optimum-rbln 0.8.1a4__py3-none-any.whl → 0.8.1a6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (37) hide show
  1. optimum/rbln/__init__.py +22 -0
  2. optimum/rbln/__version__.py +2 -2
  3. optimum/rbln/diffusers/__init__.py +21 -1
  4. optimum/rbln/diffusers/configurations/__init__.py +4 -0
  5. optimum/rbln/diffusers/configurations/models/__init__.py +2 -0
  6. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +82 -0
  7. optimum/rbln/diffusers/configurations/models/configuration_cosmos_transformer.py +68 -0
  8. optimum/rbln/diffusers/configurations/pipelines/__init__.py +1 -0
  9. optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +110 -0
  10. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +1 -0
  11. optimum/rbln/diffusers/modeling_diffusers.py +41 -22
  12. optimum/rbln/diffusers/models/__init__.py +4 -0
  13. optimum/rbln/diffusers/models/autoencoders/__init__.py +1 -0
  14. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +209 -0
  15. optimum/rbln/diffusers/models/autoencoders/vae.py +49 -5
  16. optimum/rbln/diffusers/models/controlnet.py +1 -1
  17. optimum/rbln/diffusers/models/transformers/__init__.py +1 -0
  18. optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +321 -0
  19. optimum/rbln/diffusers/pipelines/__init__.py +10 -0
  20. optimum/rbln/diffusers/pipelines/cosmos/__init__.py +17 -0
  21. optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +102 -0
  22. optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +395 -0
  23. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +98 -0
  24. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +98 -0
  25. optimum/rbln/transformers/__init__.py +2 -0
  26. optimum/rbln/transformers/models/__init__.py +8 -0
  27. optimum/rbln/transformers/models/colpali/__init__.py +2 -0
  28. optimum/rbln/transformers/models/colpali/colpali_architecture.py +221 -0
  29. optimum/rbln/transformers/models/colpali/configuration_colpali.py +68 -0
  30. optimum/rbln/transformers/models/colpali/modeling_colpali.py +383 -0
  31. optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +2 -2
  32. optimum/rbln/transformers/models/t5/modeling_t5.py +10 -4
  33. optimum/rbln/utils/runtime_utils.py +3 -0
  34. {optimum_rbln-0.8.1a4.dist-info → optimum_rbln-0.8.1a6.dist-info}/METADATA +4 -4
  35. {optimum_rbln-0.8.1a4.dist-info → optimum_rbln-0.8.1a6.dist-info}/RECORD +37 -23
  36. {optimum_rbln-0.8.1a4.dist-info → optimum_rbln-0.8.1a6.dist-info}/WHEEL +0 -0
  37. {optimum_rbln-0.8.1a4.dist-info → optimum_rbln-0.8.1a6.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,383 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import bisect
16
+ from pathlib import Path
17
+ from typing import TYPE_CHECKING, Any, Optional, Union
18
+
19
+ import torch
20
+ from transformers import (
21
+ PretrainedConfig,
22
+ PreTrainedModel,
23
+ )
24
+ from transformers.modeling_outputs import BaseModelOutputWithPooling
25
+ from transformers.modeling_utils import no_init_weights
26
+ from transformers.models.colpali.modeling_colpali import ColPaliForRetrievalOutput
27
+ from transformers.models.paligemma.modeling_paligemma import PaliGemmaMultiModalProjector
28
+
29
+ from ....configuration_utils import RBLNCompileConfig, RBLNModelConfig
30
+ from ....modeling import RBLNModel
31
+ from .colpali_architecture import RBLNColPaliForRetrievalWrapper
32
+
33
+
34
+ if TYPE_CHECKING:
35
+ from transformers import (
36
+ AutoFeatureExtractor,
37
+ AutoProcessor,
38
+ AutoTokenizer,
39
+ PretrainedConfig,
40
+ )
41
+
42
+
43
+ class LoopVisionTower:
44
+ def __init__(self, vision_tower: RBLNModel) -> None:
45
+ self.vision_tower = vision_tower
46
+
47
+ def forward(self, pixel_values, **kwargs):
48
+ batch_size = pixel_values.shape[0]
49
+ outputs = []
50
+ for i in range(batch_size):
51
+ outputs.append(self.vision_tower(pixel_values[i : i + 1]))
52
+
53
+ last_hidden_states = [output.last_hidden_state for output in outputs]
54
+ last_hidden_states = torch.cat(last_hidden_states, dim=0)
55
+
56
+ return BaseModelOutputWithPooling(
57
+ last_hidden_state=last_hidden_states,
58
+ )
59
+
60
+ def __call__(self, *args: Any, **kwds: Any) -> Any:
61
+ return self.forward(*args, **kwds)
62
+
63
+ def __repr__(self) -> str:
64
+ return repr(self.vision_tower)
65
+
66
+
67
+ class LoopLanguageModel:
68
+ def __init__(self, language_model: RBLNModel, rbln_config: RBLNModelConfig) -> None:
69
+ self.language_model = language_model
70
+ self.rbln_config = rbln_config
71
+
72
+ def prepare_inputs(self, inputs_embeds: torch.Tensor, attention_mask: torch.Tensor):
73
+ input_len = inputs_embeds.shape[1]
74
+ idx = bisect.bisect_left(self.rbln_config.max_seq_lens, input_len)
75
+ if idx == len(self.rbln_config.max_seq_lens):
76
+ raise ValueError(
77
+ f"Required seq_len({input_len}) is larger than available max_seq_lens({self.rbln_config.max_seq_lens})."
