optimum-rbln 0.1.8__py3-none-any.whl → 0.1.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +40 -2
- optimum/rbln/__version__.py +1 -1
- optimum/rbln/diffusers/models/autoencoder_kl.py +39 -32
- optimum/rbln/diffusers/models/controlnet.py +60 -43
- optimum/rbln/diffusers/models/unet_2d_condition.py +43 -31
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +2 -3
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +22 -15
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +22 -15
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +23 -17
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +24 -18
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +22 -11
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +22 -11
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +24 -14
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +24 -14
- optimum/rbln/modeling_alias.py +8 -4
- optimum/rbln/modeling_base.py +512 -238
- optimum/rbln/modeling_config.py +152 -77
- optimum/rbln/modeling_seq2seq.py +166 -77
- optimum/rbln/transformers/__init__.py +37 -1
- optimum/rbln/transformers/models/__init__.py +21 -1
- optimum/rbln/transformers/models/auto/__init__.py +14 -0
- optimum/rbln/transformers/models/auto/auto_factory.py +84 -0
- optimum/rbln/transformers/models/auto/modeling_auto.py +94 -0
- optimum/rbln/transformers/models/bart/__init__.py +1 -0
- optimum/rbln/transformers/models/bart/bart_architecture.py +189 -50
- optimum/rbln/transformers/models/bart/modeling_bart.py +106 -0
- optimum/rbln/transformers/models/bert/__init__.py +24 -0
- optimum/rbln/transformers/models/bert/modeling_bert.py +102 -0
- optimum/rbln/transformers/models/clip/__init__.py +1 -1
- optimum/rbln/transformers/models/clip/modeling_clip.py +128 -26
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +32 -7
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +406 -104
- optimum/rbln/transformers/models/dpt/modeling_dpt.py +21 -7
- optimum/rbln/transformers/models/gemma/gemma_architecture.py +10 -3
- optimum/rbln/transformers/models/gemma/modeling_gemma.py +9 -3
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +4 -1
- optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +6 -89
- optimum/rbln/transformers/models/llama/modeling_llama.py +9 -3
- optimum/rbln/transformers/models/llava_next/__init__.py +24 -0
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +666 -0
- optimum/rbln/transformers/models/midm/midm_architecture.py +5 -1
- optimum/rbln/transformers/models/midm/modeling_midm.py +5 -88
- optimum/rbln/transformers/models/mistral/__init__.py +24 -0
- optimum/rbln/transformers/models/mistral/mistral_architecture.py +29 -0
- optimum/rbln/transformers/models/mistral/modeling_mistral.py +68 -0
- optimum/rbln/transformers/models/phi/__init__.py +24 -0
- optimum/rbln/transformers/models/phi/modeling_phi.py +69 -0
- optimum/rbln/transformers/models/phi/phi_architecture.py +406 -0
- optimum/rbln/transformers/models/t5/t5_architecture.py +92 -31
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +18 -12
- optimum/rbln/transformers/models/whisper/generation_whisper.py +68 -0
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +141 -105
- optimum/rbln/transformers/models/whisper/whisper_architecture.py +44 -17
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +25 -16
- optimum/rbln/transformers/utils/__init__.py +0 -0
- optimum/rbln/transformers/utils/rbln_quantization.py +97 -0
- optimum/rbln/utils/import_utils.py +37 -5
- optimum/rbln/utils/logging.py +82 -0
- optimum/rbln/utils/runtime_utils.py +35 -1
- optimum/rbln/utils/timer_utils.py +19 -0
- {optimum_rbln-0.1.8.dist-info → optimum_rbln-0.1.11.dist-info}/METADATA +15 -7
- optimum_rbln-0.1.11.dist-info/RECORD +93 -0
- {optimum_rbln-0.1.8.dist-info → optimum_rbln-0.1.11.dist-info}/WHEEL +1 -1
- optimum_rbln-0.1.11.dist-info/entry_points.txt +4 -0
- optimum_rbln-0.1.8.dist-info/RECORD +0 -73
- {optimum_rbln-0.1.8.dist-info → optimum_rbln-0.1.11.dist-info}/licenses/LICENSE +0 -0
@@ -23,11 +23,9 @@
|
|
23
23
|
|
24
24
|
import inspect
|
25
25
|
import logging
|
26
|
-
