optimum-rbln 0.8.1a4__py3-none-any.whl → 0.8.1a6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +22 -0
- optimum/rbln/__version__.py +2 -2
- optimum/rbln/diffusers/__init__.py +21 -1
- optimum/rbln/diffusers/configurations/__init__.py +4 -0
- optimum/rbln/diffusers/configurations/models/__init__.py +2 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +82 -0
- optimum/rbln/diffusers/configurations/models/configuration_cosmos_transformer.py +68 -0
- optimum/rbln/diffusers/configurations/pipelines/__init__.py +1 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +110 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +1 -0
- optimum/rbln/diffusers/modeling_diffusers.py +41 -22
- optimum/rbln/diffusers/models/__init__.py +4 -0
- optimum/rbln/diffusers/models/autoencoders/__init__.py +1 -0
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +209 -0
- optimum/rbln/diffusers/models/autoencoders/vae.py +49 -5
- optimum/rbln/diffusers/models/controlnet.py +1 -1
- optimum/rbln/diffusers/models/transformers/__init__.py +1 -0
- optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +321 -0
- optimum/rbln/diffusers/pipelines/__init__.py +10 -0
- optimum/rbln/diffusers/pipelines/cosmos/__init__.py +17 -0
- optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +102 -0
- optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +395 -0
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +98 -0
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +98 -0
- optimum/rbln/transformers/__init__.py +2 -0
- optimum/rbln/transformers/models/__init__.py +8 -0
- optimum/rbln/transformers/models/colpali/__init__.py +2 -0
- optimum/rbln/transformers/models/colpali/colpali_architecture.py +221 -0
- optimum/rbln/transformers/models/colpali/configuration_colpali.py +68 -0
- optimum/rbln/transformers/models/colpali/modeling_colpali.py +383 -0
- optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +2 -2
- optimum/rbln/transformers/models/t5/modeling_t5.py +10 -4
- optimum/rbln/utils/runtime_utils.py +3 -0
- {optimum_rbln-0.8.1a4.dist-info → optimum_rbln-0.8.1a6.dist-info}/METADATA +4 -4
- {optimum_rbln-0.8.1a4.dist-info → optimum_rbln-0.8.1a6.dist-info}/RECORD +37 -23
- {optimum_rbln-0.8.1a4.dist-info → optimum_rbln-0.8.1a6.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.8.1a4.dist-info → optimum_rbln-0.8.1a6.dist-info}/licenses/LICENSE +0 -0
@@ -50,6 +50,8 @@ _import_structure = {
|
|
50
50
|
"RBLNBlip2QFormerModelConfig",
|
51
51
|
"RBLNBlip2VisionModel",
|
52
52
|
"RBLNBlip2VisionModelConfig",
|
53
|
+
"RBLNColPaliForRetrieval",
|
54
|
+
"RBLNColPaliForRetrievalConfig",
|
53
55
|
"RBLNCLIPTextModel",
|
54
56
|
"RBLNCLIPTextModelConfig",
|
55
57
|
"RBLNCLIPTextModelWithProjection",
|
@@ -69,6 +69,10 @@ _import_structure = {
|
|
69
69
|
"RBLNCLIPVisionModelWithProjection",
|
70
70
|
"RBLNCLIPVisionModelWithProjectionConfig",
|
71
71
|
],
|
72
|
+
"colpali": [
|
73
|
+
"RBLNColPaliForRetrieval",
|
74
|
+
"RBLNColPaliForRetrievalConfig",
|
75
|
+
],
|
72
76
|
"distilbert": [
|
73
77
|
"RBLNDistilBertForQuestionAnswering",
|
74
78
|
"RBLNDistilBertForQuestionAnsweringConfig",
|
@@ -193,6 +197,10 @@ if TYPE_CHECKING:
|
|
193
197
|
RBLNCLIPVisionModelWithProjection,
|
194
198
|
RBLNCLIPVisionModelWithProjectionConfig,
|
195
199
|
)
|
200
|
+
from .colpali import (
|
201
|
+
RBLNColPaliForRetrieval,
|
202
|
+
RBLNColPaliForRetrievalConfig,
|
203
|
+
)
|
196
204
|
from .decoderonly import (
|
197
205
|
RBLNDecoderOnlyModelForCausalLM,
|
198
206
|
RBLNDecoderOnlyModelForCausalLMConfig,
|
@@ -0,0 +1,221 @@
|
|
1
|
+
from typing import List, Optional, Tuple, Union
|
2
|
+
|
3
|
+
import torch
|
4
|
+
from torch import nn
|
5
|
+
from transformers import GemmaForCausalLM, GemmaModel
|
6
|
+
|
7
|
+
from ..decoderonly.decoderonly_architecture import (
|
8
|
+
RotaryEmbedding,
|
9
|
+
apply_rotary_pos_emb,
|
10
|
+
)
|
11
|
+
|
12
|
+
|
13
|
+
def slice_and_unsqueeze_cos_sin(cos, sin, position_ids):
|
14
|
+
"""Slice cos[cache_position], sin[cache_position] vector for the query."""
