optimum-rbln 0.9.3__py3-none-any.whl → 0.9.3rc0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +0 -12
- optimum/rbln/__version__.py +2 -2
- optimum/rbln/configuration_utils.py +2 -4
- optimum/rbln/diffusers/__init__.py +0 -12
- optimum/rbln/diffusers/configurations/__init__.py +0 -3
- optimum/rbln/diffusers/configurations/models/__init__.py +0 -2
- optimum/rbln/diffusers/configurations/pipelines/__init__.py +0 -3
- optimum/rbln/diffusers/models/__init__.py +3 -17
- optimum/rbln/diffusers/models/autoencoders/__init__.py +0 -1
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +3 -3
- optimum/rbln/diffusers/models/autoencoders/vae.py +8 -27
- optimum/rbln/diffusers/models/controlnet.py +1 -16
- optimum/rbln/diffusers/models/transformers/prior_transformer.py +2 -16
- optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +1 -16
- optimum/rbln/diffusers/models/transformers/transformer_sd3.py +1 -14
- optimum/rbln/diffusers/models/unets/__init__.py +0 -1
- optimum/rbln/diffusers/models/unets/unet_2d_condition.py +1 -17
- optimum/rbln/diffusers/pipelines/__init__.py +0 -4
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +0 -20
- optimum/rbln/modeling.py +45 -20
- optimum/rbln/modeling_base.py +1 -0
- optimum/rbln/transformers/configuration_generic.py +27 -0
- optimum/rbln/transformers/modeling_attention_utils.py +109 -242
- optimum/rbln/transformers/modeling_generic.py +61 -2
- optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +2 -28
- optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +5 -68
- optimum/rbln/transformers/models/bart/modeling_bart.py +2 -23
- optimum/rbln/transformers/models/bert/modeling_bert.py +1 -86
- optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +15 -42
- optimum/rbln/transformers/models/clip/modeling_clip.py +2 -40
- optimum/rbln/transformers/models/colpali/modeling_colpali.py +44 -5
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +1 -6
- optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +2 -6
- optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +9 -17
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +12 -36
- optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +0 -17
- optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +0 -24
- optimum/rbln/transformers/models/dpt/modeling_dpt.py +0 -17
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +5 -3
- optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +8 -24
- optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +5 -3
- optimum/rbln/transformers/models/llava/modeling_llava.py +24 -36
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +4 -2
- optimum/rbln/transformers/models/opt/modeling_opt.py +2 -2
- optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +1 -1
- optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +1 -13
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +3 -2
- optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +3 -2
- optimum/rbln/transformers/models/resnet/configuration_resnet.py +0 -17
- optimum/rbln/transformers/models/resnet/modeling_resnet.py +0 -73
- optimum/rbln/transformers/models/roberta/modeling_roberta.py +0 -33
- optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +4 -2
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +10 -34
- optimum/rbln/transformers/models/siglip/modeling_siglip.py +1 -17
- optimum/rbln/transformers/models/swin/modeling_swin.py +1 -14
- optimum/rbln/transformers/models/t5/modeling_t5.py +2 -2
- optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +2 -16
- optimum/rbln/transformers/models/vit/modeling_vit.py +0 -19
- optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +3 -15
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +8 -60
- optimum/rbln/transformers/models/whisper/generation_whisper.py +14 -48
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +2 -2
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +0 -43
- optimum/rbln/transformers/utils/rbln_quantization.py +0 -9
- optimum/rbln/utils/depreacate_utils.py +16 -0
- optimum/rbln/utils/hub.py +3 -14
- optimum/rbln/utils/runtime_utils.py +0 -32
- {optimum_rbln-0.9.3.dist-info → optimum_rbln-0.9.3rc0.dist-info}/METADATA +2 -2
- {optimum_rbln-0.9.3.dist-info → optimum_rbln-0.9.3rc0.dist-info}/RECORD +72 -79
- {optimum_rbln-0.9.3.dist-info → optimum_rbln-0.9.3rc0.dist-info}/WHEEL +1 -1
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_temporal_decoder.py +0 -67
- optimum/rbln/diffusers/configurations/models/configuration_unet_spatio_temporal_condition.py +0 -59
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_video_diffusion.py +0 -114
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +0 -275
- optimum/rbln/diffusers/models/unets/unet_spatio_temporal_condition.py +0 -201
- optimum/rbln/diffusers/pipelines/stable_video_diffusion/__init__.py +0 -15
- optimum/rbln/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +0 -46
- optimum/rbln/utils/deprecation.py +0 -213
- {optimum_rbln-0.9.3.dist-info → optimum_rbln-0.9.3rc0.dist-info}/entry_points.txt +0 -0
- {optimum_rbln-0.9.3.dist-info → optimum_rbln-0.9.3rc0.dist-info}/licenses/LICENSE +0 -0
|
@@ -20,9 +20,8 @@ import rebel
|
|
|
20
20
|
import torch
|
|
21
21
|
from rebel.compile_context import CompileContext
|
|
22
22
|
from transformers import AutoModelForSeq2SeqLM, PretrainedConfig, PreTrainedModel
|
|
23
|
-
from transformers.generation.configuration_utils import GenerationConfig
|
|
24
23
|
from transformers.generation.utils import GenerationMixin
|
|
25
|
-
from transformers.modeling_outputs import BaseModelOutput,
|
|
24
|
+
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
|
|
26
25
|
|
|
27
26
|
from ....configuration_utils import RBLNCompileConfig
|
|
28
27
|
from ....modeling import RBLNModel
|
|
@@ -34,7 +33,7 @@ from .configuration_seq2seq import RBLNModelForSeq2SeqLMConfig
|
|
|
34
33
|
logger = get_logger(__name__)
|
|
35
34
|
|
|
36
35
|
if TYPE_CHECKING:
|
|
37
|
-
from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, PretrainedConfig
|
|
36
|
+
from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, GenerationConfig, PretrainedConfig
|
|
38
37
|
|
|
39
38
|
|
|
40
39
|
class RBLNRuntimeEncoder(RBLNPytorchRuntime):
|
|
@@ -141,7 +140,7 @@ class RBLNModelForSeq2SeqLM(RBLNModel, GenerationMixin, ABC):
|
|
|
141
140
|
@classmethod
|
|
142
141
|
@torch.inference_mode()
|
|
143
142
|
def get_compiled_model(cls, model: PreTrainedModel, rbln_config: RBLNModelForSeq2SeqLMConfig):
|
|
144
|
-
wrapped_model = cls.
