optimum-rbln 0.1.11__py3-none-any.whl → 0.1.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (54) hide show
  1. optimum/rbln/__init__.py +10 -7
  2. optimum/rbln/__version__.py +1 -1
  3. optimum/rbln/diffusers/models/autoencoder_kl.py +0 -2
  4. optimum/rbln/diffusers/models/controlnet.py +0 -6
  5. optimum/rbln/diffusers/models/unet_2d_condition.py +0 -3
  6. optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +4 -0
  7. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +18 -20
  8. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +18 -20
  9. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +19 -34
  10. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +20 -35
  11. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +12 -13
  12. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +12 -14
  13. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +13 -14
  14. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +13 -14
  15. optimum/rbln/modeling_alias.py +4 -9
  16. optimum/rbln/modeling_base.py +105 -139
  17. optimum/rbln/modeling_config.py +51 -0
  18. optimum/rbln/transformers/__init__.py +8 -0
  19. optimum/rbln/transformers/models/__init__.py +4 -1
  20. optimum/rbln/transformers/models/auto/modeling_auto.py +1 -0
  21. optimum/rbln/transformers/models/bart/__init__.py +1 -1
  22. optimum/rbln/transformers/models/bart/bart_architecture.py +18 -12
  23. optimum/rbln/transformers/models/bart/modeling_bart.py +25 -6
  24. optimum/rbln/transformers/models/bert/modeling_bert.py +1 -2
  25. optimum/rbln/transformers/models/clip/modeling_clip.py +0 -1
  26. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +172 -100
  27. optimum/rbln/transformers/models/dpt/modeling_dpt.py +0 -1
  28. optimum/rbln/transformers/models/exaone/__init__.py +32 -0
  29. optimum/rbln/transformers/models/exaone/exaone_architecture.py +72 -0
  30. optimum/rbln/transformers/models/exaone/hf_hub_cached/configuration_exaone.py +181 -0
  31. optimum/rbln/transformers/models/exaone/hf_hub_cached/modeling_exaone.py +1725 -0
  32. optimum/rbln/transformers/models/exaone/modeling_exaone.py +78 -0
  33. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +148 -152
  34. optimum/rbln/transformers/models/midm/modeling_midm.py +5 -0
  35. optimum/rbln/transformers/models/qwen2/__init__.py +24 -0
  36. optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +67 -0
  37. optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +29 -0
  38. optimum/rbln/transformers/models/seq2seq/__init__.py +24 -0
  39. optimum/rbln/{modeling_seq2seq.py → transformers/models/seq2seq/modeling_seq2seq.py} +107 -166
  40. optimum/rbln/transformers/models/t5/__init__.py +1 -0
  41. optimum/rbln/transformers/models/t5/modeling_t5.py +55 -0
  42. optimum/rbln/transformers/models/t5/t5_architecture.py +46 -32
  43. optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +0 -1
  44. optimum/rbln/transformers/models/whisper/modeling_whisper.py +37 -12
  45. optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +1 -2
  46. optimum/rbln/utils/import_utils.py +14 -0
  47. optimum/rbln/utils/logging.py +1 -1
  48. optimum/rbln/utils/runtime_utils.py +1 -1
  49. optimum/rbln/utils/timer_utils.py +26 -2
  50. {optimum_rbln-0.1.11.dist-info → optimum_rbln-0.1.12.dist-info}/METADATA +4 -3
  51. {optimum_rbln-0.1.11.dist-info → optimum_rbln-0.1.12.dist-info}/RECORD +54 -44
  52. {optimum_rbln-0.1.11.dist-info → optimum_rbln-0.1.12.dist-info}/WHEEL +1 -1
  53. {optimum_rbln-0.1.11.dist-info → optimum_rbln-0.1.12.dist-info}/entry_points.txt +0 -0
  54. {optimum_rbln-0.1.11.dist-info → optimum_rbln-0.1.12.dist-info}/licenses/LICENSE +0 -0
@@ -59,14 +59,16 @@ if TYPE_CHECKING:
59
59
  class RBLNRuntimeEncoder(RBLNPytorchRuntime):
60
60
  mandatory_members = ["main_input_name"]
61
61
 