78
+ )
79
+ else:
80
+ max_seq_len = self.rbln_config.max_seq_lens[idx]
81
+
82
+ inputs_embed = torch.nn.functional.pad(inputs_embeds, (0, 0, 0, max_seq_len - input_len))
83
+ attn_mask = torch.nn.functional.pad(attention_mask, (0, max_seq_len - input_len)).to(torch.float32)
84
+ position_ids = torch.arange(max_seq_len, dtype=torch.int32).view(1, -1)
85
+
86
+ return inputs_embed, attn_mask, position_ids
87
+
88
+ def forward(self, inputs_embeds: torch.Tensor, attention_mask: torch.Tensor, **kwargs):
89
+ padded_inputs_embed, padded_attn_mask, padded_position_ids = self.prepare_inputs(inputs_embeds, attention_mask)
90
+ input_batch_size = inputs_embeds.shape[0]
91
+ input_seq_len = inputs_embeds.shape[1]
92
+
93
+ all_embeddings = []
94
+ all_hidden_states = []
95
+ for i in range(input_batch_size):
96
+ outputs = self.language_model(
97
+ inputs_embeds=padded_inputs_embed[i : i + 1],
98
+ attention_mask=padded_attn_mask[i : i + 1],
99
+ position_ids=padded_position_ids,
100
+ )
101
+
102
+ if self.rbln_config.output_hidden_states:
103
+ embedding = outputs[0]
104
+ hidden_states = outputs[1:]
105
+ else:
106
+ embedding = outputs
107
+ hidden_states = None
108
+
109
+ all_embeddings.append(embedding)
110
+ all_hidden_states.append(hidden_states)
111
+
112
+ embeddings = torch.cat(all_embeddings, dim=0)[:, :input_seq_len]
113
+ if self.rbln_config.output_hidden_states:
114
+ hidden_states = [
115
+ torch.cat(
116
+ [batch_hidden_states[layer_idx][:, :input_seq_len] for batch_hidden_states in all_hidden_states],
117
+ dim=0,
118
+ )
119
+ for layer_idx in range(len(all_hidden_states[0]))
120
+ ]
121
+ return embeddings, tuple(hidden_states)
122
+ else:
123
+ return embeddings
124
+
125
+ def __call__(self, *args: Any, **kwds: Any) -> Any:
126
+ return self.forward(*args, **kwds)
127
+
128
+ def __repr__(self) -> str:
129
+ return repr(self.language_model)
130
+
131
+
132
+ class RBLNColPaliForRetrieval(RBLNModel):
133
+ """
134
+ The ColPali Model transformer for document retrieval using vision-language models.
135
+ This model inherits from [`RBLNModel`]. Check the superclass documentation for the generic methods the library implements for all its models.
136
+
137
+ A class to convert and run pre-trained transformers based ColPaliForRetrieval model on RBLN devices.
138
+ It implements the methods to convert a pre-trained transformers ColPaliForRetrieval model into a RBLN transformer model by:
139
+
140
+ - transferring the checkpoint weights of the original into an optimized RBLN graph,
141
+ - compiling the resulting graph using the RBLN compiler.
142
+
143
+ **Configuration:**
144
+ This model uses [`RBLNColPaliForRetrievalConfig`] for configuration. When calling methods like `from_pretrained` or `from_model`,
145
+ the `rbln_config` parameter should be an instance of [`RBLNColPaliForRetrievalConfig`] or a dictionary conforming to its structure.
146
+
147
+ See the [`RBLNColPaliForRetrievalConfig`] class for all available configuration options.
148
+
149
+ Examples:
150
+ ```python
151
+ from optimum.rbln import RBLNColPaliForRetrieval
152
+
153
+ # Simple usage using rbln_* arguments
154
+ # `max_seq_lens` is automatically inferred from the model config
155
+ model = RBLNColPaliForRetrieval.from_pretrained(
156
+ "vidore/colpali-v1.3-hf",
157
+ export=True,
158
+ rbln_max_seq_lens=1152,
159
+ )
160
+
161
+ # Using a config dictionary
162
+ rbln_config = {
163
+ "max_seq_lens": 1152,
164
+ "output_hidden_states": False,
165
+ }
166
+ model = RBLNColPaliForRetrieval.from_pretrained(
167
+ "vidore/colpali-v1.3-hf",
168
+ export=True,
169
+ rbln_config=rbln_config
170
+ )
171
+
172
+ # Using a RBLNColPaliForRetrievalConfig instance (recommended for type checking)
173
+ from optimum.rbln import RBLNColPaliForRetrievalConfig
174
+
175
+ config = RBLNColPaliForRetrievalConfig(
176
+ max_seq_lens=1152,
177
+ output_hidden_states=False,
178
+ tensor_parallel_size=4
179
+ )
180
+ model = RBLNColPaliForRetrieval.from_pretrained(
181
+ "vidore/colpali-v1.3-hf",
182
+ export=True,
183
+ rbln_config=config
184
+ )
185
+ ```
186
+ """
187
+
188
+ auto_model_class = None
189
+ _rbln_submodules = [
190
