optimum-rbln 0.1.12__py3-none-any.whl → 0.1.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (90) hide show
  1. optimum/rbln/__init__.py +27 -13
  2. optimum/rbln/__version__.py +16 -1
  3. optimum/rbln/diffusers/__init__.py +22 -2
  4. optimum/rbln/diffusers/models/__init__.py +34 -3
  5. optimum/rbln/{transformers/generation → diffusers/models/autoencoders}/__init__.py +1 -2
  6. optimum/rbln/diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +66 -111
  7. optimum/rbln/diffusers/models/autoencoders/vae.py +84 -0
  8. optimum/rbln/diffusers/models/controlnet.py +85 -65
  9. optimum/rbln/diffusers/models/transformers/__init__.py +24 -0
  10. optimum/rbln/diffusers/models/transformers/transformer_sd3.py +203 -0
  11. optimum/rbln/diffusers/models/unets/__init__.py +24 -0
  12. optimum/rbln/diffusers/models/{unet_2d_condition.py → unets/unet_2d_condition.py} +129 -163
  13. optimum/rbln/diffusers/pipelines/__init__.py +60 -12
  14. optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +11 -25
  15. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +9 -185
  16. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +9 -190
  17. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +9 -191
  18. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +9 -192
  19. optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +1 -0
  20. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +4 -110
  21. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +4 -118
  22. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +32 -0
  23. optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +26 -0
  24. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +32 -0
  25. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +32 -0
  26. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +32 -0
  27. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +1 -0
  28. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +18 -128
  29. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +18 -131
  30. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +32 -0
  31. optimum/rbln/modeling.py +572 -0
  32. optimum/rbln/modeling_alias.py +1 -1
  33. optimum/rbln/modeling_base.py +176 -763
  34. optimum/rbln/modeling_diffusers.py +329 -0
  35. optimum/rbln/transformers/__init__.py +2 -2
  36. optimum/rbln/transformers/cache_utils.py +5 -9
  37. optimum/rbln/transformers/modeling_rope_utils.py +283 -0
  38. optimum/rbln/transformers/models/__init__.py +80 -31
  39. optimum/rbln/transformers/models/auto/auto_factory.py +117 -23
  40. optimum/rbln/transformers/models/auto/modeling_auto.py +37 -12
  41. optimum/rbln/transformers/models/bart/modeling_bart.py +3 -6
  42. optimum/rbln/transformers/models/bert/modeling_bert.py +3 -6
  43. optimum/rbln/transformers/models/clip/modeling_clip.py +8 -34
  44. optimum/rbln/transformers/models/decoderonly/__init__.py +0 -5
  45. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +779 -361
  46. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +83 -142
  47. optimum/rbln/transformers/models/dpt/modeling_dpt.py +1 -1
  48. optimum/rbln/transformers/models/exaone/exaone_architecture.py +64 -39
  49. optimum/rbln/transformers/models/exaone/modeling_exaone.py +6 -29
  50. optimum/rbln/transformers/models/gemma/gemma_architecture.py +31 -92
  51. optimum/rbln/transformers/models/gemma/modeling_gemma.py +4 -28
  52. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +50 -238
  53. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +6 -31
  54. optimum/rbln/transformers/models/llama/modeling_llama.py +4 -28
  55. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +29 -83
  56. optimum/rbln/transformers/models/midm/midm_architecture.py +88 -253
  57. optimum/rbln/transformers/models/midm/modeling_midm.py +8 -33
  58. optimum/rbln/transformers/models/mistral/modeling_mistral.py +4 -29
  59. optimum/rbln/transformers/models/phi/modeling_phi.py +5 -31
  60. optimum/rbln/transformers/models/phi/phi_architecture.py +61 -345
  61. optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +5 -29
  62. optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +1 -46
  63. optimum/rbln/transformers/models/t5/__init__.py +1 -1
  64. optimum/rbln/transformers/models/t5/modeling_t5.py +157 -6
  65. optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +1 -1
  66. optimum/rbln/transformers/models/whisper/modeling_whisper.py +2 -2
