optimum-rbln 0.1.11__py3-none-any.whl → 0.1.13__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +14 -7
- optimum/rbln/__version__.py +1 -1
- optimum/rbln/diffusers/models/autoencoder_kl.py +30 -63
- optimum/rbln/diffusers/models/controlnet.py +36 -62
- optimum/rbln/diffusers/models/unet_2d_condition.py +57 -156
- optimum/rbln/diffusers/pipelines/__init__.py +40 -12
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +11 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +9 -187
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +8 -192
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +8 -206
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +8 -207
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +3 -111
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +12 -117
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +4 -123
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +4 -126
- optimum/rbln/modeling_alias.py +4 -9
- optimum/rbln/modeling_base.py +117 -144
- optimum/rbln/modeling_config.py +51 -0
- optimum/rbln/modeling_diffusers.py +400 -0
- optimum/rbln/transformers/__init__.py +10 -0
- optimum/rbln/transformers/cache_utils.py +5 -9
- optimum/rbln/transformers/modeling_rope_utils.py +283 -0
- optimum/rbln/transformers/models/__init__.py +80 -28
- optimum/rbln/transformers/models/auto/modeling_auto.py +1 -0
- optimum/rbln/transformers/models/bart/__init__.py +1 -1
- optimum/rbln/transformers/models/bart/bart_architecture.py +18 -12
- optimum/rbln/transformers/models/bart/modeling_bart.py +25 -6
- optimum/rbln/transformers/models/bert/modeling_bert.py +1 -2
- optimum/rbln/transformers/models/clip/modeling_clip.py +13 -23
- optimum/rbln/transformers/models/decoderonly/__init__.py +0 -2
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +376 -218
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +246 -116
- optimum/rbln/transformers/models/dpt/modeling_dpt.py +0 -1
- optimum/rbln/transformers/models/exaone/__init__.py +32 -0
- optimum/rbln/transformers/models/exaone/exaone_architecture.py +81 -0
- optimum/rbln/transformers/models/exaone/hf_hub_cached/configuration_exaone.py +181 -0
- optimum/rbln/transformers/models/exaone/hf_hub_cached/modeling_exaone.py +1725 -0
- optimum/rbln/transformers/models/exaone/modeling_exaone.py +53 -0
- optimum/rbln/transformers/models/gemma/gemma_architecture.py +12 -2
- optimum/rbln/transformers/models/gemma/modeling_gemma.py +4 -28
- optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +4 -30
- optimum/rbln/transformers/models/llama/modeling_llama.py +4 -28
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +166 -151
- optimum/rbln/transformers/models/midm/midm_architecture.py +4 -15
- optimum/rbln/transformers/models/midm/modeling_midm.py +8 -28
- optimum/rbln/transformers/models/mistral/modeling_mistral.py +4 -29
- optimum/rbln/transformers/models/phi/modeling_phi.py +5 -31
- optimum/rbln/transformers/models/phi/phi_architecture.py +75 -159
- optimum/rbln/transformers/models/qwen2/__init__.py +24 -0
- optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +43 -0
- optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +29 -0
- optimum/rbln/transformers/models/seq2seq/__init__.py +24 -0
- optimum/rbln/{modeling_seq2seq.py → transformers/models/seq2seq/modeling_seq2seq.py} +107 -166
- optimum/rbln/transformers/models/t5/__init__.py +1 -0
- optimum/rbln/transformers/models/t5/modeling_t5.py +108 -0
- optimum/rbln/transformers/models/t5/t5_architecture.py +46 -32
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +0 -1
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +38 -13
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +1 -2
- optimum/rbln/transformers/utils/rbln_quantization.py +8 -2
- optimum/rbln/utils/context.py +58 -0
- optimum/rbln/utils/decorator_utils.py +55 -0
- optimum/rbln/utils/import_utils.py +21 -0
- optimum/rbln/utils/logging.py +1 -1
- optimum/rbln/utils/runtime_utils.py +4 -4
- optimum/rbln/utils/timer_utils.py +26 -2
- {optimum_rbln-0.1.11.dist-info → optimum_rbln-0.1.13.dist-info}/METADATA +11 -9
- optimum_rbln-0.1.13.dist-info/RECORD +107 -0
- {optimum_rbln-0.1.11.dist-info → optimum_rbln-0.1.13.dist-info}/WHEEL +1 -1
- optimum_rbln-0.1.11.dist-info/RECORD +0 -93
- {optimum_rbln-0.1.11.dist-info → optimum_rbln-0.1.13.dist-info}/entry_points.txt +0 -0
- {optimum_rbln-0.1.11.dist-info → optimum_rbln-0.1.13.dist-info}/licenses/LICENSE +0 -0
@@ -26,224 +26,23 @@ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
|
26
26
|
|
27
27
|
import torch
|
28
28
|
import torch.nn.functional as F
|
29
|
-
from diffusers import
|
29
|
+
from diffusers import StableDiffusionXLControlNetImg2ImgPipeline
|
30
30
|
from diffusers.image_processor import PipelineImageInput
|
31
|
-
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
32
31
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
33
32
|
from diffusers.utils import deprecate, logging
|
34
33
|
from diffusers.utils.torch_utils import is_compiled_module
|
35
|
-
from transformers import CLIPTextModel
|
36
34
|
|
37
|
-
from ....