62
- def forward(self, *args: List[torch.Tensor], **kwargs: Dict[str, torch.Tensor]):
62
+ def forward(self, input_features: torch.Tensor = None):
63
63
  # backward compatibility transformers==4.40.2
64
64
  # https://github.com/huggingface/transformers/blob/4fdf58afb72b0754da30037fc800b6044e7d9c99/src/transformers/pipelines/automatic_speech_recognition.py#L494
65
- input_features = kwargs.get("input_features", None)
66
- if input_features is None:
67
- input_features = args[0]
65
+
66
+ n_pad_to_batch = self.batch_size - input_features.shape[0]
67
+ if n_pad_to_batch > 0:
68
+ input_features = torch.nn.functional.pad(input_features, (0, 0, 0, 0, 0, n_pad_to_batch))
68
69
 
69
70
  _ = super().forward(input_features=input_features)
71
+
70
72
  # dummy output for generation
71
73
  return BaseModelOutput(last_hidden_state=torch.tensor([[-1.0]]))
72
74
 
@@ -74,12 +76,27 @@ class RBLNRuntimeEncoder(RBLNPytorchRuntime):
74
76
  class RBLNRuntimeDecoder(RBLNPytorchRuntime):
75
77
  mandatory_members = ["main_input_name"]
76
78
 
77
- def forward(self, *args: List[torch.Tensor], **kwargs: Dict[str, torch.Tensor]):
78
- outputs = super().forward(*args, **kwargs)
79
+ def forward(
80
+ self,
81
+ decoder_input_ids: torch.Tensor = None,
82
+ decoder_attention_mask: torch.Tensor = None,
83
+ cache_position: torch.Tensor = None,
84
+ ):
85
+ inputs_bsz = decoder_input_ids.shape[0]
86
+ padded_bsz = self.batch_size - inputs_bsz
87
+ if padded_bsz > 0:
88
+ decoder_input_ids = torch.nn.functional.pad(decoder_input_ids, (0, 0, 0, padded_bsz))
89
+
90
+ outputs = super().forward(
91
+ decoder_input_ids=decoder_input_ids,
92
+ decoder_attention_mask=decoder_attention_mask,
93
+ cache_position=cache_position,
94
+ )
95
+
79
96
  if isinstance(outputs, torch.Tensor):
80
- return Seq2SeqLMOutput(logits=outputs, cross_attentions=None)
97
+ return Seq2SeqLMOutput(logits=outputs[:inputs_bsz], cross_attentions=None)
81
98
  else:
82
- return Seq2SeqLMOutput(logits=outputs[0], cross_attentions=outputs[1])
99
+ return Seq2SeqLMOutput(logits=outputs[0][:inputs_bsz], cross_attentions=outputs[1][:, :inputs_bsz])
83
100
 
84
101
 
85
102
  class RBLNWhisperForConditionalGeneration(RBLNModel, RBLNWhisperGenerationMixin):
@@ -93,7 +110,6 @@ class RBLNWhisperForConditionalGeneration(RBLNModel, RBLNWhisperGenerationMixin)
93
110
  - compiling the resulting graph using the RBLN compiler.
94
111
  """
95
112
 
96
- model_type = "rbln_model"
97
113
  auto_model_class = AutoModelForSpeechSeq2Seq
98
114
  main_input_name = "input_ids"
99
115
 
@@ -104,8 +120,12 @@ class RBLNWhisperForConditionalGeneration(RBLNModel, RBLNWhisperGenerationMixin)
104
120
  self.dec_max_seq_len = self.rbln_config.model_cfg["dec_max_seq_len"]
105
121
  self.rbln_token_timestamps = self.rbln_config.model_cfg["token_timestamps"]
106
122
 
107
- self.encoder = RBLNRuntimeEncoder(runtime=self.model[0], main_input_name="input_features")
108
- self.decoder = RBLNRuntimeDecoder(runtime=self.model[1], main_input_name="input_ids")
123
+ self.encoder = RBLNRuntimeEncoder(
124
+ runtime=self.model[0], main_input_name="input_features", batch_size=self.batch_size
125
+ )
126
+ self.decoder = RBLNRuntimeDecoder(
127
+ runtime=self.model[1], main_input_name="input_ids", batch_size=self.batch_size
128
+ )
109
129
 
