optimum-rbln 0.9.3__py3-none-any.whl → 0.9.3rc0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (80) hide show
  1. optimum/rbln/__init__.py +0 -12
  2. optimum/rbln/__version__.py +2 -2
  3. optimum/rbln/configuration_utils.py +2 -4
  4. optimum/rbln/diffusers/__init__.py +0 -12
  5. optimum/rbln/diffusers/configurations/__init__.py +0 -3
  6. optimum/rbln/diffusers/configurations/models/__init__.py +0 -2
  7. optimum/rbln/diffusers/configurations/pipelines/__init__.py +0 -3
  8. optimum/rbln/diffusers/models/__init__.py +3 -17
  9. optimum/rbln/diffusers/models/autoencoders/__init__.py +0 -1
  10. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +3 -3
  11. optimum/rbln/diffusers/models/autoencoders/vae.py +8 -27
  12. optimum/rbln/diffusers/models/controlnet.py +1 -16
  13. optimum/rbln/diffusers/models/transformers/prior_transformer.py +2 -16
  14. optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +1 -16
  15. optimum/rbln/diffusers/models/transformers/transformer_sd3.py +1 -14
  16. optimum/rbln/diffusers/models/unets/__init__.py +0 -1
  17. optimum/rbln/diffusers/models/unets/unet_2d_condition.py +1 -17
  18. optimum/rbln/diffusers/pipelines/__init__.py +0 -4
  19. optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +0 -20
  20. optimum/rbln/modeling.py +45 -20
  21. optimum/rbln/modeling_base.py +1 -0
  22. optimum/rbln/transformers/configuration_generic.py +27 -0
  23. optimum/rbln/transformers/modeling_attention_utils.py +109 -242
  24. optimum/rbln/transformers/modeling_generic.py +61 -2
  25. optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +2 -28
  26. optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +5 -68
  27. optimum/rbln/transformers/models/bart/modeling_bart.py +2 -23
  28. optimum/rbln/transformers/models/bert/modeling_bert.py +1 -86
  29. optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +15 -42
  30. optimum/rbln/transformers/models/clip/modeling_clip.py +2 -40
  31. optimum/rbln/transformers/models/colpali/modeling_colpali.py +44 -5
  32. optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +1 -6
  33. optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +2 -6
  34. optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +9 -17
  35. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +12 -36
  36. optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +0 -17
  37. optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +0 -24
  38. optimum/rbln/transformers/models/dpt/modeling_dpt.py +0 -17
  39. optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +5 -3
  40. optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +8 -24
  41. optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +5 -3
  42. optimum/rbln/transformers/models/llava/modeling_llava.py +24 -36
  43. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +4 -2
  44. optimum/rbln/transformers/models/opt/modeling_opt.py +2 -2
  45. optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +1 -1
  46. optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +1 -13
  47. optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +3 -2
  48. optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +3 -2
  49. optimum/rbln/transformers/models/resnet/configuration_resnet.py +0 -17
  50. optimum/rbln/transformers/models/resnet/modeling_resnet.py +0 -73
  51. optimum/rbln/transformers/models/roberta/modeling_roberta.py +0 -33
  52. optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +4 -2
  53. optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +10 -34
  54. optimum/rbln/transformers/models/siglip/modeling_siglip.py +1 -17
  55. optimum/rbln/transformers/models/swin/modeling_swin.py +1 -14
  56. optimum/rbln/transformers/models/t5/modeling_t5.py +2 -2
  57. optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +2 -16
  58. optimum/rbln/transformers/models/vit/modeling_vit.py +0 -19
  59. optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +3 -15
  60. optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +8 -60
  61. optimum/rbln/transformers/models/whisper/generation_whisper.py +14 -48
  62. optimum/rbln/transformers/models/whisper/modeling_whisper.py +2 -2
  63. optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +0 -43
  64. optimum/rbln/transformers/utils/rbln_quantization.py +0 -9
  65. optimum/rbln/utils/depreacate_utils.py +16 -0
  66. optimum/rbln/utils/hub.py +3 -14
  67. optimum/rbln/utils/runtime_utils.py +0 -32
  68. {optimum_rbln-0.9.3.dist-info → optimum_rbln-0.9.3rc0.dist-info}/METADATA +2 -2
  69. {optimum_rbln-0.9.3.dist-info → optimum_rbln-0.9.3rc0.dist-info}/RECORD +72 -79
  70. {optimum_rbln-0.9.3.dist-info → optimum_rbln-0.9.3rc0.dist-info}/WHEEL +1 -1
  71. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_temporal_decoder.py +0 -67
  72. optimum/rbln/diffusers/configurations/models/configuration_unet_spatio_temporal_condition.py +0 -59
  73. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_video_diffusion.py +0 -114
  74. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +0 -275
  75. optimum/rbln/diffusers/models/unets/unet_spatio_temporal_condition.py +0 -201
  76. optimum/rbln/diffusers/pipelines/stable_video_diffusion/__init__.py +0 -15
  77. optimum/rbln/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +0 -46
  78. optimum/rbln/utils/deprecation.py +0 -213
  79. {optimum_rbln-0.9.3.dist-info → optimum_rbln-0.9.3rc0.dist-info}/entry_points.txt +0 -0
  80. {optimum_rbln-0.9.3.dist-info → optimum_rbln-0.9.3rc0.dist-info}/licenses/LICENSE +0 -0
@@ -1,50 +1,45 @@
1
- optimum/rbln/__init__.py,sha256=fm83GUa8I5OV2JRWPl0RFZmW2M8X0XsOnU7B9Djvi4A,19548
2
- optimum/rbln/__version__.py,sha256=IVkGBvcxJApDB_GrSj1qL5BDxEvWBYmqcR3emEmrC0I,704
1
+ optimum/rbln/__init__.py,sha256=ns14slnkiDevAQCeOXQoejSnzfk3WNuie4cyYiMQZSc,18980
2
+ optimum/rbln/__version__.py,sha256=IipHVClT-aPE7DVvRCv5MOZoBhnjCG51vZDzOerpY8g,714
3
3
  optimum/rbln/cli.py,sha256=944P_f9btDyFryHfHzxUKQvwXWYD1hrceDuK6SWNQcQ,22832
4
- optimum/rbln/configuration_utils.py,sha256=D4nRs7uCl7wwPEznKOjjXKTig3Ifc6BqBynjieWOIvA,37376