|
38
|
-
from ....
|
39
|
-
from
|
40
|
-
from ...models import RBLNAutoencoderKL, RBLNControlNetModel, RBLNUNet2DConditionModel
|
35
|
+
from ....modeling_diffusers import RBLNDiffusionMixin
|
36
|
+
from ....utils.decorator_utils import remove_compile_time_kwargs
|
37
|
+
from ...models import RBLNControlNetModel
|
41
38
|
from ...pipelines.controlnet.multicontrolnet import RBLNMultiControlNetModel
|
42
39
|
|
43
40
|
|
44
41
|
logger = logging.get_logger(__name__)
|
45
42
|
|
46
43
|
|
47
|
-
class RBLNStableDiffusionXLControlNetImg2ImgPipeline(StableDiffusionXLControlNetImg2ImgPipeline):
|
48
|
-
|
49
|
-
def from_pretrained(cls, model_id, **kwargs):
|
50
|
-
"""
|
51
|
-
Pipeline for image-to-image generation using Stable Diffusion XL with ControlNet.
|
52
|
-
|
53
|
-
This model inherits from [`StableDiffusionXLControlNetImg2ImgPipeline`]. Check the superclass documentation for the generic methods
|
54
|
-
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
55
|
-
|
56
|
-
It implements the methods to convert a pre-trained Stable Diffusion XL Controlnet pipeline into a RBLNStableDiffusionXLControlNetImg2Img pipeline by:
|
57
|
-
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
58
|
-
- compiling the resulting graph using the RBLN compiler.
|
59
|
-
|
60
|
-
Args:
|
61
|
-
model_id (`Union[str, Path]`):
|
62
|
-
Can be either:
|
63
|
-
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
64
|
-
- A path to a *directory* containing a model saved using [`~OptimizedModel.save_pretrained`],
|
65
|
-
"""
|
66
|
-
export = kwargs.pop("export", None)
|
67
|
-
vae = kwargs.pop("vae", None)
|
68
|
-
unet = kwargs.pop("unet", None)
|
69
|
-
text_encoder = kwargs.pop("text_encoder", None)
|
70
|
-
text_encoder_2 = kwargs.pop("text_encoder_2", None)
|
71
|
-
controlnet = kwargs.pop("controlnet", None)
|
72
|
-
model_save_dir = kwargs.pop("model_save_dir", None)
|
73
|
-
rbln_config = kwargs.pop("rbln_config", None)
|
74
|
-
rbln_kwargs, _ = RBLNBaseModel.resolve_rbln_config(rbln_config, kwargs)
|
75
|
-
|
76
|
-
device = rbln_kwargs.get("device", None)
|
77
|
-
device_map = rbln_kwargs.get("device_map", None)
|
78
|
-
create_runtimes = rbln_kwargs.get("create_runtimes", None)
|
79
|
-
optimize_host_memory = rbln_kwargs.get("optimize_host_memory", None)
|
80
|
-
|
81
|
-
kwargs_dict = {
|
82
|
-
"pretrained_model_name_or_path": model_id,
|
83
|
-
**kwargs,
|
84
|
-
}
|
85
|
-
|
86
|
-
kwargs_dict.update(
|
87
|
-
{
|
88
|
-
**({"vae": vae} if vae is not None and isinstance(vae, AutoencoderKL) else {}),
|
89
|
-
**({"unet": unet} if unet is not None and isinstance(unet, UNet2DConditionModel) else {}),
|
90
|
-
**(
|
91
|
-
{"text_encoder": text_encoder}
|
92
|
-
if text_encoder is not None and isinstance(text_encoder, CLIPTextModel)
|
93
|
-
else {}
|
94
|
-
),
|
95
|
-
**(
|
96
|
-
{"controlnet": controlnet}
|
97
|
-
if controlnet is not None
|
98
|
-
and (
|
99
|
-
isinstance(controlnet, ControlNetModel)
|
100
|
-
or all(isinstance(c, ControlNetModel) for c in controlnet)
|
101
|
-
)
|
102
|
-
else {}
|
103
|
-
),
|
104
|
-
}
|
105
|
-
)
|
106
|
-
|
107
|
-
with ContextRblnConfig(
|
108
|
-
device=device,
|
109
|
-
device_map=device_map,
|
110
|
-
create_runtimes=create_runtimes,
|
111
|
-
optimze_host_mem=optimize_host_memory,
|
112
|
-
):
|
113
|
-
model = super().from_pretrained(**{k: v for k, v in kwargs_dict.items() if v is not None})
|
114
|
-
|
115
|
-
if export is None or export is False:
|
116
|
-
return model
|
117
|
-
|
118
|
-
do_classifier_free_guidance = (
|
119
|
-
rbln_kwargs.pop("guidance_scale", 5.0) > 1.0 and model.unet.config.time_cond_proj_dim is None
