optimum-rbln 0.1.11__py3-none-any.whl → 0.1.13__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +14 -7
- optimum/rbln/__version__.py +1 -1
- optimum/rbln/diffusers/models/autoencoder_kl.py +30 -63
- optimum/rbln/diffusers/models/controlnet.py +36 -62
- optimum/rbln/diffusers/models/unet_2d_condition.py +57 -156
- optimum/rbln/diffusers/pipelines/__init__.py +40 -12
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +11 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +9 -187
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +8 -192
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +8 -206
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +8 -207
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +3 -111
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +12 -117
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +4 -123
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +4 -126
- optimum/rbln/modeling_alias.py +4 -9
- optimum/rbln/modeling_base.py +117 -144
- optimum/rbln/modeling_config.py +51 -0
- optimum/rbln/modeling_diffusers.py +400 -0
- optimum/rbln/transformers/__init__.py +10 -0
- optimum/rbln/transformers/cache_utils.py +5 -9
- optimum/rbln/transformers/modeling_rope_utils.py +283 -0
- optimum/rbln/transformers/models/__init__.py +80 -28
- optimum/rbln/transformers/models/auto/modeling_auto.py +1 -0
- optimum/rbln/transformers/models/bart/__init__.py +1 -1
- optimum/rbln/transformers/models/bart/bart_architecture.py +18 -12
- optimum/rbln/transformers/models/bart/modeling_bart.py +25 -6
- optimum/rbln/transformers/models/bert/modeling_bert.py +1 -2
- optimum/rbln/transformers/models/clip/modeling_clip.py +13 -23
- optimum/rbln/transformers/models/decoderonly/__init__.py +0 -2
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +376 -218
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +246 -116
- optimum/rbln/transformers/models/dpt/modeling_dpt.py +0 -1
- optimum/rbln/transformers/models/exaone/__init__.py +32 -0
- optimum/rbln/transformers/models/exaone/exaone_architecture.py +81 -0
- optimum/rbln/transformers/models/exaone/hf_hub_cached/configuration_exaone.py +181 -0
- optimum/rbln/transformers/models/exaone/hf_hub_cached/modeling_exaone.py +1725 -0
- optimum/rbln/transformers/models/exaone/modeling_exaone.py +53 -0
- optimum/rbln/transformers/models/gemma/gemma_architecture.py +12 -2
- optimum/rbln/transformers/models/gemma/modeling_gemma.py +4 -28
- optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +4 -30
- optimum/rbln/transformers/models/llama/modeling_llama.py +4 -28
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +166 -151
- optimum/rbln/transformers/models/midm/midm_architecture.py +4 -15
- optimum/rbln/transformers/models/midm/modeling_midm.py +8 -28
- optimum/rbln/transformers/models/mistral/modeling_mistral.py +4 -29
- optimum/rbln/transformers/models/phi/modeling_phi.py +5 -31
- optimum/rbln/transformers/models/phi/phi_architecture.py +75 -159
- optimum/rbln/transformers/models/qwen2/__init__.py +24 -0
- optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +43 -0
- optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +29 -0