110
130
  # skip encoder & first decoder when language detected
111
131
  self.is_language_detected = False
@@ -200,7 +220,11 @@ class RBLNWhisperForConditionalGeneration(RBLNModel, RBLNWhisperGenerationMixin)
200
220
  expected_seq_len = model_config.max_source_positions * 2
201
221
  num_mel_bins = model_config.num_mel_bins
202
222
  enc_max_seq_len = model_config.max_source_positions
203
- rbln_dec_max_seq_len = model_config.max_length
223
+
224
+ # 'whisper-large-v3-turbo' doesn't have 'max_length', but PretrainedConfig have default value for the key 'max_length'
225
+ rbln_dec_max_seq_len = getattr(model_config, "max_target_positions", None)
226
+ if rbln_dec_max_seq_len is None:
227
+ rbln_dec_max_seq_len = model_config.max_length
204
228
 
205
229
  # model input info
206
230
  enc_input_info = [("input_features", [rbln_batch_size, num_mel_bins, expected_seq_len], "float32")]
@@ -273,6 +297,7 @@ class RBLNWhisperForConditionalGeneration(RBLNModel, RBLNWhisperGenerationMixin)
273
297
  self,
274
298
  input_ids,
275
299
  cache_position: Optional[torch.Tensor] = None,
300
+ attention_mask: Optional[torch.Tensor] = None, # need for support transformers>=4.45.0
276
301
  **kwargs,
277
302
  ):
278
303
  """
@@ -25,7 +25,7 @@ import logging
25
25
  from typing import TYPE_CHECKING, Any, Dict, Optional, Union
26
26
 
27
27
  import torch
28
- from transformers import AutoModel, PretrainedConfig, PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
28
+ from transformers import PretrainedConfig, PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
29
29
 
30
30
  from ....modeling_base import RBLNModel
31
31
  from ....modeling_config import RBLNCompileConfig, RBLNConfig
@@ -38,7 +38,6 @@ if TYPE_CHECKING:
38
38
 
39
39
 
40
40
  class RBLNXLMRobertaModel(RBLNModel):
41
- auto_model_class = AutoModel # feature extraction
42
41
  original_model_class = XLMRobertaModel
43
42
  original_config_class = XLMRobertaConfig
44
43
 
@@ -37,6 +37,20 @@ class VersionCompat:
37
37
 
38
38
 
39
39
  RBLN_VERSION_COMPATS = {
40
+ "0.1.12": [
41
+ VersionCompat(
42
+ package_name="rebel-compiler",
43
+ min_version="0.5.12",
44
+ max_version="0.5.13",
45
+ ),
46
+ ],
47
+ "0.1.11": [
48
+ VersionCompat(
49
+ package_name="rebel-compiler",
50
+ min_version="0.5.10",
51
+ max_version="0.5.11",
52
+ ),
53
+ ],
40
54
  "0.1.10": [
41
55
  VersionCompat(
42
56
  package_name="rebel-compiler",
@@ -22,7 +22,7 @@ log_levels = {
22
22
  "critical": logging.CRITICAL,
23
23
  }
24
24
 
25
- _default_log_level = logging.WARNING
25
+ _default_log_level = logging.INFO
26
26
 
27
27
 
28
28
  def _get_default_logging_level():
@@ -76,7 +76,7 @@ class UnavailableRuntime:
76
76
  class ContextRblnConfig:
77
77
  _local = threading.local()
78
78
 
79
- def __init__(self, device, device_map, create_runtimes, optimze_host_mem):
79
+ def __init__(self, device=None, device_map=None, create_runtimes=None, optimze_host_mem=None):
80
80
  self.device = device
81
81
  self.device_map = device_map
82
82
  self.create_runtimes = create_runtimes
@@ -1,5 +1,8 @@
1
+ import os
1
2
  from datetime import datetime
2
3
 