|
15
|
+
cos = cos[position_ids[0]][None, None, None, :, :]
|
16
|
+
sin = sin[position_ids[0]][None, None, None, :, :]
|
17
|
+
|
18
|
+
return cos, sin
|
19
|
+
|
20
|
+
|
21
|
+
class RBLNColPaliForRetrievalWrapper(nn.Module):
|
22
|
+
def __init__(
|
23
|
+
self,
|
24
|
+
causal_lm: GemmaForCausalLM,
|
25
|
+
embedding_proj_layer: nn.Module,
|
26
|
+
max_seq_len: int,
|
27
|
+
output_hidden_states: bool = False,
|
28
|
+
):
|
29
|
+
super().__init__()
|
30
|
+
self.text_config = causal_lm.config
|
31
|
+
self.rotary_emb = self.get_rotary_emb(max_seq_len=max_seq_len)
|
32
|
+
|
33
|
+
self.output_hidden_states = output_hidden_states
|
34
|
+
self.language_model = self.convert_to_rbln_language_model(causal_lm.model, max_seq_len)
|
35
|
+
|
36
|
+
self.num_hidden_layers = getattr(self.text_config, "num_hidden_layers", None)
|
37
|
+
self.embedding_proj_layer = embedding_proj_layer
|
38
|
+
|
39
|
+
def get_rotary_emb(self, max_seq_len):
|
40
|
+
return RotaryEmbedding(config=self.text_config, max_seq_len_cached=max_seq_len)
|
41
|
+
|
42
|
+
def convert_to_rbln_language_model(self, gemma_model: GemmaModel, max_seq_len: int):
|
43
|
+
new_layers = []
|
44
|
+
for layer in gemma_model.layers:
|
45
|
+
new_self_attn = ColPaliAttention(
|
46
|
+
layer.self_attn,
|
47
|
+
)
|
48
|
+
new_layer = ColPaliLayer(layer, new_self_attn)
|
49
|
+
new_layers.append(new_layer)
|
50
|
+
|
51
|
+
new_model = ColPaliModel(
|
52
|
+
gemma_model,
|
53
|
+
new_layers,
|
54
|
+
output_hidden_states=self.output_hidden_states,
|
55
|
+
max_seq_len=max_seq_len,
|
56
|
+
)
|
57
|
+
|
58
|
+
return new_model
|
59
|
+
|
60
|
+
def forward(self, inputs_embeds: torch.Tensor, attention_mask: torch.Tensor, position_ids: torch.Tensor):
|
61
|
+
attention_mask = (1.0 - attention_mask) * torch.finfo(torch.float32).min
|
62
|
+
attention_mask = attention_mask[:, None, None, None, :]
|
63
|
+
|
64
|
+
hidden_states, all_hidden_states = self.language_model(
|
65
|
+
inputs_embeds=inputs_embeds,
|
66
|
+
attention_mask=attention_mask,
|
67
|
+
rotary_emb=self.rotary_emb,
|
68
|
+
position_ids=position_ids,
|
69
|
+
)
|
70
|
+
embeddings = self.embedding_proj_layer(hidden_states)
|
71
|
+
|
72
|
+
if self.output_hidden_states:
|
73
|
+
return embeddings, all_hidden_states
|
74
|
+
else:
|
75
|
+
return embeddings
|
76
|
+
|
77
|
+
|
78
|
+
class ColPaliModel(nn.Module):
|
79
|
+
def __init__(
|
80
|
+
self, model, layers: List["ColPaliLayer"], output_hidden_states: bool = False, max_seq_len: int = 2048
|
81
|
+
):
|
82
|
+
super().__init__()
|
83
|
+
self._original_mod = model
|
84
|
+
self.layers = nn.ModuleList(layers)
|
85
|
+
self.output_hidden_states = output_hidden_states
|
86
|
+
self.norm = self._original_mod.norm
|
87
|
+
self.hidden_size = self._original_mod.config.hidden_size
|
88
|
+
self.max_seq_len = max_seq_len
|
89
|
+
|
90
|
+
def forward(
|
91
|
+
self,
|
92
|
+
inputs_embeds: Optional[torch.Tensor] = None,
|
93
|
+
attention_mask: torch.Tensor = None,
|
94
|
+
rotary_emb: Optional[Union[nn.Module, torch.Tensor]] = None,
|
95
|
+
position_ids: Optional[torch.Tensor] = None,
|
96
|
+
):
|
97
|
+
hidden_states = inputs_embeds * self.hidden_size**0.5
|
98
|
+
|
99
|
+
cos, sin = rotary_emb(hidden_states, self.max_seq_len) # dtype carrier, max_seq_len
|
100
|
+
cos, sin = slice_and_unsqueeze_cos_sin(cos, sin, position_ids)
|
101
|
+
|
102
|
+
all_hidden_states = () if self.output_hidden_states else None
|
103
|
+
for layer in self.layers:
|
104
|
+
if self.output_hidden_states:
|
105
|
+
all_hidden_states += (hidden_states,)
|
106
|
+
|
107
|
+
hidden_states = layer(
|
108
|
+
hidden_states=hidden_states,
|
109
|
+
attention_mask=attention_mask,
|
110
|
+
cos=cos,
|
111
|
+
sin=sin,
|
112
|
+
)
|
113
|
+
hidden_states = self.norm(hidden_states)
|
114
|
+
|
115
|
+
if self.output_hidden_states:
|
116
|
+
all_hidden_states += (hidden_states,)
|
117
|
+
|
118
|
+
return hidden_states, all_hidden_states
|
119
|
+
|
120
|
+
|
121
|
+
class ColPaliLayer(nn.Module):
|
122
|
+
def __init__(self, layer, self_attn: "ColPaliAttention"):
|
123
|
+
super().__init__()
|
124
|
+
self._original_mod = layer
|
125
|
+
self.self_attn = self_attn
|
126
|
+
self.mlp = layer.mlp
|
127
|
+
self.input_layernorm = layer.input_layernorm
|
128
|
+
self.post_attention_layernorm = layer.post_attention_layernorm
|
129
|
+
|
130
|
+
def forward(
|
131
|
+
self,
|
132
|
+
hidden_states: torch.Tensor,
|
133
|
+
attention_mask: Optional[torch.Tensor] = None,
|
134
|
+
cos: Optional[torch.Tensor] = None,
|
135
|
+
sin: Optional[torch.Tensor] = None,
|
136
|
+
) -> Tuple[torch.FloatTensor]:
|
137
|
+
residual = hidden_states
|
138
|
+
hidden_states = self.input_layernorm(hidden_states)
|
139
|
+
|
140
|
+
# Self Attention
|
141
|
+
hidden_states = self.self_attn(
|
142
|
+
hidden_states=hidden_states,
|
143
|
+
attention_mask=attention_mask,
|
144
|
+
cos=cos,
|
145
|
+
sin=sin,
|
146
|
+
)
|
147
|
+
hidden_states = residual + hidden_states
|
148
|
+
|
149
|
+
# Fully Connected
|
150
|
+
residual = hidden_states
|
151
|
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
152
|
+
hidden_states = self.mlp(hidden_states)
|
153
|
+
hidden_states = residual + hidden_states
|
154
|
+
|
155
|
+
return hidden_states
|
156
|
+
|
157
|
+
|
158
|
+
class ColPaliAttention(nn.Module):
|
159
|
+
def __init__(self, self_attn):
|
160
|
+
super().__init__()
|
161
|
+
self._original_mod = self_attn
|
162
|
+
self.num_heads = getattr(self._original_mod, "num_heads", None) or getattr(
|
163
|
+
self._original_mod.config, "num_attention_heads"
|
164
|
+
)
|
165
|
+
self.head_dim = self._original_mod.head_dim
|
166
|
+
self.scaling = self.head_dim**-0.5
|
167
|
+
|
168
|
+
if hasattr(self._original_mod, "num_key_value_heads"):
|
169
|
+
self.num_key_value_heads = self._original_mod.num_key_value_heads
|
170
|
+
elif hasattr(self._original_mod, "config") and hasattr(self._original_mod.config, "num_key_value_heads"):
|
171
|
+
self.num_key_value_heads = self._original_mod.config.num_key_value_heads
|
172
|
+
else:
|
173
|
+
self.num_key_value_heads = self.num_heads
|
174
|
+
|
175
|
+
self.__post_init__()
|
176
|
+
|
177
|
+
def __post_init__(self):
|
178
|
+
self.q_proj = self._original_mod.q_proj
|
179
|
+
self.k_proj = self._original_mod.k_proj
|
180
|
+
self.v_proj = self._original_mod.v_proj
|
181
|
+
self.o_proj = self._original_mod.o_proj
|
182
|
+
|
183
|
+
def projection(self, hidden_states) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
184
|
+
query_states = self.q_proj(hidden_states)
|
185
|
+
key_states = self.k_proj(hidden_states)
|
186
|
+
value_states = self.v_proj(hidden_states)
|
187
|
+
|
188
|
+
return query_states, key_states, value_states
|
189
|
+
|
190
|
+
def forward(
|
191
|
+
self,
|
192
|
+
hidden_states: torch.Tensor,
|
193
|
+
attention_mask: torch.Tensor,
|
194
|
+
cos: Optional[torch.Tensor] = None,
|
195
|
+
sin: Optional[torch.Tensor] = None,
|
196
|
+
):
|