|
|
143
|
+
wrapped_model = cls.wrap_model_if_needed(model, rbln_config)
|
|
145
144
|
|
|
146
145
|
enc_compile_config = rbln_config.compile_cfgs[0]
|
|
147
146
|
dec_compile_config = rbln_config.compile_cfgs[1]
|
|
@@ -222,6 +221,12 @@ class RBLNModelForSeq2SeqLM(RBLNModel, GenerationMixin, ABC):
|
|
|
222
221
|
model_config, "max_position_embeddings", None
|
|
223
222
|
)
|
|
224
223
|
|
|
224
|
+
pad_token_id = getattr(model_config, "pad_token_id", None)
|
|
225
|
+
pad_token_id = pad_token_id or getattr(model_config, "bos_token_id", None)
|
|
226
|
+
pad_token_id = pad_token_id or getattr(model_config, "eos_token_id", None)
|
|
227
|
+
pad_token_id = pad_token_id or -1
|
|
228
|
+
rbln_config.pad_token_id = pad_token_id
|
|
229
|
+
|
|
225
230
|
if rbln_config.enc_max_seq_len is None:
|
|
226
231
|
enc_max_seq_len = max_position_embeddings
|
|
227
232
|
for tokenizer in preprocessors:
|
|
@@ -427,7 +432,7 @@ class RBLNModelForSeq2SeqLM(RBLNModel, GenerationMixin, ABC):
|
|
|
427
432
|
inputs_tensor = torch.nn.functional.pad(
|
|
428
433
|
inputs_tensor,
|
|
429
434
|
(0, self.rbln_config.enc_max_seq_len - input_len),
|
|
430
|
-
value=self.
|
|
435
|
+
value=self.rbln_config.pad_token_id,
|
|
431
436
|
)
|
|
432
437
|
model_kwargs["attention_mask"] = torch.nn.functional.pad(
|
|
433
438
|
model_kwargs["attention_mask"], (0, self.rbln_config.enc_max_seq_len - input_len)
|
|
@@ -446,32 +451,3 @@ class RBLNModelForSeq2SeqLM(RBLNModel, GenerationMixin, ABC):
|
|
|
446
451
|
model_kwargs["encoder_outputs"] = encoder(**encoder_kwargs, block_tables=block_tables)
|
|
447
452
|
|
|
448
453
|
return model_kwargs
|
|
449
|
-
|
|
450
|
-
def generate(
|
|
451
|
-
self,
|
|
452
|
-
input_ids: torch.LongTensor,
|
|
453
|
-
attention_mask: Optional[torch.LongTensor] = None,
|
|
454
|
-
generation_config: Optional[GenerationConfig] = None,
|
|
455
|
-
**kwargs,
|
|
456
|
-
) -> Union[ModelOutput, torch.LongTensor]:
|
|
457
|
-
"""
|
|
458
|
-
The generate function is utilized in its standard form as in the HuggingFace transformers library. User can use this function to generate text from the model.
|
|
459
|
-
Check the [HuggingFace transformers documentation](https://huggingface.co/docs/transformers/v4.57.1/en/main_classes/text_generation#transformers.GenerationMixin.generate) for more details.
|
|
460
|
-
|
|
461
|
-
Args:
|
|
462
|
-
input_ids (torch.LongTensor): The input ids to the model.
|
|
463
|
-
attention_mask (torch.LongTensor, optional): The attention mask to the model.
|
|
464
|
-
generation_config (GenerationConfig, optional): The generation configuration to be used as base parametrization for the generation call. **kwargs passed to generate matching the attributes of generation_config will override them.
|
|
465
|
-
If generation_config is not provided, the default will be used, which had the following loading priority: 1) from the generation_config.json model file, if it exists; 2) from the model configuration.
|
|
466
|
-
Please note that unspecified parameters will inherit [GenerationConfig](https://huggingface.co/docs/transformers/v4.57.1/en/main_classes/text_generation#transformers.GenerationConfig)’s default values.
|
|
467
|
-
kwargs (dict[str, Any], optional): Additional arguments passed to the generate function. See the HuggingFace transformers documentation for more details.
|
|
468
|
-
|
|
469
|
-
Returns:
|
|
470
|
-
Generates sequences of token ids for models with a language modeling head.