5
- optimum/rbln/modeling.py,sha256=M9kEqbAqVZIeFxOF9dyfS8i7loJz3LV67zf1wzeVcxM,15218
6
- optimum/rbln/modeling_base.py,sha256=j2rV3FTRCp6gn4UaMGEetP70cZQ9GUs_iNF7OfPZB98,27588
7
- optimum/rbln/diffusers/__init__.py,sha256=dISoQ-mylK-n9DM0doqo3oeQFA2SWu9BZcbrcr4vO0I,7800
4
+ optimum/rbln/configuration_utils.py,sha256=uLjMsWyYz-4SQ2wbvYqDUZcau29EjU-AghF4q1LNGxw,37260
5
+ optimum/rbln/modeling.py,sha256=50BE-bpn-GMImXjQGrG5rqnhofg1DHs6jyS2CzprPBY,16247
6
+ optimum/rbln/modeling_base.py,sha256=blTZgayOh5U7zNhbrdyMuS1fq1-xd6N7y64I0lXDMU0,27589
7
+ optimum/rbln/diffusers/__init__.py,sha256=1tgU_xWA42BmInqu9bBz_5R_E9TGhhK3mI06YlaiTLg,7232
8
8
  optimum/rbln/diffusers/modeling_diffusers.py,sha256=iybCd2KaEL5RMzRduWkHvKm90iXDcbUXsoKVfiNYDcY,20411
9
- optimum/rbln/diffusers/configurations/__init__.py,sha256=8xhIEEa9HTbIg-9khGvxqr6kHPaMnnHZc-BNsEADO1o,1458
10
- optimum/rbln/diffusers/configurations/models/__init__.py,sha256=OKXAiciC80IaC1_8MXfZzlBtyvaDEmgelOZtN_H0Buk,766
9
+ optimum/rbln/diffusers/configurations/__init__.py,sha256=vMRnPY4s-Uju43xP038D2EA18X_mhy2YfsZVpSU-VoA,1322
10
+ optimum/rbln/diffusers/configurations/models/__init__.py,sha256=7q95gtgDzCeIBogGw8SLQoHT4Wch7vpLJVF2UQovuoo,567
11
11
  optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py,sha256=dV4DPjRB7CkSqgVUuOQztkH8qJQJlCKK18-X5nOCLzQ,3199
12
12
  optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py,sha256=H22tv7-Ii14L16186O3t8QAYpCaJtH7eQMOFZpLOkO4,4170
13
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_temporal_decoder.py,sha256=bOMKmRzjJmDUcDOk8njjtrJQ4oPU7TioXVjnS5uy7ec,3044
14
13
  optimum/rbln/diffusers/configurations/models/configuration_controlnet.py,sha256=kOVc2RXn_UAKpIU2PlAn2mfWU9HWAdnKJeWlsgYhcm8,2618
15
14
  optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py,sha256=8pHpZZ-v9T2qfOI9IKHCICMPX5vXlBNyTyq93o_21nk,2199
16
15
  optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py,sha256=se9WK6zcUAfSq7J9pD5wEvfQmME30gkuAmWB-O24w9U,3351
17
16
  optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py,sha256=lvatuE-alYci7vPHmWlaBMgpB3F6Keju53U5Pf5dZ1Q,2570
18
17
  optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py,sha256=11kOnB-o5MjCJHDQvEhGxXpBNZLC1r3HU3-wiZ_3bL0,3611
19
- optimum/rbln/diffusers/configurations/models/configuration_unet_spatio_temporal_condition.py,sha256=1Cd9462t1TP5MvJa-3k2t6StsJM77BKNM4IZNG0A0ZE,2340
20
18
  optimum/rbln/diffusers/configurations/models/configuration_vq_model.py,sha256=GbJKrTOUdvpcGQ786IIKF0rqkRrvZh_E5n3o9bLN8uY,3240
21
- optimum/rbln/diffusers/configurations/pipelines/__init__.py,sha256=ilaMX8pNEjdgZGQ6Z7k5wn33bvq1fbv_mFS_b7prRFg,1366
19
+ optimum/rbln/diffusers/configurations/pipelines/__init__.py,sha256=RfJXQiYvgGc3Rp7JYk5s0AQd0XB5JCAb37_riGWQAYg,1268
22
20
  optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py,sha256=ALwMwJret_KQKXld-Y-ZRJh_Wp4qza1xZsbOEUJutg0,14525
23
21
  optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py,sha256=niblhj4brobRCHF0NoVfdIhChUsup2O9IvFddnopIUc,4701
24
22
  optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py,sha256=_lNqy0OFA4sIsn3tOvYwR6X_-y3JTN67ePTWBkt2pFc,16598
25
23
  optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py,sha256=NnisLdUkW3QQfzn8ZtWUbBwXZF6JF3vj9UI0MthH0EM,6625
26
24
  optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py,sha256=vDb7vqH2XycB86L5JH-ofXfdngU2BseJvVw7YXrzmgg,8039
27
25
  optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py,sha256=qX6-HvOt8SBstEeigWWcor-z2bmyoqAucjRirNfma5o,7161
28
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_video_diffusion.py,sha256=k5OZtqsmEd6Ruaw2AMU_M674LziR3bsOZFVEIE0RUO0,5156
29
- optimum/rbln/diffusers/models/__init__.py,sha256=lTwyUgCSKCm6xksQFDOsyWAfqwbWYMum3BVlh31eADk,1804
30
- optimum/rbln/diffusers/models/controlnet.py,sha256=yCVIzkC6Wi4lcyVeEudw0vRrmpj2NwqHnlVYY9JHquo,11510
31
- optimum/rbln/diffusers/models/autoencoders/__init__.py,sha256=sFfYxz0Iwg-xL2jrVkwMk7umiWcsbrtejzjpUZFI1VA,816
26
+ optimum/rbln/diffusers/models/__init__.py,sha256=4xHGuJ0HmZXBt6Xc8rVmGKvvQ366yxJarV5Vg_4-cso,1541
27
+ optimum/rbln/diffusers/models/controlnet.py,sha256=6owledPe9BXhbZOG8lbuuYvpBU0UrQV7zmat6SoMXOM,10585
28
+ optimum/rbln/diffusers/models/autoencoders/__init__.py,sha256=kpINW4bWwy-Q2doPME4nZ8gXRmkK2DRv2kDdbZuQ3m8,738
32
29
  optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py,sha256=TDwSgO3L6L38JdH-FaxWc77aDkilr8WLL1YjjWMHz-M,9496
33
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py,sha256=WD3hUlZMJSEpeLx_hmrFQmR2Ye6TtCo3Olz4pxB5rsg,9538
34
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py,sha256=dSAGyuIs09cZ9ooJHY7j0UFO15n4h3Ozw6OYWJhC27A,10452
35
- optimum/rbln/diffusers/models/autoencoders/vae.py,sha256=t6HHU2Cz2puwkOfk7fSVAxt5Wre7b6nZu-_Fo93Sexw,6086
30
+ optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py,sha256=49jn_BRqWhqfgWrdrLdmIVyU98adsBJ4vh4Bi5-EQy4,9535
31
+ optimum/rbln/diffusers/models/autoencoders/vae.py,sha256=ZX6XH9eZxexSSN8sSKFDcvEK9mMuEQNyoalSpOOqQrE,5419
36
32
  optimum/rbln/diffusers/models/autoencoders/vq_model.py,sha256=bIvrtCjFFS5iYXEcQaQBB52VWS0OHAzJTfUOnD_V5aQ,7706
37
33
  optimum/rbln/diffusers/models/transformers/__init__.py,sha256=3oTqAOok-dUR2KealC41CKt36dpKq3IT4kabmHkrCpg,767
38
- optimum/rbln/diffusers/models/transformers/prior_transformer.py,sha256=VmivAoI84_f20btFeCKT_gZQVfVc6OKHUKXiZbjAoJk,6292
39
- optimum/rbln/diffusers/models/transformers/transformer_cosmos.py,sha256=s5t2CWhpjEXTYvIbaaulCXk_atNcuPjnwMmw7rbZ6U0,14011
40
- optimum/rbln/diffusers/models/transformers/transformer_sd3.py,sha256=ICq5MxgN9IOcPF5pUBy-PUiziDE_AcDP1Qc6EgXs8Pk,7797
41
- optimum/rbln/diffusers/models/unets/__init__.py,sha256=k_c6RfSc_Yln9gINfKxl0coiHfAO_2-zpaLMrQCJr2w,736
42
- optimum/rbln/diffusers/models/unets/unet_2d_condition.py,sha256=bXlGKIeUKELxAbbIyFOksN4zgGmFRKKwUW_X2F_VckY,17212
43
- optimum/rbln/diffusers/models/unets/unet_spatio_temporal_condition.py,sha256=vSGk2wR6Xg8aDCaeVOb2E2SB_XCL9jUe1XDwuBPdKRA,7771
44
- optimum/rbln/diffusers/pipelines/__init__.py,sha256=B8nRikvGrOSbaNFrp0is2GE4R9xVkhkvl8bxAUILsI4,3859
34
