|
3309
3437
|
pass
|
|
3310
3438
|
|
|
3311
3439
|
@overload
|
|
3312
3440
|
def POST(
|
|
3313
3441
|
self,
|
|
3314
|
-
path: Literal["/
|
|
3442
|
+
path: Literal["/telemetry/prediction"],
|
|
3315
3443
|
*,
|
|
3316
|
-
params:
|
|
3317
|
-
json:
|
|
3444
|
+
params: None = None,
|
|
3445
|
+
json: ListPredictionsRequest | None = None,
|
|
3318
3446
|
data: None = None,
|
|
3319
3447
|
files: None = None,
|
|
3320
3448
|
content: None = None,
|
|
@@ -3325,16 +3453,17 @@ class OrcaClient(Client):
|
|
|
3325
3453
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3326
3454
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3327
3455
|
extensions: RequestExtensions | None = None,
|
|
3328
|
-
) -> list[
|
|
3456
|
+
) -> list[LabelPredictionWithMemoriesAndFeedback | ScorePredictionWithMemoriesAndFeedback]:
|
|
3457
|
+
"""List predictions with optional filtering and sorting."""
|
|
3329
3458
|
pass
|
|
3330
3459
|
|
|
3331
3460
|
@overload
|
|
3332
3461
|
def POST(
|
|
3333
3462
|
self,
|
|
3334
|
-
path: Literal["/
|
|
3463
|
+
path: Literal["/telemetry/prediction/count"],
|
|
3335
3464
|
*,
|
|
3336
|
-
params:
|
|
3337
|
-
json:
|
|
3465
|
+
params: None = None,
|
|
3466
|
+
json: CountPredictionsRequest | None = None,
|
|
3338
3467
|
data: None = None,
|
|
3339
3468
|
files: None = None,
|
|
3340
3469
|
content: None = None,
|
|
@@ -3345,16 +3474,17 @@ class OrcaClient(Client):
|
|
|
3345
3474
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3346
3475
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3347
3476
|
extensions: RequestExtensions | None = None,
|
|
3348
|
-
) ->
|
|
3477
|
+
) -> int:
|
|
3478
|
+
"""Count predictions with optional filtering."""
|
|
3349
3479
|
pass
|
|
3350
3480
|
|
|
3351
3481
|
@overload
|
|
3352
3482
|
def POST(
|
|
3353
3483
|
self,
|
|
3354
|
-
path: Literal["/
|
|
3484
|
+
path: Literal["/telemetry/memories"],
|
|
3355
3485
|
*,
|
|
3356
|
-
params:
|
|
3357
|
-
json:
|
|
3486
|
+
params: None = None,
|
|
3487
|
+
json: TelemetryMemoriesRequest,
|
|
3358
3488
|
data: None = None,
|
|
3359
3489
|
files: None = None,
|
|
3360
3490
|
content: None = None,
|
|
@@ -3365,17 +3495,21 @@ class OrcaClient(Client):
|
|
|
3365
3495
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3366
3496
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3367
3497
|
extensions: RequestExtensions | None = None,
|
|
3368
|
-
) ->
|
|
3369
|
-
"""
|
|
3498
|
+
) -> PaginatedUnionLabeledMemoryWithFeedbackMetricsScoredMemoryWithFeedbackMetrics:
|
|
3499
|
+
"""
|
|
3500
|
+
List memories with feedback metrics.
|
|
3501
|
+
**Note**: This endpoint will ONLY return memories that have been used in a prediction.
|
|
3502
|
+
If you want to query ALL memories WITHOUT feedback metrics, use the query_memoryset endpoint.
|
|
3503
|
+
"""
|
|
3370
3504
|
pass
|
|
3371
3505
|
|
|
3372
3506
|
@overload
|
|
3373
3507
|
def POST(
|
|
3374
3508
|
self,
|
|
3375
|
-
path: Literal["/
|
|
3509
|
+
path: Literal["/agents/bootstrap_classification_model"],
|
|
3376
3510
|
*,
|
|
3377
|
-
params:
|
|
3378
|
-
json:
|
|
3511
|
+
params: None = None,
|
|
3512
|
+
json: BootstrapClassificationModelRequest,
|
|
3379
3513
|
data: None = None,
|
|
3380
3514
|
files: None = None,
|
|
3381
3515
|
content: None = None,
|
|
@@ -3386,8 +3520,21 @@ class OrcaClient(Client):
|
|
|
3386
3520
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3387
3521
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3388
3522
|
extensions: RequestExtensions | None = None,
|
|
3389
|
-
) ->
|
|
3390
|
-
"""
|
|
3523
|
+
) -> BootstrapClassificationModelResponse:
|
|
3524
|
+
"""
|
|
3525
|
+
Bootstrap a classification model by creating a memoryset with generated memories and a classification model.