from typing import TYPE_CHECKING, Any, Callable
|
26
|
+
from typing import TYPE_CHECKING, Any, Callable
|
27
27
|
|
28
|
-
from
|
29
|
-
|
30
|
-
from ....modeling_config import RBLNConfig, RBLNRuntimeConfig
|
28
|
+
from ....modeling_config import RBLNConfig
|
31
29
|
from ...models.decoderonly import RBLNDecoderOnlyModelForCausalLM
|
32
30
|
from .hf_hub_cached.modeling_midm import MidmLMHeadModel
|
33
31
|
from .midm_architecture import (
|
@@ -38,10 +36,7 @@ from .midm_architecture import (
|
|
38
36
|
logger = logging.getLogger(__name__)
|
39
37
|
if TYPE_CHECKING:
|
40
38
|
from transformers import (
|
41
|
-
|
42
|
-
AutoProcessor,
|
43
|
-
AutoTokenizer,
|
44
|
-
PretrainedConfig,
|
39
|
+
PreTrainedModel,
|
45
40
|
)
|
46
41
|
|
47
42
|
|
@@ -60,7 +55,8 @@ class RBLNMidmLMHeadModel(RBLNDecoderOnlyModelForCausalLM):
|
|
60
55
|
"""
|
61
56
|
|
62
57
|
@classmethod
|
63
|
-
def
|
58
|
+
def wrap_model_if_needed(self, model: "PreTrainedModel", rbln_config: "RBLNConfig"):
|
59
|
+
rbln_max_seq_len = rbln_config.model_cfg["max_seq_len"]
|
64
60
|
return MidmLMHeadModelWrapper(model, rbln_max_seq_len).eval()
|
65
61
|
|
66
62
|
def __getattr__(self, __name: str) -> Any:
|
@@ -77,82 +73,3 @@ class RBLNMidmLMHeadModel(RBLNDecoderOnlyModelForCausalLM):
|
|
77
73
|
if isinstance(val, Callable) and "self" in set(inspect.signature(val).parameters):
|
78
74
|
return redirect(val)
|
79
75
|
return val
|
80
|
-
|
81
|
-
@classmethod
|
82
|
-
def _get_rbln_config(
|
83
|
-
cls,
|
84
|
-
preprocessors: Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"],
|
85
|
-
model_config: "PretrainedConfig",
|
86
|
-
rbln_max_seq_len: Optional[int] = None,
|
87
|
-
rbln_batch_size: Optional[int] = None,
|
88
|
-
**kwargs,
|
89
|
-
) -> RBLNConfig:
|
90
|
-
meta = {}
|
91
|
-
|
92
|
-
prefill_chunk_size = 128
|
93
|
-
if rbln_max_seq_len is None:
|
94
|
-
rbln_max_seq_len = getattr(model_config, "n_positions", None)
|
95
|
-
rbln_batch_size = 1 if rbln_batch_size is None else rbln_batch_size
|
96
|
-
|
97
|
-
meta["rbln_max_seq_len"] = rbln_max_seq_len
|
98
|
-
meta["rbln_batch_size"] = rbln_batch_size
|
99
|
-
meta["rbln_prefill_chunk_size"] = prefill_chunk_size
|
100
|
-
|
101
|
-
def get_input_info(
|
102
|
-
batch_size,
|
103
|
-
query_length,
|
104
|
-
):
|
105
|
-
head_dim = (
|
106
|
-
model_config.head_dim
|
107
|
-
if hasattr(model_config, "head_dim")
|
108
|
-
else model_config.hidden_size // model_config.n_head
|
109
|
-
)
|
110
|
-
input_info = [
|
111
|
-
("input_ids", [batch_size, query_length], "int64"),
|
112
|
-
("attention_mask", [batch_size, 1, query_length, rbln_max_seq_len], "int64"),
|
113
|
-
(
|
114
|
-
"cache_position",
|
115
|
-
[batch_size, query_length],
|
116
|
-
"int32",
|
117
|
-
),
|
118
|
-
("batch_position", [], "int16"),
|
119
|
-
]
|
120
|
-
|
121
|
-
input_info.extend(
|
122
|
-
[
|
123
|
-
(
|
124
|
-
f"past_key_values_{i}",
|
125
|
-
[
|
126
|
-
rbln_batch_size,
|
127
|
-
model_config.n_head,
|
128
|
-
rbln_max_seq_len,
|
129
|
-
head_dim,
|
130
|
-
],
|
131
|
-
"float32",
|
132
|
-
)
|
133
|
-
for i in range(model_config.n_layer * 2)
|
134
|
-
]
|
135
|
-
)
|
136
|
-
|
137
|
-
return input_info
|
138
|
-
|
139
|
-
prefill_input_info = get_input_info(
|
140
|
-
batch_size=1,
|
141
|
-
query_length=prefill_chunk_size,
|
142
|
-
)
|
143
|
-
dec_input_info = get_input_info(
|
144
|
-
batch_size=rbln_batch_size,
|
145
|
-
query_length=1,
|
146
|
-
)
|
147
|
-
|
148
|
-
prefill_rbln_runtime_config = RBLNRuntimeConfig(input_info=prefill_input_info)
|
149
|
-
dec_rbln_runtime_config = RBLNRuntimeConfig(input_info=dec_input_info)
|
150
|
-
|
151
|
-
dec_rbln_runtime_config.batch_size = rbln_batch_size
|
152
|
-
|
153
|
-
rbln_config = RBLNConfig.from_rbln_runtime_configs(
|
154
|
-
[prefill_rbln_runtime_config, dec_rbln_runtime_config],
|
155
|
-
_rbln_meta=meta,
|
156
|
-
)
|
157
|
-
|
158
|
-
return rbln_config
|
@@ -0,0 +1,24 @@
|
|
1
|
+
# Copyright 2024 Rebellions Inc.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# Portions of this software are licensed under the Apache License,
