orca-sdk 0.1.3__py3-none-any.whl → 0.1.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
orca_sdk/async_client.py CHANGED
@@ -135,6 +135,8 @@ class ClassificationEvaluationRequest(TypedDict):
135
135
  datasource_value_column: str
136
136
  record_telemetry: NotRequired[bool]
137
137
  telemetry_tags: NotRequired[list[str] | None]
138
+ subsample: NotRequired[int | float | None]
139
+ ignore_unlabeled: NotRequired[bool]
138
140
 
139
141
 
140
142
  class CleanupResponse(TypedDict):
@@ -163,6 +165,7 @@ class CountPredictionsRequest(TypedDict):
163
165
  prediction_ids: NotRequired[list[str] | None]
164
166
  start_timestamp: NotRequired[str | None]
165
167
  end_timestamp: NotRequired[str | None]
168
+ memory_id: NotRequired[str | None]
166
169
 
167
170
 
168
171
  class CreateApiKeyRequest(TypedDict):
@@ -193,6 +196,12 @@ class CreateOrgPlanRequest(TypedDict):
193
196
  tier: Literal["FREE", "PRO", "ENTERPRISE", "CANCELLED"]
194
197
 
195
198
 
199
+ class DatasetFilterItem(TypedDict):
200
+ field: str
201
+ op: Literal["==", "!=", ">", ">=", "<", "<=", "in", "not in", "like"]
202
+ value: Any
203
+
204
+
196
205
  class DeleteMemoriesRequest(TypedDict):
197
206
  memory_ids: list[str]
198
207
 
@@ -210,7 +219,7 @@ class EmbedRequest(TypedDict):
210
219
  class EmbeddingEvaluationRequest(TypedDict):
211
220
  datasource_name_or_id: str
212
221
  eval_datasource_name_or_id: NotRequired[str | None]
213
- subsample: NotRequired[int | None]
222
+ subsample: NotRequired[int | float | None]
214
223
  datasource_value_column: NotRequired[str]
215
224
  datasource_label_column: NotRequired[str | None]
216
225
  datasource_score_column: NotRequired[str | None]
@@ -219,7 +228,7 @@ class EmbeddingEvaluationRequest(TypedDict):
219
228
  weigh_memories: NotRequired[bool]
220
229
 
221
230
 
222
- EmbeddingFinetuningMethod = Literal["classification", "batch_triplet_loss"]
231
+ EmbeddingFinetuningMethod = Literal["classification", "regression", "batch_triplet_loss"]
223
232
 
224
233
 
225
234
  class FeedbackMetrics(TypedDict):
@@ -233,7 +242,19 @@ FeedbackType = Literal["CONTINUOUS", "BINARY"]
233
242
  class FilterItem(TypedDict):
234
243
  field: list
235
244
  op: Literal["==", "!=", ">", ">=", "<", "<=", "in", "not in", "like"]
236
- value: str | int | float | bool | list[str] | list[int] | list[float] | list[bool] | None
245
+ value: str | int | float | bool | list[str | None] | list[int] | list[float] | list[bool] | None
246
+
247
+
248
+ class GetDatasourceRowCountRequest(TypedDict):
249
+ filters: NotRequired[list[DatasetFilterItem]]
250
+
251
+
252
+ class GetDatasourceRowsRequest(TypedDict):
253
+ filters: NotRequired[list[DatasetFilterItem]]
254
+ limit: NotRequired[int]
255
+ offset: NotRequired[int]
256
+ shuffle: NotRequired[bool]
257
+ shuffle_seed: NotRequired[int | None]
237
258
 
238
259
 
239
260
  class GetMemoriesRequest(TypedDict):
@@ -254,6 +275,18 @@ class InternalServerErrorResponse(TypedDict):
254
275
  request_id: str
255
276
 
256
277
 
278
+ JobStatus = Literal["INITIALIZED", "DISPATCHED", "WAITING", "PROCESSING", "COMPLETED", "FAILED", "ABORTING", "ABORTED"]
279
+
280
+
281
+ class JobStatusInfo(TypedDict):
282
+ status: JobStatus
283
+ steps_total: int | None
284
+ steps_completed: int | None
285
+ exception: str | None
286
+ updated_at: str
287
+ created_at: str
288
+
289
+
257
290
  class LabelClassMetrics(TypedDict):
258
291
  label: int | None
259
292
  label_name: NotRequired[str | None]
@@ -276,6 +309,7 @@ class LabeledMemoryInsert(TypedDict):
276
309
  value: str | bytes
277
310
  metadata: NotRequired[dict[str, str | int | float | bool | None]]
278
311
  source_id: NotRequired[str | None]
312
+ partition_id: NotRequired[str | None]
279
313
  label: int | None
280
314
 
281
315
 
@@ -340,8 +374,6 @@ class MemorysetClassPatternsMetrics(TypedDict):
340
374
  class MemorysetClusterAnalysisConfig(TypedDict):
341
375
  min_cluster_size: NotRequired[int | None]
342
376
  max_cluster_size: NotRequired[int | None]
343
- clustering_method: NotRequired[Literal["density", "graph"]]
344
- min_cluster_distance: NotRequired[float]
345
377
  partitioning_method: NotRequired[Literal["ng", "rb", "cpm"]]
346
378
  resolution: NotRequired[float | None]
347
379
  num_iterations: NotRequired[int]
@@ -370,6 +402,7 @@ class MemorysetConceptAnalysisConfig(TypedDict):
370
402
  use_generative_naming: NotRequired[bool]
371
403
  naming_examples_count: NotRequired[int]
372
404
  naming_counterexample_count: NotRequired[int]
405
+ primary_label_pct_threshold: NotRequired[float]
373
406
  seed: NotRequired[int]
374
407
 
375
408
 
@@ -439,7 +472,7 @@ class NotFoundErrorResponse(TypedDict):
439
472
  "memory",
440
473
  "evaluation",
441
474
  "analysis",
442
- "task",
475
+ "job",
443
476
  "pretrained_embedding_model",
444
477
  "finetuned_embedding_model",
445
478
  "feedback_category",
@@ -553,6 +586,8 @@ class RegressionEvaluationRequest(TypedDict):
553
586
  datasource_value_column: str
554
587
  record_telemetry: NotRequired[bool]
555
588
  telemetry_tags: NotRequired[list[str] | None]
589
+ subsample: NotRequired[int | float | None]
590
+ ignore_unlabeled: NotRequired[bool]
556
591
 
557
592
 
558
593
  class RegressionMetrics(TypedDict):
@@ -595,12 +630,14 @@ class RegressionPredictionRequest(TypedDict):
595
630
  prompt: NotRequired[str | None]
596
631
  use_lookup_cache: NotRequired[bool]
597
632
  consistency_level: NotRequired[Literal["Bounded", "Session", "Strong", "Eventual"] | None]
633
+ ignore_unlabeled: NotRequired[bool]
598
634
 
599
635
 
600
636
  class ScorePredictionMemoryLookup(TypedDict):
601
637
  value: str | bytes
602
638
  embedding: list[float]
603
639
  source_id: str | None
640
+ partition_id: str | None
604
641
  metadata: dict[str, str | int | float | bool | None]
605
642
  memory_id: str
606
643
  memory_version: int
@@ -638,6 +675,7 @@ class ScoredMemory(TypedDict):
638
675
  value: str | bytes
639
676
  embedding: list[float]
640
677
  source_id: str | None
678
+ partition_id: str | None
641
679
  metadata: dict[str, str | int | float | bool | None]
642
680
  memory_id: str
643
681
  memory_version: int
@@ -653,6 +691,7 @@ class ScoredMemoryInsert(TypedDict):
653
691
  value: str | bytes
654
692
  metadata: NotRequired[dict[str, str | int | float | bool | None]]
655
693
  source_id: NotRequired[str | None]
694
+ partition_id: NotRequired[str | None]
656
695
  score: float | None
657
696
 
658
697
 
@@ -660,6 +699,7 @@ class ScoredMemoryLookup(TypedDict):
660
699
  value: str | bytes
661
700
  embedding: list[float]
662
701
  source_id: str | None
702
+ partition_id: str | None
663
703
  metadata: dict[str, str | int | float | bool | None]
664
704
  memory_id: str
665
705
  memory_version: int
@@ -676,6 +716,7 @@ class ScoredMemoryUpdate(TypedDict):
676
716
  value: NotRequired[str | bytes]
677
717
  metadata: NotRequired[dict[str, str | int | float | bool | None] | None]
678
718
  source_id: NotRequired[str | None]
719
+ partition_id: NotRequired[str | None]
679
720
  metrics: NotRequired[MemoryMetrics | None]
680
721
  score: NotRequired[float | None]
681
722
 
@@ -684,6 +725,7 @@ class ScoredMemoryWithFeedbackMetrics(TypedDict):
684
725
  value: str | bytes
685
726
  embedding: list[float]
686
727
  source_id: str | None
728
+ partition_id: str | None
687
729
  metadata: dict[str, str | int | float | bool | None]
688
730
  memory_id: str
689
731
  memory_version: int
@@ -709,18 +751,6 @@ class SubConceptMetrics(TypedDict):
709
751
  memory_count: int
710
752
 
711
753
 
712
- TaskStatus = Literal["INITIALIZED", "DISPATCHED", "WAITING", "PROCESSING", "COMPLETED", "FAILED", "ABORTING", "ABORTED"]
713
-
714
-
715
- class TaskStatusInfo(TypedDict):
716
- status: TaskStatus
717
- steps_total: int | None
718
- steps_completed: int | None
719
- exception: str | None
720
- updated_at: str
721
- created_at: str
722
-
723
-
724
754
  TelemetryField = list
725
755
 
726
756
 
@@ -793,6 +823,10 @@ class DeleteMemorysetByNameOrIdParams(TypedDict):
793
823
  name_or_id: str
794
824
 
