optimum-rbln 0.1.12__py3-none-any.whl → 0.1.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (90) hide show
  1. optimum/rbln/__init__.py +27 -13
  2. optimum/rbln/__version__.py +16 -1
  3. optimum/rbln/diffusers/__init__.py +22 -2
  4. optimum/rbln/diffusers/models/__init__.py +34 -3
  5. optimum/rbln/{transformers/generation → diffusers/models/autoencoders}/__init__.py +1 -2
  6. optimum/rbln/diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +66 -111
  7. optimum/rbln/diffusers/models/autoencoders/vae.py +84 -0
  8. optimum/rbln/diffusers/models/controlnet.py +85 -65
  9. optimum/rbln/diffusers/models/transformers/__init__.py +24 -0
  10. optimum/rbln/diffusers/models/transformers/transformer_sd3.py +203 -0
  11. optimum/rbln/diffusers/models/unets/__init__.py +24 -0
  12. optimum/rbln/diffusers/models/{unet_2d_condition.py → unets/unet_2d_condition.py} +129 -163
  13. optimum/rbln/diffusers/pipelines/__init__.py +60 -12
  14. optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +11 -25
  15. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +9 -185
  16. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +9 -190
  17. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +9 -191
  18. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +9 -192
  19. optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +1 -0
  20. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +4 -110
  21. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +4 -118
  22. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +32 -0
  23. optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +26 -0
  24. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +32 -0
  25. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +32 -0
  26. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +32 -0
  27. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +1 -0
  28. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +18 -128
  29. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +18 -131
  30. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +32 -0
  31. optimum/rbln/modeling.py +572 -0
  32. optimum/rbln/modeling_alias.py +1 -1
  33. optimum/rbln/modeling_base.py +176 -763
  34. optimum/rbln/modeling_diffusers.py +329 -0
  35. optimum/rbln/transformers/__init__.py +2 -2
  36. optimum/rbln/transformers/cache_utils.py +5 -9
  37. optimum/rbln/transformers/modeling_rope_utils.py +283 -0
  38. optimum/rbln/transformers/models/__init__.py +80 -31
  39. optimum/rbln/transformers/models/auto/auto_factory.py +117 -23
  40. optimum/rbln/transformers/models/auto/modeling_auto.py +37 -12
  41. optimum/rbln/transformers/models/bart/modeling_bart.py +3 -6
  42. optimum/rbln/transformers/models/bert/modeling_bert.py +3 -6
  43. optimum/rbln/transformers/models/clip/modeling_clip.py +8 -34
  44. optimum/rbln/transformers/models/decoderonly/__init__.py +0 -5
  45. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +779 -361
  46. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +83 -142
  47. optimum/rbln/transformers/models/dpt/modeling_dpt.py +1 -1
  48. optimum/rbln/transformers/models/exaone/exaone_architecture.py +64 -39
  49. optimum/rbln/transformers/models/exaone/modeling_exaone.py +6 -29
  50. optimum/rbln/transformers/models/gemma/gemma_architecture.py +31 -92
  51. optimum/rbln/transformers/models/gemma/modeling_gemma.py +4 -28
  52. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +50 -238
  53. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +6 -31
  54. optimum/rbln/transformers/models/llama/modeling_llama.py +4 -28
  55. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +29 -83
  56. optimum/rbln/transformers/models/midm/midm_architecture.py +88 -253
  57. optimum/rbln/transformers/models/midm/modeling_midm.py +8 -33
  58. optimum/rbln/transformers/models/mistral/modeling_mistral.py +4 -29
  59. optimum/rbln/transformers/models/phi/modeling_phi.py +5 -31
  60. optimum/rbln/transformers/models/phi/phi_architecture.py +61 -345
  61. optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +5 -29
  62. optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +1 -46
  63. optimum/rbln/transformers/models/t5/__init__.py +1 -1
  64. optimum/rbln/transformers/models/t5/modeling_t5.py +157 -6
  65. optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +1 -1
  66. optimum/rbln/transformers/models/whisper/modeling_whisper.py +2 -2