4
+ from halo import Halo
5
+
3
6
  from .logging import get_logger
4
7
 
5
8
 
@@ -9,11 +12,32 @@ logger = get_logger()
9
12
  def rbln_timer(print_name):
10
13
  def decorator(function):
11
14
  def wrapper(*args, **kwargs):
15
+ disable = os.getenv("OPTIMUM_RBLN_DISABLE_SPIN", 'False').lower() in ('true', '1', 't')
16
+ if disable:
17
+ logger.info(f"{print_name} ...")
18
+
19
+ spinner = Halo(text=f"{print_name} ...", spinner='dots', color='green', enabled=(not disable))
20
+ spinner.start()
21
+
22
+ # Start timer
12
23
  tick = datetime.now()
13
- result = function(*args, **kwargs)
14
- logger.debug(f"{print_name}. Elasped time: {str(datetime.now() - tick)[:7]}")
24
+ try:
25
+ result = function(*args, **kwargs)
26
+ except Exception as e:
27
+ spinner.fail(f"{print_name} failed.")
28
+ raise e
29
+
30
+ # Print elapsed time.
31
+ if disable:
32
+ logger.info(f"{print_name} done. Elasped time: {format_elapsed_time(tick)}")
33
+
34
+ spinner.stop()
35
+ spinner.succeed(text=f"{print_name} done. Elasped time: {format_elapsed_time(tick)}")
15
36
  return result
16
37
 
17
38
  return wrapper
18
39
 
40
+ def format_elapsed_time(start_time: datetime) -> str:
41
+ return str(datetime.now() - start_time)[:7]
42
+
19
43
  return decorator
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: optimum-rbln
3
- Version: 0.1.11
3
+ Version: 0.1.12
4
4
  Summary: Optimum RBLN is the interface between the Hugging Face Transformers and Diffusers libraries and RBLN accelerators.
5
5
  It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
6
6
 