795
825
 
826
+ class PostGpuMemorysetByNameOrIdLookupParams(TypedDict):
827
+ name_or_id: str
828
+
829
+
796
830
  class GetMemorysetByNameOrIdMemoryByMemoryIdParams(TypedDict):
797
831
  name_or_id: str
798
832
  memory_id: str
@@ -825,20 +859,35 @@ class PostMemorysetByNameOrIdMemoriesDeleteParams(TypedDict):
825
859
  name_or_id: str
826
860
 
827
861
 
862
+ class PatchGpuMemorysetByNameOrIdMemoryParams(TypedDict):
863
+ name_or_id: str
864
+
865
+
866
+ class PostGpuMemorysetByNameOrIdMemoryParams(TypedDict):
867
+ name_or_id: str
868
+
869
+
870
+ PostGpuMemorysetByNameOrIdMemoryRequest = list[LabeledMemoryInsert] | list[ScoredMemoryInsert]
871
+
872
+
873
+ class PatchGpuMemorysetByNameOrIdMemoriesParams(TypedDict):
874
+ name_or_id: str
875
+
876
+
828
877
  class PostMemorysetByNameOrIdAnalysisParams(TypedDict):
829
878
  name_or_id: str
830
879
 
831
880
 
832
881
  class GetMemorysetByNameOrIdAnalysisParams(TypedDict):
833
882
  name_or_id: str
834
- status: NotRequired[TaskStatus | None]
883
+ status: NotRequired[JobStatus | None]
835
884
  limit: NotRequired[int | None]
836
885
  offset: NotRequired[int | None]
837
886
 
838
887
 
839
- class GetMemorysetByNameOrIdAnalysisByAnalysisTaskIdParams(TypedDict):
888
+ class GetMemorysetByNameOrIdAnalysisByAnalysisJobIdParams(TypedDict):
840
889
  name_or_id: str
841
- analysis_task_id: str
890
+ analysis_job_id: str
842
891
 
843
892
 
844
893
  class PostMemorysetByNameOrIdMemoryByMemoryIdCascadingEditsParams(TypedDict):
@@ -854,34 +903,42 @@ class DeleteFinetunedEmbeddingModelByNameOrIdParams(TypedDict):
854
903
  name_or_id: str
855
904
 
856
905
 
857
- class PostFinetunedEmbeddingModelByNameOrIdEvaluationParams(TypedDict):
906
+ class PostGpuFinetunedEmbeddingModelByNameOrIdEmbeddingParams(TypedDict):
858
907
  name_or_id: str
859
908
 
860
909
 
861
- class GetFinetunedEmbeddingModelByNameOrIdEvaluationByTaskIdParams(TypedDict):
862
- name_or_id: str
863
- task_id: str
910
+ class GetPretrainedEmbeddingModelByModelNameParams(TypedDict):
911
+ model_name: PretrainedEmbeddingModelName
864
912
 
865
913
 
866
- class GetFinetunedEmbeddingModelByNameOrIdEvaluationsParams(TypedDict):
867
- name_or_id: str
868
- datasource: NotRequired[str | None]
869
- value_column: NotRequired[str | None]
870
- label_column: NotRequired[str | None]
871
- score_column: NotRequired[str | None]
914
+ class PostGpuPretrainedEmbeddingModelByModelNameEmbeddingParams(TypedDict):
915
+ model_name: PretrainedEmbeddingModelName
872
916
 
873
917
 
874
- class GetPretrainedEmbeddingModelByModelNameParams(TypedDict):
875
- model_name: PretrainedEmbeddingModelName
918
+ class PostFinetunedEmbeddingModelByNameOrIdEvaluationParams(TypedDict):
919
+ name_or_id: str
876
920
 
877
921
 
878
922
  class PostPretrainedEmbeddingModelByModelNameEvaluationParams(TypedDict):
879
923
  model_name: PretrainedEmbeddingModelName
880
924
 
881
925
 
882
- class GetPretrainedEmbeddingModelByModelNameEvaluationByTaskIdParams(TypedDict):
926
+ class GetFinetunedEmbeddingModelByNameOrIdEvaluationByJobIdParams(TypedDict):
927
+ name_or_id: str
928
+ job_id: str
929
+
930
+
931
+ class GetPretrainedEmbeddingModelByModelNameEvaluationByJobIdParams(TypedDict):
883
932
  model_name: PretrainedEmbeddingModelName
884
- task_id: str
933
+ job_id: str
934
+
935
+
936
+ class GetFinetunedEmbeddingModelByNameOrIdEvaluationsParams(TypedDict):
937
+ name_or_id: str
938
+ datasource: NotRequired[str | None]
939
+ value_column: NotRequired[str | None]
940
+ label_column: NotRequired[str | None]
941
+ score_column: NotRequired[str | None]
885
942
 
886
943
 
887
944
  class GetPretrainedEmbeddingModelByModelNameEvaluationsParams(TypedDict):
@@ -911,6 +968,14 @@ class DeleteDatasourceByNameOrIdParams(TypedDict):
911
968
  name_or_id: str
912
969
 
913
970
 
971
+ class PostDatasourceByNameOrIdRowsParams(TypedDict):
972
+ name_or_id: str
973
+
974
+
975
+ class PostDatasourceByNameOrIdRowsCountParams(TypedDict):
976
+ name_or_id: str
977
+
978
+
914
979
  class GetDatasourceByNameOrIdEmbeddingModelEvaluationsParams(TypedDict):
915
980
  name_or_id: str
916
981
  value_column: NotRequired[str | None]
@@ -941,36 +1006,42 @@ class DeleteClassificationModelByNameOrIdParams(TypedDict):
941
1006
  name_or_id: str
942
1007
 
943
1008
 
944
- class PostClassificationModelByModelNameOrIdEvaluationParams(TypedDict):
945
- model_name_or_id: str
1009
+ class PatchRegressionModelByNameOrIdParams(TypedDict):
1010
+ name_or_id: str
946
1011
 
947
1012
 
948
- class GetClassificationModelByModelNameOrIdEvaluationParams(TypedDict):
949
- model_name_or_id: str
1013
+ class GetRegressionModelByNameOrIdParams(TypedDict):
1014
+ name_or_id: str
950
1015
 
951
1016
 
952
- class GetClassificationModelByModelNameOrIdEvaluationByTaskIdParams(TypedDict):
953
- model_name_or_id: str
954
- task_id: str
1017
+ class DeleteRegressionModelByNameOrIdParams(TypedDict):
1018
+ name_or_id: str
955
1019
 
956
1020
 
957
- class DeleteClassificationModelByModelNameOrIdEvaluationByTaskIdParams(TypedDict):
958
- model_name_or_id: str
959
- task_id: str
1021
+ class PostGpuClassificationModelByNameOrIdPredictionParams(TypedDict):
1022
+ name_or_id: str
960
1023
 
961
1024
 
962
- class PatchRegressionModelByNameOrIdParams(TypedDict):
1025
+ class PostClassificationModelByNameOrIdPredictionParams(TypedDict):
963
1026
  name_or_id: str
964
1027
 
965
1028
 
966
- class GetRegressionModelByNameOrIdParams(TypedDict):
1029
+ class PostGpuRegressionModelByNameOrIdPredictionParams(TypedDict):
967
1030
  name_or_id: str
968
1031
 
969
1032
 
970
- class DeleteRegressionModelByNameOrIdParams(TypedDict):
1033
+ class PostRegressionModelByNameOrIdPredictionParams(TypedDict):
971
1034
  name_or_id: str
972
1035
 
973
1036
 
1037
+ class PostClassificationModelByModelNameOrIdEvaluationParams(TypedDict):
1038
+ model_name_or_id: str
1039
+
1040
+
1041
+ class GetClassificationModelByModelNameOrIdEvaluationParams(TypedDict):
1042
+ model_name_or_id: str
1043
+
1044
+
974
1045
  class PostRegressionModelByModelNameOrIdEvaluationParams(TypedDict):
975
1046
  model_name_or_id: str
976
1047
 
@@ -979,26 +1050,36 @@ class GetRegressionModelByModelNameOrIdEvaluationParams(TypedDict):
979
1050
  model_name_or_id: str
980
1051
 
981
1052
 
982
- class GetRegressionModelByModelNameOrIdEvaluationByTaskIdParams(TypedDict):
1053
+ class GetClassificationModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
983
1054
  model_name_or_id: str
984
- task_id: str
1055
+ job_id: str
985
1056
 
986
1057
 
987
- class DeleteRegressionModelByModelNameOrIdEvaluationByTaskIdParams(TypedDict):
1058
+ class DeleteClassificationModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
988
1059
  model_name_or_id: str
989
- task_id: str
1060
+ job_id: str
990
1061
 
991
1062
 
992
- class GetTaskByTaskIdParams(TypedDict):
993
- task_id: str
1063
+ class GetRegressionModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
1064
+ model_name_or_id: str
1065
+ job_id: str
994
1066
 
995
1067
 
996
- class GetTaskByTaskIdStatusParams(TypedDict):
997
- task_id: str
1068
+ class DeleteRegressionModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
1069
+ model_name_or_id: str
1070
+ job_id: str
1071
+
1072
+
1073
+ class GetJobByJobIdParams(TypedDict):
1074
+ job_id: str
1075
+
998
1076
 
1077
+ class GetJobByJobIdStatusParams(TypedDict):
1078
+ job_id: str
999
1079
 
1000
- class GetTaskParams(TypedDict):
1001
- status: NotRequired[TaskStatus | list[TaskStatus] | None]
1080
+
1081
+ class GetJobParams(TypedDict):
1082
+ status: NotRequired[JobStatus | list[JobStatus] | None]
1002
1083
  type: NotRequired[str | list[str] | None]
1003
1084
  limit: NotRequired[int | None]
1004
1085
  offset: NotRequired[int]
@@ -1006,8 +1087,8 @@ class GetTaskParams(TypedDict):
1006
1087
  end_timestamp: NotRequired[str | None]
1007
1088
 