|
|
471
|
-
"""
|
|
472
|
-
if generation_config is not None:
|
|
473
|
-
kwargs["generation_config"] = generation_config
|
|
474
|
-
if attention_mask is not None:
|
|
475
|
-
kwargs["attention_mask"] = attention_mask
|
|
476
|
-
|
|
477
|
-
return super().generate(input_ids, **kwargs)
|
|
@@ -66,9 +66,7 @@ class RBLNSiglipVisionModel(RBLNModel):
|
|
|
66
66
|
_tp_support = False
|
|
67
67
|
|
|
68
68
|
@classmethod
|
|
69
|
-
def
|
|
70
|
-
cls, model: torch.nn.Module, rbln_config: RBLNSiglipVisionModelConfig
|
|
71
|
-
) -> torch.nn.Module:
|
|
69
|
+
def wrap_model_if_needed(cls, model: torch.nn.Module, rbln_config: RBLNSiglipVisionModelConfig) -> torch.nn.Module:
|
|
72
70
|
wrapper_cfg = {
|
|
73
71
|
"interpolate_pos_encoding": rbln_config.interpolate_pos_encoding,
|
|
74
72
|
"output_hidden_states": rbln_config.output_hidden_states,
|
|
@@ -124,20 +122,6 @@ class RBLNSiglipVisionModel(RBLNModel):
|
|
|
124
122
|
interpolate_pos_encoding: bool = False,
|
|
125
123
|
**kwargs: Any,
|
|
126
124
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
|
127
|
-
"""
|
|
128
|
-
Forward pass for the RBLN-optimized SigLIP vision model.
|
|
129
|
-
|
|
130
|
-
Args:
|
|
131
|
-
pixel_values (torch.FloatTensor of shape (batch_size, num_channels, image_size, image_size), optional): The tensors corresponding to the input images. Pixel values can be obtained using ViTImageProcessor. See ViTImageProcessor.call() for details (processor_class uses ViTImageProcessor for processing images).
|
|
132
|
-
return_dict (bool, optional): Whether or not to return a ModelOutput instead of a plain tuple.
|
|
133
|
-
output_attentions (bool, optional): Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
|
|
134
|
-
output_hidden_states (bool, optional): Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
|
|
135
|
-
interpolate_pos_encoding (bool, defaults to False): Whether to interpolate the pre-trained position encodings.
|
|
136
|
-
|
|
137
|
-
Returns:
|
|
138
|
-
The model outputs. If return_dict=False is passed, returns a tuple of tensors. Otherwise, returns a BaseModelOutputWithPooling object.
|
|
139
|
-
"""
|
|
140
|
-
|
|
141
125
|
output_attentions = output_attentions if output_attentions is not None else self.rbln_config.output_attentions
|
|
142
126
|
output_hidden_states = (
|
|
143
127
|
output_hidden_states if output_hidden_states is not None else self.rbln_config.output_hidden_states
|
|
@@ -203,7 +203,7 @@ class _SwinBackbone(torch.nn.Module):
|
|
|
203
203
|
|
|
204
204
|
class RBLNSwinBackbone(RBLNModel):
|
|
205
205
|
@classmethod
|
|
206
|
-
def
|
|
206
|
+
def wrap_model_if_needed(cls, model: torch.nn.Module, rbln_config: RBLNSwinBackboneConfig) -> torch.nn.Module:
|
|
207
207
|
for layer in model.encoder.layers:
|
|
208
208
|
for block in layer.blocks:
|
|
209
209
|
block.get_attn_mask = types.MethodType(get_attn_mask, block)
|
|
@@ -278,19 +278,6 @@ class RBLNSwinBackbone(RBLNModel):
|
|
|
278
278
|
output_hidden_states: bool = None,
|
|
279
279
|
**kwargs,
|
|
280
280
|
) -> Union[Tuple, BackboneOutput]:
|
|
281
|
-
"""
|
|
282
|
-
Forward pass for the RBLN-optimized Swin backbone model.
|
|
283
|
-
|
|
284
|
-
Args:
|
|
285
|
-
pixel_values (torch.FloatTensor of shape (batch_size, num_channels, image_size, image_size), optional): The tensors corresponding to the input images. Pixel values can be obtained using ViTImageProcessor. See ViTImageProcessor.call() for details (processor_class uses ViTImageProcessor for processing images).
|
|
286
|
-
return_dict (bool, optional): Whether or not to return a ModelOutput instead of a plain tuple.
|
|
287
|
-
output_attentions (bool, optional): Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
|
|
288
|
-
output_hidden_states (bool, optional): Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
|
|
289
|
-
|
|
290
|
-
Returns:
|
|
291
|
-
The model outputs. If return_dict=False is passed, returns a tuple of tensors. Otherwise, returns a BackboneOutput object.
|
|
292
|
-
"""
|
|
293
|
-
|
|
294
281
|
if len(kwargs) > 0 and any(value is not None for value in kwargs.values()):
|
|
295
282
|
logger.warning(
|
|
296
283
|
f"Currently, optimum-rbln does not support kwargs {kwargs.keys()} for {self.__class__.__name__}."
|
|
@@ -68,7 +68,7 @@ class RBLNT5EncoderModel(RBLNTransformerEncoderForFeatureExtraction):
|
|
|
68
68
|
output_class = BaseModelOutputWithPastAndCrossAttentions
|
|
69
69
|
|
|
70
70
|
@classmethod
|
|
71
|
-
def
|
|
71
|
+
def wrap_model_if_needed(self, model: "PreTrainedModel", rbln_config: RBLNT5EncoderModelConfig):
|
|
72
72
|
return T5EncoderWrapper(model)
|
|
73
73
|
|
|
74
74
|
@classmethod
|
|
@@ -113,7 +113,7 @@ class RBLNT5ForConditionalGeneration(RBLNModelForSeq2SeqLM):
|
|
|
113
113
|
support_causal_attn = False
|
|
114
114
|
|
|
115
115
|
@classmethod
|
|
116
|
-
def
|
|
116
|
+
def wrap_model_if_needed(self, model: "PreTrainedModel", rbln_config: RBLNT5ForConditionalGenerationConfig):
|
|
117
117
|
return T5Wrapper(
|
|
118
118
|
model, enc_max_seq_len=rbln_config.enc_max_seq_len, dec_max_seq_len=rbln_config.dec_max_seq_len
|
|
119
119
|
)
|
optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py
CHANGED
|
@@ -153,7 +153,7 @@ class RBLNTimeSeriesTransformerForPrediction(RBLNModel):
|
|
|
153
153
|
return redirect(val)
|
|
154
154
|
|
|
155
155
|
@classmethod
|
|
156
|
-
def
|
|
156
|
+
def wrap_model_if_needed(
|
|
157
157
|
self, model: "PreTrainedModel", rbln_config: RBLNTimeSeriesTransformerForPredictionConfig
|
|
158
158
|
):
|
|
159
159
|
return TimeSeriesTransformersWrapper(model, rbln_config.num_parallel_samples)
|
|
@@ -161,7 +161,7 @@ class RBLNTimeSeriesTransformerForPrediction(RBLNModel):
|
|
|
161
161
|
@classmethod
|
|
162
162
|
@torch.inference_mode()
|
|
163
163
|
def get_compiled_model(cls, model, rbln_config: RBLNTimeSeriesTransformerForPredictionConfig):
|
|
164
|
-
wrapped_model = cls.