- optimum/rbln/transformers/models/seq2seq/__init__.py +24 -0
- optimum/rbln/{modeling_seq2seq.py → transformers/models/seq2seq/modeling_seq2seq.py} +107 -166
- optimum/rbln/transformers/models/t5/__init__.py +1 -0
- optimum/rbln/transformers/models/t5/modeling_t5.py +108 -0
- optimum/rbln/transformers/models/t5/t5_architecture.py +46 -32
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +0 -1
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +38 -13
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +1 -2
- optimum/rbln/transformers/utils/rbln_quantization.py +8 -2
- optimum/rbln/utils/context.py +58 -0
- optimum/rbln/utils/decorator_utils.py +55 -0
- optimum/rbln/utils/import_utils.py +21 -0
- optimum/rbln/utils/logging.py +1 -1
- optimum/rbln/utils/runtime_utils.py +4 -4
- optimum/rbln/utils/timer_utils.py +26 -2
- {optimum_rbln-0.1.11.dist-info → optimum_rbln-0.1.13.dist-info}/METADATA +11 -9
- optimum_rbln-0.1.13.dist-info/RECORD +107 -0
- {optimum_rbln-0.1.11.dist-info → optimum_rbln-0.1.13.dist-info}/WHEEL +1 -1
- optimum_rbln-0.1.11.dist-info/RECORD +0 -93
- {optimum_rbln-0.1.11.dist-info → optimum_rbln-0.1.13.dist-info}/entry_points.txt +0 -0
- {optimum_rbln-0.1.11.dist-info → optimum_rbln-0.1.13.dist-info}/licenses/LICENSE +0 -0
@@ -26,209 +26,23 @@ from typing import Any, Callable, Dict, List, Optional, Union
|
|
26
26
|
|
27
27
|
import torch
|
28
28
|
import torch.nn.functional as F
|
29
|
-
from diffusers import
|
29
|
+
from diffusers import StableDiffusionControlNetImg2ImgPipeline
|
30
30
|
from diffusers.image_processor import PipelineImageInput
|
31
|
-
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
32
31
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
33
32
|
from diffusers.utils import deprecate, logging
|
34
33
|
from diffusers.utils.torch_utils import is_compiled_module
|
35
|
-
from transformers import CLIPTextModel
|
36
34
|
|
37
|
-
from ....
|
38
|
-
from ....
|
39
|
-
from
|
40
|
-
from ...models import RBLNAutoencoderKL, RBLNControlNetModel, RBLNUNet2DConditionModel
|
35
|
+
from ....modeling_diffusers import RBLNDiffusionMixin
|
36
|
+
from ....utils.decorator_utils import remove_compile_time_kwargs
|
37
|
+
from ...models import RBLNControlNetModel
|
41
38
|
from ...pipelines.controlnet.multicontrolnet import RBLNMultiControlNetModel
|
42
39
|
|
43
40
|
|
44
41
|
logger = logging.get_logger(__name__)
|
45
42
|
|
46
43
|
|
47
|
-
class RBLNStableDiffusionControlNetImg2ImgPipeline(StableDiffusionControlNetImg2ImgPipeline):
|
48
|
-
|
49
|
-
def from_pretrained(cls, model_id, **kwargs):
|
50
|
-
"""
|
51
|
-
Pipeline for image-to-image generation using Stable Diffusion with ControlNet.
|
52
|
-
|
53
|
-
This model inherits from [`StableDiffusionControlNetImg2ImgPipeline`]. Check the superclass documentation for the generic methods
|
54
|
-
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
55
|
-
|
56
|
-
It implements the methods to convert a pre-trained Stable Diffusion Controlnet pipeline into a RBLNStableDiffusionControlNetImg2Img pipeline by:
|
57
|
-
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
58
|
-
- compiling the resulting graph using the RBLN compiler.