  67. optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +3 -35
  68. optimum/rbln/transformers/utils/rbln_quantization.py +128 -5
  69. optimum/rbln/utils/decorator_utils.py +59 -0
  70. optimum/rbln/utils/hub.py +131 -0
  71. optimum/rbln/utils/import_utils.py +21 -0
  72. optimum/rbln/utils/model_utils.py +53 -0
  73. optimum/rbln/utils/runtime_utils.py +5 -5
  74. optimum/rbln/utils/submodule.py +114 -0
  75. optimum/rbln/utils/timer_utils.py +2 -2
  76. optimum_rbln-0.1.15.dist-info/METADATA +106 -0
  77. optimum_rbln-0.1.15.dist-info/RECORD +110 -0
  78. {optimum_rbln-0.1.12.dist-info → optimum_rbln-0.1.15.dist-info}/WHEEL +1 -1
  79. optimum/rbln/transformers/generation/streamers.py +0 -139
  80. optimum/rbln/transformers/generation/utils.py +0 -397
  81. optimum/rbln/transformers/models/exaone/hf_hub_cached/configuration_exaone.py +0 -181
  82. optimum/rbln/transformers/models/exaone/hf_hub_cached/modeling_exaone.py +0 -1725
  83. optimum/rbln/transformers/models/midm/hf_hub_cached/configuration_midm.py +0 -22
  84. optimum/rbln/transformers/models/midm/hf_hub_cached/midm_bitext_tokenization.py +0 -304
  85. optimum/rbln/transformers/models/midm/hf_hub_cached/modeling_midm.py +0 -1469
  86. optimum/rbln/transformers/models/midm/hf_hub_cached/rotary_position_embedding.py +0 -98
  87. optimum_rbln-0.1.12.dist-info/METADATA +0 -119
  88. optimum_rbln-0.1.12.dist-info/RECORD +0 -103
  89. optimum_rbln-0.1.12.dist-info/entry_points.txt +0 -4
  90. {optimum_rbln-0.1.12.dist-info → optimum_rbln-0.1.15.dist-info}/licenses/LICENSE +0 -0
@@ -1,397 +0,0 @@
1
- import traceback
2
- import warnings
3
- from typing import List, Optional, Union
4
-
5
- import torch
6
- from transformers.generation import GenerationConfig
7
- from transformers.generation.logits_process import LogitsProcessorList
8
- from transformers.generation.stopping_criteria import (
9
- StoppingCriteriaList,
10
- validate_stopping_criteria,
11
- )
12
- from transformers.generation.streamers import BaseStreamer
13
- from transformers.generation.utils import SampleDecoderOnlyOutput
14
-
15
-
16
- class RBLNGenerationMixin:
17
- # call 'greedy_search` directly is deprecated and removed in v4.41.
18
- def greedy_search(self, *args, **kwargs):
19
- return self._greedy_search(*args, **kwargs)
20
-
21
- def _greedy_search(
22
- self,
23
- input_ids: torch.LongTensor,
24
- logits_processor: Optional[LogitsProcessorList] = None,
25
- stopping_criteria: Optional[StoppingCriteriaList] = None,
26
- max_length: Optional[int] = None,
27
- pad_token_id: Optional[int] = None,
28
- eos_token_id: Optional[Union[int, List[int]]] = None,
29
- output_logits: Optional[bool] = None,
30
- return_dict_in_generate: Optional[bool] = None,
31
- streamer: Optional["BaseStreamer"] = None,
32
- generation_config: Optional[GenerationConfig] = None, # thkim change for 4.41.0
33
- **model_kwargs,
34
- ) -> Union[SampleDecoderOnlyOutput, torch.LongTensor]:
35
- ###################### thkim change for 4.41.0 ############################
36
- if generation_config is not None:
37
- pad_token_id = generation_config.pad_token_id
38
- output_logits = generation_config.output_logits
39
- return_dict_in_generate = generation_config.return_dict_in_generate
40
- ##########################################################################
41
- # init values
42
- logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
43
- stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
44
-
45
- if max_length is not None:
46
- warnings.warn(
47
- "`max_length` is deprecated in this function, use"
48
- " `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
49
- UserWarning,
50
- )
51
- stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
52
-
53
- pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
54
- eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
55
- if isinstance(eos_token_id, int):
56
- eos_token_id = [eos_token_id]
57
- eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
58
-
59
- return_dict_in_generate = (
60
- return_dict_in_generate
61
- if return_dict_in_generate is not None
62
- else self.generation_config.return_dict_in_generate
63
- )
64
-
65
- # init attention / hidden states / scores tuples
66
- raw_logits = () if (return_dict_in_generate and output_logits) else None
67
-
68
- # keep track of which sequences are already finished