  67. optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +3 -35
  68. optimum/rbln/transformers/utils/rbln_quantization.py +128 -5
  69. optimum/rbln/utils/decorator_utils.py +59 -0
  70. optimum/rbln/utils/hub.py +131 -0
  71. optimum/rbln/utils/import_utils.py +21 -0
  72. optimum/rbln/utils/model_utils.py +53 -0
  73. optimum/rbln/utils/runtime_utils.py +5 -5
  74. optimum/rbln/utils/submodule.py +114 -0
  75. optimum/rbln/utils/timer_utils.py +2 -2
  76. optimum_rbln-0.1.15.dist-info/METADATA +106 -0
  77. optimum_rbln-0.1.15.dist-info/RECORD +110 -0
  78. {optimum_rbln-0.1.12.dist-info → optimum_rbln-0.1.15.dist-info}/WHEEL +1 -1
  79. optimum/rbln/transformers/generation/streamers.py +0 -139
  80. optimum/rbln/transformers/generation/utils.py +0 -397
  81. optimum/rbln/transformers/models/exaone/hf_hub_cached/configuration_exaone.py +0 -181
  82. optimum/rbln/transformers/models/exaone/hf_hub_cached/modeling_exaone.py +0 -1725
  83. optimum/rbln/transformers/models/midm/hf_hub_cached/configuration_midm.py +0 -22
  84. optimum/rbln/transformers/models/midm/hf_hub_cached/midm_bitext_tokenization.py +0 -304
  85. optimum/rbln/transformers/models/midm/hf_hub_cached/modeling_midm.py +0 -1469
  86. optimum/rbln/transformers/models/midm/hf_hub_cached/rotary_position_embedding.py +0 -98
  87. optimum_rbln-0.1.12.dist-info/METADATA +0 -119
  88. optimum_rbln-0.1.12.dist-info/RECORD +0 -103
  89. optimum_rbln-0.1.12.dist-info/entry_points.txt +0 -4
  90. {optimum_rbln-0.1.12.dist-info → optimum_rbln-0.1.15.dist-info}/licenses/LICENSE +0 -0
@@ -1,98 +0,0 @@
1
- # coding=utf-8
2
- # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- import torch
17
- from einops import rearrange
18
- from torch import einsum, nn
19
-
20
-
21
- __all__ = ["RotaryEmbedding", "apply_rotary_pos_emb"]
22
-
23
-
24
- class RotaryEmbedding(nn.Module):
25
- """
26
- Implements Rotary Position Embedding from https://arxiv.org/abs/2104.09864.
27
- """
28
-
29
- def __init__(
30
- self, dim: int, seq_len_interpolation_factor: int = None, pretrained_max_position_embeddings: int = None
31
- ):
32
- """
33
- Args:
34
-
35
- dim (int): rotary embedding dimension
36
- seq_len_interpolation_factor (int): if not None, discrete positions will be interpolated
37
- by this factor via the trick in https://arxiv.org/abs/2306.15595.
38
- pretrained_max_position_embeddings (int): pre-trained max_position_embeddings before position interpolation.
39
- """
40
- super().__init__()
41
- self.seq_len_interpolation_factor = seq_len_interpolation_factor
42
- inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
43
- self.register_buffer("inv_freq", inv_freq)
44
- self.pretrained_max_position_embeddings = pretrained_max_position_embeddings
45
-
46
- def forward(self, max_seq_len, offset=0):
47
- seq = torch.arange(max_seq_len, device=self.inv_freq.device) + offset
48
- seq = seq.type_as(self.inv_freq)
49
-
50
- if self.pretrained_max_position_embeddings is not None and self.seq_len_interpolation_factor is not None:
51
- if max_seq_len > self.pretrained_max_position_embeddings * self.seq_len_interpolation_factor:
52
- # dynamic linear scaling (length > position we have learned)
53
- seq *= 1 / (max_seq_len / self.pretrained_max_position_embeddings)
54
- else:
55
- # fixed linear scaling
56
- seq *= 1 / self.seq_len_interpolation_factor
57
-
58
- freqs = einsum("i , j -> i j", seq, self.inv_freq)
59
- # first part even vector components, second part odd vector components,
60
- # 2 * dim in dimension size
61
- emb = torch.cat((freqs, freqs), dim=-1)
62
- # emb [seq_length, .., dim]
63
- return rearrange(emb, "n d -> n 1 1 d")
64
-
65
-
66
- def _rotate_half(x):
67
- """
68
- change sign so the last dimension
69
- [A, B, C, D] -> [-C, -D, A, B]
70
- """
71
- x = rearrange(x, "... (j d) -> ... j d", j=2)
72
- x1, x2 = x.unbind(dim=-2)
73
- return torch.cat((-x2, x1), dim=-1)
74
-
75
-
76
- def apply_rotary_pos_emb(t, freqs):
77
- """
78
- input tensor t is of shape [seq_length, ..., dim]
79
- rotary positional embeding tensor freqs is of shape [seq_length, ..., dim]
80
- check https://kexue.fm/archives/8265 for detailed formulas
81
- """
82
- # Changes from the original RoPE implementation
83
- # 1. The original NeMo implementation assumes the input tensor of shape
84
- # [seq_length, ..., dim], but the HF layout is [..., seq_length, dim].