@@ -24,12 +24,13 @@ Requires-Python: <3.11,>=3.8
24
24
  Requires-Dist: torch<=2.2.1
25
25
  Requires-Dist: torchvision<=0.17.1
26
26
  Requires-Dist: torchaudio<=2.2.1
27
- Requires-Dist: optimum<=1.22.0
27
+ Requires-Dist: optimum==1.23.1
28
28
  Requires-Dist: accelerate>=0.28.0
29
- Requires-Dist: transformers<=4.44.2,>=4.43.2
29
+ Requires-Dist: transformers==4.45.2
30
30
  Requires-Dist: diffusers<=0.30.3
31
31
  Requires-Dist: einops>=0.8.0
32
32
  Requires-Dist: packaging>=24.1
33
+ Requires-Dist: halo
33
34
  Provides-Extra: tests
34
35
  Requires-Dist: pytest>=8.1.1; extra == "tests"
35
36
  Requires-Dist: psutil>=5.9.8; extra == "tests"
@@ -1,49 +1,53 @@
1
- optimum/rbln/__init__.py,sha256=soRWN6Znf-HpuvOKPUKdMegpAjqrIEIFygkAc8VwRNs,6172
2
- optimum/rbln/__version__.py,sha256=tBCH3ZD-pfslFfVea0QjavTfZ3g6w-hR8XU5Vll5HMg,22
1
+ optimum/rbln/__init__.py,sha256=z_WB5rnZ7t1Q_B1DeyMOHzXREX-i67NxHa1pJ249PIU,6295
2
+ optimum/rbln/__version__.py,sha256=8yPskJaNfjtFCSb_-mBfyIbWJj31afL2gxVQ6POgv8A,22
3
3
  optimum/rbln/diffusers/__init__.py,sha256=w4W7Wy-Mmh8CQZ5M9JnrrE5bN0UsfNehZI41QadE-hk,2605
4
4
  optimum/rbln/diffusers/models/__init__.py,sha256=aY6Llq_31dZjdB9HPBDvi7sXVtdQT9r11gokXG5ffxA,1139
5
- optimum/rbln/diffusers/models/autoencoder_kl.py,sha256=tZnSDDoZVWAv47n51ebh86j4vYa57tH93WeJeAoq7T8,9829
6
- optimum/rbln/diffusers/models/controlnet.py,sha256=m_9L-j-17n5ROqLJeHKd1j3bimRowCaVGDfmCJNF_8o,9805
7
- optimum/rbln/diffusers/models/unet_2d_condition.py,sha256=SzbUtsKBMkWEwP5LziLeOOebkGQUc51lMkABRXdYnEk,15032
5
+ optimum/rbln/diffusers/models/autoencoder_kl.py,sha256=mKf1f29lRveMFupo-_hC3XB5TQgeMNm_D9PxkvIQ9t4,9744
6
+ optimum/rbln/diffusers/models/controlnet.py,sha256=e94x-zFgXBmTAhGpVcevy222qvCNOYYV0-g5-1Hic7E,9648
7
+ optimum/rbln/diffusers/models/unet_2d_condition.py,sha256=gNuusFEsijFZatCprMS-348BKvutxZQtndPeYGojh_A,14946
8
8
  optimum/rbln/diffusers/pipelines/__init__.py,sha256=Xr_bQbpbC5HbJB2NuUcVQu2BGebDkc2bhsGJmL6jgps,1449
9
9
  optimum/rbln/diffusers/pipelines/controlnet/__init__.py,sha256=k0govvSBxBUR5qpxUGxRMHuQCMX7hXHVZ4EqVRw1LWk,1377
10
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py,sha256=rCvQgf5kiqw_b5pfPTpx2GpjoHW-hQsl_4ikYN9klOc,5128
11
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py,sha256=1MtxkW0vJFHaN0qnypczmWx02HzhII-6WNaickLSVcM,42882
12
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py,sha256=1gkaGOYvsATKLWPqwRO4sme28WIfAHLMUPKRs4VYcSw,41476
13
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py,sha256=XyqKRX5mDhXkBeZNeYvHUTxxROB8O2ufDaHTJRhZ-TU,53367
14
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py,sha256=yJl884dkWNML6Wz2rUqFJpGiRmHE0LUhmHUsmAIQ41U,54740
10
+ optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py,sha256=XXHiXzE5Gyd1zLhLdc9O2cRJkgPeCTVzqF3-scn9jmM,5212
11
+ optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py,sha256=Zl5lqnsB9xFJroBakyeK1c1HIsdajESMryhnYjdfmus,42709
12
+ optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py,sha256=kMqt7hrHm2CjZVdEJc3KTmTkLr_jtPAROzaA1OTrL4Y,41303
13
+ optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py,sha256=NqPidjFC0cW7_-vkj1VHlhNAqoXcg8ZZcd9EGWmjvqw,52634