+ optimum/rbln/diffusers/models/transformers/prior_transformer.py,sha256=7gShs_zAZK8cZiUohV0g94m5gIvd2151rfkVR6k0VOw,5394
35
+ optimum/rbln/diffusers/models/transformers/transformer_cosmos.py,sha256=Qs11mJm0k-Oo799-Yjek0n_IgQYXGnHpkzpwzxTBWzc,13119
36
+ optimum/rbln/diffusers/models/transformers/transformer_sd3.py,sha256=Wnx_auZh-OzY0gsIdWH96LJDOvDDSyuLibuL-jISEWo,7017
37
+ optimum/rbln/diffusers/models/unets/__init__.py,sha256=MaICuK9CWjgzejXy8y2NDrphuEq1rkzanF8u45k6O5I,655
38
+ optimum/rbln/diffusers/models/unets/unet_2d_condition.py,sha256=CykX_8Y7JaT3QIwRSDa9_ECtQENcMtsNRiBEB3lQEoU,16023
39
+ optimum/rbln/diffusers/pipelines/__init__.py,sha256=r8mu21102cKXdkG1II9tpfpUS6wuyren2oK9y_MptZY,3703
45
40
  optimum/rbln/diffusers/pipelines/auto_pipeline.py,sha256=H53RVmhNPM6tEd7URxZ1PZfQkiB2c84AiUA2jqzwIyQ,12454
46
41
  optimum/rbln/diffusers/pipelines/controlnet/__init__.py,sha256=n1Ef22TSeax-kENi_d8K6wGGHSNEo9QkUeygELHgcao,983
47
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py,sha256=-6SFcfYr8FJD1y11_OOntWCNSqBpOgPkst0Ys6oIvXU,5295
42
+ optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py,sha256=3S9dogIHW8Bqg5kIlCudhCQG-4g3FcdOPEWhBOf7CJA,4059
48
43
  optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py,sha256=G96bh4D9Cu-w4F9gZBQF6wNzhJQv9kvI34ZFsuEDjSw,35714
49
44
  optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py,sha256=deGtaqgNumcvCKzKoHZrS-3UZxxWBP0ESizdfvCJlBE,34186
50
45
  optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py,sha256=2w6dmGQuBWqVoocn27z2yMkG7fL7_MVDBcQNJPJsRXU,45300
@@ -72,8 +67,6 @@ optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py,sha256=9iIMZYvp
72
67
  optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py,sha256=0ymBsxu6nBCUUv9dye-Vvd_hzvfmqrGZFFMMpUTsBd4,1375
73
68
  optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py,sha256=fAYd9blytd9o3PmTEM4wo_XVtgB7xojCJBiK4QI8GJU,1408
74
69
  optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py,sha256=XUchrMMrm70KKOheSUM6mmzoGWtTyCKd9vkAcd5kvEo,1407
75
- optimum/rbln/diffusers/pipelines/stable_video_diffusion/__init__.py,sha256=8Mqu_saC_Wp67Zx5UKq90eeKv8tzv8bIm5z9lUdoa3o,677
76
- optimum/rbln/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py,sha256=ApXTZZB_tzOBBCY97xHc6tg60-eY3zWXCtEWd3Ou3i4,1864
77
70
  optimum/rbln/ops/__init__.py,sha256=SPepB2VbmvEgathWAs_oCbDOPVyBhPey3wZX2X6dIBM,738
78
71
  optimum/rbln/ops/attn.py,sha256=DnTbq8LQvsZitpWcSsAWTHgK7cohUJkJAJ509PB6bnw,12745
79
72
  optimum/rbln/ops/flash_attn.py,sha256=yTCdYQVqm_1rHMHWjrMQaIR8WTuG_xA6t033x1IVvTg,7866
@@ -81,57 +74,57 @@ optimum/rbln/ops/kv_cache_update.py,sha256=aIvK2Sp7M3EfJzJgNvIvAJv4emoN6QOhmgaWj
81
74
  optimum/rbln/ops/linear.py,sha256=5K3pcrrUHu_p8LrMIU-jX2TnafksveFjjZSCsYSp_yw,1328
82
75
  optimum/rbln/ops/sliding_window_attn.py,sha256=EQrV_yRGc5z6kvwEsAcLP028bJWkQg2UPI3xubt9skU,3487
83
76
  optimum/rbln/transformers/__init__.py,sha256=orLCZJRJYcxVGpzBvgOUWFwqsxFXyvYf31LZmTs8T7g,12725
84
- optimum/rbln/transformers/configuration_generic.py,sha256=5_KWSqcpsEoAHXhMzEpLV62m-0DlWqCY_zwgi9kzjIs,4161
85
- optimum/rbln/transformers/modeling_attention_utils.py,sha256=pXBG2lfxJwYXwn7yZyV7vC1YtxFAdbDbK7Ijs5PgoMM,16876
86
- optimum/rbln/transformers/modeling_generic.py,sha256=Z_1m5d_hsmQC2qnNkargjMIqlIm3FzBFTNUKqdYdaOc,11499
77
+ optimum/rbln/transformers/configuration_generic.py,sha256=rM4XY1a_UlRf3ZCZkCav59JKRuvqiEEUUgnqNlgdcv8,5207
78
+ optimum/rbln/transformers/modeling_attention_utils.py,sha256=aLyOaq4me1m-JMmnKbuyNQageDxNU2jjEhGE_ew2P5o,11465
79
+ optimum/rbln/transformers/modeling_generic.py,sha256=tBbn0rPiJjmyjVXZUY-bIEgfKThFLgTOCRIE-E7R_vM,14214
87
80
  optimum/rbln/transformers/modeling_outputs.py,sha256=cd8ZlhHAGq7S6i5-QK6TJCxgORvoPMnZpqPBlUc_pMY,1177
88
81
  optimum/rbln/transformers/modeling_rope_utils.py,sha256=6Zg3r-TeUk4WQAlr95pqfhuoAD_RQ4njT1rbO9uPL0Q,14379
89
82
  optimum/rbln/transformers/models/__init__.py,sha256=NEDsbJgzO-0pM_B0zniHPnDxYrRIh_pBMnFefkzP5JA,13718
90
83
  optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py,sha256=I2vL4lrzbT5p4eJcH-EKHzEfcPkj_XVsie7jb9q6yic,775
91
- optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py,sha256=biFBo1twaWScF2CmNYoF_PW-RvJBUfVgBVpdfI_igBY,1741
92
- optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py,sha256=Kzya5XlU15FkEQlWj1HYXBAGrJleEyF9wiTSiHXSIqo,4124
84
+ optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py,sha256=z7LJiVJPmnlCM3mcyhPJP8AufSrxO_dsPeJ51onq-Nc,833
85
+ optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py,sha256=FIKEVWpIt6-JQX9B_rAfCrAPqdUHtR2i8D_X2k7639E,1498
93
86
  optimum/rbln/transformers/models/auto/__init__.py,sha256=tdYqXkg9xBGNr4fZjH7_O3qRVbHvpEVjrJ6wtNUMMJM,1150
94
87
  optimum/rbln/transformers/models/auto/auto_factory.py,sha256=0hILUi8mdQRRUzA1vltyErSDjI5nuZfBqnE6784mI5E,11771
95
88
  optimum/rbln/transformers/models/auto/modeling_auto.py,sha256=Iu5vl60CHX1XNbn445woZhSUkNSf0qHPW0DzbcAnDYE,5797
96
89
  optimum/rbln/transformers/models/bart/__init__.py,sha256=fVo-gZEmJ0yxkIxEX6ciuRAGgXNyuvaXE2s88bhbjAE,830
97
90
  optimum/rbln/transformers/models/bart/bart_architecture.py,sha256=mAepjL0paPMK180vGTTCxXQ-hVZ1DD6JR-GvVNGJLqY,6268
98
91
  optimum/rbln/transformers/models/bart/configuration_bart.py,sha256=PrRA7OwPTegPamd_mmVnwNygRbNG7pZrsrXdKyfZ6Bo,1351
99
- optimum/rbln/transformers/models/bart/modeling_bart.py,sha256=FCSZFmq0bhPHkne-1tmsxiQH3E427VfkWtLU9Nct3a0,3276
92
+ optimum/rbln/transformers/models/bart/modeling_bart.py,sha256=H4MmQZbofb9kJq5WKqoFVjmj3HVtgns3t2F3QdSU-QQ,2337
100
93
  optimum/rbln/transformers/models/bert/__init__.py,sha256=86FuGRBLw315_Roa9D5OUx6Ku2PM0DqSPZ-YSqbF-io,806
101
94
  optimum/rbln/transformers/models/bert/bert_architecture.py,sha256=cZgf-B-FV8qbeJdz2Oa-cHu7crrpwBhr081cEalC-h4,473
102
95
  optimum/rbln/transformers/models/bert/configuration_bert.py,sha256=nEZnX6LXpLKWaoPEd4pWSysw9h-PLb2ld0ibC3dcJ7w,1611
103
- optimum/rbln/transformers/models/bert/modeling_bert.py,sha256=jVMouqvwqUEKSMcwefPmxopVjGAN-9LodN2THtaWzEg,6435
96
+ optimum/rbln/transformers/models/bert/modeling_bert.py,sha256=7MQZS11k4__oyeni5ek2SzRf-gtD3_hMKl_oOzN7_XQ,2263