|
120
|
-
)
|
121
|
-
|
122
|
-
if not isinstance(vae, RBLNAutoencoderKL):
|
123
|
-
vae = RBLNAutoencoderKL.from_pretrained(
|
124
|
-
model_id=model_id,
|
125
|
-
subfolder="vae",
|
126
|
-
export=True,
|
127
|
-
model_save_dir=model_save_dir,
|
128
|
-
rbln_unet_sample_size=model.unet.config.sample_size,
|
129
|
-
rbln_use_encode=True,
|
130
|
-
rbln_vae_scale_factor=model.vae_scale_factor,
|
131
|
-
rbln_config={**rbln_kwargs},
|
132
|
-
)
|
133
|
-
|
134
|
-
if not isinstance(text_encoder, RBLNCLIPTextModel):
|
135
|
-
text_encoder = RBLNCLIPTextModel.from_pretrained(
|
136
|
-
model_id=model_id,
|
137
|
-
subfolder="text_encoder",
|
138
|
-
export=True,
|
139
|
-
model_save_dir=model_save_dir,
|
140
|
-
rbln_config={**rbln_kwargs},
|
141
|
-
)
|
142
|
-
|
143
|
-
if not isinstance(text_encoder_2, RBLNCLIPTextModel):
|
144
|
-
text_encoder_2 = RBLNCLIPTextModelWithProjection.from_pretrained(
|
145
|
-
model_id=model_id,
|
146
|
-
subfolder="text_encoder_2",
|
147
|
-
export=True,
|
148
|
-
model_save_dir=model_save_dir,
|
149
|
-
rbln_config={**rbln_kwargs},
|
150
|
-
)
|
151
|
-
|
152
|
-
batch_size = rbln_kwargs.pop("batch_size", 1)
|
153
|
-
unet_batch_size = batch_size * 2 if do_classifier_free_guidance else batch_size
|
154
|
-
|
155
|
-
if not isinstance(unet, RBLNUNet2DConditionModel):
|
156
|
-
unet = RBLNUNet2DConditionModel.from_pretrained(
|
157
|
-
model_id=model_id,
|
158
|
-
subfolder="unet",
|
159
|
-
export=True,
|
160
|
-
model_save_dir=model_save_dir,
|
161
|
-
rbln_max_seq_len=model.text_encoder.config.max_position_embeddings,
|
162
|
-
rbln_text_model_hidden_size=model.text_encoder_2.config.hidden_size,
|
163
|
-
rbln_batch_size=unet_batch_size,
|
164
|
-
rbln_use_encode=True,
|
165
|
-
rbln_vae_scale_factor=model.vae_scale_factor,
|
166
|
-
rbln_is_controlnet=True if "controlnet" in model.config.keys() else False,
|
167
|
-
rbln_config={**rbln_kwargs},
|
168
|
-
)
|
169
|
-
|
170
|
-
if not isinstance(controlnet, (RBLNControlNetModel, RBLNMultiControlNetModel)):
|
171
|
-
if isinstance(controlnet, (list, tuple)):
|
172
|
-
multicontrolnet = []
|
173
|
-
for i, cid in enumerate(controlnet):
|
174
|
-
subfolder_name = "controlnet" if i == 0 else f"controlnet_{i}"
|
175
|
-
multicontrolnet.append(
|
176
|
-
RBLNControlNetModel.from_pretrained(
|
177
|
-
model_id=cid.config._name_or_path,
|
178
|
-
subfolder=subfolder_name,
|
179
|
-
export=True,
|
180
|
-
model_save_dir=model_save_dir,
|
181
|
-
rbln_batch_size=unet_batch_size,
|
182
|
-
rbln_text_model_hidden_size=model.text_encoder_2.config.hidden_size,
|
183
|
-
rbln_vae_scale_factor=model.vae_scale_factor,
|
184
|
-
rbln_config={**rbln_kwargs},
|
185
|
-
)
|
186
|
-
)
|
187
|
-
controlnet = RBLNMultiControlNetModel(multicontrolnet, config=controlnet[0].config)
|
188
|
-
controlnet_dict = ("optimum.rbln", "RBLNMultiControlNetModel")
|
189
|
-
else:
|
190
|
-
controlnet = RBLNControlNetModel.from_pretrained(
|
191
|
-
model_id=controlnet.config._name_or_path,
|
192
|
-
subfolder="controlnet",
|
193
|
-
export=True,
|
194
|
-
model_save_dir=model_save_dir,
|
195
|
-
rbln_batch_size=unet_batch_size,
|
196
|
-
rbln_text_model_hidden_size=model.text_encoder_2.config.hidden_size,
|
197
|
-
rbln_vae_scale_factor=model.vae_scale_factor,
|
198
|
-
rbln_config={**rbln_kwargs},
|
199
|
-
)
|
200
|
-
controlnet_dict = ("optimum.rbln", "RBLNControlNetModel")
|
201
|
-
|
202
|
-
if model_save_dir is not None:
|
203
|
-
# To skip saving original pytorch modules
|
204
|
-
del (model.vae, model.text_encoder, model.unet, model.controlnet)