|
59
|
-
|
60
|
-
Args:
|
61
|
-
model_id (`Union[str, Path]`):
|
62
|
-
Can be either:
|
63
|
-
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
64
|
-
- A path to a *directory* containing a model saved using [`~OptimizedModel.save_pretrained`],
|
65
|
-
"""
|
66
|
-
export = kwargs.pop("export", None)
|
67
|
-
vae = kwargs.pop("vae", None)
|
68
|
-
unet = kwargs.pop("unet", None)
|
69
|
-
text_encoder = kwargs.pop("text_encoder", None)
|
70
|
-
controlnet = kwargs.pop("controlnet", None)
|
71
|
-
model_save_dir = kwargs.pop("model_save_dir", None)
|
72
|
-
rbln_config = kwargs.pop("rbln_config", None)
|
73
|
-
rbln_kwargs, _ = RBLNBaseModel.resolve_rbln_config(rbln_config, kwargs)
|
74
|
-
|
75
|
-
device = rbln_kwargs.get("device", None)
|
76
|
-
device_map = rbln_kwargs.get("device_map", None)
|
77
|
-
create_runtimes = rbln_kwargs.get("create_runtimes", None)
|
78
|
-
optimize_host_memory = rbln_kwargs.get("optimize_host_memory", None)
|
79
|
-
|
80
|
-
kwargs_dict = {
|
81
|
-
"pretrained_model_name_or_path": model_id,
|
82
|
-
**kwargs,
|
83
|
-
}
|
84
|
-
|
85
|
-
kwargs_dict.update(
|
86
|
-
{
|
87
|
-
**({"vae": vae} if vae is not None and isinstance(vae, AutoencoderKL) else {}),
|
88
|
-
**({"unet": unet} if unet is not None and isinstance(unet, UNet2DConditionModel) else {}),
|
89
|
-
**(
|
90
|
-
{"text_encoder": text_encoder}
|
91
|
-
if text_encoder is not None and isinstance(text_encoder, CLIPTextModel)
|
92
|
-
else {}
|
93
|
-
),
|
94
|
-
**(
|
95
|
-
{"controlnet": controlnet}
|
96
|
-
if controlnet is not None
|
97
|
-
and (
|
98
|
-
isinstance(controlnet, ControlNetModel)
|
99
|
-
or all(isinstance(c, ControlNetModel) for c in controlnet)
|
100
|
-
)
|
101
|
-
else {}
|
102
|
-
),
|
103
|
-
}
|
104
|
-
)
|
105
|
-
|
106
|
-
with ContextRblnConfig(
|
107
|
-
device=device,
|
108
|
-
device_map=device_map,
|
109
|
-
create_runtimes=create_runtimes,
|
110
|
-
optimze_host_mem=optimize_host_memory,
|
111
|
-
):
|
112
|
-
model = super().from_pretrained(**{k: v for k, v in kwargs_dict.items() if v is not None})
|
113
|
-
|
114
|
-
if export is None or export is False:
|
115
|
-
return model
|
116
|
-
|
117
|
-
do_classifier_free_guidance = (
|
118
|
-
rbln_kwargs.pop("guidance_scale", 5.0) > 1.0 and model.unet.config.time_cond_proj_dim is None
|
119
|
-
)
|
120
|
-
|
121
|
-
# compile model, create runtime
|
122
|
-
if not isinstance(vae, RBLNAutoencoderKL):
|
123
|
-
vae = RBLNAutoencoderKL.from_pretrained(
|
124
|
-
model_id=model_id,
|
125
|
-
subfolder="vae",
|
126
|
-
export=True,
|
127
|
-
model_save_dir=model_save_dir,
|
128
|
-
rbln_unet_sample_size=model.unet.config.sample_size,
|
129
|
-
rbln_use_encode=True,
|
130
|
-
rbln_vae_scale_factor=model.vae_scale_factor,
|
131
|
-