85
- # Thus freqs needs to be viewed as [..., seq_length, dim].
86
- freqs = freqs.permute(1, 2, 0, 3)
87
- # 2. Support for queries which past tokens are truncated
88
- assert freqs.shape[-2] >= t.shape[-2]
89
- if freqs.shape[-2] != t.shape[-2]:
90
- freqs = freqs[:, :, -t.shape[-2] :, :]
91
-
92
- rot_dim = freqs.shape[-1]
93
- # ideally t_pass is empty so rotary pos embedding is applied to all tensor t
94
- t, t_pass = t[..., :rot_dim], t[..., rot_dim:]
95
- # first part is cosine component
96
- # second part is sine component, need to change signs with _rotate_half method
97
- t = (t * freqs.cos()) + (_rotate_half(t) * freqs.sin())
98
- return torch.cat((t, t_pass), dim=-1)
@@ -1,119 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: optimum-rbln
3
- Version: 0.1.12
4
- Summary: Optimum RBLN is the interface between the Hugging Face Transformers and Diffusers libraries and RBLN accelerators.
5
- It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
6
-
7
- Keywords: transformers,diffusers,inference,rbln,atom,rebel
8
- Author-Email: "Rebellions Inc." <support@rebellions.ai>
9
- License: Apache
10
- Classifier: Development Status :: 2 - Pre-Alpha
11
- Classifier: License :: OSI Approved :: Apache Software License
12
- Classifier: Intended Audience :: Developers
13
- Classifier: Intended Audience :: Education
14
- Classifier: Intended Audience :: Science/Research
15
- Classifier: Operating System :: POSIX :: Linux
16
- Classifier: Programming Language :: Python :: 3 :: Only
17
- Classifier: Programming Language :: Python :: 3.8
18
- Classifier: Programming Language :: Python :: 3.9
19
- Classifier: Programming Language :: Python :: 3.10
20
- Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
21
- Project-URL: Homepage, https://rebellions.ai
22
- Project-URL: Documentation, https://docs.rbln.ai
23
- Requires-Python: <3.11,>=3.8
24
- Requires-Dist: torch<=2.2.1
25
- Requires-Dist: torchvision<=0.17.1
26
- Requires-Dist: torchaudio<=2.2.1
27
- Requires-Dist: optimum==1.23.1
28
- Requires-Dist: accelerate>=0.28.0
29
- Requires-Dist: transformers==4.45.2
30
- Requires-Dist: diffusers<=0.30.3
31
- Requires-Dist: einops>=0.8.0
32
- Requires-Dist: packaging>=24.1
33
- Requires-Dist: halo
34
- Provides-Extra: tests
35
- Requires-Dist: pytest>=8.1.1; extra == "tests"
36
- Requires-Dist: psutil>=5.9.8; extra == "tests"
37
- Requires-Dist: parameterized>=0.9.0; extra == "tests"
38
- Requires-Dist: GitPython>=3.1.42; extra == "tests"
39
- Requires-Dist: sentencepiece>=0.2.0; extra == "tests"
40
- Requires-Dist: datasets>=2.18.0; extra == "tests"
41
- Requires-Dist: sacremoses>=0.1.1; extra == "tests"
42
- Requires-Dist: safetensors>=0.4.2; extra == "tests"
43
- Provides-Extra: quality
44
- Requires-Dist: ruff>=0.3.3; extra == "quality"
45
- Requires-Dist: isort>=5.13.2; extra == "quality"
46
- Requires-Dist: hf-doc-builder>=0.5.0; extra == "quality"
47
- Description-Content-Type: text/markdown
48
-
49
- <!---
50
- Copyright 2023 The HuggingFace Team. All rights reserved.