1008
1089
 
1009
- class DeleteTaskByTaskIdAbortParams(TypedDict):
1010
- task_id: str
1090
+ class DeleteJobByJobIdAbortParams(TypedDict):
1091
+ job_id: str
1011
1092
 
1012
1093
 
1013
1094
  class GetWorkerParams(TypedDict):
@@ -1063,43 +1144,8 @@ class DeleteTelemetryFeedbackCategoryByNameOrIdParams(TypedDict):
1063
1144
  PutTelemetryPredictionFeedbackRequest = list[PredictionFeedbackRequest]
1064
1145
 
1065
1146
 
1066
- class GetAgentsBootstrapClassificationModelByTaskIdParams(TypedDict):
1067
- task_id: str
1068
-
1069
-
1070
- class PostGpuMemorysetByNameOrIdLookupParams(TypedDict):
1071
- name_or_id: str
1072
-
1073
-
1074
- class PatchGpuMemorysetByNameOrIdMemoryParams(TypedDict):
1075
- name_or_id: str
1076
-
1077
-
1078
- class PostGpuMemorysetByNameOrIdMemoryParams(TypedDict):
1079
- name_or_id: str
1080
-
1081
-
1082
- PostGpuMemorysetByNameOrIdMemoryRequest = list[LabeledMemoryInsert] | list[ScoredMemoryInsert]
1083
-
1084
-
1085
- class PatchGpuMemorysetByNameOrIdMemoriesParams(TypedDict):
1086
- name_or_id: str
1087
-
1088
-
1089
- class PostGpuClassificationModelByNameOrIdPredictionParams(TypedDict):
1090
- name_or_id: str
1091
-
1092
-
1093
- class PostGpuRegressionModelByNameOrIdPredictionParams(TypedDict):
1094
- name_or_id: str
1095
-
1096
-
1097
- class PostGpuFinetunedEmbeddingModelByNameOrIdEmbeddingParams(TypedDict):
1098
- name_or_id: str
1099
-
1100
-
1101
- class PostGpuPretrainedEmbeddingModelByModelNameEmbeddingParams(TypedDict):
1102
- model_name: PretrainedEmbeddingModelName
1147
+ class GetAgentsBootstrapClassificationModelByJobIdParams(TypedDict):
1148
+ job_id: str
1103
1149
 
1104
1150
 
1105
1151
  class FieldValidationError(TypedDict):
@@ -1171,6 +1217,7 @@ class ClassificationPredictionRequest(TypedDict):
1171
1217
  prompt: NotRequired[str | None]
1172
1218
  use_lookup_cache: NotRequired[bool]
1173
1219
  consistency_level: NotRequired[Literal["Bounded", "Session", "Strong", "Eventual"] | None]
1220
+ ignore_unlabeled: NotRequired[bool]
1174
1221
 
1175
1222
 
1176
1223
  class CloneMemorysetRequest(TypedDict):
@@ -1187,6 +1234,7 @@ class ColumnInfo(TypedDict):
1187
1234
  name: str
1188
1235
  type: ColumnType
1189
1236
  enum_options: NotRequired[list[str] | None]
1237
+ string_values: NotRequired[list[str] | None]
1190
1238
  int_values: NotRequired[list[int] | None]
1191
1239
  contains_nones: NotRequired[bool]
1192
1240
 
@@ -1233,6 +1281,8 @@ class CreateMemorysetRequest(TypedDict):
1233
1281
  prompt: NotRequired[str]
1234
1282
  hidden: NotRequired[bool]
1235
1283
  batch_size: NotRequired[int]
1284
+ subsample: NotRequired[int | float | None]
1285
+ memory_type: NotRequired[MemoryType]
1236
1286
 
1237
1287
 
1238
1288
  class CreateRegressionModelRequest(TypedDict):
@@ -1257,48 +1307,52 @@ class DatasourceMetadata(TypedDict):
1257
1307
 
1258
1308
 
1259
1309
  class EmbeddingEvaluationResponse(TypedDict):
1260
- task_id: str
1310
+ job_id: str
1261
1311
  org_id: str
1262
1312
  finetuned_embedding_model_id: str | None
1263
1313
  pretrained_embedding_model_name: PretrainedEmbeddingModelName | None
1264
1314
  datasource_id: str
1265
- subsample: int | None
1315
+ subsample: int | float | None
1266
1316
  datasource_value_column: str
1267
1317
  datasource_label_column: NotRequired[str | None]
1268
1318
  datasource_score_column: NotRequired[str | None]
1269
1319
  neighbor_count: int
1270
1320
  weigh_memories: bool
1271
- status: TaskStatus
1321
+ status: JobStatus
1272
1322
  result: ClassificationMetrics | RegressionMetrics | None
1273
1323
  created_at: str
1274
1324
  updated_at: str
1325
+ task_id: str
1275
1326
 
1276
1327
 
1277
1328
  class EvaluationResponse(TypedDict):
1278
- task_id: str
1329
+ job_id: str
1279
1330
  org_id: str
1280
- status: TaskStatus
1331
+ status: JobStatus
1281
1332
  result: ClassificationMetrics | RegressionMetrics | None
1282
1333
  created_at: str
1283
1334
  updated_at: str
1335
+ task_id: str
1284
1336
 
1285
1337
 
1286
1338
  class EvaluationResponseClassificationMetrics(TypedDict):
1287
- task_id: str
1339
+ job_id: str
1288
1340
  org_id: str
1289
- status: TaskStatus
1341
+ status: JobStatus
1290
1342
  result: ClassificationMetrics | None
1291
1343
  created_at: str
1292
1344
  updated_at: str
1345
+ task_id: str
1293
1346
 
1294
1347
 
1295
1348
  class EvaluationResponseRegressionMetrics(TypedDict):
1296
- task_id: str
1349
+ job_id: str
1297
1350
  org_id: str
1298
- status: TaskStatus
1351
+ status: JobStatus
1299
1352
  result: RegressionMetrics | None
1300
1353
  created_at: str
1301
1354
  updated_at: str
1355
+ task_id: str
1302
1356
 
1303
1357
 
1304
1358
  class FinetuneEmbeddingModelRequest(TypedDict):
@@ -1307,7 +1361,8 @@ class FinetuneEmbeddingModelRequest(TypedDict):
1307
1361
  train_memoryset_name_or_id: NotRequired[str | None]
1308
1362
  train_datasource_name_or_id: NotRequired[str | None]
1309
1363
  eval_datasource_name_or_id: NotRequired[str | None]
1310
- label_column: NotRequired[str]
1364
+ label_column: NotRequired[str | None]
1365
+ score_column: NotRequired[str | None]
1311
1366
  value_column: NotRequired[str]
1312
1367
  training_method: NotRequired[EmbeddingFinetuningMethod]
1313
1368
  training_args: NotRequired[dict[str, str | int | float | bool]]
@@ -1324,8 +1379,9 @@ class FinetunedEmbeddingModelMetadata(TypedDict):
1324
1379
  created_at: str
1325
1380
  updated_at: str
1326
1381
  base_model: PretrainedEmbeddingModelName
1382
+ finetuning_job_id: str
1383
+ finetuning_status: JobStatus
1327
1384
  finetuning_task_id: str
1328
- finetuning_status: TaskStatus
1329
1385
 
1330
1386
 
1331
1387
  class HTTPValidationError(TypedDict):
@@ -1337,10 +1393,28 @@ class InvalidInputErrorResponse(TypedDict):
1337
1393
  validation_issues: list[FieldValidationError]
1338
1394
 
1339
1395
 
1396
+ class Job(TypedDict):
1397
+ status: JobStatus
1398
+ steps_total: int | None
1399
+ steps_completed: int | None
1400
+ exception: str | None
1401
+ updated_at: str
1402
+ created_at: str
1403
+ id: str
1404
+ org_id: str
1405
+ worker_id: str | None
1406
+ type: str
1407
+ payload: BaseModel
1408
+ result: BaseModel | None
1409
+ depends_on: NotRequired[list[str]]
1410
+ lease_token: str | None
1411
+
1412
+
1340
1413
  class LabelPredictionMemoryLookup(TypedDict):
1341
1414
  value: str | bytes
1342
1415
  embedding: list[float]
1343
1416
  source_id: str | None
1417
+ partition_id: str | None
1344
1418
  metadata: dict[str, str | int | float | bool | None]
1345
1419
  memory_id: str
1346
1420
  memory_version: int
@@ -1382,6 +1456,7 @@ class LabeledMemory(TypedDict):
1382
1456
  value: str | bytes
1383
1457
  embedding: list[float]
1384
1458
  source_id: str | None
1459
+ partition_id: str | None
1385
1460
  metadata: dict[str, str | int | float | bool | None]
1386
1461
  memory_id: str
1387
1462
  memory_version: int
@@ -1397,6 +1472,7 @@ class LabeledMemoryLookup(TypedDict):
1397
1472
  value: str | bytes
1398
1473
  embedding: list[float]
1399
1474
  source_id: str | None
1475
+ partition_id: str | None
1400
1476
  metadata: dict[str, str | int | float | bool | None]
1401
1477
  memory_id: str
1402
1478
  memory_version: int
@@ -1414,6 +1490,7 @@ class LabeledMemoryUpdate(TypedDict):
1414
1490
  value: NotRequired[str | bytes]
1415
1491
  metadata: NotRequired[dict[str, str | int | float | bool | None] | None]
1416
1492
  source_id: NotRequired[str | None]
1493
+ partition_id: NotRequired[str | None]
1417
1494
  metrics: NotRequired[MemoryMetrics | None]
1418
1495
  label: NotRequired[int | None]
1419
1496
 