69
- unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
70
-
71
- this_peer_finished = False # used by synced_gpus only
72
-
73
- while True:
74
- # prepare model inputs
75
- model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
76
- # forward pass to get next token
77
- try:
78
- outputs = self(
79
- **model_inputs,
80
- return_dict=True,
81
- )
82
- next_token_logits = outputs.logits[:, -1, :]
83
- except Exception:
84
- traceback.print_exc()
85
- break
86
-
87
- # pre-process distribution
88
- next_tokens_scores = logits_processor(input_ids, next_token_logits)
89
-
90
- # Store scores, attentions and hidden_states when required
91
- if return_dict_in_generate:
92
- if output_logits:
93
- raw_logits += (next_token_logits,)
94
-
95
- # argmax
96
- next_tokens = torch.argmax(next_tokens_scores, dim=-1)
97
-
98
- # finished sentences should have their next token be a padding token
99
- if eos_token_id is not None:
100
- if pad_token_id is None:
101
- raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
102
- next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
103
-
104
- ########################################################################################################
105
- # thkim change for right-padding batch
106
- # if min_input_len <= update_idx < max_input_len
107
- # update validate input_ids[:,update_idx]
108
- # TODO : raw_logits contains dummy next_token's logits
109
- if hasattr(self, "rightpad_max_len"):
110
- update_idx = model_inputs["cache_position"] + model_inputs["query_length"]
111
- if update_idx < self.rightpad_max_len:
112
- # update exist input_ids rather than concat
113
- valid_indices = model_kwargs["attention_mask"][:, update_idx] == 0
114
- dummy_indices = model_kwargs["attention_mask"][:, update_idx] == 1
115
-
116
- input_ids[valid_indices, update_idx] = next_tokens[valid_indices]
117
- model_kwargs["attention_mask"][valid_indices, update_idx] = 1
118
- model_kwargs["past_key_values"] = outputs["past_key_values"]
119
-
120
- # dummy next_token -> pad_token_id for streamer
121
- # in order to skip by 'skip_special_tokens = True"
122
- if streamer is not None:
123
- next_tokens[dummy_indices] = pad_token_id
124
- else:
125
- input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
126
- model_kwargs = self._update_model_kwargs_for_generation(
127
- outputs,
128
- model_kwargs,
129
- is_encoder_decoder=self.config.is_encoder_decoder,
130
- )
131
- else:
132
- ############################################END#########################################################
133
- # update generated ids, model inputs, and length for next step
134
- input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
135
- model_kwargs = self._update_model_kwargs_for_generation(
136
- outputs,
137
- model_kwargs,
138
- is_encoder_decoder=self.config.is_encoder_decoder,
139
- )
140
-
141
- if streamer is not None:
142
- streamer.put(next_tokens.cpu())
143
- if streamer.is_blocked():
144
- this_peer_finished = True
145
-
146
- # if eos_token was found in one sentence, set sentence to finished
147
- if eos_token_id_tensor is not None:
148
- ####################################################################
149
- # thkim : to do not finish sequence of dummy_decoder of right_padding
150
- if hasattr(self, "rightpad_max_len"):
151
- update_idx = model_inputs["cache_position"] + model_inputs["query_length"]
152
- if update_idx < self.rightpad_max_len:
153
- next_tokens += (
154
- model_kwargs["attention_mask"][:, update_idx] * self.generation_config.eos_token_id
155
- )
156
- ######################################################################
157
- unfinished_sequences = unfinished_sequences.mul(
158
- next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
159
- )
160
-
161
- # stop when each sentence is finished
162
- if unfinished_sequences.max() == 0:
163
- this_peer_finished = True
164
-
165
- # stop if we exceed the maximum length
166
- # thkim : backward compatibility bool vs torch.BoolTensor
167
- is_stop = stopping_criteria(input_ids, None)
168
- if isinstance(is_stop, torch.BoolTensor):
169
- is_stop = torch.all(is_stop)
170
- if is_stop:
171
- this_peer_finished = True
172
-
173
- if this_peer_finished:
174
- break
175
-
176
- if streamer is not None:
177
- streamer.end()
178
-
179
- if return_dict_in_generate:
180