+ {"name": "vision_tower"},
191
+ ]
192
+
193
+ def __post_init__(self, **kwargs):
194
+ self.vision_tower = LoopVisionTower(self.rbln_submodules[0])
195
+ self.language_model = LoopLanguageModel(self.model[0], self.rbln_config)
196
+
197
+ artifacts = torch.load(self.model_save_dir / self.subfolder / "torch_artifacts.pth", weights_only=False)
198
+ self.embed_tokens = self._create_embedding_layer()
199
+ self.embed_tokens.load_state_dict(artifacts["embed_tokens"])
200
+ self.multi_modal_projector = self._create_multi_modal_projector()
201
+ self.multi_modal_projector.load_state_dict(artifacts["multi_modal_projector"])
202
+
203
+ return super().__post_init__(**kwargs)
204
+
205
+ def _create_embedding_layer(self):
206
+ with no_init_weights():
207
+ embed_tokens = torch.nn.Embedding(
208
+ self.config.text_config.vocab_size,
209
+ self.config.text_config.hidden_size,
210
+ self.config.text_config.pad_token_id,
211
+ )
212
+ return embed_tokens
213
+
214
+ def _create_multi_modal_projector(self):
215
+ with no_init_weights():
216
+ multi_modal_projector = PaliGemmaMultiModalProjector(self.config.vlm_config)
217
+ return multi_modal_projector
218
+
219
+ @classmethod
220
+ def wrap_model_if_needed(cls, model: "PreTrainedModel", rbln_config: RBLNModelConfig):
221
+ return RBLNColPaliForRetrievalWrapper(
222
+ causal_lm=model.vlm.language_model,
223
+ embedding_proj_layer=model.embedding_proj_layer,
224
+ max_seq_len=max(rbln_config.max_seq_lens),
225
+ output_hidden_states=rbln_config.output_hidden_states,
226
+ )
227
+
228
+ @classmethod
229
+ def save_torch_artifacts(
230
+ cls,
231
+ model: "PreTrainedModel",
232
+ save_dir_path: Path,
233
+ subfolder: str,
234
+ rbln_config: RBLNModelConfig,
235
+ ):
236
+ save_dict = {}
237
+ save_dict["embed_tokens"] = model.vlm.get_input_embeddings().state_dict()
238
+ save_dict["multi_modal_projector"] = model.vlm.multi_modal_projector.state_dict()
239
+ torch.save(save_dict, save_dir_path / subfolder / "torch_artifacts.pth")
240
+
241
+ @classmethod
242
+ def _update_rbln_config(
243
+ cls,
244
+ preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
245
+ model: Optional["PreTrainedModel"] = None,
246
+ model_config: Optional["PretrainedConfig"] = None,
247
+ rbln_config: Optional[RBLNModelConfig] = None,
248
+ ) -> RBLNModelConfig:
249
+ hidden_size = model_config.vlm_config.text_config.hidden_size
250
+ if rbln_config.max_seq_lens is None:
251
+ rbln_config.max_seq_lens = [model_config.vlm_config.text_config.max_position_embeddings]
252
+ if isinstance(rbln_config.max_seq_lens, int):
253
+ rbln_config.max_seq_lens = [rbln_config.max_seq_lens]
254
+ rbln_config.max_seq_lens = sorted(set(rbln_config.max_seq_lens))
255
+
256
+ if rbln_config.output_hidden_states is None:
257
+ rbln_config.output_hidden_states = model_config.vlm_config.text_config.output_hidden_states
258
+
259
+ input_infos = []
260
+ for max_seq_len in rbln_config.max_seq_lens:
261
+ input_info = [
262
+ ("inputs_embeds", [1, max_seq_len, hidden_size], "float32"),
263
+ ("attention_mask", [1, max_seq_len], "float32"),
264
+ ("position_ids", [1, max_seq_len], "int32"),
265
+ ]
266
+ input_infos.append(input_info)
267
+
268
+ rbln_compile_config = RBLNCompileConfig(input_info=input_infos)
269
+ rbln_config.set_compile_cfgs([rbln_compile_config])
270
+
271
+ return rbln_config
272
+
273
+ @classmethod
274
+ def from_model(cls, model: "PreTrainedModel", *args, **kwargs):
275
+ if not hasattr(model, "vision_tower"):
276
+ model.vision_tower = model.vlm.vision_tower
277
+ del model.vlm.vision_tower
278
+ model = super().from_model(model, *args, **kwargs)
279
+ return model
280
+
281
+ @classmethod
282
+ def get_pytorch_model(cls, *args, **kwargs):
283
+ model = super().get_pytorch_model(*args, **kwargs)
284
+ model.vision_tower = model.vlm.vision_tower
285
+ del model.vlm.vision_tower
286
+
287
+ return model
288
+
289
+ def get_image_features(self, pixel_values: torch.Tensor):
290
+ # Projects the last hidden state from the vision model into language model space.
291
+ # Args:
292
+ # pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
293
+ # The tensors corresponding to the input images.