104
97
  optimum/rbln/transformers/models/blip_2/__init__.py,sha256=L01gPXcUCa8Vg-bcng20vZvBIN_jlqCzwUSFuq0QOag,855
105
98
  optimum/rbln/transformers/models/blip_2/configuration_blip_2.py,sha256=8eSilBwcPWQhBg-oilCmDPo-DN6V5lpLMlTB7WPknII,4630
106
- optimum/rbln/transformers/models/blip_2/modeling_blip_2.py,sha256=6bzey09pdbrHK2j3eKCk35DLacgvJIqcPFauZwehPSw,21637
99
+ optimum/rbln/transformers/models/blip_2/modeling_blip_2.py,sha256=MUDwSboH8gdIaJxbPUJsBPuhQf8ViNbVAViU2DASm1g,19308
107
100
  optimum/rbln/transformers/models/clip/__init__.py,sha256=TLeXDqcFK6M6v9x7Xr64kBbqGu3hFHM7p754dQ8UVQc,938
108
101
  optimum/rbln/transformers/models/clip/configuration_clip.py,sha256=Ea8TCVmMayydfw9p4kTP3UdtvoaPWf4Z4claB61JuE4,4175
109
- optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=CeHl52UVr2UVKUeWTyT8OcRWXsZzrLnQpjzK_neu304,14835
102
+ optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=BLAYJAtv_2ZnKOlZ8iDBr2Su3bKM_eMWeUSK9MOaj7I,13198
110
103
  optimum/rbln/transformers/models/colpali/__init__.py,sha256=n3rueXT_oC0N8myoZiic0YkVK24CW5hZBPa-0L8so6Y,119
111
104
  optimum/rbln/transformers/models/colpali/colpali_architecture.py,sha256=TCOW3v5l9fIt1uIFtWa8ZAxq1cdCER8gXWjmbLQD20M,8079
112
105
  optimum/rbln/transformers/models/colpali/configuration_colpali.py,sha256=qjaUC7S9kCZBWL9LsXnEo0woxsksPSHJpqA3TRTx6KE,3408
113
- optimum/rbln/transformers/models/colpali/modeling_colpali.py,sha256=7BCWP6cauK1DBDYuNTb1oQbBsuOeGNoBKd8eJIMrl0s,15857
106
+ optimum/rbln/transformers/models/colpali/modeling_colpali.py,sha256=2lHxvtrK3x2GOv7r-5nZelmjezm3ehe6Qf28cMdNmoQ,17961
114
107
  optimum/rbln/transformers/models/colqwen2/__init__.py,sha256=gEKc5X4uGME4XKySDD1H6JlT89jaMvZ00HqbDVXNHU8,123
115
108
  optimum/rbln/transformers/models/colqwen2/colqwen2_architecture.py,sha256=spIH6d-09asUBSqhuJN9NAK2Ke7Kv1RP7HdwMOcxf_s,8732
116
109
  optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py,sha256=_HYOLR2O8xjEJvXn7LRU_BSxdysMXmJ7oEhCLhaG2z0,2649
117
110
  optimum/rbln/transformers/models/colqwen2/modeling_colqwen2.py,sha256=Iy5wa3Aa-Vfjv4FTyDvL-KtyGAB9nBuGCPXz_Alv_l0,18598
118
111
  optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=pKBXAtE3y_6nnwYfQJjdPmWqUwxuJ0lr8rrqkgyH07M,1126
119
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py,sha256=nf4F8DdPvpNTW5oNEJPLxGNIyyllcyf4Fy7q5y40gjw,17094
112
+ optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py,sha256=GX-IwTe6ywM9hmyquIu66y0YgIVZS5JNIz8LKAb4Ow8,17003
120
113
  optimum/rbln/transformers/models/decoderonly/configuration_lora.py,sha256=5DuTs2vy7jF7MLy161QD_KvCTaNW-5Mok7hBH0yK44U,17356
121
114
  optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=h1n9vSHgQc7D0ds1C9SAzWxmIdTaqnDL7auDU_VJNXg,46813
122
- optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py,sha256=Cy-DS-Fkm5xJMWVe7Mz7TRhPWAEf8ai4Vxe4i-quBvg,22449
123
- optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py,sha256=_Rp1vtGow4quWHnIKpHtZFGMxrLjIN-FCc6gz0XL1Sc,5539
115
+ optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py,sha256=YtDsz45AhbcAKC79Aq0STmZu0uk66vzMILCj5bheVdI,22287
116
+ optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py,sha256=zabSgQd2VzHhkpbhUFW5Z-CjYB1JvSJOb5yXKjXCQV0,4326
124
117
  optimum/rbln/transformers/models/decoderonly/lora_architecture.py,sha256=jo-jYy95JhdvOsX1UTCXeYTNer37wBbtY578C0QQpZo,8306
125
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=1PnbsIesG-aTAQ6UxR4z3c81hZtdDO1TiNpHGNdeCb4,36413
118
+ optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=y10lDa6RmUpJirFdsmV8dolUXv2xffsXNx5sBfQSO9c,35298
126
119
  optimum/rbln/transformers/models/depth_anything/__init__.py,sha256=xvPSIriMJWyNeVYoVB1Z7YqB4kkHOIkaHq7loNps-dk,756
127
120
  optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py,sha256=JujBVEUa_zZDXNPr1y-B_PhK5SgFFcY8Ib4EoGjjtmE,989
128
- optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py,sha256=RxscJiKp7PDmbQTDUy2R_Ryxf_0YZ0TieRS5bg53dyQ,1698
121
+ optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py,sha256=tTmsVaW9Wb2WD3nKRLwp7swn3hbMvgwUEJwwVIfNYEc,1008
129
122
  optimum/rbln/transformers/models/distilbert/__init__.py,sha256=zXL78SOEORTnUN_wrdoaDaYpntG8lcFHvPobM6jC0CI,841
130
123
  optimum/rbln/transformers/models/distilbert/configuration_distilbert.py,sha256=O3BW9JjyYk9PLyiofvOKEgTdMZ_jpIuPfot281pSsyg,984
131
- optimum/rbln/transformers/models/distilbert/modeling_distilbert.py,sha256=wvMDMj0bTs9j-ZYi2hjGWNj65hEGai2pb6uWJZGEQ5A,2093
124
+ optimum/rbln/transformers/models/distilbert/modeling_distilbert.py,sha256=LUh6zYGa8AR3Yxaj3gtyJRc-czBN3qnHTc-JTAhuqY0,1099
132
125
  optimum/rbln/transformers/models/dpt/__init__.py,sha256=Nzep9mlzKyL1kV726IBqY8DnLp1DkH9JzFeknWSRhok,714
133
126
  optimum/rbln/transformers/models/dpt/configuration_dpt.py,sha256=3Bb_K0sKI6TKeoHjikxUgT1tqbXhdBvVsk9bPVEID1g,984
134
- optimum/rbln/transformers/models/dpt/modeling_dpt.py,sha256=2XnXwCTeJ7Vj28yK7kvqWxrViqikteX-7l-Ys7ubJpY,1649
127
+ optimum/rbln/transformers/models/dpt/modeling_dpt.py,sha256=uIwdHAhGgSyj_ljwJsRv6i5nUr9lTzB2Ss0iz0HplfY,978
135
128
  optimum/rbln/transformers/models/exaone/__init__.py,sha256=eUL0mq3yGVzCQfjLlOtVF2MecIN3DQWm07EmXubGSTs,921
136
129
  optimum/rbln/transformers/models/exaone/configuration_exaone.py,sha256=S4s4kJemPbmn-otYv-XNHE40DJaEYY6cmzaWV6MTGsY,1388
137
130
  optimum/rbln/transformers/models/exaone/exaone_architecture.py,sha256=lY4FwH2EZn_OY6sBIHlwxbfaEOEJ1eueUQJGB6Js62M,2306
@@ -144,7 +137,7 @@ optimum/rbln/transformers/models/gemma3/__init__.py,sha256=6rugk3615SEt4lh7gduo_
144
137
  optimum/rbln/transformers/models/gemma3/configuration_gemma3.py,sha256=NJJfarzbWJc3pm0XvICN7D0FFF9nqidagIEoOvYLixQ,4696
145
138
  optimum/rbln/transformers/models/gemma3/gemma3_architecture.py,sha256=TkGt2g313hXbB8vPFz8-oDBEsuR3HJI6LjSFgqec_Sc,6533
146
139
  optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py,sha256=ZhWgecT4v4Ewd1hmrlJH47QUZuQweVB1qAaK-Qw24-Q,11127
147
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=5F5-5V7rGbiwnaRbftTMx_2iBv2dhMxHMVHmU9Y8uLI,25830
140
+ optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=Yx1rUxTgGvaCsNldggL3rFc2zxsndDKkQovjCmmNf28,25868