- ############## thkim : roate raw_logits when right_padding#####################
181
- if hasattr(self, "rightpad_max_len"):
182
- raw_logits = torch.stack(raw_logits).transpose(0, 1)
183
- for i in range(input_ids.shape[0]):
184
- raw_logits[i] = torch.cat((raw_logits[i][self.dummy_len[i] :], raw_logits[i][: self.dummy_len[i]]))
185
- raw_logits = raw_logits.transpose(1, 0)
186
- ##################################################################################
187
- return SampleDecoderOnlyOutput(
188
- sequences=input_ids,
189
- logits=raw_logits,
190
- )
191
- else:
192
- return input_ids
193
-
194
- # call 'sample` directly is deprecated and removed in v4.41.
195
- def sample(self, *args, **kwargs):
196
- return self._sample(*args, **kwargs)
197
-
198
- def _sample(
199
- self,
200
- input_ids: torch.LongTensor,
201
- logits_processor: Optional[LogitsProcessorList] = None,
202
- stopping_criteria: Optional[StoppingCriteriaList] = None,
203
- logits_warper: Optional[LogitsProcessorList] = None,
204
- max_length: Optional[int] = None,
205
- pad_token_id: Optional[int] = None,
206
- eos_token_id: Optional[Union[int, List[int]]] = None,
207
- output_attentions: Optional[bool] = None,
208
- output_hidden_states: Optional[bool] = None,
209
- output_scores: Optional[bool] = None,
210
- output_logits: Optional[bool] = None,
211
- return_dict_in_generate: Optional[bool] = None,
212
- synced_gpus: bool = False,
213
- streamer: Optional["BaseStreamer"] = None,
214
- generation_config: Optional[GenerationConfig] = None,
215
- do_sample: Optional[bool] = True,
216
- **model_kwargs,
217
- ) -> Union[SampleDecoderOnlyOutput, torch.LongTensor]:
218
- ###################### thkim change for 4.41.0 ############################
219
- if generation_config is not None:
220
- pad_token_id = generation_config.pad_token_id
221
- output_logits = generation_config.output_logits
222
- return_dict_in_generate = generation_config.return_dict_in_generate
223
- do_sample = generation_config.do_sample
224
- ###########################################################################
225
-
226
- # init values
227
- logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
228
- stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
229
-
230
- if max_length is not None:
231
- warnings.warn(
232
- "`max_length` is deprecated in this function, use"
233
- " `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
234
- UserWarning,
235
- )
236
- stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
237
-
238
- logits_warper = logits_warper if logits_warper is not None else LogitsProcessorList()
239
- pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
240
- eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
241
-
242
- if isinstance(eos_token_id, int):
243
- eos_token_id = [eos_token_id]
244
- eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
245
-
246
- output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
247
- output_logits = output_logits if output_logits is not None else False
248
-
249
- # init attention / hidden states / scores tuples
250
- scores = () if (return_dict_in_generate and output_scores) else None
251
- raw_logits = () if (return_dict_in_generate and output_logits) else None
252
-
253
- # keep track of which sequences are already finished
254
- batch_size, cur_len = input_ids.shape
255
- unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
256
- this_peer_finished = False
257
-
258
- # model_kwargs["cache_position"] = torch.arange(cur_len, device=input_ids.device)
259
-
260
- while True:
261
- # prepare model inputs
262
- model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
263
-
264
- # forward pass to get next token
265
- try:
266
- outputs = self(
267
- **model_inputs,
268
- return_dict=True,
269
- output_attentions=output_attentions,
270
- output_hidden_states=output_hidden_states,
271
- )
272
- next_token_logits = outputs.logits[:, -1, :]
273
- except Exception:
274
- traceback.print_exc()
275
- break
276
-
277
- # pre-process distribution
278
- next_token_scores = logits_processor(input_ids, next_token_logits)
279
-
280
- ###################### thkim change for 4.41.0 ############################
281
- if do_sample:
282
- next_token_scores = logits_warper(input_ids, next_token_scores)
283
- ###########################################################################
284
-
285