14
+ optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py,sha256=1Hqu7Bm6f2lHjJrkVXtxx-s_hQ7yxdJ_O4WMZShbSHs,53968
15
15
  optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py,sha256=qf_uMWSwD-CyRMRC73y1QsTMyl_qCMreIdg0a8rhJuA,1142
16
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py,sha256=Dz6gnUfKHU05GBp6JVt5k53p2XJGi_ni7QYdh_8sZhg,5778
17
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py,sha256=TstE10PALC1hkv2zQjdNuctngutDXC_GBu8Li6Xh5aE,6126
16
+ optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py,sha256=_pNJwtjSzDpJgE6-_E5SW6m7DTPBepGCCcxPnhSyf4U,5711
17
+ optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py,sha256=W098xtly5IGx-ieZurGbR0wWecql2lPbD0NsTUCQgcc,5990
18
18
  optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py,sha256=8MDMHIVsDrM6lZAyvpjFtWOFwiY_IoSxzCQe-gJYTPI,159
19
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py,sha256=CJzRcm7TgWD0wgCyVLaYLYjMX0p8WiMNwVjy7bvqqFQ,6045
20
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py,sha256=D3WCQ-eOzaj5Qs_uZtndP4gWpi45NKCPguPtvjMYO5c,6235
19
+ optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py,sha256=FcezpMdeszOby-dCbRKLPktfxIGFlxKNFC5RlUnuPH0,5953
20
+ optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py,sha256=NRRSwT3NV9KO5RMBxzIvQ7aFFJ3ob1exdxOPBDsiY2k,6129
21
21
  optimum/rbln/modeling.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
- optimum/rbln/modeling_alias.py,sha256=wyhXBpX9Spah4oPR4g60_yUEqjqwMrevJBxBgKrJTAE,2250
23
- optimum/rbln/modeling_base.py,sha256=IOc5ZhnfHiRdikBDxLzWuK0TZrtzKFo7FPTrUCA6-So,45126
24
- optimum/rbln/modeling_config.py,sha256=9dyYNLdLnFZ4LjekiOl0RsH8Pp5A-5StGB8zR2nkvzo,8647
25
- optimum/rbln/modeling_seq2seq.py,sha256=_4Z49uc5HD9-5voX3kk8US8b4kXp1Dua42c99f1GaFE,20746
26
- optimum/rbln/transformers/__init__.py,sha256=9NiMF-uKmqWJyV27xerBbJMf_04QasI-75kn5ue6Myo,3507
22
+ optimum/rbln/modeling_alias.py,sha256=lvyUxIrrXWgV2o0ymbeFkhz_ou8S9_CRRfQ_EfAvQZU,2133
23
+ optimum/rbln/modeling_base.py,sha256=lOC2qoL6D68pzekFOtKwbrGcWnZ_ANUHRjrIjL7Q7eI,43802
24
+ optimum/rbln/modeling_config.py,sha256=va58Gpbn3rolqKu9y2u3vYVT6kynBGpox_jod6cs-j0,10612
25
+ optimum/rbln/transformers/__init__.py,sha256=qoswlx1hgsdNxjLv5RnOZQThi5aN4dGiPd4x-axuyaA,3801
27
26
  optimum/rbln/transformers/cache_utils.py,sha256=VfArIkAJn3zPXdu-6RXiCWlU-uVwxvhgoMiGxrPtk40,3835
28
27
  optimum/rbln/transformers/generation/__init__.py,sha256=6MmqS9D21ir4dcH6_fq8kRsX1VK3QspSn6Qw83F4ORE,1081
29
28
  optimum/rbln/transformers/generation/streamers.py,sha256=X-dEmL1L_0Oy0QSFj2RNdamb_xbDWLXd-Ms8ckx6OZ4,5778
30
29
  optimum/rbln/transformers/generation/utils.py,sha256=XqPbYQCe6cEuWssG9iHpbbL-wgSQTcyKHabGwKj7lnE,19462
31
- optimum/rbln/transformers/models/__init__.py,sha256=r9cvwn9qmPLQ1C36tfSnWB6mRnIEgDWz1C3Nm23we6g,2058
30
+ optimum/rbln/transformers/models/__init__.py,sha256=bXKob99DNgkqCho6NTvzOHf5wMdLNeOmIl5e80ni_Nc,2221
32
31
  optimum/rbln/transformers/models/auto/__init__.py,sha256=zMqaMIdGwuZJq4gLjRC-69M2mGUKrd0aRpmb4Rpm6-g,435
33
32
  optimum/rbln/transformers/models/auto/auto_factory.py,sha256=Up052AXID12uqa5UgLRW89EkYXDpuXR70Bt-xNHEZto,3159
34