197
|
+
batch_size, query_length, _ = hidden_states.size()
|
198
|
+
|
199
|
+
query_states, key_states, value_states = self.projection(hidden_states=hidden_states)
|
200
|
+
|
201
|
+
query_states = query_states.view(batch_size, query_length, 1, self.num_heads, self.head_dim).transpose(1, 3)
|
202
|
+
key_states = key_states.view(batch_size, query_length, 1, self.num_key_value_heads, self.head_dim).transpose(
|
203
|
+
1, 3
|
204
|
+
)
|
205
|
+
value_states = value_states.view(
|
206
|
+
batch_size, query_length, 1, self.num_key_value_heads, self.head_dim
|
207
|
+
).transpose(1, 3)
|
208
|
+
|
209
|
+
if cos is not None and sin is not None:
|
210
|
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
211
|
+
|
212
|
+
attn_weights = torch.matmul(query_states, key_states.transpose(3, 4)) * self.scaling
|
213
|
+
attn_weights = attn_weights + attention_mask
|
214
|
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32)
|
215
|
+
attn_output = torch.matmul(attn_weights, value_states)
|
216
|
+
attn_output = attn_output.transpose(1, 3)
|
217
|
+
|
218
|
+
attn_output = attn_output.reshape(batch_size, query_length, -1)
|
219
|
+
attn_output = self.o_proj(attn_output)
|
220
|
+
|
221
|
+
return attn_output
|
@@ -0,0 +1,68 @@
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
from typing import List, Optional, Union
|
15
|
+
|
16
|
+
from ....configuration_utils import RBLNModelConfig
|
17
|
+
|
18
|
+
|
19
|
+
class RBLNColPaliForRetrievalConfig(RBLNModelConfig):
|
20
|
+
"""
|
21
|
+
Configuration class for RBLN ColPali models for document retrieval.
|
22
|
+
|
23
|
+
This class extends RBLNModelConfig with specific configurations for ColPali models,
|
24
|
+
including vision tower settings and multi-sequence length support.
|
25
|
+
|
26
|
+
Example usage:
|
27
|
+
```python
|
28
|
+
from optimum.rbln import RBLNColPaliForRetrieval, RBLNColPaliForRetrievalConfig
|
29
|
+
|
30
|
+
# Create a configuration object
|
31
|
+
config = RBLNColPaliForRetrievalConfig(
|
32
|
+
max_seq_lens=1152,
|
33
|
+
output_hidden_states=False,
|
34
|
+
tensor_parallel_size=4
|
35
|
+
)
|
36
|
+
|
37
|
+
# Use the configuration with from_pretrained
|
38
|
+
model = RBLNColPaliForRetrieval.from_pretrained(
|
39
|
+
"vidore/colpali-v1.3-hf",
|
40
|
+
export=True,
|
41
|
+
rbln_config=config
|
42
|
+
)
|
43
|
+
```
|
44
|
+
"""
|
45
|
+
|
46
|
+
submodules = ["vision_tower"]
|
47
|
+
|
48
|
+
def __init__(
|
49
|
+
self,
|
50
|
+
max_seq_lens: Union[int, List[int]] = None,
|
51
|
+
output_hidden_states: Optional[bool] = None,
|
52
|
+
vision_tower: Optional[RBLNModelConfig] = None,
|
53
|
+
**kwargs,
|
54
|
+
):
|
55
|
+
"""
|
56
|
+
Args:
|
57
|
+
vision_tower (Optional[RBLNModelConfig]): Configuration for the vision encoder component.
|
58
|
+
max_seq_lens (Union[int, List[int]]): The maximum sequence lengths for the language model.
|
59
|
+
This can be multiple values, and the model will be compiled for each max_seq_len, allowing selection of the most appropriate max_seq_len at inference time.
|
60
|
+
output_hidden_states (Optional[bool]): Whether to output the hidden states of the language model.
|
61
|
+
**kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
62
|
+
Raises:
|
63
|
+
ValueError: If batch_size is not a positive integer.
|
64
|
+
"""
|
65
|
+
super().__init__(**kwargs)
|
66
|
+
self.vision_tower = vision_tower
|
67
|
+
self.max_seq_lens = max_seq_lens
|
68
|
+
self.output_hidden_states = output_hidden_states
|