rbln_config={**rbln_kwargs},
|
132
|
-
)
|
133
|
-
|
134
|
-
if not isinstance(text_encoder, RBLNCLIPTextModel):
|
135
|
-
text_encoder = RBLNCLIPTextModel.from_pretrained(
|
136
|
-
model_id=model_id,
|
137
|
-
subfolder="text_encoder",
|
138
|
-
export=True,
|
139
|
-
model_save_dir=model_save_dir,
|
140
|
-
rbln_config={**rbln_kwargs},
|
141
|
-
)
|
142
|
-
|
143
|
-
batch_size = rbln_kwargs.pop("batch_size", 1)
|
144
|
-
unet_batch_size = batch_size * 2 if do_classifier_free_guidance else batch_size
|
145
|
-
|
146
|
-
if not isinstance(unet, RBLNUNet2DConditionModel):
|
147
|
-
unet = RBLNUNet2DConditionModel.from_pretrained(
|
148
|
-
model_id=model_id,
|
149
|
-
subfolder="unet",
|
150
|
-
export=True,
|
151
|
-
model_save_dir=model_save_dir,
|
152
|
-
rbln_max_seq_len=text_encoder.config.max_position_embeddings,
|
153
|
-
rbln_batch_size=unet_batch_size,
|
154
|
-
rbln_use_encode=True,
|
155
|
-
rbln_vae_scale_factor=model.vae_scale_factor,
|
156
|
-
rbln_is_controlnet=True if "controlnet" in model.config.keys() else False,
|
157
|
-
rbln_config={**rbln_kwargs},
|
158
|
-
)
|
159
|
-
|
160
|
-
if not isinstance(controlnet, (RBLNControlNetModel, RBLNMultiControlNetModel)):
|
161
|
-
if isinstance(controlnet, (list, tuple)):
|
162
|
-
multicontrolnet = []
|
163
|
-
for i, cid in enumerate(controlnet):
|
164
|
-
subfolder_name = "controlnet" if i == 0 else f"controlnet_{i}"
|
165
|
-
multicontrolnet.append(
|
166
|
-
RBLNControlNetModel.from_pretrained(
|
167
|
-
model_id=cid.config._name_or_path,
|
168
|
-
subfolder=subfolder_name,
|
169
|
-
export=True,
|
170
|
-
model_save_dir=model_save_dir,
|
171
|
-
rbln_batch_size=unet_batch_size,
|
172
|
-
rbln_vae_scale_factor=model.vae_scale_factor,
|
173
|
-
rbln_config={**rbln_kwargs},
|
174
|
-
)
|
175
|
-
)
|
176
|
-
controlnet = RBLNMultiControlNetModel(multicontrolnet, config=controlnet[0].config)
|
177
|
-
controlnet_dict = ("optimum.rbln", "RBLNMultiControlNetModel")
|
178
|
-
else:
|
179
|
-
controlnet = RBLNControlNetModel.from_pretrained(
|
180
|
-
model_id=controlnet.config._name_or_path,
|
181
|
-
subfolder="controlnet",
|
182
|
-
export=True,
|
183
|
-
model_save_dir=model_save_dir,
|
184
|
-
rbln_batch_size=unet_batch_size,
|
185
|
-
rbln_vae_scale_factor=model.vae_scale_factor,
|
186
|
-
rbln_config={**rbln_kwargs},
|
187
|
-
)
|
188
|
-
controlnet_dict = ("optimum.rbln", "RBLNControlNetModel")
|
189
|
-
|
190
|
-
if model_save_dir is not None:
|
191
|
-
# To skip saving original pytorch modules
|
192
|
-
del (model.vae, model.text_encoder, model.unet, model.controlnet)
|
193
|
-
|
194
|
-
# Direct calling of `save_pretrained` causes config.unet = (None, None).
|
195
|
-
# So config must be saved again, later.
|
196
|
-
model.save_pretrained(model_save_dir)
