optimum-rbln 0.1.8__py3-none-any.whl → 0.1.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (66) hide show
  1. optimum/rbln/__init__.py +40 -2
  2. optimum/rbln/__version__.py +1 -1
  3. optimum/rbln/diffusers/models/autoencoder_kl.py +39 -32
  4. optimum/rbln/diffusers/models/controlnet.py +60 -43
  5. optimum/rbln/diffusers/models/unet_2d_condition.py +43 -31
  6. optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +2 -3
  7. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +22 -15
  8. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +22 -15
  9. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +23 -17
  10. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +24 -18
  11. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +22 -11
  12. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +22 -11
  13. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +24 -14
  14. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +24 -14
  15. optimum/rbln/modeling_alias.py +8 -4
  16. optimum/rbln/modeling_base.py +512 -238
  17. optimum/rbln/modeling_config.py +152 -77
  18. optimum/rbln/modeling_seq2seq.py +166 -77
  19. optimum/rbln/transformers/__init__.py +37 -1
  20. optimum/rbln/transformers/models/__init__.py +21 -1
  21. optimum/rbln/transformers/models/auto/__init__.py +14 -0
  22. optimum/rbln/transformers/models/auto/auto_factory.py +84 -0
  23. optimum/rbln/transformers/models/auto/modeling_auto.py +94 -0
  24. optimum/rbln/transformers/models/bart/__init__.py +1 -0
  25. optimum/rbln/transformers/models/bart/bart_architecture.py +189 -50
  26. optimum/rbln/transformers/models/bart/modeling_bart.py +106 -0
  27. optimum/rbln/transformers/models/bert/__init__.py +24 -0
  28. optimum/rbln/transformers/models/bert/modeling_bert.py +102 -0
  29. optimum/rbln/transformers/models/clip/__init__.py +1 -1
  30. optimum/rbln/transformers/models/clip/modeling_clip.py +128 -26
  31. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +32 -7
  32. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +406 -104
  33. optimum/rbln/transformers/models/dpt/modeling_dpt.py +21 -7
  34. optimum/rbln/transformers/models/gemma/gemma_architecture.py +10 -3
  35. optimum/rbln/transformers/models/gemma/modeling_gemma.py +9 -3
  36. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +4 -1
  37. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +6 -89
  38. optimum/rbln/transformers/models/llama/modeling_llama.py +9 -3
  39. optimum/rbln/transformers/models/llava_next/__init__.py +24 -0
  40. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +666 -0
  41. optimum/rbln/transformers/models/midm/midm_architecture.py +5 -1
  42. optimum/rbln/transformers/models/midm/modeling_midm.py +5 -88
  43. optimum/rbln/transformers/models/mistral/__init__.py +24 -0
  44. optimum/rbln/transformers/models/mistral/mistral_architecture.py +29 -0
  45. optimum/rbln/transformers/models/mistral/modeling_mistral.py +68 -0
  46. optimum/rbln/transformers/models/phi/__init__.py +24 -0
  47. optimum/rbln/transformers/models/phi/modeling_phi.py +69 -0
  48. optimum/rbln/transformers/models/phi/phi_architecture.py +406 -0
  49. optimum/rbln/transformers/models/t5/t5_architecture.py +92 -31
  50. optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +18 -12
  51. optimum/rbln/transformers/models/whisper/generation_whisper.py +68 -0
  52. optimum/rbln/transformers/models/whisper/modeling_whisper.py +141 -105
  53. optimum/rbln/transformers/models/whisper/whisper_architecture.py +44 -17
  54. optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +25 -16
  55. optimum/rbln/transformers/utils/__init__.py +0 -0
  56. optimum/rbln/transformers/utils/rbln_quantization.py +97 -0
  57. optimum/rbln/utils/import_utils.py +37 -5
  58. optimum/rbln/utils/logging.py +82 -0
  59. optimum/rbln/utils/runtime_utils.py +35 -1
  60. optimum/rbln/utils/timer_utils.py +19 -0
  61. {optimum_rbln-0.1.8.dist-info → optimum_rbln-0.1.11.dist-info}/METADATA +15 -7
  62. optimum_rbln-0.1.11.dist-info/RECORD +93 -0
  63. {optimum_rbln-0.1.8.dist-info → optimum_rbln-0.1.11.dist-info}/WHEEL +1 -1
  64. optimum_rbln-0.1.11.dist-info/entry_points.txt +4 -0
  65. optimum_rbln-0.1.8.dist-info/RECORD +0 -73
  66. {optimum_rbln-0.1.8.dist-info → optimum_rbln-0.1.11.dist-info}/licenses/LICENSE +0 -0
@@ -22,13 +22,13 @@
22
22
  # from Rebellions Inc.
23
23
 