- optimum/rbln/transformers/models/auto/modeling_auto.py,sha256=2t_ikczRqCpVpPq8DsJzWNX201W1aDLdn4Z25KtWmfo,3126
35
- optimum/rbln/transformers/models/bart/__init__.py,sha256=SXGT9llaTh-NkfT9Sj4QAKh2a2DDXz4G1-eJuRbi5Mg,1104
36
- optimum/rbln/transformers/models/bart/bart_architecture.py,sha256=P08Uz6dV0oc90PjS4Yd3-yLIsb4-FnqAznsh2rYYpg8,21175
37
- optimum/rbln/transformers/models/bart/modeling_bart.py,sha256=mfLCNfIC0IPAazE19ptci_7UZnaKlkit_UbzdzSCluc,4603
33
+ optimum/rbln/transformers/models/auto/modeling_auto.py,sha256=zET3k5GiqREvPuc_d9Sauea7rITlP6Wl32xdlCFqdhY,3165
34
+ optimum/rbln/transformers/models/bart/__init__.py,sha256=-mrB4kmPpEIVk713yEIRtC57AZ7kZ23g4bsOKcvBFNE,1138
35
+ optimum/rbln/transformers/models/bart/bart_architecture.py,sha256=W6XeumvuKv1i7p4YzKM0NgpO3NCnc1qwGXknZZrPlP0,21298
36
+ optimum/rbln/transformers/models/bart/modeling_bart.py,sha256=-ulamfBSlXDL67Q1Bzo4Q8sGuuzJBjut9XPRTeQhCbA,5261
38
37
  optimum/rbln/transformers/models/bert/__init__.py,sha256=divBpVNrRAdNAPgnQkGiEZI4oJHCJtLuwdYpMbD3dMM,1034
39
- optimum/rbln/transformers/models/bert/modeling_bert.py,sha256=L12PVETpsuvrefY77km8rg6Wh5QMP1ca2EkGX0st6JE,4294
38
+ optimum/rbln/transformers/models/bert/modeling_bert.py,sha256=F5FKVgiIBdDFq-Ql8AmE0WT_mjL0gFfr1AGE_frTexs,4228
40
39
  optimum/rbln/transformers/models/clip/__init__.py,sha256=iXZfPPIztzMDOkY3fbEzx9dCkFKKtWYXCpLGfjEUeZE,1092
41
- optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=MJZIyNiuCdBiMFmd-Tbj1Yw2njEvW04nn_0JuOw7mIc,7169
40
+ optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=NpQgw6fJLFz746iF9hH2-k-6V8wdg0v22y0ZWji77sU,7114
42
41
  optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=AG3ib8iZAEDAvVTNhieCyojWZtA67voPB0dI8lbCXTQ,1371
43
42
  optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=25YMgIGYCNSawLf9Gg0HLncb7sqi2FI6sAbt4nitWJI,20047
44
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=2t5L6imvvsBdcy9mLwpdyLd-AyN91y5TN9Y5FhRLENk,25634
43
+ optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=0H3U0AnQZ3mDEoSsIebd1e7jdP4qfxSVDEziJClV5d0,27381
45
44
  optimum/rbln/transformers/models/dpt/__init__.py,sha256=R8OHDxOAYPjkk5t8osaPqRh85Pf1Cg1BtzqesqFRcTI,1045
46
- optimum/rbln/transformers/models/dpt/modeling_dpt.py,sha256=ovIDZV4ifgsqro26PWOLCDwXHe8kRwTPeA8WFCUNgGw,3840
45
+ optimum/rbln/transformers/models/dpt/modeling_dpt.py,sha256=pKQ2vmR50GyEyKK0aV7p33PqTuksiorDhC0cH5qUYiw,3810
46
+ optimum/rbln/transformers/models/exaone/__init__.py,sha256=CuWNwnZrbd_cLU7jDDPqC0kZIqx1ii_BYyQ98CKDag0,1253
47
+ optimum/rbln/transformers/models/exaone/exaone_architecture.py,sha256=w7hi8gcjOgWwgQdinJ5aMkmwEfERTkWYsAezk5kfvD8,2669
48
+ optimum/rbln/transformers/models/exaone/hf_hub_cached/configuration_exaone.py,sha256=cKtUHugxwnbR6JOtD2a0912a2iepRpX9dEAWDeSu194,10537
49
+ optimum/rbln/transformers/models/exaone/hf_hub_cached/modeling_exaone.py,sha256=CUd-z7f-BMIe8WPRVx-u5A60ljW2C6u8CzrAuw__d5M,80983
50
+ optimum/rbln/transformers/models/exaone/modeling_exaone.py,sha256=nvhNo071DDGmCFQjSleByJLQPqGjpnagYErentuYj9I,2958
47
51
  optimum/rbln/transformers/models/gemma/__init__.py,sha256=L1Qfr6dufWtoUZND_ofwxXPSxivEvPR8exy16a_nM2o,1042
48
52