294
+ # Returns:
295
+ # image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
296
+
297
+ vision_outputs = self.vision_tower(pixel_values).last_hidden_state
298
+ image_features = self.multi_modal_projector(vision_outputs)
299
+ image_features = image_features / (self.config.text_config.hidden_size**0.5)
300
+ return image_features
301
+
302
+ def _preprocess_inputs(
303
+ self,
304
+ input_ids: Optional[torch.LongTensor] = None,
305
+ inputs_embeds: Optional[torch.FloatTensor] = None,
306
+ pixel_values: Optional[torch.FloatTensor] = None,
307
+ **kwargs,
308
+ ):
309
+ if (input_ids is None) ^ (inputs_embeds is not None):
310
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
311
+
312
+ # Replace image id woth PAD if the image token if OOV, to avoid index-errors
313
+ if input_ids is not None and self.config.vlm_config.image_token_index >= self.config.text_config.vocab_size:
314
+ special_image_mask = input_ids == self.config.vlm_config.image_token_index
315
+ llm_input_ids = input_ids.clone()
316
+ llm_input_ids[special_image_mask] = 0
317
+ else:
318
+ llm_input_ids = input_ids
319
+
320
+ if inputs_embeds is None:
321
+ inputs_embeds = self.embed_tokens(llm_input_ids)
322
+
323
+ # Merge text and images
324
+ image_features = None
325
+ if pixel_values is not None:
326
+ image_features = self.get_image_features(pixel_values)
327
+ special_image_mask = (input_ids == self.config.vlm_config.image_token_index).unsqueeze(-1)
328
+ special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
329
+
330
+ image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
331
+ inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
332
+
333
+ return inputs_embeds, image_features
334
+
335
+ def forward(
336
+ self,
337
+ input_ids: Optional[torch.LongTensor] = None,
338
+ inputs_embeds: Optional[torch.FloatTensor] = None,
339
+ pixel_values: Optional[torch.FloatTensor] = None,
340
+ attention_mask: Optional[torch.Tensor] = None,
341
+ output_attentions: Optional[bool] = None,
342
+ output_hidden_states: Optional[bool] = None,
343
+ return_dict: Optional[bool] = None,
344
+ **kwargs,
345
+ ) -> ColPaliForRetrievalOutput:
346
+ if pixel_values is not None:
347
+ pixel_values = pixel_values.to(dtype=self.dtype)
348
+
349
+ if output_attentions:
350
+ raise ValueError("output_attentions is not supported for RBLNColPaliForRetrieval")
351
+
352
+ if output_hidden_states is not None and output_hidden_states != self.rbln_config.output_hidden_states:
353
+ raise ValueError(
354
+ f"Variable output_hidden_states {output_hidden_states} is not equal to rbln_config.output_hidden_states {self.rbln_config.output_hidden_states} "
355
+ f"Please compile again with the correct argument."
356
+ )
357
+
358
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
359
+
360
+ inputs_embeds, image_features = self._preprocess_inputs(
361
+ input_ids=input_ids, inputs_embeds=inputs_embeds, pixel_values=pixel_values
362
+ )
363
+
364
+ # Embedding_proj_layer is fused on the bottom of the language model.
365
+ outputs = self.language_model(inputs_embeds=inputs_embeds, attention_mask=attention_mask)
366
+
367
+ embeddings = outputs if not self.rbln_config.output_hidden_states else outputs[0]
368
+ hidden_states = None if not self.rbln_config.output_hidden_states else outputs[1]
369
+
370
+ # L2 normalization
371
+ embeddings = embeddings / embeddings.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim)
372
+
373
+ if attention_mask is not None:
374
+ embeddings = embeddings * attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim)
375
+
376
+ if not return_dict:
377
+ return (embeddings, hidden_states, image_features)
378
+ else:
379
+ return ColPaliForRetrievalOutput(
380
+ embeddings=embeddings,
381
+ hidden_states=hidden_states,
382
+ image_hidden_states=image_features,
383
+ )
@@ -79,7 +79,7 @@ class Qwen2_5_VLVisionFullAttention(nn.Module):
79
79
  super().__init__()
80
80
  self._origin_model = model
81
81
  self.num_heads = model.num_heads
82
- self.head_dim = model.head_dim
82
+ self.head_dim = getattr(model, "head_dim", model.proj.in_features // model.num_heads)
83
83
  self.qkv = model.qkv
84
84
  self.proj = model.proj
85
85
 
@@ -114,7 +114,7 @@ class Qwen2_5_VLVisionWindowAttention(nn.Module):
114
114