- # Store scores, attentions and hidden_states when required
286
- if return_dict_in_generate:
287
- if output_scores:
288
- scores += (next_token_scores,)
289
- if output_logits:
290
- raw_logits += (next_token_logits,)
291
-
292
- # sample
293
- ###################### thkim change for 4.41.0 ############################
294
- if do_sample:
295
- probs = torch.nn.functional.softmax(next_token_scores, dim=-1)
296
- next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
297
- else:
298
- next_tokens = torch.argmax(next_token_scores, dim=-1)
299
- ###########################################################################
300
-
301
- # finished sentences should have their next token be a padding token
302
- if eos_token_id is not None:
303
- if pad_token_id is None:
304
- raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
305
- next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
306
-
307
- ###############################thkim change for right-padding batch#################################
308
- # if min_input_len <= update_idx < max_input_len
309
- # update validate input_ids[:,update_idx]
310
- # TODO : raw_logits contains dummy next_token's logits
311
-
312
- if hasattr(self, "rightpad_max_len"):
313
- update_idx = model_inputs["cache_position"] + model_inputs["query_length"]
314
- if update_idx < self.rightpad_max_len:
315
- # update exist input_ids rather than concat
316
- valid_indices = model_kwargs["attention_mask"][:, update_idx] == 0
317
- dummy_indices = model_kwargs["attention_mask"][:, update_idx] == 1
318
-
319
- input_ids[valid_indices, update_idx] = next_tokens[valid_indices]
320
- model_kwargs["attention_mask"][valid_indices, update_idx] = 1
321
- model_kwargs["past_key_values"] = outputs["past_key_values"]
322
- # dummy next_token -> pad_token_id for streamer
323
- # in order to skip by 'skip_special_tokens = True"
324
- if streamer is not None:
325
- next_tokens[dummy_indices] = pad_token_id
326
- else:
327
- input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
328
- model_kwargs = self._update_model_kwargs_for_generation(
329
- outputs,
330
- model_kwargs,
331
- is_encoder_decoder=self.config.is_encoder_decoder,
332
- )
333
- else:
334
- ############################################END#########################################################
335
- # update generated ids, model inputs, and length for next step
336
- input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
337
-
338
- model_kwargs = self._update_model_kwargs_for_generation(
339
- outputs,
340
- model_kwargs,
341
- is_encoder_decoder=self.config.is_encoder_decoder,
342
- )
343
-
344
- if streamer is not None:
345
- streamer.put(next_tokens.cpu())
346
- if streamer.is_blocked():
347
- this_peer_finished = True
348
-
349
- # if eos_token was found in one sentence, set sentence to finished
350
- if eos_token_id_tensor is not None:
351
- ####################################################################
352
- # thkim : to do not finish sequence of dummy_decoder of right_padding
353
- if hasattr(self, "rightpad_max_len"):
354
- update_idx = model_inputs["cache_position"] + model_inputs["query_length"]
355
- if update_idx < self.rightpad_max_len:
356
- next_tokens += (
357
- model_kwargs["attention_mask"][:, update_idx] * self.generation_config.eos_token_id
358
- )
359
-
360
- ######################################################################
361
- unfinished_sequences = unfinished_sequences.mul(
362
- next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
363
- )
364
-
365
- # stop when each sentence is finished
366
- if unfinished_sequences.max() == 0:
367
- this_peer_finished = True
368
-
369
- # stop if we exceed the maximum length
370
- # thkim : backward compatibility bool vs list[bool]
371
- is_stop = stopping_criteria(input_ids, None)
372
- if isinstance(is_stop, torch.BoolTensor):
373
- is_stop = torch.all(is_stop)
374
- if is_stop:
375
- this_peer_finished = True
376
-
377
- if this_peer_finished:
378
- break
379
-
380
- if streamer is not None:
381
- streamer.end()
382
-
383
- if return_dict_in_generate:
384
- ############## thkim : roate raw_logits when right_padding#####################
385
- if hasattr(self, "rightpad_max_len"):
386
- raw_logits = torch.stack(raw_logits).transpose(0, 1)
387
- for i in range(input_ids.shape[0]):
388
- raw_logits[i] = torch.cat((raw_logits[i][self.dummy_len[i] :], raw_logits[i][: self.dummy_len[i]]))