|
205
|
-
|
206
|
-
# Direct calling of `save_pretrained` causes config.unet = (None, None).
|
207
|
-
# So config must be saved again, later.
|
208
|
-
model.save_pretrained(model_save_dir)
|
209
|
-
|
210
|
-
# replace modules
|
211
|
-
model.vae = vae
|
212
|
-
model.text_encoder = text_encoder
|
213
|
-
model.unet = unet
|
214
|
-
model.text_encoder_2 = text_encoder_2
|
215
|
-
model.controlnet = controlnet
|
216
|
-
|
217
|
-
# update config to be able to load from file
|
218
|
-
update_dict = {
|
219
|
-
"vae": ("optimum.rbln", "RBLNAutoencoderKL"),
|
220
|
-
"text_encoder": ("optimum.rbln", "RBLNCLIPTextModel"),
|
221
|
-
"unet": ("optimum.rbln", "RBLNUNet2DConditionModel"),
|
222
|
-
"text_encoder_2": ("optimum.rbln", "RBLNCLIPTextModelWithProjection"),
|
223
|
-
"controlnet": controlnet_dict,
|
224
|
-
}
|
225
|
-
model.register_to_config(**update_dict)
|
226
|
-
|
227
|
-
if model_save_dir is not None:
|
228
|
-
# overwrite to replace incorrect config
|
229
|
-
model.save_config(model_save_dir)
|
230
|
-
|
231
|
-
# use for CI to access each compiled model
|
232
|
-
if optimize_host_memory is False:
|
233
|
-
model.compiled_models = [
|
234
|
-
vae.compiled_models[0],
|
235
|
-
vae.compiled_models[1],
|
236
|
-
text_encoder.compiled_models[0],
|
237
|
-
text_encoder_2.compiled_models[0],
|
238
|
-
unet.compiled_models[0],
|
239
|
-
]
|
240
|
-
if isinstance(controlnet, RBLNMultiControlNetModel):
|
241
|
-
for c_model in controlnet.nets:
|
242
|
-
model.compiled_models.append(c_model.compiled_models[0])
|
243
|
-
else:
|
244
|
-
model.compiled_models.append(controlnet.compiled_models[0])
|
245
|
-
|
246
|
-
return model
|
44
|
+
class RBLNStableDiffusionXLControlNetImg2ImgPipeline(RBLNDiffusionMixin, StableDiffusionXLControlNetImg2ImgPipeline):
|
45
|
+
_submodules = ["text_encoder", "text_encoder_2", "unet", "vae", "controlnet"]
|
247
46
|
|
248
47
|
def check_inputs(
|
249
48
|
self,
|
@@ -447,6 +246,7 @@ class RBLNStableDiffusionXLControlNetImg2ImgPipeline(StableDiffusionXLControlNet
|
|
447
246
|
)
|
448
247
|
|
449
248
|
@torch.no_grad()
|
249
|
+
@remove_compile_time_kwargs
|
450
250
|
def __call__(
|
451
251
|
self,
|
452
252
|
prompt: Union[str, List[str]] = None,
|
@@ -733,6 +533,7 @@ class RBLNStableDiffusionXLControlNetImg2ImgPipeline(StableDiffusionXLControlNet
|
|
733
533
|
text_encoder_lora_scale = (
|
734
534
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
735
535
|
)
|
536
|
+
|
736
537
|
(
|
737
538
|
prompt_embeds,
|
738
539
|
negative_prompt_embeds,
|
@@ -24,116 +24,8 @@
|
|
24
24
|
|
25
25
|
from diffusers import StableDiffusionPipeline
|
26
26
|
|
27
|
-
from ....
|
28
|
-
from ....transformers import RBLNCLIPTextModel
|
29
|
-
from ....utils.runtime_utils import ContextRblnConfig
|
30
|
-
from ...models import RBLNAutoencoderKL, RBLNUNet2DConditionModel
|
27
|
+
from ....modeling_diffusers import RBLNDiffusionMixin
|
31
28
|
|
32
29
|
|
33
|
-
class RBLNStableDiffusionPipeline(StableDiffusionPipeline):
|
34
|
-
|
35
|
-
def from_pretrained(cls, model_id, **kwargs):
|
36
|
-
"""
|
37
|
-
Pipeline for text-to-image generation using Stable Diffusion.
|
38
|
-
|
39
|
-
This model inherits from [`StableDiffusionPipeline`]. Check the superclass documentation for the generic methods
|
40
|
-
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
41
|
-
|
42
|
-
It implements the methods to convert a pre-trained Stable Diffusion pipeline into a RBLNStableDiffusion pipeline by:
|
43
|
-
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
44
|
-
- compiling the resulting graph using the RBLN compiler.