|
16
|
+
# Version 2.0. See the NOTICE file distributed with this work for
|
17
|
+
# additional information regarding copyright ownership.
|
18
|
+
|
19
|
+
# All other portions of this software, including proprietary code,
|
20
|
+
# are the intellectual property of Rebellions Inc. and may not be
|
21
|
+
# copied, modified, or distributed without prior written permission
|
22
|
+
# from Rebellions Inc.
|
23
|
+
|
24
|
+
from .modeling_mistral import RBLNMistralForCausalLM
|
@@ -0,0 +1,29 @@
|
|
1
|
+
# Copyright 2024 Rebellions Inc.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# Portions of this software are licensed under the Apache License,
|
16
|
+
# Version 2.0. See the NOTICE file distributed with this work for
|
17
|
+
# additional information regarding copyright ownership.
|
18
|
+
|
19
|
+
# All other portions of this software, including proprietary code,
|
20
|
+
# are the intellectual property of Rebellions Inc. and may not be
|
21
|
+
# copied, modified, or distributed without prior written permission
|
22
|
+
# from Rebellions Inc.
|
23
|
+
|
24
|
+
|
25
|
+
from ..decoderonly.decoderonly_architecture import DecoderOnlyWrapper
|
26
|
+
|
27
|
+
|
28
|
+
class MistralForCausalLMWrapper(DecoderOnlyWrapper):
|
29
|
+
pass
|
@@ -0,0 +1,68 @@
|
|
1
|
+
# Copyright 2024 Rebellions Inc.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# Portions of this software are licensed under the Apache License,
|
16
|
+
# Version 2.0. See the NOTICE file distributed with this work for
|
17
|
+
# additional information regarding copyright ownership.
|
18
|
+
|
19
|
+
# All other portions of this software, including proprietary code,
|
20
|
+
# are the intellectual property of Rebellions Inc. and may not be
|
21
|
+
# copied, modified, or distributed without prior written permission
|
22
|
+
# from Rebellions Inc.
|
23
|
+
|
24
|
+
import inspect
|
25
|
+
import logging
|
26
|
+
from typing import TYPE_CHECKING, Any, Callable
|
27
|
+
|
28
|
+
from transformers import MistralForCausalLM
|
29
|
+
|
30
|
+
from ...models.decoderonly import RBLNDecoderOnlyModelForCausalLM
|
31
|
+
from .mistral_architecture import MistralForCausalLMWrapper
|
32
|
+
|
33
|
+
|
34
|
+
if TYPE_CHECKING:
|
35
|
+
from transformers import PreTrainedModel
|
36
|
+
|
37
|
+
from ....modeling_config import RBLNConfig
|
38
|
+
|
39
|
+
|
40
|
+
logger = logging.getLogger(__name__)
|
41
|
+
|
42
|
+
|
43
|
+
class RBLNMistralForCausalLM(RBLNDecoderOnlyModelForCausalLM):
|
44
|
+
"""
|
45
|
+
The Llama Model transformer with a language modeling head (linear layer) on top.
|
46
|
+
This model inherits from [`RBLNMultiModel`]. Check the superclass documentation for the generic methods the library implements for all its models.
|
47
|
+
|
48
|
+
A class to convert and run pre-trained transformers based LlamaForCausalLM model on RBLN devices.
|
49
|
+
It implements the methods to convert a pre-trained transformers LlamaForCausalLM model into a RBLN transformer model by:
|
50
|
+
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
51
|
+
- compiling the resulting graph using the RBLN compiler.