389
- raw_logits = raw_logits.transpose(1, 0)
390
- ##################################################################################
391
- return SampleDecoderOnlyOutput(
392
- sequences=input_ids,
393
- scores=scores,
394
- logits=raw_logits,
395
- )
396
- else:
397
- return input_ids
@@ -1,181 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2021 The LG AI Research EXAONE Lab. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """EXAONE model configuration"""
16
-
17
- from transformers.configuration_utils import PretrainedConfig
18
- from transformers.utils import logging
19
-
20
-
21
- logger = logging.get_logger(__name__)
22
-
23
- EXAONE_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
24
-
25
-
26
- class ExaoneConfig(PretrainedConfig):
27
- r"""
28
- This is the configuration class to store the configuration of a :class:`~transformers.ExaoneModel`. It is used to
29
- instantiate a EXAONE model according to the specified arguments, defining the model architecture. Instantiating a
30
- configuration with the defaults will yield a similar configuration to that of the Exaone
31
- Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
32
- outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
33
- Args:
34
- vocab_size (:obj:`int`, `optional`, defaults to 102400):
35
- Vocabulary size of the EXAONE model. Defines the number of different tokens that can be represented by the
36
- :obj:`inputs_ids` passed when calling :class:`~transformers.ExaoneModel`. Vocabulary size of the model.
37
- Defines the different tokens that can be represented by the `inputs_ids` passed to the forward method of
38
- :class:`~transformers.EXAONEModel`.
39
- max_position_embeddings (:obj:`int`, `optional`, defaults to 2048):
40
- The maximum sequence length that this model might ever be used with. Typically set this to something large
41
- just in case (e.g., 512 or 1024 or 2048).
42
- hidden_size (:obj:`int`, `optional`, defaults to 2048):
43
- Dimensionality of the encoder layers and the pooler layer.
44
- num_layers (:obj:`int`, `optional`, defaults to 32):
45
- Number of hidden layers in the Transformer encoder.
46
- num_attention_heads (:obj:`int`, `optional`, defaults to 32):
47
- Number of attention heads for each attention layer in the Transformer decoder.
48
- num_key_value_heads (:obj:`int`, `optional`):
49
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
50
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
51
- `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
52
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
53
- by meanpooling all the original heads within that group. For more details checkout [this
54
- paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
55
- `num_attention_heads`.
56
- intermediate_size (:obj:`int`, `optional`, defaults to `hidden_size * 4`):
57
- Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
58
- activation_function (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"silu"`):
59
- The non-linear activation function (function or string) in the decoder.
60
- rope_theta (:obj:`float`, `optional`, defaults to 10000.0):
61
- The base period of the RoPE embeddings.
62
- rope_scaling (:obj:`Dict`, `optional`):
63
- Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
64
- and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
65
- accordingly.
66
- Expected contents:
67
- `rope_type` (:obj:`str`):
68
- The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
69
- 'llama3'], with 'default' being the original RoPE implementation.
70
- `factor` (:obj:`float`, `optional`):
71
- Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
72
- most scaling types, a `factor` of x will enable the model to handle sequences of length x *
73
- original maximum pre-trained length.
74
- `original_max_position_embeddings` (:obj:`int`, `optional`):
75
- Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
76
- pretraining.
77
- `attention_factor` (:obj:`float`, `optional`):
78
- Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
79
- computation. If unspecified, it defaults to value recommended by the implementation, using the
80
- `factor` field to infer the suggested value.
81
- `beta_fast` (:obj:`float`, `optional`):
82
- Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
83
- ramp function. If unspecified, it defaults to 32.