|
|
164
|
+
wrapped_model = cls.wrap_model_if_needed(model, rbln_config)
|
|
165
165
|
|
|
166
166
|
enc_compile_config = rbln_config.compile_cfgs[0]
|
|
167
167
|
dec_compile_config = rbln_config.compile_cfgs[1]
|
|
@@ -353,20 +353,6 @@ class RBLNTimeSeriesTransformerForPrediction(RBLNModel):
|
|
|
353
353
|
static_real_features: Optional[torch.Tensor] = None,
|
|
354
354
|
**kwargs,
|
|
355
355
|
) -> SampleTSPredictionOutput:
|
|
356
|
-
"""
|
|
357
|
-
Generate pass for the RBLN-optimized Time Series Transformer model for time series forecasting.
|
|
358
|
-
|
|
359
|
-
Args:
|
|
360
|
-
past_values (torch.FloatTensor of shape (batch_size, sequence_length) or (batch_size, sequence_length, input_size)): Past values of the time series, that serve as context in order to predict the future.
|
|
361
|
-
past_time_features (torch.FloatTensor of shape (batch_size, sequence_length, num_features)): Required time features, which the model internally will add to past_values.
|
|
362
|
-
future_time_features (torch.FloatTensor of shape (batch_size, prediction_length, num_features)): Required time features for the prediction window, which the model internally will add to future_values.
|
|
363
|
-
past_observed_mask (torch.BoolTensor of shape (batch_size, sequence_length) or (batch_size, sequence_length, input_size), optional): Boolean mask to indicate which past_values were observed and which were missing.
|
|
364
|
-
static_categorical_features (torch.LongTensor of shape (batch_size, number of static categorical features), optional): Optional static categorical features for which the model will learn an embedding, which it will add to the values of the time series.
|
|
365
|
-
static_real_features (torch.FloatTensor of shape (batch_size, number of static real features), optional): Optional static real features which the model will add to the values of the time series.
|
|
366
|
-
|
|
367
|
-
Returns:
|
|
368
|
-
The model outputs. If return_dict=False is passed, returns a tuple of tensors. Otherwise, returns a SampleTSPredictionOutput object.
|
|
369
|
-
"""
|
|
370
356
|
self.validate_batch_size(**{k: v for k, v in locals().items() if isinstance(v, torch.Tensor)})
|
|
371
357
|
|
|
372
358
|
outputs = self.encoder(
|
|
@@ -12,11 +12,6 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
|
-
from typing import Tuple, Union
|
|
16
|
-
|
|
17
|
-
import torch
|
|
18
|
-
from transformers.modeling_outputs import ImageClassifierOutput
|
|
19
|
-
|
|
20
15
|
from ...modeling_generic import RBLNModelForImageClassification
|
|
21
16
|
|
|
22
17
|
|
|
@@ -28,17 +23,3 @@ class RBLNViTForImageClassification(RBLNModelForImageClassification):
|
|
|
28
23
|
on RBLN devices, supporting image classification with transformer-based architectures
|
|
29
24
|
that process images as sequences of patches.
|
|
30
25
|
"""
|
|
31
|
-
|
|
32
|
-
def forward(self, pixel_values: torch.Tensor, **kwargs) -> Union[ImageClassifierOutput, Tuple]:
|
|
33
|
-
"""
|
|
34
|
-
Forward pass for the RBLN-optimized Vision Transformer model for image classification.
|
|
35
|
-
|
|
36
|
-
Args:
|
|
37
|
-
pixel_values (torch.FloatTensor of shape (batch_size, channels, height, width)):
|
|
38
|
-
The tensors corresponding to the input images.
|
|
39
|
-
|
|
40
|
-
Returns:
|
|
41
|
-
The model outputs. If return_dict=False is passed, returns a tuple of tensors. Otherwise, returns an ImageClassifierOutput object.
|
|
42
|
-
|
|
43
|
-
"""
|
|
44
|
-
return super().forward(pixel_values, **kwargs)
|
|
@@ -12,12 +12,10 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
|
-
from
|
|
15
|
+
from ...configuration_generic import RBLNModelForMaskedLMConfig
|
|
16
16
|
|
|
17
|
-
from ....configuration_utils import RBLNModelConfig
|
|
18
17
|
|
|
19
|
-
|
|
20
|
-
class RBLNWav2Vec2ForCTCConfig(RBLNModelConfig):
|
|
18
|
+
class RBLNWav2Vec2ForCTCConfig(RBLNModelForMaskedLMConfig):
|
|
21
19
|
"""
|
|
22
20
|
Configuration class for RBLNWav2Vec2ForCTC.
|
|
23
21
|
|
|
@@ -25,14 +23,4 @@ class RBLNWav2Vec2ForCTCConfig(RBLNModelConfig):
|
|
|
25
23
|
RBLN-optimized Wav2Vec2 models for Connectionist Temporal Classification (CTC) tasks.