|
52
|
+
"""
|
53
|
+
|
54
|
+
@classmethod
|
55
|
+
def wrap_model_if_needed(self, model: "PreTrainedModel", rbln_config: "RBLNConfig"):
|
56
|
+
rbln_max_seq_len = rbln_config.model_cfg["max_seq_len"]
|
57
|
+
return MistralForCausalLMWrapper(model, rbln_max_seq_len).eval()
|
58
|
+
|
59
|
+
def __getattr__(self, __name: str) -> Any:
|
60
|
+
def redirect(func):
|
61
|
+
return lambda *pargs, **kwargs: func(self, *pargs, **kwargs)
|
62
|
+
|
63
|
+
val = getattr(MistralForCausalLM, __name)
|
64
|
+
|
65
|
+
if isinstance(val, Callable) and "self" in set(inspect.signature(val).parameters):
|
66
|
+
return redirect(val)
|
67
|
+
|
68
|
+
return val
|
@@ -0,0 +1,24 @@
|
|
1
|
+
# Copyright 2024 Rebellions Inc.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# Portions of this software are licensed under the Apache License,
|
16
|
+
# Version 2.0. See the NOTICE file distributed with this work for
|
17
|
+
# additional information regarding copyright ownership.
|
18
|
+
|
19
|
+
# All other portions of this software, including proprietary code,
|
20
|
+
# are the intellectual property of Rebellions Inc. and may not be
|
21
|
+
# copied, modified, or distributed without prior written permission
|
22
|
+
# from Rebellions Inc.
|
23
|
+
|
24
|
+
from .modeling_phi import RBLNPhiForCausalLM
|
@@ -0,0 +1,69 @@
|
|
1
|
+
# Copyright 2024 Rebellions Inc.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# Portions of this software are licensed under the Apache License,
|
16
|
+
# Version 2.0. See the NOTICE file distributed with this work for
|
17
|
+
# additional information regarding copyright ownership.
|
18
|
+
|
19
|
+
# All other portions of this software, including proprietary code,
|
20
|
+
# are the intellectual property of Rebellions Inc. and may not be
|
21
|
+
# copied, modified, or distributed without prior written permission
|
22
|
+
# from Rebellions Inc.
|
23
|
+
|
24
|
+
import inspect
|
25
|
+
import logging
|
26
|
+
from typing import TYPE_CHECKING, Any, Callable
|
27
|
+
|
28
|
+
from transformers import PhiForCausalLM
|
29
|
+
|
30
|
+
from ..decoderonly import RBLNDecoderOnlyModelForCausalLM
|
31
|
+
from .phi_architecture import PhiWrapper
|
32
|
+
|
33
|
+
|
34
|
+
if TYPE_CHECKING:
|
35
|
+
from transformers import PreTrainedModel
|
36
|
+
|
37
|
+
from ....modeling_config import RBLNConfig
|
38
|
+
|
39
|
+
logger = logging.getLogger(__name__)
|
40
|
+
|
41
|
+
|
42
|
+
class RBLNPhiForCausalLM(RBLNDecoderOnlyModelForCausalLM):
|
43
|
+
"""
|
44
|
+
The Phi Model transformer with a language modeling head (linear layer) on top.
|
45
|
+
This model inherits from [`RBLNMultiModel`]. Check the superclass documentation for the generic methods the library implements for all its models.
|
46
|
+
|
47
|
+
A class to convert and run pre-trained transformers based PhiForCausalLM model on RBLN devices.
|
48
|
+
It implements the methods to convert a pre-trained transformers PhiForCausalLM model into a RBLN transformer model by:
|
49
|
+
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
50
|
+
- compiling the resulting graph using the RBLN compiler.
|
51
|
+
"""
|
52
|
+
|
53
|
+
@classmethod
|
54
|
+
def wrap_model_if_needed(self, model: "PreTrainedModel", rbln_config: "RBLNConfig"):
|
55
|
+
rbln_max_seq_len = rbln_config.model_cfg["max_seq_len"]
|
56
|
+
return PhiWrapper(model, rbln_max_seq_len).eval()
|
57
|
+
|
58
|
+
def __getattr__(self, __name: str) -> Any:
|
59
|
+
def redirect(func):
|
60
|
+
return lambda *pargs, **kwargs: func(self, *pargs, **kwargs)
|
61
|
+
|
62
|
+
val = getattr(PhiForCausalLM, __name)
|
63
|
+
|
64
|
+
if isinstance(val, Callable) and "self" in set(
|
65
|
+
inspect.signature(val).parameters
|
66
|
+
):
|
67
|
+
return redirect(val)
|
68
|
+
|
69
|
+
return val
|