|
197
|
-
|
198
|
-
# replace modules
|
199
|
-
model.vae = vae
|
200
|
-
model.text_encoder = text_encoder
|
201
|
-
model.unet = unet
|
202
|
-
model.controlnet = controlnet
|
203
|
-
|
204
|
-
# update config to be able to load from file.
|
205
|
-
update_dict = {
|
206
|
-
"vae": ("optimum.rbln", "RBLNAutoencoderKL"),
|
207
|
-
"text_encoder": ("optimum.rbln", "RBLNCLIPTextModel"),
|
208
|
-
"unet": ("optimum.rbln", "RBLNUNet2DConditionModel"),
|
209
|
-
"controlnet": controlnet_dict,
|
210
|
-
}
|
211
|
-
model.register_to_config(**update_dict)
|
212
|
-
|
213
|
-
if model_save_dir is not None:
|
214
|
-
# overwrite to replace incorrect config
|
215
|
-
model.save_config(model_save_dir)
|
216
|
-
|
217
|
-
# use for CI to access each compiled model
|
218
|
-
if optimize_host_memory is False:
|
219
|
-
model.compiled_models = [
|
220
|
-
vae.compiled_models[0],
|
221
|
-
vae.compiled_models[1],
|
222
|
-
text_encoder.compiled_models[0],
|
223
|
-
unet.compiled_models[0],
|
224
|
-
]
|
225
|
-
if isinstance(controlnet, RBLNMultiControlNetModel):
|
226
|
-
for c_model in controlnet.nets:
|
227
|
-
model.compiled_models.append(c_model.compiled_models[0])
|
228
|
-
else:
|
229
|
-
model.compiled_models.append(controlnet.compiled_models[0])
|
230
|
-
|
231
|
-
return model
|
44
|
+
class RBLNStableDiffusionControlNetImg2ImgPipeline(RBLNDiffusionMixin, StableDiffusionControlNetImg2ImgPipeline):
|
45
|
+
_submodules = ["text_encoder", "unet", "vae", "controlnet"]
|
232
46
|
|
233
47
|
def check_inputs(
|
234
48
|
self,
|
@@ -388,6 +202,7 @@ class RBLNStableDiffusionControlNetImg2ImgPipeline(StableDiffusionControlNetImg2
|
|
388
202
|
)
|
389
203
|
|
390
204
|
@torch.no_grad()
|
205
|
+
@remove_compile_time_kwargs
|
391
206
|
def __call__(
|
392
207
|
self,
|
393
208
|
prompt: Union[str, List[str]] = None,
|
@@ -596,6 +411,7 @@ class RBLNStableDiffusionControlNetImg2ImgPipeline(StableDiffusionControlNetImg2
|
|
596
411
|
text_encoder_lora_scale = (
|
597
412
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
598
413
|
)
|
414
|
+
|
599
415
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
600
416
|
prompt,
|
601
417
|
device,
|
@@ -26,223 +26,23 @@ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
|
26
26
|
|
27
27
|
import torch
|
28
28
|
import torch.nn.functional as F
|
29
|
-
from diffusers import
|
29
|
+
from diffusers import StableDiffusionXLControlNetPipeline
|
30
30
|
from diffusers.image_processor import PipelineImageInput
|
31
|
-
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
32
31
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
33
32
|
from diffusers.utils import deprecate, logging
|
34
33
|
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
|
35
|
-
from transformers import CLIPTextModel
|
36
34
|
|
37
|
-
from ....
|
38
|
-
from ....
|
39
|
-
from
|
40
|
-
from ...models import RBLNAutoencoderKL, RBLNControlNetModel, RBLNUNet2DConditionModel
|
35
|
+
from ....modeling_diffusers import RBLNDiffusionMixin
|
36
|
+
from ....utils.decorator_utils import remove_compile_time_kwargs
|
37
|
+
from ...models import RBLNControlNetModel
|
41
38
|
from ...pipelines.controlnet.multicontrolnet import RBLNMultiControlNetModel
|
42
39
|
|
43
40
|
|
44
41
|
logger = logging.get_logger(__name__)
|
45
42
|
|
46
43
|
|
47
|
-
class RBLNStableDiffusionXLControlNetPipeline(StableDiffusionXLControlNetPipeline):
|
48
|
-
|
49
|
-
def from_pretrained(cls, model_id, **kwargs):
|
50
|
-
"""
|
51
|
-
Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet.
|
52
|
-
|
53
|
-
This model inherits from [`StableDiffusionXLControlNetPipeline`]. Check the superclass documentation for the generic methods
|
54
|
-
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
55
|
-
|
56
|
-
It implements the methods to convert a pre-trained Stable Diffusion XL Controlnet pipeline into a RBLNStableDiffusionXLControlNet pipeline by:
|
57
|
-
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
58
|
-
- compiling the resulting graph using the RBLN compiler.