24
24
  import logging
25
- from typing import TYPE_CHECKING, Iterable, Optional, Union
25
+ from typing import TYPE_CHECKING, Any, Dict, Iterable, Optional, Union
26
26
 
27
27
  from transformers import AutoModelForDepthEstimation
28
28
  from transformers.modeling_outputs import DepthEstimatorOutput
29
29
 
30
30
  from ....modeling_base import RBLNModel
31
- from ....modeling_config import RBLNConfig, RBLNRuntimeConfig
31
+ from ....modeling_config import RBLNCompileConfig, RBLNConfig
32
32
 
33
33
 
34
34
  logger = logging.getLogger(__name__)
@@ -47,9 +47,11 @@ class RBLNDPTForDepthEstimation(RBLNModel):
47
47
  cls,
48
48
  preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
49
49
  model_config: Optional["PretrainedConfig"] = None,
50
- rbln_image_size: Optional[int] = None,
51
- rbln_batch_size: Optional[int] = None,
50
+ rbln_kwargs: Dict[str, Any] = {},
52
51
  ) -> RBLNConfig:
52
+ rbln_image_size = rbln_kwargs.get("image_size", None)
53
+ rbln_batch_size = rbln_kwargs.get("batch_size", None)
54
+
53
55
  if rbln_batch_size is None:
54
56
  rbln_batch_size = 1
55
57
 
@@ -79,10 +81,22 @@ class RBLNDPTForDepthEstimation(RBLNModel):
79
81
 
80
82
  input_info = [("pixel_values", [rbln_batch_size, 3, rbln_image_size[0], rbln_image_size[1]], "float32")]
81
83
 
82
- rbln_runtime_config = RBLNRuntimeConfig(input_info=input_info)
83
- meta = {"rbln_image_size": rbln_image_size}
84
+ rbln_compile_config = RBLNCompileConfig(input_info=input_info)
85
+
86
+ rbln_config = RBLNConfig(
87
+ rbln_cls=cls.__name__,
88
+ compile_cfgs=[rbln_compile_config],
89
+ rbln_kwargs=rbln_kwargs,
90
+ )
91
+
92
+ rbln_config.model_cfg.update(
93
+ {
94
+ "image_size": rbln_image_size,
95
+ "batch_size": rbln_batch_size,
96
+ }
97
+ )
84
98
 
85
- return RBLNConfig.from_rbln_runtime_configs([rbln_runtime_config], _rbln_meta=meta)
99
+ return rbln_config
86
100
 
87
101
  def forward(self, *args, **kwargs):
88
102
  predicted_depth = super().forward(*args, **kwargs)
@@ -39,9 +39,16 @@ from ...models.decoderonly import (
39
39
  class GemmaWrapper(DecoderOnlyWrapper):
40
40
  def get_forward_dict(self):
41
41
  forward_dict = {}
42
- forward_dict.update({"wrapper": GemmaModel.forward, "model": DecoderOnlyDecoderLayer.forward, "decoder_layer": DecoderOnlyAttention.forward,})
42
+ forward_dict.update(
43
+ {
44
+ "wrapper": GemmaModel.forward,
45
+ "model": DecoderOnlyDecoderLayer.forward,
46
+ "decoder_layer": DecoderOnlyAttention.forward,
47
+ }
48
+ )
43
49
  return forward_dict
44
50
 
51
+
45
52
  class GemmaModel:
46
53
  def forward(
47
54
  self,
@@ -54,7 +61,7 @@ class GemmaModel:
54
61
  use_cache: Optional[bool] = True,
55
62
  output_attentions: Optional[bool] = False,
56
63
  output_hidden_states: Optional[bool] = False,
57
- forward_dict : Optional[Dict[str, classmethod]] = None,
64
+ forward_dict: Optional[Dict[str, classmethod]] = None,
58
65
  rotary_pos_emb=None,
59
66
  ) -> Union[Tuple, BaseModelOutputWithPast]:
60
67
  # embed positions
@@ -89,7 +96,7 @@ class GemmaModel:
89
96
  batch_ids=batch_ids,
90
97
  cos=cos,
91
98
  sin=sin,
92
- forward_dict=forward_dict
99
+ forward_dict=forward_dict,
93
100
  )
94
101
 
95
102
  hidden_states = layer_outputs[0]
@@ -23,14 +23,19 @@
23
23
 
24
24
  import inspect
25
25
  import logging
26
- from typing import Any, Callable
26
+ from typing import TYPE_CHECKING, Any, Callable
27
27
 