  super().__init__()
115
115
  self._origin_model = model
116
116
  self.num_heads = model.num_heads
117
- self.head_dim = model.head_dim
117
+ self.head_dim = getattr(model, "head_dim", model.proj.in_features // model.num_heads)
118
118
  self.qkv = model.qkv
119
119
  self.proj = model.proj
120
120
  self.window_seq_len = window_seq_len
@@ -17,6 +17,7 @@ from typing import TYPE_CHECKING, Any, Callable
17
17
 
18
18
  import torch
19
19
  from transformers import AutoModelForTextEncoding, T5EncoderModel, T5ForConditionalGeneration
20
+ from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions
20
21
 
21
22
  from ...modeling_generic import RBLNTransformerEncoderForFeatureExtraction
22
23
  from ...models.seq2seq import RBLNModelForSeq2SeqLM
@@ -64,7 +65,7 @@ class RBLNT5EncoderModel(RBLNTransformerEncoderForFeatureExtraction):
64
65
  """
65
66
 
66
67
  auto_model_class = AutoModelForTextEncoding
67
- rbln_model_input_names = ["input_ids", "attention_mask"]
68
+ output_class = BaseModelOutputWithPastAndCrossAttentions
68
69
 
69
70
  @classmethod
70
71
  def wrap_model_if_needed(self, model: "PreTrainedModel", rbln_config: RBLNT5EncoderModelConfig):
@@ -74,11 +75,16 @@ class RBLNT5EncoderModel(RBLNTransformerEncoderForFeatureExtraction):
74
75
  def update_rbln_config_using_pipe(
75
76
  cls, pipe: "RBLNDiffusionMixin", rbln_config: "RBLNDiffusionMixinConfig", submodule_name: str
76
77
  ) -> "RBLNDiffusionMixinConfig":
77
- submodule_config = getattr(rbln_config, submodule_name)
78
- submodule_config.max_seq_len = rbln_config.max_seq_len or 256
79
- submodule_config.model_input_names = ["input_ids"]
80
78
  return rbln_config
81
79
 
80
+ def forward(self, input_ids=None, attention_mask=None, **kwargs):
81
+ input_dict = {"input_ids": input_ids.long()}
82
+ if attention_mask is not None:
83
+ input_dict["attention_mask"] = attention_mask.long()
84
+
85
+ output = super().forward(**input_dict, **kwargs)
86
+ return output
87
+
82
88
 
83
89
  class RBLNT5ForConditionalGeneration(RBLNModelForSeq2SeqLM):
84
90
  """
@@ -43,6 +43,9 @@ class RBLNPytorchRuntime:
43
43
  def __repr__(self) -> str:
44
44
  return repr(self.runtime)
45
45
 
46
+ def parameters(self):
47
+ yield torch.tensor([1.0], dtype=torch.float32, device=torch.device("cpu"))
48
+
46
49
 
47
50
  class UnavailableRuntime:
48
51
  """
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: optimum-rbln
3
- Version: 0.8.1a4
3
+ Version: 0.8.1a6
4
4
  Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
5
5
  Project-URL: Homepage, https://rebellions.ai
6
6
  Project-URL: Documentation, https://docs.rbln.ai
@@ -25,9 +25,9 @@ Requires-Python: <3.13,>=3.9
25
25
  Requires-Dist: accelerate>=1.0.1
26
26
  Requires-Dist: diffusers==0.34.0
27
27
  Requires-Dist: packaging>=24.1
28
- Requires-Dist: torch==2.6.0
29
- Requires-Dist: torchaudio<=2.6.0
30
- Requires-Dist: torchvision<=0.21.0
28
+ Requires-Dist: torch==2.7.0
29
+ Requires-Dist: torchaudio<=2.7.0
30
+ Requires-Dist: torchvision<=0.22.0
31
31
  Requires-Dist: transformers==4.51.3
32
32
  Description-Content-Type: text/markdown
33
33
 
@@ -1,42 +1,52 @@
1
- optimum/rbln/__init__.py,sha256=qJJTumXhoFnawXGpeGJbAm4J4A9FFwD1SQ2MqcKDXoM,14436
2
- optimum/rbln/__version__.py,sha256=hdBV0MOKkAsGp6FVqyauDmHCC6gC0y_cyykn1_s49sg,519
1
+ optimum/rbln/__init__.py,sha256=MZCYmY4Y_Zfk0TGo3xK52osHDLZHz4cSdduXZt6RfSI,15316
2
+ optimum/rbln/__version__.py,sha256=eSvwBarNUZxC-xtDA3baJ04Swhx3b8yoQ_vvkfSuClA,519
3
3
  optimum/rbln/configuration_utils.py,sha256=o5oer7fBdE-MHLGNXoP35FjmuQbMmjEIDv0QE_k3kpo,32336
4
4
  optimum/rbln/modeling.py,sha256=ZlJ_tOCWiFjDIlwJ_B_HOCO0kBduWrBAbW9VSEVIAFg,12088
5
5
  optimum/rbln/modeling_base.py,sha256=5fUb1FaxfjApzJIkT8-SrPhuygGo_1Uc0i7UedawOeE,23393
6
- optimum/rbln/diffusers/__init__.py,sha256=XL6oKPHbPCV6IVCw3fu0-M9mD2KO_x6unx5kJdAtpVY,6180
7
- optimum/rbln/diffusers/modeling_diffusers.py,sha256=imodzf_GBCTIdY8bqb9ylzhyV1nt_t8j8-f4F1tKQqo,18777
8
- optimum/rbln/diffusers/configurations/__init__.py,sha256=Sk_sQVTuTl01RVgYViWknQSLmulxKaISS0w-oPdNoBQ,1164
9
- optimum/rbln/diffusers/configurations/models/__init__.py,sha256=P3vif5I4wYeol50jzHCZ1ttujuEFZSYJPzUdSF6_jsU,407
6
+ optimum/rbln/diffusers/__init__.py,sha256=_3FoA0uxCdFd6YK9PMaptFmR9XvdB_PcvYR1MkbGpN8,6957