148
141
  optimum/rbln/transformers/models/gpt2/__init__.py,sha256=SsawHMStE3wYRtqkH5EvdTFkCdX0LLmp-QSKFhEBrHo,740
149
142
  optimum/rbln/transformers/models/gpt2/configuration_gpt2.py,sha256=iGdHfzG7plekZcIz-Z5U8lRE4SB8gbJJNcFQJ9l8Myg,1533
150
143
  optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=ul87zvaLkqsuNJirvl6QtGXM147taNEbnb9qPulR1Ps,2933
@@ -152,20 +145,20 @@ optimum/rbln/transformers/models/gpt2/modeling_gpt2.py,sha256=DhF6hU3oCYGbZ7UijK
152
145
  optimum/rbln/transformers/models/grounding_dino/__init__.py,sha256=DE7DipZGvrKC6b1T77k4I4X3G70ss8mlr-PrZCaohto,307
153
146
  optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py,sha256=s-5MjEEle0zDBhskeYZQiPbbNsFvpTNcqcz21-kl6Gk,3820
154
147
  optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py,sha256=2BGhyKa7x6fiiZPaLy_S7zKr2NOdJnMLFMf6CEcegGE,26674
155
- optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py,sha256=wDfSd8Snh02gRbD8t053WDVOQQ8F7eh6cwkeNbsVLYk,48479
148
+ optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py,sha256=bXAOs2QH4sy2UFoFLUSM6u1_VHouUT5COERLQX20F6Y,46897
156
149
  optimum/rbln/transformers/models/idefics3/__init__.py,sha256=ulxE7HEfXsNJhd25J9Fvi6vggo9aZH9sLKJjWB6LlzQ,814
157
150
  optimum/rbln/transformers/models/idefics3/configuration_idefics3.py,sha256=7IENNxflZL8ZH3YRqtCXfYdKs-RdUeGiPzq-C03te_s,3679
158
- optimum/rbln/transformers/models/idefics3/modeling_idefics3.py,sha256=s5bbK3qYpE85-x69yopVhqia6b53Ys4kWzABhE3Jm6U,19880
151
+ optimum/rbln/transformers/models/idefics3/modeling_idefics3.py,sha256=LEFJu9JsoiS3ZJoG2J3QkwDAyTa75xJQmMtvpomYwsw,19918
159
152
  optimum/rbln/transformers/models/llama/__init__.py,sha256=6tgx9-qlM5r9ouoeZEouVRNLs3r6Sku-cuXNkyfeFHc,746
160
153
  optimum/rbln/transformers/models/llama/configuration_llama.py,sha256=_uxfH5kaGbeJTMJfESYn0Vg3OEkINS2ShGtVQTeOcs4,1578
161
154
  optimum/rbln/transformers/models/llama/llama_architecture.py,sha256=S7MCPfyjG5eUqgaS-QNBB0ApUD6wnb5fR0RHq7k7-pA,728
162
155
  optimum/rbln/transformers/models/llama/modeling_llama.py,sha256=uRxEXYhHOuEwPjBo_Ps3eFU1uwScasla6P8HwsQgAu0,4214
163
156
  optimum/rbln/transformers/models/llava/__init__.py,sha256=FaVLgBIqKGjT_nvwYO9k9BVqrzH_Ym3DfjGRCSUhG2s,734
164
157
  optimum/rbln/transformers/models/llava/configuration_llava.py,sha256=c1rie8LCypxlsT7SNjZJE07_xCLAasV4EBs97o1757Q,2998
165
- optimum/rbln/transformers/models/llava/modeling_llava.py,sha256=SC3fvgDi1WbSvjjj6uG-qUEsqZ1c9wAAxXb7TJhG4tw,21070
158
+ optimum/rbln/transformers/models/llava/modeling_llava.py,sha256=MaszTboXRr-PTWZKxhbw5w5rBZ95ES2_fHEW280T2LU,20351
166
159
  optimum/rbln/transformers/models/llava_next/__init__.py,sha256=kDXKr7wMkp1XqE__DER2B8kQF_NYMxhzsQS5ytGg56I,752
167
160
  optimum/rbln/transformers/models/llava_next/configuration_llava_next.py,sha256=Sz8L8p_23T7xw7pkUmW5pyK_wZclph1p_kQYbslc8m8,2708
168
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py,sha256=83ajLLuF64QJpnTLyUzGxBDm7wAQIjFr92y_zraFlSg,21303
161
+ optimum/rbln/transformers/models/llava_next/modeling_llava_next.py,sha256=0aooyMG7ElVIa52MB0ysVKqB4Pdxyl4tbeD1QdehiZk,21342
169
162
  optimum/rbln/transformers/models/midm/__init__.py,sha256=IC3FETwgYinbp3wDj7tp4zIHJhbqM-c6GfTRdYcMNj8,913
170
163
  optimum/rbln/transformers/models/midm/configuration_midm.py,sha256=DxhcSJlApxfi00XxYmSkKZ6bY9vfLXT0zh-oMKkZot0,1365
171
164
  optimum/rbln/transformers/models/midm/midm_architecture.py,sha256=f9IwLLyYErliWJhkRj880QByMEYs_XVwm2Yh6r-Y_ik,5186
@@ -176,11 +169,11 @@ optimum/rbln/transformers/models/mistral/mistral_architecture.py,sha256=gpQTcP83
176
169
  optimum/rbln/transformers/models/mistral/modeling_mistral.py,sha256=gvU6W0uiH7ef3rcHat7wROTw2Dm5zO_uItgjrjwmyUU,4391
177
170
  optimum/rbln/transformers/models/opt/__init__.py,sha256=mkSmAUr_ezMtlMK77f48T0THTFddf0HThH1lp6y5Pfw,734
178
171
  optimum/rbln/transformers/models/opt/configuration_opt.py,sha256=aP7cyEuBF4DrQxVERPdP3fXYkuqIUcGxEK2fc8ezh7I,1135
179
- optimum/rbln/transformers/models/opt/modeling_opt.py,sha256=4KZlCnKwDIOMbltPxvO7FX-lIRmI2auC-NVTWqkIPmc,4002
172
+ optimum/rbln/transformers/models/opt/modeling_opt.py,sha256=zIN_w7qJiGv03Na4qH7MkFjVtH8PO6ael-BwuJMJKp0,4000
180
173
  optimum/rbln/transformers/models/opt/opt_architecture.py,sha256=L6p9Z6wkwlyq32SeYW66n-mkQECBkQyCRiDR4CXyk88,2273
181
174
  optimum/rbln/transformers/models/pegasus/__init__.py,sha256=hXKIvrY0OMe7o2qiOFdolim7yyMuVQrUma_C39YsTqM,848
182
175
  optimum/rbln/transformers/models/pegasus/configuration_pegasus.py,sha256=FufYVCN_MrMH24RRCh6MJWlS2e380tG13Oua-dyginY,1478
183
- optimum/rbln/transformers/models/pegasus/modeling_pegasus.py,sha256=L8xvVwecRqXiF7xoj-1WgSgLBSCSllw1YRdgZhg6kp0,2571
176
+ optimum/rbln/transformers/models/pegasus/modeling_pegasus.py,sha256=D9w07Lne5xC9TCPDXANEiP0aQFNIZv80JVrYFQ72C1s,2570
184
177
  optimum/rbln/transformers/models/pegasus/pegasus_architecture.py,sha256=Hk4N7LDAFaYOZYllj04Ty2Mi0e9gY27rEsXHMMYz1hk,6250
185
178
  optimum/rbln/transformers/models/phi/__init__.py,sha256=M5Sh4AtIhJYegl-yAKPggAU3DtJtQOa8MrIQypZ6N7U,734
186
179
  optimum/rbln/transformers/models/phi/configuration_phi.py,sha256=CXHIG3xlBdr628oDu_u4OGsu_QZLx5EUSqu3zfmfEnk,1553
@@ -188,7 +181,7 @@ optimum/rbln/transformers/models/phi/modeling_phi.py,sha256=r7B0NlqwIGjm-MmE-h5_
188
181
  optimum/rbln/transformers/models/phi/phi_architecture.py,sha256=bzK7Qhd1FAC049fdDhzzPYK7HtlHTjBqVmuFAhTX80Q,3866
189
182
  optimum/rbln/transformers/models/pixtral/__init__.py,sha256=fhclVAWnIDsfMfC-TW6mYrJXxgyehlLaadK64LOShH4,716
190
183
  optimum/rbln/transformers/models/pixtral/configuration_pixtral.py,sha256=b79zkJB1jzHx4S1wTe-Ju_Yel_PS5Q8bfmlQPzkchKU,1677
191
- optimum/rbln/transformers/models/pixtral/modeling_pixtral.py,sha256=2zIm5zFbuEi-O0QCawzv0AOeukXo3JWN3YKuj6zlUWU,13189
184
+ optimum/rbln/transformers/models/pixtral/modeling_pixtral.py,sha256=P1lzi6JOTB43nBfCOonUDYhIXoMq6DnQpcvGfOO7ZP8,12252
192
185
  optimum/rbln/transformers/models/pixtral/pixtral_architecture.py,sha256=s-6C9DtHmSZEGJXo5b95RwZE2A5aR6ELMHlj7aK6CIg,2950
193
186