@@ -1422,6 +1499,7 @@ class LabeledMemoryWithFeedbackMetrics(TypedDict):
1422
1499
  value: str | bytes
1423
1500
  embedding: list[float]
1424
1501
  source_id: str | None
1502
+ partition_id: str | None
1425
1503
  metadata: dict[str, str | int | float | bool | None]
1426
1504
  memory_id: str
1427
1505
  memory_version: int
@@ -1441,7 +1519,8 @@ class ListPredictionsRequest(TypedDict):
1441
1519
  prediction_ids: NotRequired[list[str] | None]
1442
1520
  start_timestamp: NotRequired[str | None]
1443
1521
  end_timestamp: NotRequired[str | None]
1444
- limit: NotRequired[int | None]
1522
+ memory_id: NotRequired[str | None]
1523
+ limit: NotRequired[int]
1445
1524
  offset: NotRequired[int | None]
1446
1525
  sort: NotRequired[PredictionSort]
1447
1526
  expected_label_match: NotRequired[bool | None]
@@ -1480,6 +1559,13 @@ class MemorysetMetrics(TypedDict):
1480
1559
  concepts: NotRequired[MemorysetConceptMetrics | None]
1481
1560
 
1482
1561
 
1562
+ class PaginatedJob(TypedDict):
1563
+ items: list[Job]
1564
+ total: int
1565
+ offset: int
1566
+ limit: int
1567
+
1568
+
1483
1569
  class PaginatedUnionLabeledMemoryWithFeedbackMetricsScoredMemoryWithFeedbackMetrics(TypedDict):
1484
1570
  items: list[LabeledMemoryWithFeedbackMetrics | ScoredMemoryWithFeedbackMetrics]
1485
1571
  total: int
@@ -1497,23 +1583,6 @@ class PretrainedEmbeddingModelMetadata(TypedDict):
1497
1583
  num_params: int
1498
1584
 
1499
1585
 
1500
- class Task(TypedDict):
1501
- status: TaskStatus
1502
- steps_total: int | None
1503
- steps_completed: int | None
1504
- exception: str | None
1505
- updated_at: str
1506
- created_at: str
1507
- id: str
1508
- org_id: str
1509
- worker_id: str | None
1510
- type: str
1511
- payload: BaseModel
1512
- result: BaseModel | None
1513
- depends_on: list[str]
1514
- lease_token: str | None
1515
-
1516
-
1517
1586
  class TelemetryMemoriesRequest(TypedDict):
1518
1587
  memoryset_id: str
1519
1588
  offset: NotRequired[int]
@@ -1545,10 +1614,10 @@ class CascadingEditSuggestion(TypedDict):
1545
1614
 
1546
1615
 
1547
1616
  class MemorysetAnalysisResponse(TypedDict):
1548
- task_id: str
1617
+ job_id: str
1549
1618
  org_id: str
1550
1619
  memoryset_id: str
1551
- status: TaskStatus
1620
+ status: JobStatus
1552
1621
  lookup_count: int
1553
1622
  batch_size: int
1554
1623
  clear_metrics: bool
@@ -1556,6 +1625,7 @@ class MemorysetAnalysisResponse(TypedDict):
1556
1625
  results: MemorysetMetrics | None
1557
1626
  created_at: str
1558
1627
  updated_at: str
1628
+ task_id: str
1559
1629
 
1560
1630
 
1561
1631
  class MemorysetMetadata(TypedDict):
@@ -1571,8 +1641,8 @@ class MemorysetMetadata(TypedDict):
1571
1641
  created_at: str
1572
1642
  updated_at: str
1573
1643
  memories_updated_at: str
1574
- insertion_task_id: str
1575
- insertion_status: TaskStatus
1644
+ insertion_job_id: str
1645
+ insertion_status: JobStatus
1576
1646
  metrics: MemorysetMetrics
1577
1647
  memory_type: MemoryType
1578
1648
  label_names: list[str] | None
@@ -1582,13 +1652,7 @@ class MemorysetMetadata(TypedDict):
1582
1652
  document_prompt_override: str | None
1583
1653
  query_prompt_override: str | None
1584
1654
  hidden: bool
1585
-
1586
-
1587
- class PaginatedTask(TypedDict):
1588
- items: list[Task]
1589
- total: int
1590
- offset: int
1591
- limit: int
1655
+ insertion_task_id: str
1592
1656
 
1593
1657
 
1594
1658
  class PaginatedWorkerInfo(TypedDict):
@@ -1606,11 +1670,12 @@ class BootstrapClassificationModelMeta(TypedDict):
1606
1670
 
1607
1671
 
1608
1672
  class BootstrapClassificationModelResponse(TypedDict):
1609
- task_id: str
1673
+ job_id: str
1610
1674
  org_id: str
1611
- status: TaskStatus
1675
+ status: JobStatus
1612
1676
  result: BootstrapClassificationModelMeta | None
1613
1677
  input: BootstrapClassificationModelRequest | None
1678
+ task_id: str
1614
1679
 
1615
1680
 
1616
1681
  class OrcaAsyncClient(AsyncClient):
@@ -1889,9 +1954,9 @@ class OrcaAsyncClient(AsyncClient):
1889
1954
  @overload
1890
1955
  async def GET(
1891
1956
  self,
1892
- path: Literal["/memoryset/{name_or_id}/analysis/{analysis_task_id}"],
1957
+ path: Literal["/memoryset/{name_or_id}/analysis/{analysis_job_id}"],
1893
1958
  *,
1894
- params: GetMemorysetByNameOrIdAnalysisByAnalysisTaskIdParams,
1959
+ params: GetMemorysetByNameOrIdAnalysisByAnalysisJobIdParams,
1895
1960
  parse_as: Literal["json"] = "json",
1896
1961
  headers: HeaderTypes | None = None,
1897
1962
  cookies: CookieTypes | None = None,
@@ -1939,9 +2004,9 @@ class OrcaAsyncClient(AsyncClient):
1939
2004
  @overload
1940
2005
  async def GET(
1941
2006
  self,
1942
- path: Literal["/finetuned_embedding_model/{name_or_id}/evaluation/{task_id}"],
2007
+ path: Literal["/pretrained_embedding_model"],
1943
2008
  *,
1944
- params: GetFinetunedEmbeddingModelByNameOrIdEvaluationByTaskIdParams,
2009
+ params: None = None,
1945
2010
  parse_as: Literal["json"] = "json",
1946
2011
  headers: HeaderTypes | None = None,
1947
2012
  cookies: CookieTypes | None = None,
@@ -1949,16 +2014,16 @@ class OrcaAsyncClient(AsyncClient):
1949
2014
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1950
2015
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1951
2016
  extensions: RequestExtensions | None = None,
1952
- ) -> EmbeddingEvaluationResponse:
1953
- """Get evaluation results for a finetuned embedding model by task ID."""
2017
+ ) -> list[PretrainedEmbeddingModelMetadata]:
2018
+ """List all available pretrained embedding models."""
1954
2019
  pass
1955
2020
 
1956
2021
  @overload
1957
2022
  async def GET(
1958
2023
  self,
1959
- path: Literal["/finetuned_embedding_model/{name_or_id}/evaluations"],
2024
+ path: Literal["/pretrained_embedding_model/{model_name}"],
1960
2025
  *,
1961
- params: GetFinetunedEmbeddingModelByNameOrIdEvaluationsParams,
2026
+ params: GetPretrainedEmbeddingModelByModelNameParams,
1962
2027
  parse_as: Literal["json"] = "json",
1963
2028
  headers: HeaderTypes | None = None,
1964
2029
  cookies: CookieTypes | None = None,
@@ -1966,16 +2031,16 @@ class OrcaAsyncClient(AsyncClient):
1966
2031
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1967
2032
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1968
2033
  extensions: RequestExtensions | None = None,
1969
- ) -> list[EmbeddingEvaluationResponse]:
1970
- """List all evaluation results for a finetuned embedding model."""
2034
+ ) -> PretrainedEmbeddingModelMetadata:
2035
+ """Get metadata for a specific pretrained embedding model."""
1971
2036
  pass
1972
2037
 
1973
2038
  @overload
1974
2039
  async def GET(
1975
2040
  self,
1976
- path: Literal["/pretrained_embedding_model"],
2041
+ path: Literal["/finetuned_embedding_model/{name_or_id}/evaluation/{job_id}"],
1977
2042
  *,
1978
- params: None = None,
2043
+ params: GetFinetunedEmbeddingModelByNameOrIdEvaluationByJobIdParams,
1979
2044
  parse_as: Literal["json"] = "json",
1980
2045
  headers: HeaderTypes | None = None,
1981
2046
  cookies: CookieTypes | None = None,
@@ -1983,16 +2048,16 @@ class OrcaAsyncClient(AsyncClient):
1983
2048
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1984
2049
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1985
2050
  extensions: RequestExtensions | None = None,
1986
- ) -> list[PretrainedEmbeddingModelMetadata]:
1987
- """List all available pretrained embedding models."""
2051
+ ) -> EmbeddingEvaluationResponse:
2052
+ """Get evaluation results for a finetuned embedding model by job ID."""
1988
2053
  pass
1989
2054
 
1990
2055
  @overload
1991
2056
  async def GET(
1992
2057
  self,
1993
- path: Literal["/pretrained_embedding_model/{model_name}"],
2058
+ path: Literal["/pretrained_embedding_model/{model_name}/evaluation/{job_id}"],
1994
2059
  *,
1995
- params: GetPretrainedEmbeddingModelByModelNameParams,
2060
+ params: GetPretrainedEmbeddingModelByModelNameEvaluationByJobIdParams,
1996
2061
  parse_as: Literal["json"] = "json",
1997
2062
  headers: HeaderTypes | None = None,
1998
2063
  cookies: CookieTypes | None = None,
@@ -2000,16 +2065,16 @@ class OrcaAsyncClient(AsyncClient):
2000
2065
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2001
2066
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2002
2067
  extensions: RequestExtensions | None = None,
2003
- ) -> PretrainedEmbeddingModelMetadata:
2004
- """Get metadata for a specific pretrained embedding model."""
2068
+ ) -> EmbeddingEvaluationResponse:
2069
+ """Get evaluation results for a pretrained embedding model by job ID."""
2005
2070
  pass
2006
2071
 