28
- from transformers import GemmaForCausalLM, PreTrainedModel
28
+ from transformers import GemmaForCausalLM
29
29
 
30
30
  from ...models.decoderonly import RBLNDecoderOnlyModelForCausalLM
31
31
  from .gemma_architecture import GemmaWrapper
32
32
 
33
33
 
34
+ if TYPE_CHECKING:
35
+ from transformers import PreTrainedModel
36
+
37
+ from ....modeling_config import RBLNConfig
38
+
34
39
  logger = logging.getLogger(__name__)
35
40
 
36
41
 
@@ -46,7 +51,8 @@ class RBLNGemmaForCausalLM(RBLNDecoderOnlyModelForCausalLM):
46
51
  """
47
52
 
48
53
  @classmethod
49
- def wrapping_torch_model(self, model: "PreTrainedModel", rbln_max_seq_len: int):
54
+ def wrap_model_if_needed(self, model: "PreTrainedModel", rbln_config: "RBLNConfig"):
55
+ rbln_max_seq_len = rbln_config.model_cfg["max_seq_len"]
50
56
  return GemmaWrapper(model, rbln_max_seq_len).eval()
51
57
 
52
58
  def __getattr__(self, __name: str) -> Any:
@@ -53,6 +53,7 @@ class GPT2LMHeadModelWrapper(torch.nn.Module):
53
53
  attention_mask,
54
54
  cache_position,
55
55
  batch_position,
56
+ query_idx,
56
57
  *past_key_values,
57
58
  ):
58
59
  if input_ids.shape[1] == 1:
@@ -79,11 +80,13 @@ class GPT2LMHeadModelWrapper(torch.nn.Module):
79
80
  )
80
81
 
81
82
  hidden_states = outputs[0]
83
+ if batch_position >= 0:
84
+ hidden_states = hidden_states[:, query_idx].unsqueeze(1)
82
85
  logits = self.lm_head(hidden_states)
83
86
 
84
87
  output = (logits,) + outputs[1:]
85
88
 
86
- return output, batch_position
89
+ return output, batch_position + query_idx
87
90
 
88
91
 
89
92
  class _GPT2Model:
@@ -23,23 +23,18 @@
23
23
 
24
24
  import inspect
25
25
  import logging
26
- from typing import TYPE_CHECKING, Any, Callable, Optional, Union
26
+ from typing import TYPE_CHECKING, Any, Callable
27
27
 
28
- from transformers import GPT2LMHeadModel, PretrainedConfig, PreTrainedModel
28
+ from transformers import GPT2LMHeadModel
29
29
 
30
- from ....modeling_config import RBLNConfig, RBLNRuntimeConfig
30
+ from ....modeling_config import RBLNConfig
31
31
  from ...models.decoderonly import RBLNDecoderOnlyModelForCausalLM
32
32
  from .gpt2_architecture import GPT2LMHeadModelWrapper
33
33
 
34
34
 
35
35
  logger = logging.getLogger(__name__)
36
36
  if TYPE_CHECKING:
37
- from transformers import (
38
- AutoFeatureExtractor,
39
- AutoProcessor,
40
- AutoTokenizer,
41
- PretrainedConfig,
42
- )
37
+ from transformers import PreTrainedModel
43
38
 
44
39
 
45
40
  class RBLNGPT2LMHeadModel(RBLNDecoderOnlyModelForCausalLM):
@@ -57,7 +52,8 @@ class RBLNGPT2LMHeadModel(RBLNDecoderOnlyModelForCausalLM):
57
52
  """
58
53
 
59
54
  @classmethod
60
- def wrapping_torch_model(self, model: "PreTrainedModel", rbln_max_seq_len: int):
55
+ def wrap_model_if_needed(self, model: "PreTrainedModel", rbln_config: "RBLNConfig"):
56
+ rbln_max_seq_len = rbln_config.model_cfg["max_seq_len"]
61
57
  return GPT2LMHeadModelWrapper(model, rbln_max_seq_len).eval()
62
58
 