|
59
|
-
|
60
|
-
Args:
|
61
|
-
model_id (`Union[str, Path]`):
|
62
|
-
Can be either:
|
63
|
-
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
64
|
-
- A path to a *directory* containing a model saved using [`~OptimizedModel.save_pretrained`],
|
65
|
-
"""
|
66
|
-
export = kwargs.pop("export", None)
|
67
|
-
vae = kwargs.pop("vae", None)
|
68
|
-
unet = kwargs.pop("unet", None)
|
69
|
-
text_encoder = kwargs.pop("text_encoder", None)
|
70
|
-
text_encoder_2 = kwargs.pop("text_encoder_2", None)
|
71
|
-
controlnet = kwargs.pop("controlnet", None)
|
72
|
-
model_save_dir = kwargs.pop("model_save_dir", None)
|
73
|
-
rbln_config = kwargs.pop("rbln_config", None)
|
74
|
-
rbln_kwargs, _ = RBLNBaseModel.resolve_rbln_config(rbln_config, kwargs)
|
75
|
-
|
76
|
-
device = rbln_kwargs.get("device", None)
|
77
|
-
device_map = rbln_kwargs.get("device_map", None)
|
78
|
-
create_runtimes = rbln_kwargs.get("create_runtimes", None)
|
79
|
-
optimize_host_memory = rbln_kwargs.get("optimize_host_memory", None)
|
80
|
-
|
81
|
-
kwargs_dict = {
|
82
|
-
"pretrained_model_name_or_path": model_id,
|
83
|
-
**kwargs,
|
84
|
-
}
|
85
|
-
|
86
|
-
kwargs_dict.update(
|
87
|
-
{
|
88
|
-
**({"vae": vae} if vae is not None and isinstance(vae, AutoencoderKL) else {}),
|
89
|
-
**({"unet": unet} if unet is not None and isinstance(unet, UNet2DConditionModel) else {}),
|
90
|
-
**(
|
91
|
-
{"text_encoder": text_encoder}
|
92
|
-
if text_encoder is not None and isinstance(text_encoder, CLIPTextModel)
|
93
|
-
else {}
|
94
|
-
),
|
95
|
-
**(
|
96
|
-
{"controlnet": controlnet}
|
97
|
-
if controlnet is not None
|
98
|
-
and (
|
99
|
-
isinstance(controlnet, ControlNetModel)
|
100
|
-
or all(isinstance(c, ControlNetModel) for c in controlnet)
|
101
|
-
)
|
102
|
-
else {}
|
103
|
-
),
|
104
|
-
}
|
105
|
-
)
|
106
|
-
|
107
|
-
with ContextRblnConfig(
|
108
|
-
device=device,
|
109
|
-
device_map=device_map,
|
110
|
-
create_runtimes=create_runtimes,
|
111
|
-
optimze_host_mem=optimize_host_memory,
|
112
|
-
):
|
113
|
-
model = super().from_pretrained(**{k: v for k, v in kwargs_dict.items() if v is not None})
|
114
|
-
|
115
|
-
if export is None or export is False:
|
116
|
-
return model
|
117
|
-
|
118
|
-
do_classifier_free_guidance = (
|
119
|
-
rbln_kwargs.pop("guidance_scale", 5.0) > 1.0 and model.unet.config.time_cond_proj_dim is None
|
120
|
-
)
|
121
|
-
|
122
|
-
if not isinstance(vae, RBLNAutoencoderKL):
|
123
|
-
vae = RBLNAutoencoderKL.from_pretrained(
|
124
|
-
model_id=model_id,
|
125
|
-
subfolder="vae",
|
126
|
-
export=True,
|
127
|
-
model_save_dir=model_save_dir,
|
128
|
-
rbln_unet_sample_size=model.unet.config.sample_size,
|
129
|
-
rbln_use_encode=False,
|
130
|
-
rbln_vae_scale_factor=model.vae_scale_factor,
|
131
|
-
rbln_config={**rbln_kwargs},
|
132
|
-
)
|
133
|
-
|
134
|
-
if not isinstance(text_encoder, RBLNCLIPTextModel):
|
135
|
-
text_encoder = RBLNCLIPTextModel.from_pretrained(
|
136
|
-