51
-
52
- Licensed under the Apache License, Version 2.0 (the "License");
53
- you may not use this file except in compliance with the License.
54
- You may obtain a copy of the License at
55
-
56
- http://www.apache.org/licenses/LICENSE-2.0
57
-
58
- Unless required by applicable law or agreed to in writing, software
59
- distributed under the License is distributed on an "AS IS" BASIS,
60
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
61
- See the License for the specific language governing permissions and
62
- limitations under the License.
63
- -->
64
-
65
- # Optimum RBLN
66
-
67
- 🤗 Optimum RBLN is the interface between the 🤗 Transformers library and RBLN Accelerators including [ATOM](https://atom_link) and [REBEL](https://rebel_link).
68
- It provides a set of tools enabling easy model loading and inference on single- and multi-Accelerator settings for different downstream tasks.
69
- The list of officially validated models and tasks is available [here](https://docs.rbln.ai/software/optimum/optimum_rbln.html). Users can try other models and tasks with only few changes.
70
-
71
- ## Install from PyPI
72
-
73
- To install the latest release of this package:
74
-
75
- - Export environment variables to access to RBLN private PyPI.
76
- ```bash
77
- export REBEL_PYPI_USERNAME=<username>
78
- export REBEL_PYPI_PASSWORD=<password>
79
- ```
80
-
81
- - Install optimum-rbln package:
82
- ```bash
83
- pip install --index-url https://pypi.rebellions.in/simple optimum-rbln
84
- ```
85
-
86
- ## Install from source
87
-
88
- ### Prerequisites
89
-
90
- - Install [PDM](https://pdm-project.org/latest/) (refer [this link](https://pdm-project.org/latest/#installation) for detailed commands)
91
-
92
- The below command installs optimum-rbln along with its dependencies.
93
-
94
- ```bash
95
- git clone https://github.com/rebellions-sw/optimum-rbln.git
96
- cd optimum-rbln
97
- pdm install
98
- ```
99
-
100
- To install optional dependencies from all groups, specify `-G:all` option.
101
-
102
- ```bash
103
- pdm install -G:all
104
- ```
105
-
106
- If you want to install optimum-rbln as [editable mode](https://pip.pypa.io/en/stable/topics/local-project-installs/#editable-installs) in existing venv,
107
- ```bash
108
- (venv) pip install -e .
109
- ```
110
-
111
- ## How to use it?
112
-
113
- ### Quick Start
114
-
115
- 🤗 Optimum RBLN was designed with one goal in mind: **to make inference straightforward for any 🤗 Transformers user while leveraging the complete power of RBLN Accelerators**.
116
-
117
- ### Documentation
118
-
119
- Check out [the documentation of Optimum RBLN](https://docs.rbln.ai/software/optimum/optimum_rbln.html) for more advanced usage.