|
|
26
24
|
"""
|
|
27
25
|
|
|
28
|
-
|
|
29
|
-
self,
|
|
30
|
-
max_seq_len: Optional[int] = None,
|
|
31
|
-
batch_size: Optional[int] = None,
|
|
32
|
-
**kwargs: Any,
|
|
33
|
-
):
|
|
34
|
-
super().__init__(**kwargs)
|
|
35
|
-
self.max_seq_len = max_seq_len
|
|
36
|
-
self.batch_size = batch_size or 1
|
|
37
|
-
if not isinstance(self.batch_size, int) or self.batch_size < 0:
|
|
38
|
-
raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
|
|
26
|
+
rbln_model_input_names = ["input_values"]
|
|
@@ -13,21 +13,13 @@
|
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
15
|
|
|
16
|
-
from typing import TYPE_CHECKING, Optional, Union
|
|
17
|
-
|
|
18
16
|
import torch
|
|
19
|
-
from transformers import
|
|
20
|
-
from transformers.modeling_outputs import CausalLMOutput
|
|
17
|
+
from transformers import AutoModelForMaskedLM, Wav2Vec2ForCTC
|
|
21
18
|
|
|
22
|
-
from
|
|
23
|
-
from ....modeling import RBLNModel
|
|
19
|
+
from ...modeling_generic import RBLNModelForMaskedLM
|
|
24
20
|
from .configuration_wav2vec2 import RBLNWav2Vec2ForCTCConfig
|
|
25
21
|
|
|
26
22
|
|
|
27
|
-
if TYPE_CHECKING:
|
|
28
|
-
from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, PreTrainedModel
|
|
29
|
-
|
|
30
|
-
|
|
31
23
|
class _Wav2Vec2(torch.nn.Module):
|
|
32
24
|
def __init__(self, model: "Wav2Vec2ForCTC"):
|
|
33
25
|
super().__init__()
|
|
@@ -38,10 +30,13 @@ class _Wav2Vec2(torch.nn.Module):
|
|
|
38
30
|
return self.model.lm_head(output[0])
|
|
39
31
|
|
|
40
32
|
|
|
41
|
-
class RBLNWav2Vec2ForCTC(
|
|
33
|
+
class RBLNWav2Vec2ForCTC(RBLNModelForMaskedLM):
|
|
42
34
|
"""
|
|
43
35
|
Wav2Vec2 Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).
|
|
44
36
|
|
|
37
|
+
This model inherits from [`RBLNModelForMaskedLM`]. Check the superclass documentation for the generic methods the
|
|
38
|
+
library implements for all its model.
|
|
39
|
+
|
|
45
40
|
It implements the methods to convert a pre-trained Wav2Vec2 model into a RBLN Wav2Vec2 model by:
|
|
46
41
|
|
|
47
42
|
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
|
@@ -49,56 +44,9 @@ class RBLNWav2Vec2ForCTC(RBLNModel):
|
|
|
49
44
|
"""
|
|
50
45
|
|
|
51
46
|
main_input_name = "input_values"
|
|
52
|
-
auto_model_class =
|
|
47
|
+
auto_model_class = AutoModelForMaskedLM
|
|
53
48
|
rbln_dtype = "float32"
|
|
54
49
|
|
|
55
50
|
@classmethod
|
|
56
|
-
def
|
|
51
|
+
def wrap_model_if_needed(cls, model: torch.nn.Module, rbln_config: RBLNWav2Vec2ForCTCConfig) -> torch.nn.Module:
|
|
57
52
|
return _Wav2Vec2(model).eval()
|
|
58
|
-
|
|
59
|
-
@classmethod
|
|
60
|
-
def _update_rbln_config(
|
|
61
|
-
cls,
|
|
62
|
-
preprocessors: Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"],
|
|
63
|
-
model: Optional["PreTrainedModel"] = None,
|
|
64
|
-
model_config: "Wav2Vec2Config" = None,
|
|
65
|
-
rbln_config: Optional[RBLNWav2Vec2ForCTCConfig] = None,
|
|
66
|
-
) -> RBLNWav2Vec2ForCTCConfig:
|
|
67
|
-
if rbln_config.max_seq_len is None:
|
|
68
|
-
for tokenizer in preprocessors:
|
|
69
|
-
if hasattr(tokenizer, "model_max_length"):
|
|
70
|
-
rbln_config.max_seq_len = tokenizer.model_max_length
|
|
71
|
-
break
|
|
72
|
-
if rbln_config.max_seq_len is None:
|
|
73
|
-
raise ValueError("`rbln_max_seq_len` should be specified!")
|
|
74
|
-
|
|
75
|
-
rbln_compile_config = RBLNCompileConfig(
|
|
76
|
-
input_info=[
|
|
77
|
-
(
|
|
78
|
-
"input_values",
|
|
79
|
-
[
|
|
80
|
-
rbln_config.batch_size,
|
|
81
|
-
rbln_config.max_seq_len,
|
|
82
|
-
],
|
|
83
|
-
"float32",
|
|
84
|
-
)
|
|
85
|
-
]
|
|
86
|
-
)
|
|
87
|
-
|
|
88
|
-
rbln_config.set_compile_cfgs([rbln_compile_config])
|
|
89
|
-
return rbln_config
|
|
90
|
-
|
|
91
|
-
def forward(
|
|
92
|
-
self, input_values: torch.Tensor, return_dict: Optional[bool] = None, **kwargs
|
|
93
|
-
) -> Union[CausalLMOutput, tuple]:
|
|
94
|
-
"""
|
|
95
|
-
Forward pass for the RBLN-optimized Wav2Vec2 model for Connectionist Temporal Classification (CTC).