model_id=model_id,
|
137
|
-
subfolder="text_encoder",
|
138
|
-
export=True,
|
139
|
-
model_save_dir=model_save_dir,
|
140
|
-
rbln_config={**rbln_kwargs},
|
141
|
-
)
|
142
|
-
|
143
|
-
if not isinstance(text_encoder_2, RBLNCLIPTextModel):
|
144
|
-
text_encoder_2 = RBLNCLIPTextModelWithProjection.from_pretrained(
|
145
|
-
model_id=model_id,
|
146
|
-
subfolder="text_encoder_2",
|
147
|
-
export=True,
|
148
|
-
model_save_dir=model_save_dir,
|
149
|
-
rbln_config={**rbln_kwargs},
|
150
|
-
)
|
151
|
-
|
152
|
-
batch_size = rbln_kwargs.pop("batch_size", 1)
|
153
|
-
unet_batch_size = batch_size * 2 if do_classifier_free_guidance else batch_size
|
154
|
-
|
155
|
-
if not isinstance(unet, RBLNUNet2DConditionModel):
|
156
|
-
unet = RBLNUNet2DConditionModel.from_pretrained(
|
157
|
-
model_id=model_id,
|
158
|
-
subfolder="unet",
|
159
|
-
export=True,
|
160
|
-
model_save_dir=model_save_dir,
|
161
|
-
rbln_max_seq_len=model.text_encoder.config.max_position_embeddings,
|
162
|
-
rbln_text_model_hidden_size=model.text_encoder_2.config.hidden_size,
|
163
|
-
rbln_batch_size=unet_batch_size,
|
164
|
-
rbln_use_encode=False,
|
165
|
-
rbln_vae_scale_factor=model.vae_scale_factor,
|
166
|
-
rbln_is_controlnet=True if "controlnet" in model.config.keys() else False,
|
167
|
-
rbln_config={**rbln_kwargs},
|
168
|
-
)
|
169
|
-
|
170
|
-
if not isinstance(controlnet, (RBLNControlNetModel, RBLNMultiControlNetModel)):
|
171
|
-
if isinstance(controlnet, (list, tuple)):
|
172
|
-
multicontrolnet = []
|
173
|
-
for i, cid in enumerate(controlnet):
|
174
|
-
subfolder_name = "controlnet" if i == 0 else f"controlnet_{i}"
|
175
|
-
multicontrolnet.append(
|
176
|
-
RBLNControlNetModel.from_pretrained(
|
177
|
-
model_id=cid.config._name_or_path,
|
178
|
-
subfolder=subfolder_name,
|
179
|
-
export=True,
|
180
|
-
model_save_dir=model_save_dir,
|
181
|
-
rbln_batch_size=unet_batch_size,
|
182
|
-
rbln_text_model_hidden_size=model.text_encoder_2.config.hidden_size,
|
183
|
-
rbln_vae_scale_factor=model.vae_scale_factor,
|
184
|
-
rbln_config={**rbln_kwargs},
|
185
|
-
)
|
186
|
-
)
|
187
|
-
controlnet = RBLNMultiControlNetModel(multicontrolnet, config=controlnet[0].config)
|
188
|
-
controlnet_dict = ("optimum.rbln", "RBLNMultiControlNetModel")
|
189
|
-
else:
|
190
|
-
controlnet = RBLNControlNetModel.from_pretrained(
|
191
|
-
model_id=controlnet.config._name_or_path,
|
192
|
-
subfolder="controlnet",
|
193
|
-
export=True,
|
194
|
-
model_save_dir=model_save_dir,
|
195
|
-
rbln_batch_size=unet_batch_size,
|
196
|
-
rbln_text_model_hidden_size=model.text_encoder_2.config.hidden_size,
|
197
|
-
rbln_vae_scale_factor=model.vae_scale_factor,
|
198
|
-
rbln_config={**rbln_kwargs},
|
199
|
-
)
|
200
|
-
controlnet_dict = ("optimum.rbln", "RBLNControlNetModel")
|
201
|
-
|
202
|
-
if model_save_dir is not None:
|
203
|
-
# To skip saving original pytorch modules
|
204
|
-
del (model.vae, model.text_encoder, model.unet, model.controlnet)