@@ -1,103 +0,0 @@
1
- optimum/rbln/__init__.py,sha256=z_WB5rnZ7t1Q_B1DeyMOHzXREX-i67NxHa1pJ249PIU,6295
2
- optimum/rbln/__version__.py,sha256=8yPskJaNfjtFCSb_-mBfyIbWJj31afL2gxVQ6POgv8A,22
3
- optimum/rbln/diffusers/__init__.py,sha256=w4W7Wy-Mmh8CQZ5M9JnrrE5bN0UsfNehZI41QadE-hk,2605
4
- optimum/rbln/diffusers/models/__init__.py,sha256=aY6Llq_31dZjdB9HPBDvi7sXVtdQT9r11gokXG5ffxA,1139
5
- optimum/rbln/diffusers/models/autoencoder_kl.py,sha256=mKf1f29lRveMFupo-_hC3XB5TQgeMNm_D9PxkvIQ9t4,9744
6
- optimum/rbln/diffusers/models/controlnet.py,sha256=e94x-zFgXBmTAhGpVcevy222qvCNOYYV0-g5-1Hic7E,9648
7
- optimum/rbln/diffusers/models/unet_2d_condition.py,sha256=gNuusFEsijFZatCprMS-348BKvutxZQtndPeYGojh_A,14946
8
- optimum/rbln/diffusers/pipelines/__init__.py,sha256=Xr_bQbpbC5HbJB2NuUcVQu2BGebDkc2bhsGJmL6jgps,1449
9
- optimum/rbln/diffusers/pipelines/controlnet/__init__.py,sha256=k0govvSBxBUR5qpxUGxRMHuQCMX7hXHVZ4EqVRw1LWk,1377
10
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py,sha256=XXHiXzE5Gyd1zLhLdc9O2cRJkgPeCTVzqF3-scn9jmM,5212
11
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py,sha256=Zl5lqnsB9xFJroBakyeK1c1HIsdajESMryhnYjdfmus,42709
12
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py,sha256=kMqt7hrHm2CjZVdEJc3KTmTkLr_jtPAROzaA1OTrL4Y,41303
13
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py,sha256=NqPidjFC0cW7_-vkj1VHlhNAqoXcg8ZZcd9EGWmjvqw,52634
14
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py,sha256=1Hqu7Bm6f2lHjJrkVXtxx-s_hQ7yxdJ_O4WMZShbSHs,53968
15
- optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py,sha256=qf_uMWSwD-CyRMRC73y1QsTMyl_qCMreIdg0a8rhJuA,1142
16
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py,sha256=_pNJwtjSzDpJgE6-_E5SW6m7DTPBepGCCcxPnhSyf4U,5711
17
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py,sha256=W098xtly5IGx-ieZurGbR0wWecql2lPbD0NsTUCQgcc,5990
18
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py,sha256=8MDMHIVsDrM6lZAyvpjFtWOFwiY_IoSxzCQe-gJYTPI,159
19
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py,sha256=FcezpMdeszOby-dCbRKLPktfxIGFlxKNFC5RlUnuPH0,5953
20
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py,sha256=NRRSwT3NV9KO5RMBxzIvQ7aFFJ3ob1exdxOPBDsiY2k,6129
21
- optimum/rbln/modeling.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
- optimum/rbln/modeling_alias.py,sha256=lvyUxIrrXWgV2o0ymbeFkhz_ou8S9_CRRfQ_EfAvQZU,2133
23
- optimum/rbln/modeling_base.py,sha256=lOC2qoL6D68pzekFOtKwbrGcWnZ_ANUHRjrIjL7Q7eI,43802
24
- optimum/rbln/modeling_config.py,sha256=va58Gpbn3rolqKu9y2u3vYVT6kynBGpox_jod6cs-j0,10612
25
- optimum/rbln/transformers/__init__.py,sha256=qoswlx1hgsdNxjLv5RnOZQThi5aN4dGiPd4x-axuyaA,3801
26
- optimum/rbln/transformers/cache_utils.py,sha256=VfArIkAJn3zPXdu-6RXiCWlU-uVwxvhgoMiGxrPtk40,3835
27
- optimum/rbln/transformers/generation/__init__.py,sha256=6MmqS9D21ir4dcH6_fq8kRsX1VK3QspSn6Qw83F4ORE,1081