2007
2072
  @overload
2008
2073
  async def GET(
2009
2074
  self,
2010
- path: Literal["/pretrained_embedding_model/{model_name}/evaluation/{task_id}"],
2075
+ path: Literal["/finetuned_embedding_model/{name_or_id}/evaluations"],
2011
2076
  *,
2012
- params: GetPretrainedEmbeddingModelByModelNameEvaluationByTaskIdParams,
2077
+ params: GetFinetunedEmbeddingModelByNameOrIdEvaluationsParams,
2013
2078
  parse_as: Literal["json"] = "json",
2014
2079
  headers: HeaderTypes | None = None,
2015
2080
  cookies: CookieTypes | None = None,
@@ -2017,8 +2082,8 @@ class OrcaAsyncClient(AsyncClient):
2017
2082
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2018
2083
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2019
2084
  extensions: RequestExtensions | None = None,
2020
- ) -> EmbeddingEvaluationResponse:
2021
- """Get evaluation results for a pretrained embedding model by task ID."""
2085
+ ) -> list[EmbeddingEvaluationResponse]:
2086
+ """List all evaluation results for a finetuned embedding model."""
2022
2087
  pass
2023
2088
 
2024
2089
  @overload
@@ -2143,7 +2208,7 @@ class OrcaAsyncClient(AsyncClient):
2143
2208
  @overload
2144
2209
  async def GET(
2145
2210
  self,
2146
- path: Literal["/predictive_model"],
2211
+ path: Literal["/classification_model"],
2147
2212
  *,
2148
2213
  params: None = None,
2149
2214
  parse_as: Literal["json"] = "json",
@@ -2153,13 +2218,13 @@ class OrcaAsyncClient(AsyncClient):
2153
2218
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2154
2219
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2155
2220
  extensions: RequestExtensions | None = None,
2156
- ) -> list[ClassificationModelMetadata | RegressionModelMetadata]:
2221
+ ) -> list[ClassificationModelMetadata]:
2157
2222
  pass
2158
2223
 
2159
2224
  @overload
2160
2225
  async def GET(
2161
2226
  self,
2162
- path: Literal["/classification_model"],
2227
+ path: Literal["/regression_model"],
2163
2228
  *,
2164
2229
  params: None = None,
2165
2230
  parse_as: Literal["json"] = "json",
@@ -2169,7 +2234,7 @@ class OrcaAsyncClient(AsyncClient):
2169
2234
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2170
2235
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2171
2236
  extensions: RequestExtensions | None = None,
2172
- ) -> list[ClassificationModelMetadata]:
2237
+ ) -> list[RegressionModelMetadata]:
2173
2238
  pass
2174
2239
 
2175
2240
  @overload
@@ -2191,9 +2256,9 @@ class OrcaAsyncClient(AsyncClient):
2191
2256
  @overload
2192
2257
  async def GET(
2193
2258
  self,
2194
- path: Literal["/classification_model/{model_name_or_id}/evaluation"],
2259
+ path: Literal["/regression_model/{name_or_id}"],
2195
2260
  *,
2196
- params: GetClassificationModelByModelNameOrIdEvaluationParams,
2261
+ params: GetRegressionModelByNameOrIdParams,
2197
2262
  parse_as: Literal["json"] = "json",
2198
2263
  headers: HeaderTypes | None = None,
2199
2264
  cookies: CookieTypes | None = None,
@@ -2201,15 +2266,15 @@ class OrcaAsyncClient(AsyncClient):
2201
2266
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2202
2267
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2203
2268
  extensions: RequestExtensions | None = None,
2204
- ) -> list[EvaluationResponseClassificationMetrics]:
2269
+ ) -> RegressionModelMetadata:
2205
2270
  pass
2206
2271
 
2207
2272
  @overload
2208
2273
  async def GET(
2209
2274
  self,
2210
- path: Literal["/classification_model/{model_name_or_id}/evaluation/{task_id}"],
2275
+ path: Literal["/predictive_model"],
2211
2276
  *,
2212
- params: GetClassificationModelByModelNameOrIdEvaluationByTaskIdParams,
2277
+ params: None = None,
2213
2278
  parse_as: Literal["json"] = "json",
2214
2279
  headers: HeaderTypes | None = None,
2215
2280
  cookies: CookieTypes | None = None,
@@ -2217,15 +2282,15 @@ class OrcaAsyncClient(AsyncClient):
2217
2282
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2218
2283
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2219
2284
  extensions: RequestExtensions | None = None,
2220
- ) -> EvaluationResponseClassificationMetrics:
2285
+ ) -> list[ClassificationModelMetadata | RegressionModelMetadata]:
2221
2286
  pass
2222
2287
 
2223
2288
  @overload
2224
2289
  async def GET(
2225
2290
  self,
2226
- path: Literal["/regression_model"],
2291
+ path: Literal["/classification_model/{model_name_or_id}/evaluation"],
2227
2292
  *,
2228
- params: None = None,
2293
+ params: GetClassificationModelByModelNameOrIdEvaluationParams,
2229
2294
  parse_as: Literal["json"] = "json",
2230
2295
  headers: HeaderTypes | None = None,
2231
2296
  cookies: CookieTypes | None = None,
@@ -2233,15 +2298,15 @@ class OrcaAsyncClient(AsyncClient):
2233
2298
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2234
2299
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2235
2300
  extensions: RequestExtensions | None = None,
2236
- ) -> list[RegressionModelMetadata]:
2301
+ ) -> list[EvaluationResponseClassificationMetrics]:
2237
2302
  pass
2238
2303
 
2239
2304
  @overload
2240
2305
  async def GET(
2241
2306
  self,
2242
- path: Literal["/regression_model/{name_or_id}"],
2307
+ path: Literal["/regression_model/{model_name_or_id}/evaluation"],
2243
2308
  *,
2244
- params: GetRegressionModelByNameOrIdParams,
2309
+ params: GetRegressionModelByModelNameOrIdEvaluationParams,
2245
2310
  parse_as: Literal["json"] = "json",
2246
2311
  headers: HeaderTypes | None = None,
2247
2312
  cookies: CookieTypes | None = None,
@@ -2249,15 +2314,15 @@ class OrcaAsyncClient(AsyncClient):
2249
2314
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2250
2315
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2251
2316
  extensions: RequestExtensions | None = None,
2252
- ) -> RegressionModelMetadata:
2317
+ ) -> list[EvaluationResponseRegressionMetrics]:
2253
2318
  pass
2254
2319
 
2255
2320
  @overload
2256
2321
  async def GET(
2257
2322
  self,
2258
- path: Literal["/regression_model/{model_name_or_id}/evaluation"],
2323
+ path: Literal["/classification_model/{model_name_or_id}/evaluation/{job_id}"],
2259
2324
  *,
2260
- params: GetRegressionModelByModelNameOrIdEvaluationParams,
2325
+ params: GetClassificationModelByModelNameOrIdEvaluationByJobIdParams,
2261
2326
  parse_as: Literal["json"] = "json",
2262
2327
  headers: HeaderTypes | None = None,
2263
2328
  cookies: CookieTypes | None = None,
@@ -2265,15 +2330,15 @@ class OrcaAsyncClient(AsyncClient):
2265
2330
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2266
2331
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2267
2332
  extensions: RequestExtensions | None = None,
2268
- ) -> list[EvaluationResponseRegressionMetrics]:
2333
+ ) -> EvaluationResponseClassificationMetrics:
2269
2334
  pass
2270
2335
 
2271
2336
  @overload
2272
2337
  async def GET(
2273
2338
  self,
2274
- path: Literal["/regression_model/{model_name_or_id}/evaluation/{task_id}"],
2339
+ path: Literal["/regression_model/{model_name_or_id}/evaluation/{job_id}"],
2275
2340
  *,
2276
- params: GetRegressionModelByModelNameOrIdEvaluationByTaskIdParams,
2341
+ params: GetRegressionModelByModelNameOrIdEvaluationByJobIdParams,
2277
2342
  parse_as: Literal["json"] = "json",
2278
2343
  headers: HeaderTypes | None = None,
2279
2344
  cookies: CookieTypes | None = None,
@@ -2287,9 +2352,9 @@ class OrcaAsyncClient(AsyncClient):
2287
2352
  @overload
2288
2353
  async def GET(
2289
2354
  self,
2290
- path: Literal["/task/{task_id}"],
2355
+ path: Literal["/job/{job_id}"],
2291
2356
  *,
2292
- params: GetTaskByTaskIdParams,
2357
+ params: GetJobByJobIdParams,
2293
2358
  parse_as: Literal["json"] = "json",
2294
2359
  headers: HeaderTypes | None = None,
2295
2360
  cookies: CookieTypes | None = None,
@@ -2297,15 +2362,15 @@ class OrcaAsyncClient(AsyncClient):
2297
2362
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2298
2363
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2299
2364
  extensions: RequestExtensions | None = None,
2300
- ) -> Task:
2365
+ ) -> Job:
2301
2366
  pass
2302
2367
 
2303
2368
  @overload
2304
2369
  async def GET(
2305
2370
  self,
2306
- path: Literal["/task/{task_id}/status"],
2371
+ path: Literal["/job/{job_id}/status"],
2307
2372
  *,
2308
- params: GetTaskByTaskIdStatusParams,
2373
+ params: GetJobByJobIdStatusParams,
2309
2374
  parse_as: Literal["json"] = "json",
2310
2375
  headers: HeaderTypes | None = None,
2311
2376
  cookies: CookieTypes | None = None,
@@ -2313,15 +2378,15 @@ class OrcaAsyncClient(AsyncClient):
2313
2378
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2314
2379
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2315
2380
  extensions: RequestExtensions | None = None,
2316
- ) -> TaskStatusInfo:
2381
+ ) -> JobStatusInfo:
2317
2382
  pass
2318
2383
 