|
205
|
-
|
206
|
-
# Direct calling of `save_pretrained` causes config.unet = (None, None).
|
207
|
-
# So config must be saved again, later.
|
208
|
-
model.save_pretrained(model_save_dir)
|
209
|
-
|
210
|
-
# replace modules
|
211
|
-
model.vae = vae
|
212
|
-
model.text_encoder = text_encoder
|
213
|
-
model.unet = unet
|
214
|
-
model.text_encoder_2 = text_encoder_2
|
215
|
-
model.controlnet = controlnet
|
216
|
-
|
217
|
-
# update config to be able to load from file
|
218
|
-
update_dict = {
|
219
|
-
"vae": ("optimum.rbln", "RBLNAutoencoderKL"),
|
220
|
-
"text_encoder": ("optimum.rbln", "RBLNCLIPTextModel"),
|
221
|
-
"unet": ("optimum.rbln", "RBLNUNet2DConditionModel"),
|
222
|
-
"text_encoder_2": ("optimum.rbln", "RBLNCLIPTextModel"),
|
223
|
-
"controlnet": controlnet_dict,
|
224
|
-
}
|
225
|
-
model.register_to_config(**update_dict)
|
226
|
-
|
227
|
-
if model_save_dir is not None:
|
228
|
-
# overwrite to replace incorrect config
|
229
|
-
model.save_config(model_save_dir)
|
230
|
-
|
231
|
-
# use for CI to access each compiled model
|
232
|
-
if optimize_host_memory is False:
|
233
|
-
model.compiled_models = [
|
234
|
-
vae.compiled_models[0],
|
235
|
-
text_encoder.compiled_models[0],
|
236
|
-
text_encoder_2.compiled_models[0],
|
237
|
-
unet.compiled_models[0],
|
238
|
-
]
|
239
|
-
if isinstance(controlnet, RBLNMultiControlNetModel):
|
240
|
-
for c_model in controlnet.nets:
|
241
|
-
model.compiled_models.append(c_model.compiled_models[0])
|
242
|
-
else:
|
243
|
-
model.compiled_models.append(controlnet.compiled_models[0])
|
244
|
-
|
245
|
-
return model
|
44
|
+
class RBLNStableDiffusionXLControlNetPipeline(RBLNDiffusionMixin, StableDiffusionXLControlNetPipeline):
|
45
|
+
_submodules = ["text_encoder", "text_encoder_2", "unet", "vae", "controlnet"]
|
246
46
|
|
247
47
|
def check_inputs(
|
248
48
|
self,
|
@@ -434,6 +234,7 @@ class RBLNStableDiffusionXLControlNetPipeline(StableDiffusionXLControlNetPipelin
|
|
434
234
|
)
|
435
235
|
|
436
236
|
@torch.no_grad()
|
237
|
+
@remove_compile_time_kwargs
|
437
238
|
def __call__(
|
438
239
|
self,
|
439
240
|
prompt: Union[str, List[str]] = None,
|
@@ -697,6 +498,7 @@ class RBLNStableDiffusionXLControlNetPipeline(StableDiffusionXLControlNetPipelin
|
|
697
498
|
text_encoder_lora_scale = (
|
698
499
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
699
500
|
)
|
501
|
+
|
700
502
|
(
|
701
503
|
prompt_embeds,
|
702
504
|
negative_prompt_embeds,
|