7
+ optimum/rbln/diffusers/modeling_diffusers.py,sha256=oWNgeh9S1W-GqAaiDK6ZgD1ys2MkZbsehdIxPbdZkmQ,19842
8
+ optimum/rbln/diffusers/configurations/__init__.py,sha256=vMRnPY4s-Uju43xP038D2EA18X_mhy2YfsZVpSU-VoA,1322
9
+ optimum/rbln/diffusers/configurations/models/__init__.py,sha256=-4oanQrr9IVznY-ly9ivEnR_zFlfMxzLV6ixLH6TT3w,567
10
10
  optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py,sha256=ySetuNq6koleFIZ542zZLTzEEyl_CTul9l12ufWlQ_Y,3218
11
+ optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py,sha256=brjtidoogeCc4fYuJ7GxWkJylSu_QGPwJT8l_FQldBI,4060
11
12
  optimum/rbln/diffusers/configurations/models/configuration_controlnet.py,sha256=VDO_YFS_QhcHhuRIXQL53JZXEO27yoKHtecq5hd2la8,2637
13
+ optimum/rbln/diffusers/configurations/models/configuration_cosmos_transformer.py,sha256=MnRjn6yI7ST6QFU2MsZqdE2I_FE6vJOOWw4FTTi3KHo,3033
12
14
  optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py,sha256=vE8RsXc27Z4-9k0KEM_vP7AWd5UUYvDgfX1g6nUrPp4,2224
13
15
  optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py,sha256=TAwHUyVy_9HSEZdXIuFCtrBfNIuYIedklJaCut5wEys,2412
14
16
  optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py,sha256=mxcbrOqLMnPpP-jnjSeRWPj2zwPMsgeQSq6LzhG2btA,3630
15
17
  optimum/rbln/diffusers/configurations/models/configuration_vq_model.py,sha256=dslGcfCZL_hNeVyjV-4FnCT1POmXuiaLbr6NcQSKgHg,3259
16
- optimum/rbln/diffusers/configurations/pipelines/__init__.py,sha256=HJlu5lRZJWy4nYjBw3-ed93Pfb5QQmUbCJZKDW1bGH4,1160
18
+ optimum/rbln/diffusers/configurations/pipelines/__init__.py,sha256=RfJXQiYvgGc3Rp7JYk5s0AQd0XB5JCAb37_riGWQAYg,1268
17
19
  optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py,sha256=odA7UGzAb4bZcey3PeUB0-Z6bLkgCIv_i_eshMUa76A,14298
20
+ optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py,sha256=iECUFpM453j3QX54v-idh-_wi1_GfMvtiaawfUOUxl4,4485
18
21
  optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py,sha256=PxF5hELuJ4vERzFX-OLT5fPV0MFaD6Ocw7TApbI6dYE,16460
19
22
  optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py,sha256=IB5Qm7XoTsJ70st3VjuaUqI1OIaA5PGP73JcV7wDznc,6663
20
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py,sha256=5pDsxol2tm9hYs8u6_6713VwHxCo-iNhAK5G4JVwNwU,7952
23
+ optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py,sha256=7L-x8nivIifFDi81TDaojAijYVME68gfe32r5-9qdDY,7997
21
24
  optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py,sha256=zg7aRyp8jYJuAnb_dTg6HdACCcAvhv1jX2FhEfRD6V0,7114
22
- optimum/rbln/diffusers/models/__init__.py,sha256=mkCvJyH1KcwrsUvYSq_bVC79oOfyqtBSFDyPS1_48wA,1478
23
- optimum/rbln/diffusers/models/controlnet.py,sha256=yKPQTO2jwb9VRMagiqzEXMAwJfcyAnfqMD7Lc8AOsr8,10573
24
- optimum/rbln/diffusers/models/autoencoders/__init__.py,sha256=dg17ZTUsiqTcbIaEE4fqew9uRbao0diQ21PXvRKIqKg,679
25
+ optimum/rbln/diffusers/models/__init__.py,sha256=TgrKGOPDJyEtDLiF22L1q1M8tCal4D9wBcrAtE5Zs5Y,1624
26
+ optimum/rbln/diffusers/models/controlnet.py,sha256=6owledPe9BXhbZOG8lbuuYvpBU0UrQV7zmat6SoMXOM,10585
27
+ optimum/rbln/diffusers/models/autoencoders/__init__.py,sha256=kpINW4bWwy-Q2doPME4nZ8gXRmkK2DRv2kDdbZuQ3m8,738
25
28
  optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py,sha256=UwaYFHXKRJTzJDmfYMC7-xvaWTh7JUDQYD3bRiQs4ZA,8367
26
- optimum/rbln/diffusers/models/autoencoders/vae.py,sha256=ja9yLhPYGmg1d3Kec6fS-6XgfS0yVJXuVsNDD0X3yHM,4048
29
+ optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py,sha256=jazjvHD2ApEZajH0WNMSzAv3ebtmDPKFVh3qR50vaeo,8316
30
+ optimum/rbln/diffusers/models/autoencoders/vae.py,sha256=ZX6XH9eZxexSSN8sSKFDcvEK9mMuEQNyoalSpOOqQrE,5419
27
31
  optimum/rbln/diffusers/models/autoencoders/vq_model.py,sha256=QYbRbnVy4id_P70nIW9wIFeHCP7ITCA3rqNzV1DpdV0,6572
28
- optimum/rbln/diffusers/models/transformers/__init__.py,sha256=V8rSR7WzHs-i8Cwb_MNxhY2NFbwPgxu24vGtkwl-6tk,706
32
+ optimum/rbln/diffusers/models/transformers/__init__.py,sha256=3oTqAOok-dUR2KealC41CKt36dpKq3IT4kabmHkrCpg,767
29
33
  optimum/rbln/diffusers/models/transformers/prior_transformer.py,sha256=SWoeVK--BRMwuXVABNVtonmzJDusx0iz4Q3EAvJ9uN8,5395
34
+ optimum/rbln/diffusers/models/transformers/transformer_cosmos.py,sha256=_YwjOqIGluIt-Nvax8_YJb7BtyZcSf9OAJoYSZsVB2I,12704
30
35
  optimum/rbln/diffusers/models/transformers/transformer_sd3.py,sha256=yF7sS0QvawowpV9hR5GeT8DaE8CCp3mj1njHHd9cKTc,6630