|
45
|
-
|
46
|
-
Args:
|
47
|
-
model_id (`Union[str, Path]`):
|
48
|
-
Can be either:
|
49
|
-
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
50
|
-
- A path to a *directory* containing a model saved using [`~OptimizedModel.save_pretrained`],
|
51
|
-
"""
|
52
|
-
export = kwargs.pop("export", None)
|
53
|
-
model_save_dir = kwargs.pop("model_save_dir", None)
|
54
|
-
rbln_config = kwargs.pop("rbln_config", None)
|
55
|
-
rbln_kwargs, _ = RBLNBaseModel.resolve_rbln_config(rbln_config, kwargs)
|
56
|
-
|
57
|
-
device = rbln_kwargs.get("device", None)
|
58
|
-
device_map = rbln_kwargs.get("device_map", None)
|
59
|
-
create_runtimes = rbln_kwargs.get("create_runtimes", None)
|
60
|
-
optimize_host_memory = rbln_kwargs.get("optimize_host_memory", None)
|
61
|
-
|
62
|
-
with ContextRblnConfig(
|
63
|
-
device=device,
|
64
|
-
device_map=device_map,
|
65
|
-
create_runtimes=create_runtimes,
|
66
|
-
optimze_host_mem=optimize_host_memory,
|
67
|
-
):
|
68
|
-
model = super().from_pretrained(pretrained_model_name_or_path=model_id, **kwargs)
|
69
|
-
|
70
|
-
if export is None or export is False:
|
71
|
-
return model
|
72
|
-
|
73
|
-
do_classifier_free_guidance = (
|
74
|
-
rbln_kwargs.pop("guidance_scale", 5.0) > 1.0 and model.unet.config.time_cond_proj_dim is None
|
75
|
-
)
|
76
|
-
|
77
|
-
vae = RBLNAutoencoderKL.from_pretrained(
|
78
|
-
model_id=model_id,
|
79
|
-
subfolder="vae",
|
80
|
-
export=True,
|
81
|
-
model_save_dir=model_save_dir,
|
82
|
-
rbln_unet_sample_size=model.unet.config.sample_size,
|
83
|
-
rbln_use_encode=False,
|
84
|
-
rbln_config={**rbln_kwargs},
|
85
|
-
)
|
86
|
-
text_encoder = RBLNCLIPTextModel.from_pretrained(
|
87
|
-
model_id=model_id,
|
88
|
-
subfolder="text_encoder",
|
89
|
-
export=True,
|
90
|
-
model_save_dir=model_save_dir,
|
91
|
-
rbln_config={**rbln_kwargs},
|
92
|
-
)
|
93
|
-
|
94
|
-
batch_size = rbln_kwargs.pop("batch_size", 1)
|
95
|
-
unet_batch_size = batch_size * 2 if do_classifier_free_guidance else batch_size
|
96
|
-
|
97
|
-
unet = RBLNUNet2DConditionModel.from_pretrained(
|
98
|
-
model_id=model_id,
|
99
|
-
subfolder="unet",
|
100
|
-
export=True,
|
101
|
-
model_save_dir=model_save_dir,
|
102
|
-
rbln_max_seq_len=text_encoder.config.max_position_embeddings,
|
103
|
-
rbln_batch_size=unet_batch_size,
|
104
|
-
rbln_use_encode=False,
|
105
|
-
rbln_is_controlnet=True if "controlnet" in model.config.keys() else False,
|
106
|
-
rbln_config={**rbln_kwargs},
|
107
|
-
)
|
108
|
-
|
109
|
-
if model_save_dir is not None:
|
110
|
-
# To skip saving original pytorch modules
|
111
|
-
del (model.vae, model.text_encoder, model.unet)
|
112
|
-
|
113
|
-
# Direct calling of `save_pretrained` causes config.unet = (None, None).
|
114
|
-
# So config must be saved again, later.
|
115
|
-
model.save_pretrained(model_save_dir)
|
116
|
-
|
117
|
-
# replace modules
|
118
|
-
model.vae = vae
|
119
|
-
model.text_encoder = text_encoder
|
120
|
-
model.unet = unet
|
121
|
-
|
122
|
-
# update config to be able to load from file.
|
123
|
-
update_dict = {
|
124
|
-
"vae": ("optimum.rbln", "RBLNAutoencoderKL"),
|
125
|
-
"text_encoder": ("optimum.rbln", "RBLNCLIPTextModel"),
|
126
|
-
"unet": ("optimum.rbln", "RBLNUNet2DConditionModel"),
|
127
|
-
}
|
128
|
-
model.register_to_config(**update_dict)
|
129
|
-
|
130
|
-
if model_save_dir is not None:
|
131
|
-
# overwrite to replace incorrect config
|
132
|
-
model.save_config(model_save_dir)
|
133
|
-
|
134
|
-
model.models = [vae.model[0], text_encoder.model[0], unet.model[0]]
|
135
|
-
|
136
|
-
if optimize_host_memory is False:
|
137
|
-
model.compiled_models = [vae.compiled_models[0], text_encoder.compiled_models[0], unet.compiled_models[0]]
|
138
|
-
|
139
|
-
return model
|
30
|
+
class RBLNStableDiffusionPipeline(RBLNDiffusionMixin, StableDiffusionPipeline):
|
31
|
+
_submodules = ["text_encoder", "unet", "vae"]
|
@@ -24,125 +24,20 @@
|
|
24
24
|
|
25
25
|
from diffusers import StableDiffusionImg2ImgPipeline
|
26
26
|
|
27
|
-
from ....