|
|
96
|
-
|
|
97
|
-
Args:
|
|
98
|
-
input_values (torch.FloatTensor of shape (batch_size, sequence_length)): Float values of input raw speech waveform. Values can be obtained by loading a .flac or .wav audio file into an array of type List[float] or a numpy.ndarray, e.g. via the soundfile library (pip install soundfile). To prepare the array into input_values, the AutoProcessor should be used for padding and conversion into a tensor of type torch.FloatTensor.
|
|
99
|
-
return_dict (bool, optional): Whether or not to return a ModelOutput instead of a plain tuple.
|
|
100
|
-
|
|
101
|
-
Returns:
|
|
102
|
-
The model outputs. If return_dict=False is passed, returns a tuple of tensors. Otherwise, returns a CausalLMOutput object.
|
|
103
|
-
"""
|
|
104
|
-
return super().forward(input_values=input_values, return_dict=return_dict, **kwargs)
|
|
@@ -31,63 +31,29 @@ Generation utilities for Whisper.
|
|
|
31
31
|
Modified from `transformers.models.whisper.generation_whisper.py`
|
|
32
32
|
"""
|
|
33
33
|
|
|
34
|
-
from typing import Any, Dict, Optional, Union
|
|
35
|
-
|
|
36
34
|
import torch
|
|
37
35
|
import transformers
|
|
38
36
|
from packaging import version
|
|
39
37
|
from transformers import GenerationMixin
|
|
40
|
-
from transformers.generation.configuration_utils import GenerationConfig
|
|
41
|
-
from transformers.modeling_outputs import ModelOutput
|
|
42
38
|
from transformers.models.whisper.generation_whisper import WhisperGenerationMixin
|
|
43
39
|
|
|
44
40
|
|
|
45
41
|
class RBLNWhisperGenerationMixin(WhisperGenerationMixin, GenerationMixin):
|
|
46
|
-
def generate(
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
return_timestamps: Optional[bool] = None,
|
|
53
|
-
return_token_timestamps: Optional[bool] = None,
|
|
54
|
-
**kwargs,
|
|
55
|
-
) -> Union[ModelOutput, Dict[str, Any], torch.LongTensor]:
|
|
56
|
-
"""
|
|
57
|
-
The generate function is utilized in its standard form as in the HuggingFace transformers library. User can use this function to generate text from the model.
|
|
58
|
-
Check the [HuggingFace transformers documentation](https://huggingface.co/docs/transformers/v4.57.1/en/model_doc/whisper#transformers.WhisperForConditionalGeneration.generate) for more details.
|
|
59
|
-
|
|
60
|
-
Args:
|
|
61
|
-
input_features(torch.Tensor, optional): The input features to the model.
|
|
62
|
-
attention_mask(torch.Tensor, optional): Attention mask needs to be passed when doing long-form transcription using a batch size > 1.
|
|
63
|
-
generation_config(GenerationConfig, optional): The generation configuration to be used as base parametrization for the generation call. **kwargs passed to generate matching the attributes of generation_config will override them.
|
|
64
|
-
If generation_config is not provided, the default will be used, which had the following loading priority: 1) from the generation_config.json model file, if it exists; 2) from the model configuration.
|
|
65
|
-
Please note that unspecified parameters will inherit [GenerationConfig](https://huggingface.co/docs/transformers/v4.57.1/en/main_classes/text_generation#transformers.GenerationConfig)’s default values.
|
|
66
|
-
return_segments(bool, optional): Whether to return segments.
|
|
67
|
-
return_timestamps(bool, optional): Whether to return the timestamps with the text. For audios longer than 30 seconds, it is necessary to set return_timestamps=True.
|
|
68
|
-
return_token_timestamps(bool, optional): Whether to return token timestamps.
|
|
69
|
-
kwargs(dict[str, Any], optional): Additional arguments passed to the generate function.
|
|
70
|
-
|
|
71
|
-
Returns:
|
|
72
|
-
Transcribes or translates log-mel input features to a sequence of auto-regressively generated token ids.
|
|
73
|
-
"""
|
|
74
|
-
if kwargs.get("num_beams", None) is not None:
|
|
75
|
-
if kwargs.get("num_beams") != 1:
|
|
76
|
-
raise ValueError(
|
|
77
|
-
"Beam search is not supported in RBLNWhisperGenerationMixin. "
|
|
78
|
-
"Received num_beams={num_beams}, but only num_beams=1 is allowed. "
|
|
79
|
-
"Please set num_beams=1 for greedy search or adjust your configuration."
|
|
80
|
-
)
|
|
81
|
-
|
|
82
|
-
return super().generate(
|
|
83
|
-
input_features,
|
|
84
|
-
attention_mask=attention_mask,
|
|
85
|
-
generation_config=generation_config,
|
|
86
|
-
return_segments=return_segments,
|
|
87
|
-
return_timestamps=return_timestamps,
|
|
88
|
-
return_token_timestamps=return_token_timestamps,
|
|
89
|
-
**kwargs,
|
|
42
|
+
def generate(self, *args, generation_config=None, **kwargs):
|
|
43
|
+
num_beams = kwargs.get(
|
|
44
|
+
"num_beams",
|
|
45
|
+
generation_config.num_beams
|
|
46
|
+
if hasattr(generation_config, "num_beams") and generation_config.num_beams is not None
|
|
47
|
+
else 1,
|
|
90
48
|
)
|
|
49
|
+
if num_beams > 1:
|
|
50
|
+
raise ValueError(
|
|
51
|
+
f"Beam search is not supported in RBLNWhisperGenerationMixin. "
|
|
52
|
+
f"Received num_beams={num_beams}, but only num_beams=1 is allowed. "
|
|
53
|
+
f"Please set num_beams=1 for greedy search or adjust your configuration."