31
36
  optimum/rbln/diffusers/models/unets/__init__.py,sha256=MaICuK9CWjgzejXy8y2NDrphuEq1rkzanF8u45k6O5I,655
32
37
  optimum/rbln/diffusers/models/unets/unet_2d_condition.py,sha256=v3WS9EGKROE_QClXrxC7rmRko1BspAvAbeIfh83LK88,15832
33
- optimum/rbln/diffusers/pipelines/__init__.py,sha256=5KLZ5LrpMzBya2e_3_PvEoPwG24U8JMexfw_ygZREKc,3140
38
+ optimum/rbln/diffusers/pipelines/__init__.py,sha256=n41EZwEw23tVpe_cgDnuflST1lPiX1y8XQ-3ktTqBIo,3425
34
39
  optimum/rbln/diffusers/pipelines/controlnet/__init__.py,sha256=n1Ef22TSeax-kENi_d8K6wGGHSNEo9QkUeygELHgcao,983
35
40
  optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py,sha256=3S9dogIHW8Bqg5kIlCudhCQG-4g3FcdOPEWhBOf7CJA,4059
36
41
  optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py,sha256=G96bh4D9Cu-w4F9gZBQF6wNzhJQv9kvI34ZFsuEDjSw,35714
37
42
  optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py,sha256=deGtaqgNumcvCKzKoHZrS-3UZxxWBP0ESizdfvCJlBE,34186
38
43
  optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py,sha256=2w6dmGQuBWqVoocn27z2yMkG7fL7_MVDBcQNJPJsRXU,45300
39
44
  optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py,sha256=HX56itORMqXLjZcwv25C-_z3JyZn3v6BpfIjsrDO3mE,46640
45
+ optimum/rbln/diffusers/pipelines/cosmos/__init__.py,sha256=h2j6S8IJPVHeNU8qmW9vyXMgHBw0d7kQcuMAA5YoHPU,795
46
+ optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py,sha256=kDVnUBBGdumpDj2DaOpo5MSsFvlFIGY6BU1LZaFVqao,3327
47
+ optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py,sha256=aFKYqaQJtFMULMRQXRMmKnSW3v6gUXKz6cJDbf0kNFs,15100
48
+ optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py,sha256=m1RQr5C1G5GUI1bXI7BvZN_WWl75LvYFyC2ApoEaUAI,3910
49
+ optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py,sha256=icJXQbzCZygDuDs_PDJtq7qQr9uX3q-ljJOT6sXB8JQ,3917
40
50
  optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py,sha256=I4YQq2HfA3xONbWsdJ870IEJPyLWeCDDG-UCJsu9YO8,1035
41
51
  optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py,sha256=2vgZZt0JrZlbHbUlBHrT0zKvYhuX1a4vwy3mxTPHisM,1335
42
52
  optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py,sha256=cuN7w5LsnkSy0WUaCBPxVmYOJiBMihdh-KM7iV0tHL0,8149
@@ -61,11 +71,11 @@ optimum/rbln/ops/flash_attn.py,sha256=z39DJZSk94630ueoOCkiybxR5gzvNR-SRADHs0F6pz
61
71
  optimum/rbln/ops/kv_cache_update.py,sha256=HjnHBR-oFrJQibsVnkYb0P5_-wEma8jl0mkjkylwakU,1270
62
72
  optimum/rbln/ops/linear.py,sha256=1_7Hg-9wXxhu97fqPobotLQx17k7VPeSSL91_9Z7EDg,1018
63
73
  optimum/rbln/ops/sliding_window_attn.py,sha256=EQrV_yRGc5z6kvwEsAcLP028bJWkQg2UPI3xubt9skU,3487
64
- optimum/rbln/transformers/__init__.py,sha256=fE-kzDnWj0ueAG-xDrIKdBX59wCE__8m86uBMBOEb9g,9031
74
+ optimum/rbln/transformers/__init__.py,sha256=MF7OaGf-KI9rz4EOzejxHTDYUB3RO2L02BquTe0PXmI,9107
65
75
  optimum/rbln/transformers/configuration_generic.py,sha256=kNhPWtzF0IovUnrsXfxXdXITqgpfCAAedjfB6jSAhEg,5131
66
76
  optimum/rbln/transformers/modeling_generic.py,sha256=u1JzjWcPsQgH_rqBzRVr582NARqOk7XVKgY4CdEfXe8,12228
67
77
  optimum/rbln/transformers/modeling_rope_utils.py,sha256=6Zg3r-TeUk4WQAlr95pqfhuoAD_RQ4njT1rbO9uPL0Q,14379
68
- optimum/rbln/transformers/models/__init__.py,sha256=-rc_00p4d58cdM2ylmgURxoAGKgIRF7X7r6z1w6h3mo,10061
78
+ optimum/rbln/transformers/models/__init__.py,sha256=VVQJgpUUnN4MPAQlOsxsw63w7WPK05ggFfRkGYuZFJQ,10266
69
79
  optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py,sha256=I2vL4lrzbT5p4eJcH-EKHzEfcPkj_XVsie7jb9q6yic,775
70
80
  optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py,sha256=z7LJiVJPmnlCM3mcyhPJP8AufSrxO_dsPeJ51onq-Nc,833
71
81
  optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py,sha256=FIKEVWpIt6-JQX9B_rAfCrAPqdUHtR2i8D_X2k7639E,1498
@@ -85,6 +95,10 @@ optimum/rbln/transformers/models/blip_2/modeling_blip_2.py,sha256=gx9pPXQfaIjDUN
85
95
  optimum/rbln/transformers/models/clip/__init__.py,sha256=TLeXDqcFK6M6v9x7Xr64kBbqGu3hFHM7p754dQ8UVQc,938
86
96
  optimum/rbln/transformers/models/clip/configuration_clip.py,sha256=mgtR_lS1_g5vAh_wWarff3-pwM_tzzRAWm7XkfhGwmo,3019
87
97
  optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=0u1JTlO47qoH_-qxWGvXLc67whddLzcuLoMB5KaMh94,7285
98
+ optimum/rbln/transformers/models/colpali/__init__.py,sha256=n3rueXT_oC0N8myoZiic0YkVK24CW5hZBPa-0L8so6Y,119
99