|
28
|
-
from ....transformers import RBLNCLIPTextModel
|
29
|
-
from ....utils.runtime_utils import ContextRblnConfig
|
30
|
-
from ...models import RBLNAutoencoderKL, RBLNUNet2DConditionModel
|
27
|
+
from ....modeling_diffusers import RBLNDiffusionMixin
|
31
28
|
|
32
29
|
|
33
|
-
class RBLNStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline):
|
34
|
-
|
35
|
-
|
36
|
-
"""
|
37
|
-
Pipeline for image-to-image generation using Stable Diffusion.
|
30
|
+
class RBLNStableDiffusionImg2ImgPipeline(RBLNDiffusionMixin, StableDiffusionImg2ImgPipeline):
|
31
|
+
"""
|
32
|
+
Pipeline for image-to-image generation using Stable Diffusion.
|
38
33
|
|
39
|
-
|
40
|
-
|
34
|
+
This model inherits from [`StableDiffusionPipeline`]. Check the superclass documentation for the generic methods
|
35
|
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
41
36
|
|
42
|
-
|
43
|
-
|
44
|
-
|
37
|
+
It implements the methods to convert a pre-trained Stable Diffusion pipeline into a RBLNStableDiffusion pipeline by:
|
38
|
+
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
39
|
+
- compiling the resulting graph using the RBLN compiler.
|
40
|
+
"""
|
45
41
|
|
46
|
-
|
47
|
-
|
48
|
-
Can be either:
|
49
|
-
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
50
|
-
- A path to a *directory* containing a model saved using [`~OptimizedModel.save_pretrained`],
|
51
|
-
"""
|
52
|
-
export = kwargs.pop("export", None)
|
53
|
-
model_save_dir = kwargs.pop("model_save_dir", None)
|
54
|
-
rbln_config = kwargs.pop("rbln_config", None)
|
55
|
-
rbln_kwargs, _ = RBLNBaseModel.resolve_rbln_config(rbln_config, kwargs)
|
56
|
-
|
57
|
-
device = rbln_kwargs.get("device", None)
|
58
|
-
device_map = rbln_kwargs.get("device_map", None)
|
59
|
-
create_runtimes = rbln_kwargs.get("create_runtimes", None)
|
60
|
-
optimize_host_memory = rbln_kwargs.get("optimize_host_memory", None)
|
61
|
-
|
62
|
-
with ContextRblnConfig(
|
63
|
-
device=device,
|
64
|
-
device_map=device_map,
|
65
|
-
create_runtimes=create_runtimes,
|
66
|
-
optimze_host_mem=optimize_host_memory,
|
67
|
-
):
|
68
|
-
model = super().from_pretrained(pretrained_model_name_or_path=model_id, **kwargs)
|
69
|
-
|
70
|
-
if export is None or export is False:
|
71
|
-
return model
|
72
|
-
|
73
|
-
do_classifier_free_guidance = (
|
74
|
-
rbln_kwargs.pop("guidance_scale", 5.0) > 1.0 and model.unet.config.time_cond_proj_dim is None
|
75
|
-
)
|
76
|
-
|
77
|
-
# compile model, create runtime
|
78
|
-
vae = RBLNAutoencoderKL.from_pretrained(
|
79
|
-
model_id=model_id,
|
80
|
-
subfolder="vae",
|
81
|
-
export=True,
|
82
|
-
model_save_dir=model_save_dir,
|
83
|
-
rbln_unet_sample_size=model.unet.config.sample_size,
|
84
|
-
rbln_use_encode=True,
|
85
|
-
rbln_vae_scale_factor=model.vae_scale_factor,
|
86
|
-
rbln_config={**rbln_kwargs},
|
87
|
-
)
|
88
|
-
text_encoder = RBLNCLIPTextModel.from_pretrained(
|
89
|
-
model_id=model_id,
|
90
|
-
subfolder="text_encoder",
|
91
|
-
export=True,
|
92
|
-
model_save_dir=model_save_dir,
|
93
|
-
rbln_config={**rbln_kwargs},
|
94
|
-
)
|
95
|
-
|
96
|
-
batch_size = rbln_kwargs.pop("batch_size", 1)
|
97
|
-
unet_batch_size = batch_size * 2 if do_classifier_free_guidance else batch_size
|
98
|
-
|
99
|
-
unet = RBLNUNet2DConditionModel.from_pretrained(
|
100
|
-
model_id=model_id,
|
101
|
-
subfolder="unet",
|
102
|
-
export=True,
|
103
|
-
model_save_dir=model_save_dir,
|
104
|
-
rbln_max_seq_len=text_encoder.config.max_position_embeddings,
|
105
|
-
rbln_batch_size=unet_batch_size,
|
106
|
-
rbln_use_encode=True,
|
107
|
-
rbln_vae_scale_factor=model.vae_scale_factor,
|
108
|
-
rbln_is_controlnet=True if "controlnet" in model.config.keys() else False,
|
109
|
-
rbln_config={**rbln_kwargs},
|
110
|
-
)
|
111
|
-
|
112
|
-
if model_save_dir is not None:
|
113
|
-
# To skip saving original pytorch modules
|
114
|
-
del (model.vae, model.text_encoder, model.unet)