2319
2384
  @overload
2320
2385
  async def GET(
2321
2386
  self,
2322
- path: Literal["/task"],
2387
+ path: Literal["/job"],
2323
2388
  *,
2324
- params: GetTaskParams,
2389
+ params: GetJobParams,
2325
2390
  parse_as: Literal["json"] = "json",
2326
2391
  headers: HeaderTypes | None = None,
2327
2392
  cookies: CookieTypes | None = None,
@@ -2329,7 +2394,7 @@ class OrcaAsyncClient(AsyncClient):
2329
2394
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2330
2395
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2331
2396
  extensions: RequestExtensions | None = None,
2332
- ) -> PaginatedTask:
2397
+ ) -> PaginatedJob:
2333
2398
  pass
2334
2399
 
2335
2400
  @overload
@@ -2480,9 +2545,9 @@ class OrcaAsyncClient(AsyncClient):
2480
2545
  @overload
2481
2546
  async def GET(
2482
2547
  self,
2483
- path: Literal["/agents/bootstrap_classification_model/{task_id}"],
2548
+ path: Literal["/agents/bootstrap_classification_model/{job_id}"],
2484
2549
  *,
2485
- params: GetAgentsBootstrapClassificationModelByTaskIdParams,
2550
+ params: GetAgentsBootstrapClassificationModelByJobIdParams,
2486
2551
  parse_as: Literal["json"] = "json",
2487
2552
  headers: HeaderTypes | None = None,
2488
2553
  cookies: CookieTypes | None = None,
@@ -2491,7 +2556,7 @@ class OrcaAsyncClient(AsyncClient):
2491
2556
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2492
2557
  extensions: RequestExtensions | None = None,
2493
2558
  ) -> BootstrapClassificationModelResponse:
2494
- """Get the status of a bootstrap classification model task"""
2559
+ """Get the status of a bootstrap classification model job"""
2495
2560
  pass
2496
2561
 
2497
2562
  async def GET(
@@ -2661,9 +2726,9 @@ class OrcaAsyncClient(AsyncClient):
2661
2726
  @overload
2662
2727
  async def DELETE(
2663
2728
  self,
2664
- path: Literal["/classification_model/{model_name_or_id}/evaluation/{task_id}"],
2729
+ path: Literal["/regression_model/{name_or_id}"],
2665
2730
  *,
2666
- params: DeleteClassificationModelByModelNameOrIdEvaluationByTaskIdParams,
2731
+ params: DeleteRegressionModelByNameOrIdParams,
2667
2732
  parse_as: Literal["json"] = "json",
2668
2733
  headers: HeaderTypes | None = None,
2669
2734
  cookies: CookieTypes | None = None,
@@ -2677,9 +2742,9 @@ class OrcaAsyncClient(AsyncClient):
2677
2742
  @overload
2678
2743
  async def DELETE(
2679
2744
  self,
2680
- path: Literal["/regression_model/{name_or_id}"],
2745
+ path: Literal["/classification_model/{model_name_or_id}/evaluation/{job_id}"],
2681
2746
  *,
2682
- params: DeleteRegressionModelByNameOrIdParams,
2747
+ params: DeleteClassificationModelByModelNameOrIdEvaluationByJobIdParams,
2683
2748
  parse_as: Literal["json"] = "json",
2684
2749
  headers: HeaderTypes | None = None,
2685
2750
  cookies: CookieTypes | None = None,
@@ -2693,9 +2758,9 @@ class OrcaAsyncClient(AsyncClient):
2693
2758
  @overload
2694
2759
  async def DELETE(
2695
2760
  self,
2696
- path: Literal["/regression_model/{model_name_or_id}/evaluation/{task_id}"],
2761
+ path: Literal["/regression_model/{model_name_or_id}/evaluation/{job_id}"],
2697
2762
  *,
2698
- params: DeleteRegressionModelByModelNameOrIdEvaluationByTaskIdParams,
2763
+ params: DeleteRegressionModelByModelNameOrIdEvaluationByJobIdParams,
2699
2764
  parse_as: Literal["json"] = "json",
2700
2765
  headers: HeaderTypes | None = None,
2701
2766
  cookies: CookieTypes | None = None,
@@ -2709,9 +2774,9 @@ class OrcaAsyncClient(AsyncClient):
2709
2774
  @overload
2710
2775
  async def DELETE(
2711
2776
  self,
2712
- path: Literal["/task/{task_id}/abort"],
2777
+ path: Literal["/job/{job_id}/abort"],
2713
2778
  *,
2714
- params: DeleteTaskByTaskIdAbortParams,
2779
+ params: DeleteJobByJobIdAbortParams,
2715
2780
  parse_as: Literal["json"] = "json",
2716
2781
  headers: HeaderTypes | None = None,
2717
2782
  cookies: CookieTypes | None = None,
@@ -2872,6 +2937,26 @@ class OrcaAsyncClient(AsyncClient):
2872
2937
  ) -> None:
2873
2938
  pass
2874
2939
 
2940
+ @overload
2941
+ async def POST(
2942
+ self,
2943
+ path: Literal["/gpu/memoryset/{name_or_id}/lookup"],
2944
+ *,
2945
+ params: PostGpuMemorysetByNameOrIdLookupParams,
2946
+ json: LookupRequest,
2947
+ data: None = None,
2948
+ files: None = None,
2949
+ content: None = None,
2950
+ parse_as: Literal["json"] = "json",
2951
+ headers: HeaderTypes | None = None,
2952
+ cookies: CookieTypes | None = None,
2953
+ auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2954
+ follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2955
+ timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2956
+ extensions: RequestExtensions | None = None,
2957
+ ) -> list[list[LabeledMemoryLookup | ScoredMemoryLookup]]:
2958
+ pass
2959
+
2875
2960
  @overload
2876
2961
  async def POST(
2877
2962
  self,
@@ -2932,6 +3017,26 @@ class OrcaAsyncClient(AsyncClient):
2932
3017
  ) -> None:
2933
3018
  pass
2934
3019
 
3020
+ @overload
3021
+ async def POST(
3022
+ self,
3023
+ path: Literal["/gpu/memoryset/{name_or_id}/memory"],
3024
+ *,
3025
+ params: PostGpuMemorysetByNameOrIdMemoryParams,
3026
+ json: PostGpuMemorysetByNameOrIdMemoryRequest,
3027
+ data: None = None,
3028
+ files: None = None,
3029
+ content: None = None,
3030
+ parse_as: Literal["json"] = "json",
3031
+ headers: HeaderTypes | None = None,
3032
+ cookies: CookieTypes | None = None,
3033
+ auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3034
+ follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3035
+ timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3036
+ extensions: RequestExtensions | None = None,
3037
+ ) -> list[str]:
3038
+ pass
3039
+
2935
3040
  @overload
2936
3041
  async def POST(
2937
3042
  self,
@@ -2993,6 +3098,48 @@ class OrcaAsyncClient(AsyncClient):
2993
3098
  """Create a finetuned embedding model."""
2994
3099
  pass
2995
3100
 
3101
+ @overload
3102
+ async def POST(
3103
+ self,
3104
+ path: Literal["/gpu/finetuned_embedding_model/{name_or_id}/embedding"],
3105
+ *,
3106
+ params: PostGpuFinetunedEmbeddingModelByNameOrIdEmbeddingParams,
3107
+ json: EmbedRequest,
3108
+ data: None = None,
3109
+ files: None = None,
3110
+ content: None = None,
3111
+ parse_as: Literal["json"] = "json",
3112
+ headers: HeaderTypes | None = None,
3113
+ cookies: CookieTypes | None = None,
3114
+ auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3115
+ follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3116
+ timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3117
+ extensions: RequestExtensions | None = None,
3118
+ ) -> list[list[float]]:
3119
+ """Embed values using a finetuned embedding model."""
3120
+ pass
3121
+
3122
+ @overload
3123
+ async def POST(
3124
+ self,
3125
+ path: Literal["/gpu/pretrained_embedding_model/{model_name}/embedding"],
3126
+ *,
3127
+ params: PostGpuPretrainedEmbeddingModelByModelNameEmbeddingParams,
3128
+ json: EmbedRequest,
3129
+ data: None = None,
3130
+ files: None = None,
3131
+ content: None = None,
3132
+ parse_as: Literal["json"] = "json",
3133
+ headers: HeaderTypes | None = None,
3134
+ cookies: CookieTypes | None = None,
3135
+ auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3136
+ follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3137
+ timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3138
+ extensions: RequestExtensions | None = None,
3139
+ ) -> list[list[float]]:
3140
+ """Embed values using a pretrained embedding model."""
3141
+ pass
3142
+
2996
3143
  @overload
2997
3144
  async def POST(
2998
3145
  self,
@@ -3092,10 +3239,10 @@ class OrcaAsyncClient(AsyncClient):
3092
3239
  @overload
3093
3240
  async def POST(
3094
3241
  self,
3095
- path: Literal["/classification_model"],
3242
+ path: Literal["/datasource/{name_or_id}/rows"],
3096
3243
  *,
3097
- params: None = None,
3098
- json: CreateClassificationModelRequest,
3244
+ params: PostDatasourceByNameOrIdRowsParams,
3245
+ json: GetDatasourceRowsRequest,
3099
3246
  data: None = None,
3100
3247
  files: None = None,
3101
3248
  content: None = None,
@@ -3106,16 +3253,17 @@ class OrcaAsyncClient(AsyncClient):
3106
3253
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3107
3254
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3108
3255
  extensions: RequestExtensions | None = None,
3109
- ) -> ClassificationModelMetadata:
3256
+ ) -> list[dict[str, Any]]:
3257
+ """Get rows from a specific datasource with optional filtering."""
3110
3258
  pass
3111
3259
 