+ optimum/rbln/transformers/models/colpali/colpali_architecture.py,sha256=bWG7TehWRZkTh2y6mGkpd85_onWAyiyKdaQC9TFsy3E,8065
100
+ optimum/rbln/transformers/models/colpali/configuration_colpali.py,sha256=yPzLYON6qRJlBkzxFfIBzBWd2KjYWvdClO4iAqd_V7E,2609
101
+ optimum/rbln/transformers/models/colpali/modeling_colpali.py,sha256=jzvJCBrrCXSpjfmJ3O-VvPNFGWGaNbpOV09JwLPAZWs,15757
88
102
  optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=vQYZDDdoddwA7yKc5zzrq2Zs9sax-0p8rNF_aYfF4bk,1006
89
103
  optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py,sha256=cakn8RGo8gS3nmXdEqOfC2xUBOMGInROgLEbCOoLFR0,13398
90
104
  optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=YAn8J_lIq4IS-HM_gbi5Qov8_osxhWtBr5z_28QRbGM,49667
@@ -144,7 +158,7 @@ optimum/rbln/transformers/models/qwen2/qwen2_architecture.py,sha256=XlNAMYAcDLoh
144
158
  optimum/rbln/transformers/models/qwen2_5_vl/__init__.py,sha256=rAW3DKQUzGL6EMwa5r1iLu94yhpiZpk6zfoD7TtYXrc,865
145
159
  optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py,sha256=U3ngIfkA58itqQZqTf-gbISMPoV7ipDttI7V2uwK_18,4155
146
160
  optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py,sha256=Q4U-avMkby-CunNXEERqvRZx9duC5i-6UmfF1376ciU,26336
147
- optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py,sha256=PAQz__9o_f5phlozhhXAB8JErBlS1jc4FYZkZkSYJuI,7312
161
+ optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py,sha256=oU4MyNeDHzqD3dl1DgwrMev07yvMFhl_hXvV6tRdXCo,7422
148
162
  optimum/rbln/transformers/models/resnet/__init__.py,sha256=0QqtEQF1IMYgEmmfXMGarCDS8kJB5tzODfwTEzDVZRg,837
149
163
  optimum/rbln/transformers/models/resnet/configuration_resnet.py,sha256=KQd887jgNOl_Am3b407P2OvKtzkkeBS1cEhCfiN0tJg,769
150
164
  optimum/rbln/transformers/models/resnet/modeling_resnet.py,sha256=E8vg3Rw_KsHt6vaOg0ungZD7sXe0T4OMP0X8NFG1EXI,816
@@ -160,7 +174,7 @@ optimum/rbln/transformers/models/siglip/configuration_siglip.py,sha256=fXL4g985o
160
174
  optimum/rbln/transformers/models/siglip/modeling_siglip.py,sha256=se74bZTSTjqcV5UoBowSHVUTrE6CapoEcqgzqMs7Q9Y,7827
161
175
  optimum/rbln/transformers/models/t5/__init__.py,sha256=R1Q8Z1vaIdx4rDjeCmm_ZMSgewWaqaI0l93AHwewtew,818
162
176
  optimum/rbln/transformers/models/t5/configuration_t5.py,sha256=cOa2NAAocNSSECTtLpOsVVLfn4-7l7K7jz3nf6CSNCs,912
163
- optimum/rbln/transformers/models/t5/modeling_t5.py,sha256=SasIteIdpM-7TG6iPiRVlchd_3jaG7phFvdQJ_3VXjo,4924
177
+ optimum/rbln/transformers/models/t5/modeling_t5.py,sha256=pdAWBLVknTzbma0Ij-VQ2Qve-frPjxL-AwMyU-zouPY,5123
164
178
  optimum/rbln/transformers/models/t5/t5_architecture.py,sha256=X_9X4QRhkiiMrwFHv3mzER3yGmF9oQ2U-HdH6jbwVmw,9824
165
179
  optimum/rbln/transformers/models/time_series_transformer/__init__.py,sha256=xJaFWQawlwtv4H5tVFcY1pxLYzjHtMAlLq6nXysdkN8,1243
166
180
  optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py,sha256=FCzESVMNtpJ4Me-Vxr4i-naUfiR3S7YXWH_szLuoYeA,1390
@@ -188,10 +202,10 @@ optimum/rbln/utils/hub.py,sha256=Z_R9Ic9VAew8bUmlaAlxZf5JGMDBivHvvFRI557pILY,419
188
202
  optimum/rbln/utils/import_utils.py,sha256=fpOERIIxXm-cDYGn1NN6c7aWDPQYVitPQW2MiyZ9NEY,5471
189
203
  optimum/rbln/utils/logging.py,sha256=VKKBmlQSdg6iZCGmAXaWYiW67K84jyp1QJhLQSSjPPE,3453
190
204
  optimum/rbln/utils/model_utils.py,sha256=4k5879Kh75m3x_vS4-qOGfqsOiAvc2kdNFFfvsFvz3k,1748
191
- optimum/rbln/utils/runtime_utils.py,sha256=LoKNK3AQNV_BSScstIZWjICkJf265MnUgy360BOocVI,5454
205
+ optimum/rbln/utils/runtime_utils.py,sha256=kTcDSNGOMFifRclVrNtMXqEUJxcoUmvEBYFvl1fORWo,5564
192
206
  optimum/rbln/utils/save_utils.py,sha256=hG5uOtYmecSXZuGTvCXsTM-SiyZpr5q3InUGCCq_jzQ,3619
193
207
  optimum/rbln/utils/submodule.py,sha256=w5mgPgncI740gVKMu3S-69DGNdUSI0bTZxegQGcZ98Y,5011
194
- optimum_rbln-0.8.1a4.dist-info/METADATA,sha256=jo7yVVPhX8QJJK0WE1x2ReG_VbuNiyhAkAPj9Um90A8,5299
195
- optimum_rbln-0.8.1a4.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
196
- optimum_rbln-0.8.1a4.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
197
- optimum_rbln-0.8.1a4.dist-info/RECORD,,
208
+ optimum_rbln-0.8.1a6.dist-info/METADATA,sha256=d5MR8fiDCLMklaKLRimUqEnqA520uVvxqKxA3fsrWIU,5299
209
+ optimum_rbln-0.8.1a6.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
210
+ optimum_rbln-0.8.1a6.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
211
+ optimum_rbln-0.8.1a6.dist-info/RECORD,,