|
115
|
-
|
116
|
-
# Direct calling of `save_pretrained` causes config.unet = (None, None).
|
117
|
-
# So config must be saved again, later.
|
118
|
-
model.save_pretrained(model_save_dir)
|
119
|
-
|
120
|
-
# replace modules
|
121
|
-
model.vae = vae
|
122
|
-
model.text_encoder = text_encoder
|
123
|
-
model.unet = unet
|
124
|
-
|
125
|
-
# update config to be able to load from file.
|
126
|
-
update_dict = {
|
127
|
-
"vae": ("optimum.rbln", "RBLNAutoencoderKL"),
|
128
|
-
"text_encoder": ("optimum.rbln", "RBLNCLIPTextModel"),
|
129
|
-
"unet": ("optimum.rbln", "RBLNUNet2DConditionModel"),
|
130
|
-
}
|
131
|
-
model.register_to_config(**update_dict)
|
132
|
-
|
133
|
-
if model_save_dir is not None:
|
134
|
-
# overwrite to replace incorrect config
|
135
|
-
model.save_config(model_save_dir)
|
136
|
-
|
137
|
-
# vae encoder, vae decoder, text_encoder, unet
|
138
|
-
model.models = [vae.model[0], vae.model[1], text_encoder.model[0], unet.model[0]]
|
139
|
-
|
140
|
-
if optimize_host_memory is False:
|
141
|
-
model.compiled_models = [
|
142
|
-
vae.compiled_models[0],
|
143
|
-
vae.compiled_models[1],
|
144
|
-
text_encoder.compiled_models[0],
|
145
|
-
unet.compiled_models[0],
|
146
|
-
]
|
147
|
-
|
148
|
-
return model
|
42
|
+
original_class = StableDiffusionImg2ImgPipeline
|
43
|
+
_submodules = ["text_encoder", "unet", "vae"]
|
@@ -16,128 +16,9 @@
|
|
16
16
|
|
17
17
|
from diffusers import StableDiffusionXLPipeline
|
18
18
|
|
19
|
-
from ....
|
20
|
-
from ....transformers import RBLNCLIPTextModel, RBLNCLIPTextModelWithProjection
|
21
|
-
from ....utils.runtime_utils import ContextRblnConfig
|
22
|
-
from ...models import RBLNAutoencoderKL, RBLNUNet2DConditionModel
|
19
|
+
from ....modeling_diffusers import RBLNDiffusionMixin
|
23
20
|
|
24
21
|
|
25
|
-
class RBLNStableDiffusionXLPipeline(StableDiffusionXLPipeline):
|
26
|
-
|
27
|
-
|
28
|
-
"""
|
29
|
-
Pipeline for text-to-image generation using Stable Diffusion XL.
|
30
|
-
|
31
|
-
This model inherits from [`StableDiffusionXLPipeline`]. Check the superclass documentation for the generic methods the
|
32
|
-
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
33
|
-
|
34
|
-
It implements the methods to convert a pre-trained StableDiffusionXL pipeline into a RBLNStableDiffusionXL pipeline by:
|
35
|
-
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
36
|
-
- compiling the resulting graph using the RBLN compiler.