63
59
  def __getattr__(self, __name: str) -> Any:
@@ -74,82 +70,3 @@ class RBLNGPT2LMHeadModel(RBLNDecoderOnlyModelForCausalLM):
74
70
  if isinstance(val, Callable) and "self" in set(inspect.signature(val).parameters):
75
71
  return redirect(val)
76
72
  return val
77
-
78
- @classmethod
79
- def _get_rbln_config(
80
- cls,
81
- preprocessors: Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"],
82
- model_config: "PretrainedConfig",
83
- rbln_max_seq_len: Optional[int] = None,
84
- rbln_batch_size: Optional[int] = None,
85
- **kwargs,
86
- ) -> RBLNConfig:
87
- meta = {}
88
-
89
- prefill_chunk_size = 128
90
- if rbln_max_seq_len is None: # differenct from llama
91
- rbln_max_seq_len = getattr(model_config, "n_positions", None)
92
- rbln_batch_size = 1 if rbln_batch_size is None else rbln_batch_size
93
-
94
- meta["rbln_max_seq_len"] = rbln_max_seq_len
95
- meta["rbln_batch_size"] = rbln_batch_size
96
- meta["rbln_prefill_chunk_size"] = prefill_chunk_size
97
-
98
- def get_input_info(
99
- batch_size,
100
- query_length,
101
- ):
102
- head_dim = (
103
- model_config.head_dim
104
- if hasattr(model_config, "head_dim")
105
- else model_config.hidden_size // model_config.n_head
106
- )
107
- input_info = [
108
- ("input_ids", [batch_size, query_length], "int64"),
109
- ("attention_mask", [batch_size, 1, query_length, rbln_max_seq_len], "int64"),
110
- (
111
- "cache_position",
112
- [batch_size, query_length],
113
- "int32",
114
- ),
115
- ("batch_position", [], "int16"),
116
- ]
117
-
118
- input_info.extend(
119
- [
120
- (
121
- f"past_key_values_{i}",
122
- [
123
- rbln_batch_size,
124
- model_config.n_head, # differenct from llama
125
- rbln_max_seq_len,
126
- head_dim,
127
- ],
128
- "float32",
129
- )
130
- for i in range(model_config.n_layer * 2) # differenct from llama
131
- ]
132
- )
133
-
134
- return input_info
135
-
136
- prefill_input_info = get_input_info(
137
- batch_size=1,
138
- query_length=prefill_chunk_size,
139
- )
140
- dec_input_info = get_input_info(
141
- batch_size=rbln_batch_size,
142
- query_length=1,
143
- )
144
-
145
- prefill_rbln_runtime_config = RBLNRuntimeConfig(input_info=prefill_input_info)
146
- dec_rbln_runtime_config = RBLNRuntimeConfig(input_info=dec_input_info)
147
-
148
- dec_rbln_runtime_config.batch_size = rbln_batch_size
149
-
150
- rbln_config = RBLNConfig.from_rbln_runtime_configs(
151
- [prefill_rbln_runtime_config, dec_rbln_runtime_config],
152
- _rbln_meta=meta,
153
- )
154
-
155
- return rbln_config
@@ -23,14 +23,19 @@
23
23
 
24
24
  import inspect
25
25
  import logging
26
- from typing import Any, Callable
26
+ from typing import TYPE_CHECKING, Any, Callable
27
27
 
28
- from transformers import LlamaForCausalLM, PreTrainedModel
28
+ from transformers import LlamaForCausalLM
29
29
 
30
30
  from ...models.decoderonly import RBLNDecoderOnlyModelForCausalLM
31
31
  from .llama_architecture import LlamaWrapper
32
32
 
33
33
 
34
+ if TYPE_CHECKING:
35
+ from transformers import PreTrainedModel
36
+
37
+ from ....modeling_config import RBLNConfig
38
+
34
39
  logger = logging.getLogger(__name__)
35
40
 
36
41
 
@@ -46,7 +51,8 @@ class RBLNLlamaForCausalLM(RBLNDecoderOnlyModelForCausalLM):
46
51
  """
47
52
 
48
53
  @classmethod
49
- def wrapping_torch_model(self, model: "PreTrainedModel", rbln_max_seq_len: int):
54
+ def wrap_model_if_needed(self, model: "PreTrainedModel", rbln_config: "RBLNConfig"):
55
+ rbln_max_seq_len = rbln_config.model_cfg["max_seq_len"]
50
56
  return LlamaWrapper(model, rbln_max_seq_len).eval()
51
57
 
52
58
  def __getattr__(self, __name: str) -> Any:
@@ -0,0 +1,24 @@
1
+ # Copyright 2024 Rebellions Inc.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # Portions of this software are licensed under the Apache License,
16
+ # Version 2.0. See the NOTICE file distributed with this work for
17
+ # additional information regarding copyright ownership.
18
+
19
+ # All other portions of this software, including proprietary code,
20
+ # are the intellectual property of Rebellions Inc. and may not be
21
+ # copied, modified, or distributed without prior written permission
22
+ # from Rebellions Inc.
23
+
24
+ from .modeling_llava_next import RBLNLlavaNextForConditionalGeneration