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
return super().generate(*args, **kwargs)
|
|
91
57
|
|
|
92
58
|
def _postprocess_outputs(
|
|
93
59
|
self,
|
|
@@ -203,7 +203,7 @@ class RBLNWhisperForConditionalGeneration(RBLNModel, RBLNWhisperGenerationMixin)
|
|
|
203
203
|
raise NotImplementedError
|
|
204
204
|
|
|
205
205
|
@classmethod
|
|
206
|
-
def
|
|
206
|
+
def wrap_model_if_needed(self, model: "PreTrainedModel", rbln_config: RBLNWhisperForConditionalGenerationConfig):
|
|
207
207
|
return WhisperWrapper(
|
|
208
208
|
model,
|
|
209
209
|
use_attention_mask=rbln_config.use_attention_mask,
|
|
@@ -213,7 +213,7 @@ class RBLNWhisperForConditionalGeneration(RBLNModel, RBLNWhisperGenerationMixin)
|
|
|
213
213
|
@classmethod
|
|
214
214
|
@torch.inference_mode()
|
|
215
215
|
def get_compiled_model(cls, model, rbln_config: RBLNWhisperForConditionalGenerationConfig):
|
|
216
|
-
wrapped_model = cls.
|
|
216
|
+
wrapped_model = cls.wrap_model_if_needed(model, rbln_config)
|
|
217
217
|
|
|
218
218
|
enc_compile_config = rbln_config.compile_cfgs[0]
|
|
219
219
|
dec_compile_config = rbln_config.compile_cfgs[1]
|
|
@@ -12,11 +12,6 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
|
-
from typing import Optional, Union
|
|
16
|
-
|
|
17
|
-
import torch
|
|
18
|
-
from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions, SequenceClassifierOutput
|
|
19
|
-
|
|
20
15
|
from ...modeling_generic import RBLNModelForSequenceClassification, RBLNTransformerEncoderForFeatureExtraction
|
|
21
16
|
|
|
22
17
|
|
|
@@ -25,25 +20,6 @@ class RBLNXLMRobertaModel(RBLNTransformerEncoderForFeatureExtraction):
|
|
|
25
20
|
XLM-RoBERTa base model optimized for RBLN NPU.
|
|
26
21
|
"""
|
|
27
22
|
|
|
28
|
-
def forward(
|
|
29
|
-
self,
|
|
30
|
-
input_ids: Optional[torch.Tensor] = None,
|
|
31
|
-
attention_mask: Optional[torch.Tensor] = None,
|
|
32
|
-
**kwargs,
|
|
33
|
-
) -> Union[BaseModelOutputWithPoolingAndCrossAttentions, tuple]:
|
|
34
|
-
"""
|
|
35
|
-
Forward pass for the RBLN-optimized XLM-RoBERTa base model.
|
|
36
|
-
|
|
37
|
-
Args:
|
|
38
|
-
input_ids (torch.Tensor of shape (batch_size, sequence_length), optional): Indices of input sequence tokens in the vocabulary.
|
|
39
|
-
attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional): Mask to avoid performing attention on padding token indices.
|
|
40
|
-
|
|
41
|
-
Returns:
|
|
42
|
-
The model outputs. If return_dict=False is passed, returns a tuple of tensors. Otherwise, returns a BaseModelOutputWithPoolingAndCrossAttentions object.
|
|
43
|
-
"""
|
|
44
|
-
|
|
45
|
-
return super().forward(input_ids, attention_mask, **kwargs)
|
|
46
|
-
|
|
47
23
|
|
|
48
24
|
class RBLNXLMRobertaForSequenceClassification(RBLNModelForSequenceClassification):
|
|
49
25
|
"""
|
|
@@ -51,22 +27,3 @@ class RBLNXLMRobertaForSequenceClassification(RBLNModelForSequenceClassification
|
|
|
51
27
|
"""
|
|
52
28
|
|
|
53
29
|
rbln_model_input_names = ["input_ids", "attention_mask"]
|
|
54
|
-
|
|
55
|
-
def forward(
|
|
56
|
-
self,
|
|
57
|
-
input_ids: Optional[torch.LongTensor] = None,
|
|
58
|
-
attention_mask: Optional[torch.FloatTensor] = None,
|
|
59
|
-
**kwargs,
|
|
60
|
-
) -> Union[SequenceClassifierOutput, tuple]:
|
|
61
|
-
"""
|
|
62
|
-
Forward pass for the RBLN-optimized XLM-RoBERTa model for sequence classification.
|
|
63
|
-
|
|
64
|
-
Args:
|
|
65
|
-
input_ids (torch.LongTensor of shape (batch_size, sequence_length), optional): Indices of input sequence tokens in the vocabulary.
|
|
66
|
-
attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional): Mask to avoid performing attention on padding token indices.
|
|
67
|
-
|
|
68
|
-
Returns:
|
|
69
|
-
The model outputs. If return_dict=False is passed, returns a tuple of tensors. Otherwise, returns a SequenceClassifierOutput object.