3112
3260
  @overload
3113
3261
  async def POST(
3114
3262
  self,
3115
- path: Literal["/classification_model/{model_name_or_id}/evaluation"],
3263
+ path: Literal["/datasource/{name_or_id}/rows/count"],
3116
3264
  *,
3117
- params: PostClassificationModelByModelNameOrIdEvaluationParams,
3118
- json: ClassificationEvaluationRequest,
3265
+ params: PostDatasourceByNameOrIdRowsCountParams,
3266
+ json: GetDatasourceRowCountRequest,
3119
3267
  data: None = None,
3120
3268
  files: None = None,
3121
3269
  content: None = None,
@@ -3126,16 +3274,17 @@ class OrcaAsyncClient(AsyncClient):
3126
3274
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3127
3275
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3128
3276
  extensions: RequestExtensions | None = None,
3129
- ) -> EvaluationResponse:
3277
+ ) -> int:
3278
+ """Get row count from a specific datasource with optional filtering."""
3130
3279
  pass
3131
3280
 
3132
3281
  @overload
3133
3282
  async def POST(
3134
3283
  self,
3135
- path: Literal["/regression_model"],
3284
+ path: Literal["/classification_model"],
3136
3285
  *,
3137
3286
  params: None = None,
3138
- json: CreateRegressionModelRequest,
3287
+ json: CreateClassificationModelRequest,
3139
3288
  data: None = None,
3140
3289
  files: None = None,
3141
3290
  content: None = None,
@@ -3146,16 +3295,16 @@ class OrcaAsyncClient(AsyncClient):
3146
3295
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3147
3296
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3148
3297
  extensions: RequestExtensions | None = None,
3149
- ) -> RegressionModelMetadata:
3298
+ ) -> ClassificationModelMetadata:
3150
3299
  pass
3151
3300
 
3152
3301
  @overload
3153
3302
  async def POST(
3154
3303
  self,
3155
- path: Literal["/regression_model/{model_name_or_id}/evaluation"],
3304
+ path: Literal["/regression_model"],
3156
3305
  *,
3157
- params: PostRegressionModelByModelNameOrIdEvaluationParams,
3158
- json: RegressionEvaluationRequest,
3306
+ params: None = None,
3307
+ json: CreateRegressionModelRequest,
3159
3308
  data: None = None,
3160
3309
  files: None = None,
3161
3310
  content: None = None,
@@ -3166,16 +3315,16 @@ class OrcaAsyncClient(AsyncClient):
3166
3315
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3167
3316
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3168
3317
  extensions: RequestExtensions | None = None,
3169
- ) -> EvaluationResponse:
3318
+ ) -> RegressionModelMetadata:
3170
3319
  pass
3171
3320
 
3172
3321
  @overload
3173
3322
  async def POST(
3174
3323
  self,
3175
- path: Literal["/telemetry/prediction"],
3324
+ path: Literal["/gpu/classification_model/{name_or_id}/prediction"],
3176
3325
  *,
3177
- params: None = None,
3178
- json: ListPredictionsRequest | None = None,
3326
+ params: PostGpuClassificationModelByNameOrIdPredictionParams,
3327
+ json: ClassificationPredictionRequest,
3179
3328
  data: None = None,
3180
3329
  files: None = None,
3181
3330
  content: None = None,
@@ -3186,17 +3335,16 @@ class OrcaAsyncClient(AsyncClient):
3186
3335
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3187
3336
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3188
3337
  extensions: RequestExtensions | None = None,
3189
- ) -> list[LabelPredictionWithMemoriesAndFeedback | ScorePredictionWithMemoriesAndFeedback]:
3190
- """List predictions with optional filtering and sorting."""
3338
+ ) -> list[BaseLabelPredictionResult]:
3191
3339
  pass
3192
3340
 
3193
3341
  @overload
3194
3342
  async def POST(
3195
3343
  self,
3196
- path: Literal["/telemetry/prediction/count"],
3344
+ path: Literal["/classification_model/{name_or_id}/prediction"],
3197
3345
  *,
3198
- params: None = None,
3199
- json: CountPredictionsRequest | None = None,
3346
+ params: PostClassificationModelByNameOrIdPredictionParams,
3347
+ json: ClassificationPredictionRequest,
3200
3348
  data: None = None,
3201
3349
  files: None = None,
3202
3350
  content: None = None,
@@ -3207,17 +3355,16 @@ class OrcaAsyncClient(AsyncClient):
3207
3355
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3208
3356
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3209
3357
  extensions: RequestExtensions | None = None,
3210
- ) -> int:
3211
- """Count predictions with optional filtering."""
3358
+ ) -> list[BaseLabelPredictionResult]:
3212
3359
  pass
3213
3360
 
3214
3361
  @overload
3215
3362
  async def POST(
3216
3363
  self,
3217
- path: Literal["/telemetry/memories"],
3364
+ path: Literal["/gpu/regression_model/{name_or_id}/prediction"],
3218
3365
  *,
3219
- params: None = None,
3220
- json: TelemetryMemoriesRequest,
3366
+ params: PostGpuRegressionModelByNameOrIdPredictionParams,
3367
+ json: RegressionPredictionRequest,
3221
3368
  data: None = None,
3222
3369
  files: None = None,
3223
3370
  content: None = None,
@@ -3228,21 +3375,16 @@ class OrcaAsyncClient(AsyncClient):
3228
3375
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3229
3376
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3230
3377
  extensions: RequestExtensions | None = None,
3231
- ) -> PaginatedUnionLabeledMemoryWithFeedbackMetricsScoredMemoryWithFeedbackMetrics:
3232
- """
3233
- List memories with feedback metrics.
3234
- **Note**: This endpoint will ONLY return memories that have been used in a prediction.
3235
- If you want to query ALL memories WITHOUT feedback metrics, use the query_memoryset endpoint.
3236
- """
3378
+ ) -> list[BaseScorePredictionResult]:
3237
3379
  pass
3238
3380
 
3239
3381
  @overload
3240
3382
  async def POST(
3241
3383
  self,
3242
- path: Literal["/agents/bootstrap_classification_model"],
3384
+ path: Literal["/regression_model/{name_or_id}/prediction"],
3243
3385
  *,
3244
- params: None = None,
3245
- json: BootstrapClassificationModelRequest,
3386
+ params: PostRegressionModelByNameOrIdPredictionParams,
3387
+ json: RegressionPredictionRequest,
3246
3388
  data: None = None,
3247
3389
  files: None = None,
3248
3390
  content: None = None,
@@ -3253,30 +3395,16 @@ class OrcaAsyncClient(AsyncClient):
3253
3395
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3254
3396
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3255
3397
  extensions: RequestExtensions | None = None,
3256
- ) -> BootstrapClassificationModelResponse:
3257
- """
3258
- Bootstrap a classification model by creating a memoryset with generated memories and a classification model.
3259
-
3260
- This endpoint uses the bootstrap_classification_model agent to generate:
3261
- 1. Memoryset configuration with appropriate settings
3262
- 2. Model configuration with optimal parameters
3263
- 3. High-quality training memories for each label
3264
-
3265
- The process involves:
3266
- 1. Calling the agent to generate configurations and memories
3267
- 2. Creating a datasource from the generated memories
3268
- 3. Creating a memoryset from the datasource
3269
- 4. Creating a classification model from the memoryset
3270
- """
3398
+ ) -> list[BaseScorePredictionResult]:
3271
3399
  pass
3272
3400
 
3273
3401
  @overload
3274
3402
  async def POST(
3275
3403
  self,
3276
- path: Literal["/gpu/memoryset/{name_or_id}/lookup"],
3404
+ path: Literal["/classification_model/{model_name_or_id}/evaluation"],
3277
3405
  *,
3278
- params: PostGpuMemorysetByNameOrIdLookupParams,
3279
- json: LookupRequest,
3406
+ params: PostClassificationModelByModelNameOrIdEvaluationParams,
3407
+ json: ClassificationEvaluationRequest,
3280
3408
  data: None = None,
3281
3409
  files: None = None,
3282
3410
  content: None = None,
@@ -3287,16 +3415,16 @@ class OrcaAsyncClient(AsyncClient):
3287
3415
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3288
3416
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3289
3417
  extensions: RequestExtensions | None = None,
3290
- ) -> list[list[LabeledMemoryLookup | ScoredMemoryLookup]]:
3418
+ ) -> EvaluationResponse:
3291
3419
  pass
3292
3420
 
3293
3421
  @overload
3294
3422
  async def POST(
3295
3423
  self,
3296
- path: Literal["/gpu/memoryset/{name_or_id}/memory"],
3424
+ path: Literal["/regression_model/{model_name_or_id}/evaluation"],
3297
3425
  *,
3298
- params: PostGpuMemorysetByNameOrIdMemoryParams,
3299
- json: PostGpuMemorysetByNameOrIdMemoryRequest,
3426
+ params: PostRegressionModelByModelNameOrIdEvaluationParams,
3427
+ json: RegressionEvaluationRequest,
3300
3428
  data: None = None,
3301
3429
  files: None = None,
3302
3430
  content: None = None,
@@ -3307,16 +3435,16 @@ class OrcaAsyncClient(AsyncClient):
3307
3435
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3308
3436
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3309
3437
  extensions: RequestExtensions | None = None,
3310
- ) -> list[str]:
3438
+ ) -> EvaluationResponse:
3311
3439
  pass
3312
3440
 