28
- optimum/rbln/transformers/generation/streamers.py,sha256=X-dEmL1L_0Oy0QSFj2RNdamb_xbDWLXd-Ms8ckx6OZ4,5778
29
- optimum/rbln/transformers/generation/utils.py,sha256=XqPbYQCe6cEuWssG9iHpbbL-wgSQTcyKHabGwKj7lnE,19462
30
- optimum/rbln/transformers/models/__init__.py,sha256=bXKob99DNgkqCho6NTvzOHf5wMdLNeOmIl5e80ni_Nc,2221
31
- optimum/rbln/transformers/models/auto/__init__.py,sha256=zMqaMIdGwuZJq4gLjRC-69M2mGUKrd0aRpmb4Rpm6-g,435
32
- optimum/rbln/transformers/models/auto/auto_factory.py,sha256=Up052AXID12uqa5UgLRW89EkYXDpuXR70Bt-xNHEZto,3159
33
- optimum/rbln/transformers/models/auto/modeling_auto.py,sha256=zET3k5GiqREvPuc_d9Sauea7rITlP6Wl32xdlCFqdhY,3165
34
- optimum/rbln/transformers/models/bart/__init__.py,sha256=-mrB4kmPpEIVk713yEIRtC57AZ7kZ23g4bsOKcvBFNE,1138
35
- optimum/rbln/transformers/models/bart/bart_architecture.py,sha256=W6XeumvuKv1i7p4YzKM0NgpO3NCnc1qwGXknZZrPlP0,21298
36
- optimum/rbln/transformers/models/bart/modeling_bart.py,sha256=-ulamfBSlXDL67Q1Bzo4Q8sGuuzJBjut9XPRTeQhCbA,5261
37
- optimum/rbln/transformers/models/bert/__init__.py,sha256=divBpVNrRAdNAPgnQkGiEZI4oJHCJtLuwdYpMbD3dMM,1034
38
- optimum/rbln/transformers/models/bert/modeling_bert.py,sha256=F5FKVgiIBdDFq-Ql8AmE0WT_mjL0gFfr1AGE_frTexs,4228
39
- optimum/rbln/transformers/models/clip/__init__.py,sha256=iXZfPPIztzMDOkY3fbEzx9dCkFKKtWYXCpLGfjEUeZE,1092
40
- optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=NpQgw6fJLFz746iF9hH2-k-6V8wdg0v22y0ZWji77sU,7114
41
- optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=AG3ib8iZAEDAvVTNhieCyojWZtA67voPB0dI8lbCXTQ,1371
42
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=25YMgIGYCNSawLf9Gg0HLncb7sqi2FI6sAbt4nitWJI,20047
43
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=0H3U0AnQZ3mDEoSsIebd1e7jdP4qfxSVDEziJClV5d0,27381
44
- optimum/rbln/transformers/models/dpt/__init__.py,sha256=R8OHDxOAYPjkk5t8osaPqRh85Pf1Cg1BtzqesqFRcTI,1045
45
- optimum/rbln/transformers/models/dpt/modeling_dpt.py,sha256=pKQ2vmR50GyEyKK0aV7p33PqTuksiorDhC0cH5qUYiw,3810
46
- optimum/rbln/transformers/models/exaone/__init__.py,sha256=CuWNwnZrbd_cLU7jDDPqC0kZIqx1ii_BYyQ98CKDag0,1253
47
- optimum/rbln/transformers/models/exaone/exaone_architecture.py,sha256=w7hi8gcjOgWwgQdinJ5aMkmwEfERTkWYsAezk5kfvD8,2669
48
- optimum/rbln/transformers/models/exaone/hf_hub_cached/configuration_exaone.py,sha256=cKtUHugxwnbR6JOtD2a0912a2iepRpX9dEAWDeSu194,10537
49
- optimum/rbln/transformers/models/exaone/hf_hub_cached/modeling_exaone.py,sha256=CUd-z7f-BMIe8WPRVx-u5A60ljW2C6u8CzrAuw__d5M,80983
50
- optimum/rbln/transformers/models/exaone/modeling_exaone.py,sha256=nvhNo071DDGmCFQjSleByJLQPqGjpnagYErentuYj9I,2958
51
- optimum/rbln/transformers/models/gemma/__init__.py,sha256=L1Qfr6dufWtoUZND_ofwxXPSxivEvPR8exy16a_nM2o,1042
52
- optimum/rbln/transformers/models/gemma/gemma_architecture.py,sha256=hT0CqL_jhKWi8cDa1zFcAFPyli844wkliJ3bL5OyEdQ,4376