  optimum/rbln/transformers/models/qwen2/__init__.py,sha256=h9dWJ3HX4xspMLt44g7r3UGU8QL03Ynmz_Mi3Vlu6UA,746
194
187
  optimum/rbln/transformers/models/qwen2/configuration_qwen2.py,sha256=tTWcPOk_ycZvdSPlal9S5elTmWZAX2BbpZP5Ok2ySwI,1567
@@ -196,69 +189,69 @@ optimum/rbln/transformers/models/qwen2/modeling_qwen2.py,sha256=VOboPJF1rvvSVWkH
196
189
  optimum/rbln/transformers/models/qwen2/qwen2_architecture.py,sha256=XlNAMYAcDLohnSAhIFGKOPuCB5XLgzYs5ABWdeQSaZs,720
197
190
  optimum/rbln/transformers/models/qwen2_5_vl/__init__.py,sha256=rAW3DKQUzGL6EMwa5r1iLu94yhpiZpk6zfoD7TtYXrc,865
198
191
  optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py,sha256=WHLH72i7Pe16Ee1waMixMsR3eD6TsMGN08QD82qdVvw,6162
199
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py,sha256=TDb-DVbUQRvsTtETNriTqlWCugKVPLdXWXZW2ZvAQJQ,26692
192
+ optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py,sha256=ey6uZqf9ULr5LOugf-KrHGKMkdPyZ5XOPt8I-tBBXOc,26730
200
193
  optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py,sha256=hlx9Tt9n9m-fL4m21QFKgsN719CDhwhgfOMjnhde4RE,8392
201
194
  optimum/rbln/transformers/models/qwen2_vl/__init__.py,sha256=O3t6zKda92CnZDzEnz_dcisMOQ71-OOJxElXzKCH5e0,849
202
195
  optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py,sha256=mi5CqSKZ77G5Fib3g8a86_4CEB6lb-qJOhDnSqslvNk,4714
203
- optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py,sha256=R4Afpwa8BFdsGYVF7XaIwvK-5xfH0-F0jmkBAGLFeFM,20386
196
+ optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py,sha256=YO8cKBEb7dU9D--gidYsPyhS2arOwgVqDe3tLlGHdx4,20424
204
197
  optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py,sha256=xjp52RXqKA_BiyZ5CqwFAosav7ysvOJxeRxbPnTVIjM,5829
205
198
  optimum/rbln/transformers/models/qwen3/__init__.py,sha256=tI4KwvXpD35dUUaa8aLUXpWoU9gJGcmKXeywOlH14ZE,746
206
199
  optimum/rbln/transformers/models/qwen3/configuration_qwen3.py,sha256=BFRPggnH4VlsXlOa19C6KAID-bPgQ8ooQ29dvogh5zk,2102
207
200
  optimum/rbln/transformers/models/qwen3/modeling_qwen3.py,sha256=S05efusxjXJhMMYztstGes6ZbqkSr5I4fHFaLSYVG8c,5760
208
201
  optimum/rbln/transformers/models/qwen3/qwen3_architecture.py,sha256=qynZBmmWOSps4x4xt1lWOdzcKC2_E_PxAa7rgA05Qb8,1162
209
202
  optimum/rbln/transformers/models/resnet/__init__.py,sha256=0QqtEQF1IMYgEmmfXMGarCDS8kJB5tzODfwTEzDVZRg,837
210
- optimum/rbln/transformers/models/resnet/configuration_resnet.py,sha256=T2CDlq-oGmT2LYf0J80X_h4WNxdWrNIgGufGDV55Pf0,1750
211
- optimum/rbln/transformers/models/resnet/modeling_resnet.py,sha256=tAVa1r-yZMw56xEBtQUKMaUM0u1Zr5mg1uqXtr5u4gE,4419
203
+ optimum/rbln/transformers/models/resnet/configuration_resnet.py,sha256=aOHNDpSi630H3LhDx_8aWh6cSR_zA7rgoMdp6MiiPl8,983
204
+ optimum/rbln/transformers/models/resnet/modeling_resnet.py,sha256=6xKvD8HQCL-e-NtfvMrlL1fBWJBQtR_GK9zKTg2OJPQ,1021
212
205
  optimum/rbln/transformers/models/roberta/__init__.py,sha256=SDoN6iKO6gZk2Wg-nfzEzxNe4jVsd9G4RsduFoMZkYo,974
213
206
  optimum/rbln/transformers/models/roberta/configuration_roberta.py,sha256=6KhO-xBsDrYv5XFr6_JmOCFwpklpjB2fcA1V1nJVemo,1310
214
- optimum/rbln/transformers/models/roberta/modeling_roberta.py,sha256=1ybyReE9EB--lhN_ZzDVICShJ5mDxdTDcpyu-NaniRI,3250
207
+ optimum/rbln/transformers/models/roberta/modeling_roberta.py,sha256=74Pswb5JJNtctvrQHlo2zYocKZN0npWhjAaKMUDVBUU,1535
215
208
  optimum/rbln/transformers/models/seq2seq/__init__.py,sha256=HiSyWFcKeZ8okfo-s-_Mf_upyvAoZwraUIJyGNLNurY,714
216
- optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py,sha256=SBIFHxsDce2_s3laDBLa21l7minrTh6ZWSyhq1vXLa0,3060
217
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py,sha256=8YhKwwSiM0jlkJkjuKmwuM-_4FdFGkOCX4DOR6McWKQ,20152
209
+ optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py,sha256=pFnt382URDduIpeNb7z_xmONCSOt_2mKssro5xe8y3E,3121
210
+ optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py,sha256=nb511JHbi1wLCr5dOTClItuScx1fb-PCaNxKXjFTVQs,18395
218
211
  optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py,sha256=jmBgj7BkUS_S-T-9DI53rE3KXUHSCoIofr7k5JDVPrU,20024
219
212
  optimum/rbln/transformers/models/siglip/__init__.py,sha256=X1Fc1GUnJ2EIxFx45nbeoW-T2t0OyP3W73C0HD8Vowo,712
220
213
  optimum/rbln/transformers/models/siglip/configuration_siglip.py,sha256=Fy-ANF91bQno_QVd4ZpyRs-uNgC_XRyBRScBg2uKM6w,3029
221
- optimum/rbln/transformers/models/siglip/modeling_siglip.py,sha256=XVjJ0sG-3fs_tq8-JPMl0FIxgIQyvM3I9ACFqJzLgLI,8689
214
+ optimum/rbln/transformers/models/siglip/modeling_siglip.py,sha256=9_CeyL9Pgd-ZU7XfqMyoK-mP-ZYL-tia7YyI4wxgKMo,7509
222
215
  optimum/rbln/transformers/models/swin/__init__.py,sha256=gUsLDB8ceNxt53Cf69OT32JuZoRdmmIsRfjRdHTLDd0,698
223
216
  optimum/rbln/transformers/models/swin/configuration_swin.py,sha256=JE4oMdPhJmRwXxKUWQ3KHccthDLEcDiXEzjMcFx71K0,1690
224
- optimum/rbln/transformers/models/swin/modeling_swin.py,sha256=kN_7QnNXazl5n2iBsjhT9rmgkdxMV0aUBoS-hdphEys,14999
217
+ optimum/rbln/transformers/models/swin/modeling_swin.py,sha256=npQgTCEkonG41HzHzEk-a13NFLJHA-K82HFW2VyR0xc,13968
225
218
  optimum/rbln/transformers/models/t5/__init__.py,sha256=R1Q8Z1vaIdx4rDjeCmm_ZMSgewWaqaI0l93AHwewtew,818
226
219
  optimum/rbln/transformers/models/t5/configuration_t5.py,sha256=nqDbibqykeeWn1TlKk6LmCn-DawTVudMMuBn2c2jds8,1362
227
- optimum/rbln/transformers/models/t5/modeling_t5.py,sha256=lP__icG548arC9N4FHKfV7PQTpaqT7RpaHO1Tuvq3Ds,5125
220
+ optimum/rbln/transformers/models/t5/modeling_t5.py,sha256=pdAWBLVknTzbma0Ij-VQ2Qve-frPjxL-AwMyU-zouPY,5123
228
221
  optimum/rbln/transformers/models/t5/t5_architecture.py,sha256=DlJNrGk35NTBhcp76PEhiyfs5yuUoDWKvMhfe4_puIE,10171
229
222
  optimum/rbln/transformers/models/time_series_transformer/__init__.py,sha256=xJaFWQawlwtv4H5tVFcY1pxLYzjHtMAlLq6nXysdkN8,1243
230
223
  optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py,sha256=EUBXE_10W0wtuoAl2OVuQakBpsC7kSpRo3VokXI8Pdo,1619
231
- optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py,sha256=_Qxn8pj6hErIS_g3qi0oTYuZn5xw9rZ-4iBWmPaEWxA,18782
224
+ optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py,sha256=8orxM-LbShCt2jC8Uyx43cSxWN1CGxamS58pKPjvzxs,17167
232
225
  optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py,sha256=hAZXyXxzSDJMdkI883eefzpjz2L9KTVTRBeOVU8e92k,14038
233
226
  optimum/rbln/transformers/models/vit/__init__.py,sha256=CrrkHehfCe3U-_rUS00aMBY7Tncdeh43sNUgVI9Dt_g,807
234
227
  optimum/rbln/transformers/models/vit/configuration_vit.py,sha256=x98CxKR1cpKAG7Eh43uuPeGeGn4gS3HcKLPoDL3SWJo,994
235
- optimum/rbln/transformers/models/vit/modeling_vit.py,sha256=49P3b8Q7qhfYxVyJt3XzjE0UNSODqHZQTjFhw5rbVzM,1777
228
+ optimum/rbln/transformers/models/vit/modeling_vit.py,sha256=Q8xvX2oG2dC2RYM4ocaS0H70a2q_vQ9DZK2mCdyvxa0,1058
236
229
  optimum/rbln/transformers/models/wav2vec2/__init__.py,sha256=rI8yXNb0iV03o-DIn2or2bCCFAxKpZZgE51T4pH9lzU,710
237
- optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py,sha256=4uj4gf2jbD3orkZj0SRVwLOSnRCDCNCMeLCtwaqL4qg,1398
238
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py,sha256=NbANJDBZUrN4pe4CdgVUoxDSg2lBKvHFOlkrNsgDMj0,4272
230
+ optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py,sha256=24sXig0EaNp5enDB7uSMCK9d-qLwgUnoLcHN1NNnu_o,1004
231
+ optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py,sha256=bMKHdUDHgzu1pXH0yrrOFCiA_T9xqb9B19kljCQ9yUU,1945
239
232
  optimum/rbln/transformers/models/whisper/__init__.py,sha256=ErquiUlYycSYPsDcq9IwwmbZXoYLn1MVZ8VikWY5gQo,792
240
233
  optimum/rbln/transformers/models/whisper/configuration_whisper.py,sha256=bSwDN7VLuk1aVXvfrQIgb9SLdFBDhO5q8ZFaPQPJal0,3077
241
- optimum/rbln/transformers/models/whisper/generation_whisper.py,sha256=Ts9g_i2oiWJ_eQAhYF9fW84_T-HwsWidhcI0Qpwq6aw,7827
242
- optimum/rbln/transformers/models/whisper/modeling_whisper.py,sha256=k3kiy5EtDAzoVRVhWVjRbcgk1K4-MFzgZLkWDxI1fZw,19325
234
+ optimum/rbln/transformers/models/whisper/generation_whisper.py,sha256=DgYA6_tnQMA8isg5P2ukpRNpyBqY6WHwcnRepUGpbNA,5235
235
+ optimum/rbln/transformers/models/whisper/modeling_whisper.py,sha256=MFKYAqO1ep3teYumMY5E_jjyCU4552GKZacSNFyjVQM,19323
243
236
  optimum/rbln/transformers/models/whisper/whisper_architecture.py,sha256=fKUbAMIl20o6EBMVcLg9TDSsJ1FDp8NKcl4jT9RWCEM,13981
244
237
  optimum/rbln/transformers/models/xlm_roberta/__init__.py,sha256=O3o2KzJ8Li3QhB7GHdRQASc93SYO2jz00Rx4pxYRuDg,982
245
238
  optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py,sha256=wHRpGTXL9khYqSkKL1IgA7__6_lt9QpOz9tHumjK7fo,1260
246
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py,sha256=VrdRsJjiDn_liCXyMUHeed-wllarsIrZHLehKcZgWQs,3007
239
+ optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py,sha256=EZd3flRUEE38DYtdqEnG70LV7fHhkamRZV51xrVyjYI,1093
247
240
  optimum/rbln/transformers/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
248
- optimum/rbln/transformers/utils/rbln_quantization.py,sha256=LruvKW3inB2v9bMi0gcsfNC-IZnVvFyBSR-SZ46zy5M,21923
241
+ optimum/rbln/transformers/utils/rbln_quantization.py,sha256=pORshQUgTInNaibUtd0HL-T8bKW5wuulZs2q0Oshppc,21659
249
242
  optimum/rbln/transformers/utils/rbln_runtime_wrapper.py,sha256=l_-zWpRrp6hp-tDANTrEbspIZH-AUSi_jNJICns_QgE,2672
250
243
  optimum/rbln/utils/__init__.py,sha256=ieDBT2VFTt2E0M4v_POLBpuGW9LxSydpb_DuPd6PQqc,712
251
244
  optimum/rbln/utils/decorator_utils.py,sha256=xu-TrsNi33SRC2a7DBsyoo6-pEQxWKZPZSmM9QlDe2Y,3745
252
- optimum/rbln/utils/deprecation.py,sha256=qO6xlrT_GNCOCJx4i28t8Q-1hDGwp-cJMC5OrD7lUOQ,13226
253
- optimum/rbln/utils/hub.py,sha256=EI2ZsD71jhmPaA1imJ2_7P6y8i2uoX5l6wya5fICdQA,3119
245
+ optimum/rbln/utils/depreacate_utils.py,sha256=uKxl3ENUCNaZXPnaDQvNxrH8hUIWdBWfZH6BM7ZV__4,385
246
+ optimum/rbln/utils/hub.py,sha256=FPBGslHJAMeyfBID3viLmh51xJzcR29xWtYtMN8y2CI,2765
254
247
  optimum/rbln/utils/import_utils.py,sha256=fpOERIIxXm-cDYGn1NN6c7aWDPQYVitPQW2MiyZ9NEY,5471
255
248
  optimum/rbln/utils/logging.py,sha256=VKKBmlQSdg6iZCGmAXaWYiW67K84jyp1QJhLQSSjPPE,3453
256
249
  optimum/rbln/utils/model_utils.py,sha256=4k5879Kh75m3x_vS4-qOGfqsOiAvc2kdNFFfvsFvz3k,1748
257
- optimum/rbln/utils/runtime_utils.py,sha256=Ygl0rWPId2bJHIdu1VwGZNoRyImB0xGmoNHocKnvYH8,9478
250
+ optimum/rbln/utils/runtime_utils.py,sha256=Sf0YOUeJkhByArEgqofb_THvFBYdMVIgF_MGvhL4i-w,8540
258
251
  optimum/rbln/utils/save_utils.py,sha256=hG5uOtYmecSXZuGTvCXsTM-SiyZpr5q3InUGCCq_jzQ,3619
259
252
  optimum/rbln/utils/submodule.py,sha256=SKLnM3KsX8_rv3HauO4oB2-JSjzuadQjRwo_BhMUzLI,6362
260
- optimum_rbln-0.9.3.dist-info/METADATA,sha256=yyykgtO54omLjH6kmGQhWXHyqBxcZZIWV6OgNigMw6k,5348
261
- optimum_rbln-0.9.3.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
262
- optimum_rbln-0.9.3.dist-info/entry_points.txt,sha256=-orKDGKfLypxlPlTz8-ZkmdKULNvax9yeCCCn-q89n4,59
263
- optimum_rbln-0.9.3.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
264
- optimum_rbln-0.9.3.dist-info/RECORD,,
253
+ optimum_rbln-0.9.3rc0.dist-info/METADATA,sha256=BbHhUImsJZy_hZXtjr9UZ2Bt-kCBPjqqA3sDuLfN0Dg,5351
254
+ optimum_rbln-0.9.3rc0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
255
+ optimum_rbln-0.9.3rc0.dist-info/entry_points.txt,sha256=-orKDGKfLypxlPlTz8-ZkmdKULNvax9yeCCCn-q89n4,59
256
+ optimum_rbln-0.9.3rc0.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
257
+ optimum_rbln-0.9.3rc0.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: hatchling 1.28.0
2
+ Generator: hatchling 1.27.0
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
@@ -1,67 +0,0 @@
1
- # Copyright 2025 Rebellions Inc. All rights reserved.
2
-
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at:
6
-
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
-
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from typing import Any, Optional, Tuple
16
-
17
- from ....configuration_utils import RBLNModelConfig
18
-
19
-
20
- class RBLNAutoencoderKLTemporalDecoderConfig(RBLNModelConfig):
21
- def __init__(
22
- self,
23
- batch_size: Optional[int] = None,
24
- sample_size: Optional[Tuple[int, int]] = None,
25
- uses_encoder: Optional[bool] = None,
26
- num_frames: Optional[int] = None,
27
- decode_chunk_size: Optional[int] = None,
28
- vae_scale_factor: Optional[float] = None,
29
- **kwargs: Any,
30
- ):
31
- """
32
- Args:
33
- batch_size (Optional[int]): The batch size for inference. Defaults to 1.