|
|
3526
|
+
|
|
3527
|
+
This endpoint uses the bootstrap_classification_model agent to generate:
|
|
3528
|
+
1. Memoryset configuration with appropriate settings
|
|
3529
|
+
2. Model configuration with optimal parameters
|
|
3530
|
+
3. High-quality training memories for each label
|
|
3531
|
+
|
|
3532
|
+
The process involves:
|
|
3533
|
+
1. Calling the agent to generate configurations and memories
|
|
3534
|
+
2. Creating a datasource from the generated memories
|
|
3535
|
+
3. Creating a memoryset from the datasource
|
|
3536
|
+
4. Creating a classification model from the memoryset
|
|
3537
|
+
"""
|
|
3391
3538
|
pass
|
|
3392
3539
|
|
|
3393
3540
|
def POST(
|
|
@@ -3533,10 +3680,10 @@ class OrcaClient(Client):
|
|
|
3533
3680
|
@overload
|
|
3534
3681
|
def PATCH(
|
|
3535
3682
|
self,
|
|
3536
|
-
path: Literal["/
|
|
3683
|
+
path: Literal["/gpu/memoryset/{name_or_id}/memory"],
|
|
3537
3684
|
*,
|
|
3538
|
-
params:
|
|
3539
|
-
json:
|
|
3685
|
+
params: PatchGpuMemorysetByNameOrIdMemoryParams,
|
|
3686
|
+
json: PatchGpuMemorysetByNameOrIdMemoryRequest,
|
|
3540
3687
|
data: None = None,
|
|
3541
3688
|
files: None = None,
|
|
3542
3689
|
content: None = None,
|
|
@@ -3547,16 +3694,16 @@ class OrcaClient(Client):
|
|
|
3547
3694
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3548
3695
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3549
3696
|
extensions: RequestExtensions | None = None,
|
|
3550
|
-
) ->
|
|
3697
|
+
) -> LabeledMemory | ScoredMemory:
|
|
3551
3698
|
pass
|
|
3552
3699
|
|
|
3553
3700
|
@overload
|
|
3554
3701
|
def PATCH(
|
|
3555
3702
|
self,
|
|
3556
|
-
path: Literal["/
|
|
3703
|
+
path: Literal["/gpu/memoryset/{name_or_id}/memories"],
|
|
3557
3704
|
*,
|
|
3558
|
-
params:
|
|
3559
|
-
json:
|
|
3705
|
+
params: PatchGpuMemorysetByNameOrIdMemoriesParams,
|
|
3706
|
+
json: PatchGpuMemorysetByNameOrIdMemoriesRequest,
|
|
3560
3707
|
data: None = None,
|
|
3561
3708
|
files: None = None,
|
|
3562
3709
|
content: None = None,
|
|
@@ -3567,16 +3714,16 @@ class OrcaClient(Client):
|
|
|
3567
3714
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3568
3715
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3569
3716
|
extensions: RequestExtensions | None = None,
|
|
3570
|
-
) ->
|
|
3717
|
+
) -> list[LabeledMemory] | list[ScoredMemory]:
|
|
3571
3718
|
pass
|
|
3572
3719
|
|
|
3573
3720
|
@overload
|
|
3574
3721
|
def PATCH(
|
|
3575
3722
|
self,
|
|
3576
|
-
path: Literal["/
|
|
3723
|
+
path: Literal["/classification_model/{name_or_id}"],
|
|
3577
3724
|
*,
|
|
3578
|
-
params:
|
|
3579
|
-
json:
|
|
3725
|
+
params: PatchClassificationModelByNameOrIdParams,
|
|
3726
|
+
json: PredictiveModelUpdate,
|
|
3580
3727
|
data: None = None,
|
|
3581
3728
|
files: None = None,
|
|
3582
3729
|
content: None = None,
|
|
@@ -3587,17 +3734,16 @@ class OrcaClient(Client):
|
|
|
3587
3734
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3588
3735
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3589
3736
|
extensions: RequestExtensions | None = None,
|
|
3590
|
-
) ->
|
|
3591
|
-
"""Update a prediction with new expected values, tags, or memory ID."""
|
|
3737
|
+
) -> ClassificationModelMetadata:
|
|
3592
3738
|
pass
|
|
3593
3739
|
|
|
3594
3740
|
@overload
|
|
3595
3741
|
def PATCH(
|
|
3596
3742
|
self,
|
|
3597
|
-
path: Literal["/
|
|
3743
|
+
path: Literal["/regression_model/{name_or_id}"],
|
|
3598
3744
|
*,
|
|
3599
|
-
params:
|
|
3600
|
-
json:
|
|
3745
|
+
params: PatchRegressionModelByNameOrIdParams,
|
|
3746
|
+
json: PredictiveModelUpdate,
|
|
3601
3747
|
data: None = None,
|
|
3602
3748
|
files: None = None,
|
|
3603
3749
|
content: None = None,
|
|
@@ -3608,16 +3754,16 @@ class OrcaClient(Client):
|
|
|
3608
3754
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3609
3755
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3610
3756
|
extensions: RequestExtensions | None = None,
|
|
3611
|
-
) ->
|
|
3757
|
+
) -> RegressionModelMetadata:
|
|
3612
3758
|
pass
|
|
3613
3759
|
|
|
3614
3760
|
@overload
|
|
3615
3761
|
def PATCH(
|
|
3616
3762
|
self,
|
|
3617
|
-
path: Literal["/
|
|
3763
|
+
path: Literal["/telemetry/prediction/{prediction_id}"],
|
|
3618
3764
|
*,
|
|
3619
|
-
params:
|
|
3620
|
-
json:
|
|
3765
|
+
params: PatchTelemetryPredictionByPredictionIdParams,
|
|
3766
|
+
json: UpdatePredictionRequest,
|
|
3621
3767
|
data: None = None,
|
|
3622
3768
|
files: None = None,
|
|
3623
3769
|
content: None = None,
|
|
@@ -3628,7 +3774,8 @@ class OrcaClient(Client):
|
|
|
3628
3774
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3629
3775
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3630
3776
|
extensions: RequestExtensions | None = None,
|
|
3631
|
-
) ->
|
|
3777
|
+
) -> Any:
|
|
3778
|
+
"""Update a prediction with new expected values, tags, or memory ID."""
|
|
3632
3779
|
pass
|
|
3633
3780
|
|
|
3634
3781
|
def PATCH(
|