53
- optimum/rbln/transformers/models/gemma/modeling_gemma.py,sha256=ErAa3NlsNhy7ocSMjGrDaNLmJsn74NeU_OZQQNRpMvY,2643
54
- optimum/rbln/transformers/models/gpt2/__init__.py,sha256=jsOKYXUclG9G6cwUTUX4eeKqjCPfQUwev7TTFIMXS4Y,1040
55
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=nXCITctShY2OTw7chGGSdIOECv8zAd-sxqbYuvSuoK8,10410
56
- optimum/rbln/transformers/models/gpt2/modeling_gpt2.py,sha256=q0enF7yNkMfiuthsUvDYteN00gJKbkWugjeOwhnECbw,2721
57
- optimum/rbln/transformers/models/llama/__init__.py,sha256=5mX-MuKzVBj6WQeVxyPhtvFTv0jeZXAFfg4RZ2nVUh0,1042
58
- optimum/rbln/transformers/models/llama/llama_architecture.py,sha256=j4mifSOaIk7wwV9fL9wQSt5kR3rpnvjtxd3VzhMNdgY,1123
59
- optimum/rbln/transformers/models/llama/modeling_llama.py,sha256=ZMKigYHGlRhi6asAWpC5tayb4l1Rslt2quJUjL_lgxw,2643
60
- optimum/rbln/transformers/models/llava_next/__init__.py,sha256=3vi2rmTeKBydGRFOtxELhxWixZggFMpGex6xqfMgi-I,1064
61
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py,sha256=AIpIk7EExj9VNxFWzDALDzMNqfZ4ke0IlRF3Dsi9r9I,27582
62
- optimum/rbln/transformers/models/midm/__init__.py,sha256=_6kYchy47frGMZ8uoUspZ9IwrmCBQJ-8kVfXM7xOMew,1249
63
- optimum/rbln/transformers/models/midm/hf_hub_cached/configuration_midm.py,sha256=P5JqTTcx56HOccxKbR14ZjA67BI0RNnJycG738JMaJ4,833
64
- optimum/rbln/transformers/models/midm/hf_hub_cached/midm_bitext_tokenization.py,sha256=5lhMXfqnIak1PJ9YL-vUxIdY_3DUr3IBXzTqf3ofpmI,12835
65
- optimum/rbln/transformers/models/midm/hf_hub_cached/modeling_midm.py,sha256=54__wd9EXwGxmaHDksTTcUD2aWl6WoszYsR8dlL1wfE,61031
66
- optimum/rbln/transformers/models/midm/hf_hub_cached/rotary_position_embedding.py,sha256=5ywaUVKTvqO8GRsHOSXOOGlbiEn-DbGkpJs59_dFb18,4059
67
- optimum/rbln/transformers/models/midm/midm_architecture.py,sha256=CYtFrFQ2L3u2_81TrTbEwBqgGHHQBh1sTs3vjF0xbp8,11505
68
- optimum/rbln/transformers/models/midm/modeling_midm.py,sha256=WGbzrusYg9BU2pTOvdCMCS6D129_2oD9i166bYURYw4,2953
69
- optimum/rbln/transformers/models/mistral/__init__.py,sha256=XtuOmzBITjj-H1yctXobJjHF908x1Wlxr_p4hi06v8I,1046
70
- optimum/rbln/transformers/models/mistral/mistral_architecture.py,sha256=LCvY4L0Wq1VruKhZ3JTSiuZJqQRJlTae5A2bKsUBGAg,1128
71
- optimum/rbln/transformers/models/mistral/modeling_mistral.py,sha256=TB6Ju-yJt57xx4YSYSvPTvLg51s7JeRtHiAA61gsewA,2678
72
- optimum/rbln/transformers/models/phi/__init__.py,sha256=LrGFTUo1oQnsPSTlxJqAJVVNUdUwq4u_Bf60RUgjLz4,1038
73
- optimum/rbln/transformers/models/phi/modeling_phi.py,sha256=Qh1YkWMVREIpYiq8_z5IEepLeyY-yTxmNjHHYrpez18,2639
74
- optimum/rbln/transformers/models/phi/phi_architecture.py,sha256=kgUqXnZvFiIB87-_5fdz29JwtrDAmzifbWTNN5aY1ks,15725
75
- optimum/rbln/transformers/models/qwen2/__init__.py,sha256=1PLl1rlF14C6eSk3EZaDfyEHPaC4DZ2vwVlrklTkOYg,1042
76
- optimum/rbln/transformers/models/qwen2/modeling_qwen2.py,sha256=Mf0v-SQEuDSQ1GXgYw0C4KfeInLgYngusdCg3eibkao,2635