84
- `beta_slow` (:obj:`float`, `optional`):
85
- Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
86
- ramp function. If unspecified, it defaults to 1.
87
- `short_factor` (:obj:`List[float]`, `optional`):
88
- Only used with 'longrope'. The scaling factor to be applied to short contexts (<
89
- `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
90
- size divided by the number of attention heads divided by 2
91
- `long_factor` (:obj:`List[float]`, `optional`):
92
- Only used with 'longrope'. The scaling factor to be applied to long contexts (<
93
- `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
94
- size divided by the number of attention heads divided by 2
95
- `low_freq_factor` (:obj:`float`, `optional`):
96
- Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
97
- `high_freq_factor` (:obj:`float`, `optional`):
98
- Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
99
- embed_dropout (:obj:`float`, `optional`, defaults to 0.0):
100
- The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
101
- attention_dropout (:obj:`float`, `optional`, defaults to 0.0):
102
- The dropout ratio for the attention probabilities.
103
- layer_norm_epsilon (:obj:`float`, `optional`, defaults to 1e-5):
104
- The epsilon used by the layer normalization layers.
105
- initializer_range (:obj:`float`, `optional`, defaults to 0.02):
106
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
107
- use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
108
- Whether or not the model should return the last key/values attentions (not used by all models). Only
109
- relevant if ``config.is_decoder=True``.
110
- bos_token_id (:obj:`int`, `optional`, defaults to 0):
111
- Beginning of stream token id.
112
- eos_token_id (:obj:`int`, `optional`, defaults to 2):
113
- End of stream token id.
114
- tie_word_embeddings (:obj:`bool`, `optional`, defaults to :obj:`True`):
115
- Whether to tie weight embeddings
116
- gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
117
- If True, use gradient checkpointing to save memory at the expense of slower backward pass.
118
- Example::
119
- >>> from transformers import EXAONEModel, ExaoneConfig
120
- >>> # Initializing a EXAONE configuration
121
- >>> configuration = ExaoneConfig()
122
- >>> # Initializing a model from configuration
123
- >>> model = EXAONEModel(configuration)
124
- >>> # Accessing the model configuration
125
- >>> configuration = model.config
126
- """
127
-
128
- model_type = "exaone"
129
- keys_to_ignore_at_inference = ["past_key_values"]
130
- attribute_map = {"num_hidden_layers": "num_layers"}
131
-
132
- def __init__(
133
- self,
134
- vocab_size=102400,
135
- max_position_embeddings=2048,
136
- hidden_size=2048,
137
- num_layers=32,
138
- num_attention_heads=32,
139
- num_key_value_heads=None,
140
- intermediate_size=None,
141
- activation_function="silu",
142
- rope_theta=10000.0,
143
- rope_scaling=None,
144
- embed_dropout=0.0,
145
- attention_dropout=0.0,
146
- layer_norm_epsilon=1e-5,
147
- initializer_range=0.02,
148
- use_cache=True,
149
- bos_token_id=0,
150
- eos_token_id=2,
151
- tie_word_embeddings=True,
152
- **kwargs,
153
- ):
154
- self.vocab_size = vocab_size
155
- self.max_position_embeddings = max_position_embeddings
156
- self.hidden_size = hidden_size
157
- self.num_layers = num_layers
158
- self.num_attention_heads = num_attention_heads
159
- self.num_hidden_layers = num_layers
160
- if num_key_value_heads is None:
161
- num_key_value_heads = num_attention_heads
162
- self.num_key_value_heads = num_key_value_heads
163
- if intermediate_size:
164
- self.intermediate_size = intermediate_size
165
- else:
166
- self.intermediate_size = hidden_size * 4
167
- self.activation_function = activation_function
168
- self.embed_dropout = embed_dropout
169
- self.attention_dropout = attention_dropout
170
- self.layer_norm_epsilon = layer_norm_epsilon
171
- self.initializer_range = initializer_range
172
- self.use_cache = use_cache
173
- self.rope_theta = rope_theta
174
- self.rope_scaling = rope_scaling
175
-
176
- self.bos_token_id = bos_token_id
177
- self.eos_token_id = eos_token_id
178
-
179
- super().__init__(
180
- bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
181
- )