|
37
|
-
|
38
|
-
Args:
|
39
|
-
model_id (`Union[str, Path]`):
|
40
|
-
Can be either:
|
41
|
-
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
42
|
-
- A path to a *directory* containing a model saved using [`~OptimizedModel.save_pretrained`],
|
43
|
-
"""
|
44
|
-
export = kwargs.pop("export", None)
|
45
|
-
model_save_dir = kwargs.pop("model_save_dir", None)
|
46
|
-
rbln_config = kwargs.pop("rbln_config", None)
|
47
|
-
rbln_kwargs, _ = RBLNBaseModel.resolve_rbln_config(rbln_config, kwargs)
|
48
|
-
|
49
|
-
device = rbln_kwargs.get("device", None)
|
50
|
-
device_map = rbln_kwargs.get("device_map", None)
|
51
|
-
create_runtimes = rbln_kwargs.get("create_runtimes", None)
|
52
|
-
optimize_host_memory = rbln_kwargs.get("optimize_host_memory", None)
|
53
|
-
|
54
|
-
with ContextRblnConfig(
|
55
|
-
device=device,
|
56
|
-
device_map=device_map,
|
57
|
-
create_runtimes=create_runtimes,
|
58
|
-
optimze_host_mem=optimize_host_memory,
|
59
|
-
):
|
60
|
-
model = super().from_pretrained(pretrained_model_name_or_path=model_id, **kwargs)
|
61
|
-
|
62
|
-
if export is None or export is False:
|
63
|
-
return model
|
64
|
-
|
65
|
-
do_classifier_free_guidance = (
|
66
|
-
rbln_kwargs.pop("guidance_scale", 5.0) > 1.0 and model.unet.config.time_cond_proj_dim is None
|
67
|
-
)
|
68
|
-
|
69
|
-
vae = RBLNAutoencoderKL.from_pretrained(
|
70
|
-
model_id=model_id,
|
71
|
-
subfolder="vae",
|
72
|
-
export=True,
|
73
|
-
model_save_dir=model_save_dir,
|
74
|
-
rbln_unet_sample_size=model.unet.config.sample_size,
|
75
|
-
rbln_use_encode=False,
|
76
|
-
rbln_config={**rbln_kwargs},
|
77
|
-
)
|
78
|
-
text_encoder = RBLNCLIPTextModel.from_pretrained(
|
79
|
-
model_id=model_id,
|
80
|
-
subfolder="text_encoder",
|
81
|
-
export=True,
|
82
|
-
model_save_dir=model_save_dir,
|
83
|
-
rbln_config={**rbln_kwargs},
|
84
|
-
)
|
85
|
-
text_encoder_2 = RBLNCLIPTextModelWithProjection.from_pretrained(
|
86
|
-
model_id=model_id,
|
87
|
-
subfolder="text_encoder_2",
|
88
|
-
export=True,
|
89
|
-
model_save_dir=model_save_dir,
|
90
|
-
rbln_config={**rbln_kwargs},
|
91
|
-
)
|
92
|
-
|
93
|
-
batch_size = rbln_kwargs.pop("batch_size", 1)
|
94
|
-
unet_batch_size = batch_size * 2 if do_classifier_free_guidance else batch_size
|
95
|
-
|
96
|
-
unet = RBLNUNet2DConditionModel.from_pretrained(
|
97
|
-
model_id=model_id,
|
98
|
-
subfolder="unet",
|
99
|
-
export=True,
|
100
|
-
model_save_dir=model_save_dir,
|
101
|
-
rbln_max_seq_len=model.text_encoder.config.max_position_embeddings,
|
102
|
-
rbln_text_model_hidden_size=model.text_encoder_2.config.hidden_size,
|
103
|
-
rbln_batch_size=unet_batch_size,
|
104
|
-
rbln_use_encode=False,
|
105
|
-
rbln_is_controlnet=True if "controlnet" in model.config.keys() else False,
|
106
|
-
rbln_config={**rbln_kwargs},
|
107
|
-
)
|
108
|
-
|
109
|
-
if model_save_dir is not None:
|
110
|
-
# To skip saving original pytorch modules
|
111
|
-
del (model.vae, model.text_encoder, model.unet, model.text_encoder_2)
|
112
|
-
|
113
|
-
# Direct calling of `save_pretrained` causes config.unet = (None, None).
|
114
|
-
# So config must be saved again, later.
|
115
|
-
model.save_pretrained(model_save_dir)
|
116
|
-
|
117
|
-
model.vae = vae
|
118
|
-
model.text_encoder = text_encoder
|
119
|
-
model.unet = unet
|
120
|
-
model.text_encoder_2 = text_encoder_2
|
121
|
-
update_dict = {
|
122
|
-
"vae": ("optimum.rbln", "RBLNAutoencoderKL"),
|
123
|
-
"text_encoder": ("optimum.rbln", "RBLNCLIPTextModel"),
|
124
|
-
"unet": ("optimum.rbln", "RBLNUNet2DConditionModel"),
|
125
|
-
"text_encoder_2": ("optimum.rbln", "RBLNCLIPTextModelWithProjection"),
|
126
|
-
}
|
127
|
-
model.register_to_config(**update_dict)
|
128
|
-
|
129
|
-
if model_save_dir is not None:
|
130
|
-
# overwrite to replace incorrect config
|
131
|
-
model.save_config(model_save_dir)
|
132
|
-
|
133
|
-
model.models = [vae.model[0], unet.model[0], text_encoder.model[0], text_encoder_2.model[0]]
|
134
|
-
|
135
|
-
if optimize_host_memory is False:
|
136
|
-
model.compiled_models = [
|
137
|
-
vae.compiled_models[0],
|
138
|
-
unet.compiled_models[0],
|
139
|
-
text_encoder.compiled_models[0],
|
140
|
-
text_encoder_2.compiled_models[0],
|
141
|
-
]
|
142
|
-
|
143
|
-
return model
|
22
|
+
class RBLNStableDiffusionXLPipeline(RBLNDiffusionMixin, StableDiffusionXLPipeline):
|
23
|
+
original_class = StableDiffusionXLPipeline
|
24
|
+
_submodules = ["text_encoder", "text_encoder_2", "unet", "vae"]
|