77
- optimum/rbln/transformers/models/qwen2/qwen2_architecture.py,sha256=-X9OZ4HUCYDtwKnvidkWzCMPh_Xuu1wj-wRXIsQ9Pjg,1115
78
- optimum/rbln/transformers/models/seq2seq/__init__.py,sha256=Oa11lBWDNQWahqvDco3JIsZldYS-lO8qjpnaGKSfR00,1045
79
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py,sha256=ytDTNTTW221ShVRXClfQQBQV96NW-oYWwRjlbv9aXZU,18403
80
- optimum/rbln/transformers/models/t5/__init__.py,sha256=BeLpy0izLHIpqkTCA1q0P7DynEjgRqwOZrGc-8MXQGI,1113
81
- optimum/rbln/transformers/models/t5/modeling_t5.py,sha256=yjzvRGUME4LYUebUODrJRUkKHhI9rhcS5v8U3j8kMHc,1927
82
- optimum/rbln/transformers/models/t5/t5_architecture.py,sha256=k3ROGNSGGuF1gFNV-LxoFFgfxo7ab5GSQA4GIi5MLsI,21074
83
- optimum/rbln/transformers/models/wav2vec2/__init__.py,sha256=mz4cXqG9b0tDpTAw3qYn3FaJuolX601VmKBE3gohLSw,1043
84
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py,sha256=lTtLGKuAxuVNguqSc2y0D0MsE6eHCraDS7-l2-0QJEY,4236
85
- optimum/rbln/transformers/models/whisper/__init__.py,sha256=PZ8qeAAFMas2MizwVYFxlpFWd5k1Pe1x-0IJfYAMhT8,1059
86
- optimum/rbln/transformers/models/whisper/generation_whisper.py,sha256=Kwwskbp48wJxEkFGQLlm0L252rO7tx_YLYmOA-_IPwI,3387
87
- optimum/rbln/transformers/models/whisper/modeling_whisper.py,sha256=Yp5I1_cFClqzKr57X68Sz7Z9s5ri5cn_s9dLpRF3jpc,15343
88
- optimum/rbln/transformers/models/whisper/whisper_architecture.py,sha256=OQzkGa2WSUn3OVQ1DYVOY49N46QvxO1hdEbQ7Ke-o_c,17203
89
- optimum/rbln/transformers/models/xlm_roberta/__init__.py,sha256=NTj4hCpd8L2_i5DZuV5wp-h8OlTLYVUqTrJxzY_Dg9g,1047
90
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py,sha256=8xLhJvuFSCmURyKWpB3O1GLLUn00ewwdAdbzJCV7B78,4929
91
- optimum/rbln/transformers/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
92
- optimum/rbln/transformers/utils/rbln_quantization.py,sha256=aXlPjD17oi_rFgqv2yabkQZz6xFX7pHBLNJYJ2O95Qc,3530
93
- optimum/rbln/utils/__init__.py,sha256=F6hJP00eV1_hT_IVwqqYwLWcLQAvZbmmrNMJTia3mjI,1106
94
- optimum/rbln/utils/import_utils.py,sha256=ochkue99SxwaG5WdNg3GMyh1Cbn0JnYX1nnLyqfDOFg,3789
95
- optimum/rbln/utils/logging.py,sha256=xIcLmUQoIJoBj3owkXN5_WQkQljcos6J6KSdX35IApw,2271
96
- optimum/rbln/utils/runtime_utils.py,sha256=RgZzyUo-RfVCf3IRmEim1ZzJzuZ-VNB98LK1NQjBrUA,3802
97
- optimum/rbln/utils/save_utils.py,sha256=eFIPtmiblCJ3MvtxEPxmAR3iuLEUrzpyzwtVotDauhw,3283
98
- optimum/rbln/utils/timer_utils.py,sha256=9FtBJpqCcDWmilgP67IZqnj1UGZag4WO7XflEms-DB8,1229
99
- optimum_rbln-0.1.12.dist-info/METADATA,sha256=RbGOydoke74MtRlasivGwjRNabuhuHonc8CFRV4PUVE,4601
100
- optimum_rbln-0.1.12.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
101
- optimum_rbln-0.1.12.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
102
- optimum_rbln-0.1.12.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
103
- optimum_rbln-0.1.12.dist-info/RECORD,,
@@ -1,4 +0,0 @@
1
- [console_scripts]
2
-
3
- [gui_scripts]
4
-