3313
3441
  @overload
3314
3442
  async def POST(
3315
3443
  self,
3316
- path: Literal["/gpu/classification_model/{name_or_id}/prediction"],
3444
+ path: Literal["/telemetry/prediction"],
3317
3445
  *,
3318
- params: PostGpuClassificationModelByNameOrIdPredictionParams,
3319
- json: ClassificationPredictionRequest,
3446
+ params: None = None,
3447
+ json: ListPredictionsRequest | None = None,
3320
3448
  data: None = None,
3321
3449
  files: None = None,
3322
3450
  content: None = None,
@@ -3327,16 +3455,17 @@ class OrcaAsyncClient(AsyncClient):
3327
3455
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3328
3456
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3329
3457
  extensions: RequestExtensions | None = None,
3330
- ) -> list[BaseLabelPredictionResult]:
3458
+ ) -> list[LabelPredictionWithMemoriesAndFeedback | ScorePredictionWithMemoriesAndFeedback]:
3459
+ """List predictions with optional filtering and sorting."""
3331
3460
  pass
3332
3461
 
3333
3462
  @overload
3334
3463
  async def POST(
3335
3464
  self,
3336
- path: Literal["/gpu/regression_model/{name_or_id}/prediction"],
3465
+ path: Literal["/telemetry/prediction/count"],
3337
3466
  *,
3338
- params: PostGpuRegressionModelByNameOrIdPredictionParams,
3339
- json: RegressionPredictionRequest,
3467
+ params: None = None,
3468
+ json: CountPredictionsRequest | None = None,
3340
3469
  data: None = None,
3341
3470
  files: None = None,
3342
3471
  content: None = None,
@@ -3347,16 +3476,17 @@ class OrcaAsyncClient(AsyncClient):
3347
3476
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3348
3477
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3349
3478
  extensions: RequestExtensions | None = None,
3350
- ) -> list[BaseScorePredictionResult]:
3479
+ ) -> int:
3480
+ """Count predictions with optional filtering."""
3351
3481
  pass
3352
3482
 
3353
3483
  @overload
3354
3484
  async def POST(
3355
3485
  self,
3356
- path: Literal["/gpu/finetuned_embedding_model/{name_or_id}/embedding"],
3486
+ path: Literal["/telemetry/memories"],
3357
3487
  *,
3358
- params: PostGpuFinetunedEmbeddingModelByNameOrIdEmbeddingParams,
3359
- json: EmbedRequest,
3488
+ params: None = None,
3489
+ json: TelemetryMemoriesRequest,
3360
3490
  data: None = None,
3361
3491
  files: None = None,
3362
3492
  content: None = None,
@@ -3367,17 +3497,21 @@ class OrcaAsyncClient(AsyncClient):
3367
3497
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3368
3498
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3369
3499
  extensions: RequestExtensions | None = None,
3370
- ) -> list[list[float]]:
3371
- """Embed values using a finetuned embedding model."""
3500
+ ) -> PaginatedUnionLabeledMemoryWithFeedbackMetricsScoredMemoryWithFeedbackMetrics:
3501
+ """
3502
+ List memories with feedback metrics.
3503
+ **Note**: This endpoint will ONLY return memories that have been used in a prediction.
3504
+ If you want to query ALL memories WITHOUT feedback metrics, use the query_memoryset endpoint.
3505
+ """
3372
3506
  pass
3373
3507
 
3374
3508
  @overload
3375
3509
  async def POST(
3376
3510
  self,
3377
- path: Literal["/gpu/pretrained_embedding_model/{model_name}/embedding"],
3511
+ path: Literal["/agents/bootstrap_classification_model"],
3378
3512
  *,
3379
- params: PostGpuPretrainedEmbeddingModelByModelNameEmbeddingParams,
3380
- json: EmbedRequest,
3513
+ params: None = None,
3514
+ json: BootstrapClassificationModelRequest,
3381
3515
  data: None = None,
3382
3516
  files: None = None,
3383
3517
  content: None = None,
@@ -3388,8 +3522,21 @@ class OrcaAsyncClient(AsyncClient):
3388
3522
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3389
3523
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3390
3524
  extensions: RequestExtensions | None = None,
3391
- ) -> list[list[float]]:
3392
- """Embed values using a pretrained embedding model."""
3525
+ ) -> BootstrapClassificationModelResponse:
3526
+ """
3527
+ Bootstrap a classification model by creating a memoryset with generated memories and a classification model.
3528
+
3529
+ This endpoint uses the bootstrap_classification_model agent to generate:
3530
+ 1. Memoryset configuration with appropriate settings
3531
+ 2. Model configuration with optimal parameters
3532
+ 3. High-quality training memories for each label
3533
+
3534
+ The process involves:
3535
+ 1. Calling the agent to generate configurations and memories
3536
+ 2. Creating a datasource from the generated memories
3537
+ 3. Creating a memoryset from the datasource
3538
+ 4. Creating a classification model from the memoryset
3539
+ """
3393
3540
  pass
3394
3541
 
3395
3542
  async def POST(
@@ -3535,10 +3682,10 @@ class OrcaAsyncClient(AsyncClient):
3535
3682
  @overload
3536
3683
  async def PATCH(
3537
3684
  self,
3538
- path: Literal["/classification_model/{name_or_id}"],
3685
+ path: Literal["/gpu/memoryset/{name_or_id}/memory"],
3539
3686
  *,
3540
- params: PatchClassificationModelByNameOrIdParams,
3541
- json: PredictiveModelUpdate,
3687
+ params: PatchGpuMemorysetByNameOrIdMemoryParams,
3688
+ json: PatchGpuMemorysetByNameOrIdMemoryRequest,
3542
3689
  data: None = None,
3543
3690
  files: None = None,
3544
3691
  content: None = None,
@@ -3549,16 +3696,16 @@ class OrcaAsyncClient(AsyncClient):
3549
3696
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3550
3697
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3551
3698
  extensions: RequestExtensions | None = None,
3552
- ) -> ClassificationModelMetadata:
3699
+ ) -> LabeledMemory | ScoredMemory:
3553
3700
  pass
3554
3701
 
3555
3702
  @overload
3556
3703
  async def PATCH(
3557
3704
  self,
3558
- path: Literal["/regression_model/{name_or_id}"],
3705
+ path: Literal["/gpu/memoryset/{name_or_id}/memories"],
3559
3706
  *,
3560
- params: PatchRegressionModelByNameOrIdParams,
3561
- json: PredictiveModelUpdate,
3707
+ params: PatchGpuMemorysetByNameOrIdMemoriesParams,
3708
+ json: PatchGpuMemorysetByNameOrIdMemoriesRequest,
3562
3709
  data: None = None,
3563
3710
  files: None = None,
3564
3711
  content: None = None,
@@ -3569,16 +3716,16 @@ class OrcaAsyncClient(AsyncClient):
3569
3716
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3570
3717
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3571
3718
  extensions: RequestExtensions | None = None,
3572
- ) -> RegressionModelMetadata:
3719
+ ) -> list[LabeledMemory] | list[ScoredMemory]:
3573
3720
  pass
3574
3721
 
3575
3722
  @overload
3576
3723
  async def PATCH(
3577
3724
  self,
3578
- path: Literal["/telemetry/prediction/{prediction_id}"],
3725
+ path: Literal["/classification_model/{name_or_id}"],
3579
3726
  *,
3580
- params: PatchTelemetryPredictionByPredictionIdParams,
3581
- json: UpdatePredictionRequest,
3727
+ params: PatchClassificationModelByNameOrIdParams,
3728
+ json: PredictiveModelUpdate,
3582
3729
  data: None = None,
3583
3730
  files: None = None,
3584
3731
  content: None = None,
@@ -3589,17 +3736,16 @@ class OrcaAsyncClient(AsyncClient):
3589
3736
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3590
3737
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3591
3738
  extensions: RequestExtensions | None = None,
3592
- ) -> Any:
3593
- """Update a prediction with new expected values, tags, or memory ID."""
3739
+ ) -> ClassificationModelMetadata:
3594
3740
  pass
3595
3741
 
3596
3742
  @overload
3597
3743
  async def PATCH(
3598
3744
  self,
3599
- path: Literal["/gpu/memoryset/{name_or_id}/memory"],
3745
+ path: Literal["/regression_model/{name_or_id}"],
3600
3746
  *,
3601
- params: PatchGpuMemorysetByNameOrIdMemoryParams,
3602
- json: PatchGpuMemorysetByNameOrIdMemoryRequest,
3747
+ params: PatchRegressionModelByNameOrIdParams,
3748
+ json: PredictiveModelUpdate,
3603
3749
  data: None = None,
3604
3750
  files: None = None,
3605
3751
  content: None = None,
@@ -3610,16 +3756,16 @@ class OrcaAsyncClient(AsyncClient):
3610
3756
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3611
3757
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3612
3758
  extensions: RequestExtensions | None = None,
3613
- ) -> LabeledMemory | ScoredMemory:
3759
+ ) -> RegressionModelMetadata:
3614
3760
  pass
3615
3761
 
3616
3762
  @overload
3617
3763
  async def PATCH(
3618
3764
  self,
3619
- path: Literal["/gpu/memoryset/{name_or_id}/memories"],
3765
+ path: Literal["/telemetry/prediction/{prediction_id}"],
3620
3766
  *,
3621
- params: PatchGpuMemorysetByNameOrIdMemoriesParams,
3622
- json: PatchGpuMemorysetByNameOrIdMemoriesRequest,
3767
+ params: PatchTelemetryPredictionByPredictionIdParams,
3768
+ json: UpdatePredictionRequest,
3623
3769
  data: None = None,
3624
3770
  files: None = None,
3625
3771
  content: None = None,
@@ -3630,7 +3776,8 @@ class OrcaAsyncClient(AsyncClient):
3630
3776
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3631
3777
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3632
3778
  extensions: RequestExtensions | None = None,
3633
- ) -> list[LabeledMemory] | list[ScoredMemory]:
3779
+ ) -> Any:
3780
+ """Update a prediction with new expected values, tags, or memory ID."""
3634
3781
  pass
3635
3782
 
3636
3783
  async def PATCH(