34
- sample_size (Optional[Tuple[int, int]]): The spatial dimensions (height, width) of the input/output images.
35
- If an integer is provided, it's used for both height and width.
36
- uses_encoder (Optional[bool]): Whether to include the encoder part of the VAE in the model.
37
- When False, only the decoder is used (for latent-to-image conversion).
38
- num_frames (Optional[int]): The number of frames in the generated video.
39
- decode_chunk_size (Optional[int]): The number of frames to decode at once during VAE decoding.
40
- Useful for managing memory usage during video generation.
41
- vae_scale_factor (Optional[float]): The scaling factor between pixel space and latent space.
42
- Determines how much smaller the latent representations are compared to the original images.
43
- kwargs: Additional arguments passed to the parent RBLNModelConfig.
44
-
45
- Raises:
46
- ValueError: If batch_size is not a positive integer.
47
- """
48
- super().__init__(**kwargs)
49
- self.batch_size = batch_size or 1
50
- if not isinstance(self.batch_size, int) or self.batch_size < 0:
51
- raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
52
-
53
- self.uses_encoder = uses_encoder
54
- self.num_frames = num_frames
55
- self.decode_chunk_size = decode_chunk_size
56
- self.vae_scale_factor = vae_scale_factor
57
- self.sample_size = sample_size
58
- if isinstance(sample_size, int):
59
- self.sample_size = (sample_size, sample_size)
60
-
61
- @property
62
- def image_size(self):
63
- return self.sample_size
64
-
65
- @property
66
- def latent_sample_size(self):
67
- return (self.image_size[0] // self.vae_scale_factor, self.image_size[1] // self.vae_scale_factor)
@@ -1,59 +0,0 @@
1
- # Copyright 2025 Rebellions Inc. All rights reserved.
2
-
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at:
6
-
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
-
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from typing import Any, Optional, Tuple
16
-
17
- from ....configuration_utils import RBLNModelConfig
18
-
19
-
20
- class RBLNUNetSpatioTemporalConditionModelConfig(RBLNModelConfig):
21
- subclass_non_save_attributes = ["_batch_size_is_specified"]
22
-
23
- def __init__(
24
- self,
25
- batch_size: Optional[int] = None,
26
- sample_size: Optional[Tuple[int, int]] = None,
27
- in_features: Optional[int] = None,
28
- num_frames: Optional[int] = None,
29
- **kwargs: Any,
30
- ):
31
- """
32
- Args:
33
- batch_size (Optional[int]): The batch size for inference. Defaults to 1.
34
- sample_size (Optional[Tuple[int, int]]): The spatial dimensions (height, width) of the generated samples.
35
- If an integer is provided, it's used for both height and width.
36
- in_features (Optional[int]): Number of input features for the model.
37
- num_frames (Optional[int]): The number of frames in the generated video.
38
- kwargs: Additional arguments passed to the parent RBLNModelConfig.
39
-
40
- Raises:
41
- ValueError: If batch_size is not a positive integer.
42
- """
43
- super().__init__(**kwargs)
44
- self._batch_size_is_specified = batch_size is not None
45
-
46
- self.batch_size = batch_size or 1
47
- if not isinstance(self.batch_size, int) or self.batch_size < 0:
48
- raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
49
-
50
- self.in_features = in_features
51
- self.num_frames = num_frames
52
-
53
- self.sample_size = sample_size
54
- if isinstance(sample_size, int):
55
- self.sample_size = (sample_size, sample_size)
56
-
57
- @property
58
- def batch_size_is_specified(self):
59
- return self._batch_size_is_specified
@@ -1,114 +0,0 @@
1
- # Copyright 2025 Rebellions Inc. All rights reserved.
2
-
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at:
6
-
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
-
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from typing import Any, Optional
16
-
17
- from ....configuration_utils import RBLNModelConfig
18
- from ....transformers import RBLNCLIPVisionModelWithProjectionConfig
19
- from ..models import RBLNAutoencoderKLTemporalDecoderConfig, RBLNUNetSpatioTemporalConditionModelConfig
20
-
21
-
22
- class RBLNStableVideoDiffusionPipelineConfig(RBLNModelConfig):
23
- submodules = ["image_encoder", "unet", "vae"]
24
- _vae_uses_encoder = True
25
-
26
- def __init__(
27
- self,
28
- image_encoder: Optional[RBLNCLIPVisionModelWithProjectionConfig] = None,
29
- unet: Optional[RBLNUNetSpatioTemporalConditionModelConfig] = None,
30
- vae: Optional[RBLNAutoencoderKLTemporalDecoderConfig] = None,
31
- *,
32
- batch_size: Optional[int] = None,
33
- height: Optional[int] = None,
34
- width: Optional[int] = None,
35
- num_frames: Optional[int] = None,
36
- decode_chunk_size: Optional[int] = None,
37
- guidance_scale: Optional[float] = None,
38
- **kwargs: Any,
39
- ):
40
- """
41
- Args:
42
- image_encoder (Optional[RBLNCLIPVisionModelWithProjectionConfig]): Configuration for the image encoder component.
43
- Initialized as RBLNCLIPVisionModelWithProjectionConfig if not provided.
44
- unet (Optional[RBLNUNetSpatioTemporalConditionModelConfig]): Configuration for the UNet model component.
45
- Initialized as RBLNUNetSpatioTemporalConditionModelConfig if not provided.
46
- vae (Optional[RBLNAutoencoderKLTemporalDecoderConfig]): Configuration for the VAE model component.
47
- Initialized as RBLNAutoencoderKLTemporalDecoderConfig if not provided.
48
- batch_size (Optional[int]): Batch size for inference, applied to all submodules.
49
- height (Optional[int]): Height of the generated images.
50
- width (Optional[int]): Width of the generated images.
51
- num_frames (Optional[int]): The number of frames in the generated video.
52
- decode_chunk_size (Optional[int]): The number of frames to decode at once during VAE decoding.
53
- Useful for managing memory usage during video generation.
54
- guidance_scale (Optional[float]): Scale for classifier-free guidance.
55
- kwargs: Additional arguments passed to the parent RBLNModelConfig.
56
-
57
- Raises:
58
- ValueError: If both image_size and height/width are provided.
59
-
60
- Note:
61
- When guidance_scale > 1.0, the UNet batch size is automatically doubled to
62
- accommodate classifier-free guidance.
63
- """
64
- super().__init__(**kwargs)
65
- if height is not None and width is not None:
66
- image_size = (height, width)
67
- else:
68
- # Get default image size from original class to set UNet, VAE image size
69
- height = self.get_default_values_for_original_cls("__call__", ["height"])["height"]
70
- width = self.get_default_values_for_original_cls("__call__", ["width"])["width"]
71
- image_size = (height, width)
72
-
73
- self.image_encoder = self.initialize_submodule_config(
74
- image_encoder, cls_name="RBLNCLIPVisionModelWithProjectionConfig", batch_size=batch_size
75
- )
76
- self.unet = self.initialize_submodule_config(
77
- unet,
78
- cls_name="RBLNUNetSpatioTemporalConditionModelConfig",
79
- num_frames=num_frames,
80
- )
81
- self.vae = self.initialize_submodule_config(
82
- vae,
83
- cls_name="RBLNAutoencoderKLTemporalDecoderConfig",
84
- batch_size=batch_size,
85
- num_frames=num_frames,
86
- decode_chunk_size=decode_chunk_size,
87
- uses_encoder=self.__class__._vae_uses_encoder,
88
- sample_size=image_size, # image size is equal to sample size in vae
89
- )
90
-
91
- # Get default guidance scale from original class to set UNet batch size
92
- if guidance_scale is None:
93
- guidance_scale = self.get_default_values_for_original_cls("__call__", ["max_guidance_scale"])[
94
- "max_guidance_scale"
95
- ]
96
-
97
- if not self.unet.batch_size_is_specified:
98
- do_classifier_free_guidance = guidance_scale > 1.0
99
- if do_classifier_free_guidance:
100
- self.unet.batch_size = self.image_encoder.batch_size * 2
101
- else:
102
- self.unet.batch_size = self.image_encoder.batch_size
103
-
104
- @property
105
- def batch_size(self):
106
- return self.vae.batch_size
107
-
108
- @property
109
- def sample_size(self):
110
- return self.unet.sample_size
111
-
112
- @property
113
- def image_size(self):
114
- return self.vae.sample_size