|
|
70
|
-
"""
|
|
71
|
-
|
|
72
|
-
return super().forward(input_ids, attention_mask, **kwargs)
|
|
@@ -123,15 +123,6 @@ class RBLNQuantizationConfig(RBLNSerializableConfigProtocol):
|
|
|
123
123
|
if self.RBLN_QUANT_BITS_ENV in os.environ:
|
|
124
124
|
os.environ.pop(self.RBLN_QUANT_BITS_ENV)
|
|
125
125
|
|
|
126
|
-
@property
|
|
127
|
-
def nbits_per_param(self) -> int:
|
|
128
|
-
if self.weights in ["int4", "fp4"]:
|
|
129
|
-
return 4
|
|
130
|
-
elif self.weights in ["int8", "fp8"]:
|
|
131
|
-
return 8
|
|
132
|
-
else:
|
|
133
|
-
raise ValueError(f"Invalid weights: {self.weights}")
|
|
134
|
-
|
|
135
126
|
|
|
136
127
|
class QuantizedLayerFactory:
|
|
137
128
|
def __init__(self, quantization_config: RBLNQuantizationConfig):
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
import rebel
|
|
4
|
+
|
|
5
|
+
from .logging import get_logger
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
logger = get_logger(__name__)
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def warn_deprecated_npu(npu: Optional[str] = None):
|
|
12
|
+
npu = npu or rebel.get_npu_name()
|
|
13
|
+
if npu == "RBLN-CA02":
|
|
14
|
+
logger.warning_once(
|
|
15
|
+
"Support for the RBLN-CA02 device is provided only up to optimum-rbln v0.8.0 and has reached end of life.",
|
|
16
|
+
)
|
optimum/rbln/utils/hub.py
CHANGED
|
@@ -12,7 +12,6 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
|
-
import json
|
|
16
15
|
from pathlib import Path
|
|
17
16
|
from typing import List, Optional, Union
|
|
18
17
|
|
|
@@ -68,25 +67,15 @@ def validate_files(
|
|
|
68
67
|
location: str,
|
|
69
68
|
):
|
|
70
69
|
"""Validate the presence and count of required files."""
|
|
70
|
+
if len(files) == 0:
|
|
71
|
+
raise FileNotFoundError(f"Could not find any rbln model file in {location}")
|
|
72
|
+
|
|
71
73
|
if len(config_files) == 0:
|
|
72
74
|
raise FileNotFoundError(f"Could not find `rbln_config.json` file in {location}")
|
|
73
75
|
|
|
74
76
|
if len(config_files) > 1:
|
|
75
77
|
raise FileExistsError(f"Multiple rbln_config.json files found in {location}. This is not expected.")
|
|
76
78
|
|
|
77
|
-
try:
|
|
78
|
-
with open(config_files[0], "r") as f:
|
|
79
|
-
config_data = json.load(f)
|
|
80
|
-
compile_cfgs = config_data.get("_compile_cfgs", [])
|
|
81
|
-
if len(compile_cfgs) == 0:
|
|
82
|
-
# If compile_cfgs is empty, we don't need .rbln files
|
|
83
|
-
return
|
|
84
|
-
except (json.JSONDecodeError, KeyError, OSError):
|
|
85
|
-
pass
|
|
86
|
-
|
|
87
|
-
if len(files) == 0:
|
|
88
|
-
raise FileNotFoundError(f"Could not find any rbln model file in {location}")
|
|
89
|
-
|
|
90
79
|
|
|
91
80
|
def _get_huggingface_token(token: Union[bool, str]) -> str:
|
|
92
81
|
if isinstance(token, str):
|
|
@@ -20,38 +20,6 @@ import rebel
|
|
|
20
20
|
import torch
|
|
21
21
|
|
|
22
22
|
|
|
23
|
-
def get_available_dram(npu: Optional[str] = None) -> int:
|
|
24
|
-
"""
|
|
25
|
-
Get the available DRAM size of the specified NPU.
|
|
26
|
-
|
|
27
|
-
Args:
|
|
28
|
-
npu : Optional[str], default=None
|
|
29
|
-
The NPU to get the available DRAM size.
|
|
30
|
-
If None, the function will attempt to retrieve through `ensure_valid_npu()`
|
|
31
|
-
|
|
32
|
-
Returns:
|
|
33
|
-
int
|
|
34
|
-
The available DRAM size in bytes.
|
|
35
|
-
"""
|
|
36
|
-
if npu is None:
|
|
37
|
-
if not rebel.npu_is_available(0):
|
|
38
|
-
raise RuntimeError("No NPU is available to get available DRAM size.")
|
|
39
|
-
|
|
40
|
-
npu = rebel.get_npu_name(0)
|
|
41
|
-
|
|
42
|
-
if npu.startswith("RBLN-CR"):
|
|
43
|
-
# TODO(jongho): Assuming 4 chiplets.
|
|
44
|
-
DRAM_NBYTES = 144 * 2**30
|
|
45
|
-
SYS_DRAM_NBYTES = 4 * 2**30
|
|
46
|
-
elif npu.startswith("RBLN-CA"):
|
|
47
|
-
DRAM_NBYTES = 16 * 2**30
|
|
48
|
-
SYS_DRAM_NBYTES = 288 * 2**20
|
|
49
|
-
else:
|
|
50
|
-
raise ValueError(f"Unknown npu name: {npu}")
|
|
51
|
-
|
|
52
|
-
return DRAM_NBYTES - SYS_DRAM_NBYTES
|
|
53
|
-
|
|
54
|
-
|
|
55
23
|
def normalize_npu(npu: str) -> str:
|
|
56
24
|
"""Normalize the NPU string by removing the form factor."""
|
|
57
25
|
match = re.match(r"(RBLN-CA|RBLN-CR)(\d+)", npu)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: optimum-rbln
|
|
3
|
-
Version: 0.9.
|
|
3
|
+
Version: 0.9.3rc0
|
|
4
4
|
Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
|
|
5
5
|
Project-URL: Homepage, https://rebellions.ai
|
|
6
6
|
Project-URL: Documentation, https://docs.rbln.ai
|
|
@@ -24,7 +24,7 @@ Classifier: Programming Language :: Python :: 3.13
|
|
|
24
24
|
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
25
25
|
Requires-Python: <3.14,>=3.9
|
|
26
26
|
Requires-Dist: accelerate>=1.0.1
|
|
27
|
-
Requires-Dist: diffusers==0.35.
|
|
27
|
+
Requires-Dist: diffusers==0.35.1
|
|
28
28
|
Requires-Dist: packaging>=24.1
|
|
29
29
|
Requires-Dist: torch==2.8.0
|
|
30
30
|
Requires-Dist: torchaudio<=2.8.0
|