  optimum/rbln/transformers/models/gemma/gemma_architecture.py,sha256=hT0CqL_jhKWi8cDa1zFcAFPyli844wkliJ3bL5OyEdQ,4376
49
53
  optimum/rbln/transformers/models/gemma/modeling_gemma.py,sha256=ErAa3NlsNhy7ocSMjGrDaNLmJsn74NeU_OZQQNRpMvY,2643
@@ -54,40 +58,46 @@ optimum/rbln/transformers/models/llama/__init__.py,sha256=5mX-MuKzVBj6WQeVxyPhtv
54
58
  optimum/rbln/transformers/models/llama/llama_architecture.py,sha256=j4mifSOaIk7wwV9fL9wQSt5kR3rpnvjtxd3VzhMNdgY,1123
55
59
  optimum/rbln/transformers/models/llama/modeling_llama.py,sha256=ZMKigYHGlRhi6asAWpC5tayb4l1Rslt2quJUjL_lgxw,2643
56
60
  optimum/rbln/transformers/models/llava_next/__init__.py,sha256=3vi2rmTeKBydGRFOtxELhxWixZggFMpGex6xqfMgi-I,1064
57
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py,sha256=fz4Sn9hYz2txjl6qShZjc6B2-t8dhoFJeyYIQ3vGsmk,28198
61
+ optimum/rbln/transformers/models/llava_next/modeling_llava_next.py,sha256=AIpIk7EExj9VNxFWzDALDzMNqfZ4ke0IlRF3Dsi9r9I,27582
58
62
  optimum/rbln/transformers/models/midm/__init__.py,sha256=_6kYchy47frGMZ8uoUspZ9IwrmCBQJ-8kVfXM7xOMew,1249
59
63
  optimum/rbln/transformers/models/midm/hf_hub_cached/configuration_midm.py,sha256=P5JqTTcx56HOccxKbR14ZjA67BI0RNnJycG738JMaJ4,833
60
64
  optimum/rbln/transformers/models/midm/hf_hub_cached/midm_bitext_tokenization.py,sha256=5lhMXfqnIak1PJ9YL-vUxIdY_3DUr3IBXzTqf3ofpmI,12835
61
65
  optimum/rbln/transformers/models/midm/hf_hub_cached/modeling_midm.py,sha256=54__wd9EXwGxmaHDksTTcUD2aWl6WoszYsR8dlL1wfE,61031
62
66
  optimum/rbln/transformers/models/midm/hf_hub_cached/rotary_position_embedding.py,sha256=5ywaUVKTvqO8GRsHOSXOOGlbiEn-DbGkpJs59_dFb18,4059
63
67
  optimum/rbln/transformers/models/midm/midm_architecture.py,sha256=CYtFrFQ2L3u2_81TrTbEwBqgGHHQBh1sTs3vjF0xbp8,11505
64
- optimum/rbln/transformers/models/midm/modeling_midm.py,sha256=3-8kcmO-rD-dWGQnIk11XaMIHMvT0rR1ctb9E9WskTs,2779
68
+ optimum/rbln/transformers/models/midm/modeling_midm.py,sha256=WGbzrusYg9BU2pTOvdCMCS6D129_2oD9i166bYURYw4,2953
65
69
  optimum/rbln/transformers/models/mistral/__init__.py,sha256=XtuOmzBITjj-H1yctXobJjHF908x1Wlxr_p4hi06v8I,1046
66
70
  optimum/rbln/transformers/models/mistral/mistral_architecture.py,sha256=LCvY4L0Wq1VruKhZ3JTSiuZJqQRJlTae5A2bKsUBGAg,1128
67
71
  optimum/rbln/transformers/models/mistral/modeling_mistral.py,sha256=TB6Ju-yJt57xx4YSYSvPTvLg51s7JeRtHiAA61gsewA,2678
68
72
  optimum/rbln/transformers/models/phi/__init__.py,sha256=LrGFTUo1oQnsPSTlxJqAJVVNUdUwq4u_Bf60RUgjLz4,1038
69
73
  optimum/rbln/transformers/models/phi/modeling_phi.py,sha256=Qh1YkWMVREIpYiq8_z5IEepLeyY-yTxmNjHHYrpez18,2639
70
74
  optimum/rbln/transformers/models/phi/phi_architecture.py,sha256=kgUqXnZvFiIB87-_5fdz29JwtrDAmzifbWTNN5aY1ks,15725
71
- optimum/rbln/transformers/models/t5/__init__.py,sha256=dK6F1jbBf001h79WZiVdiNZoXm5kOe2fskzhREhu0EE,1057
72
- optimum/rbln/transformers/models/t5/t5_architecture.py,sha256=BPxnKdm4ZU5vdef2oH3aSrA44AHxYlz-tcXCYXyDSSw,20939
75
+ optimum/rbln/transformers/models/qwen2/__init__.py,sha256=1PLl1rlF14C6eSk3EZaDfyEHPaC4DZ2vwVlrklTkOYg,1042
76
+ optimum/rbln/transformers/models/qwen2/modeling_qwen2.py,sha256=Mf0v-SQEuDSQ1GXgYw0C4KfeInLgYngusdCg3eibkao,2635
77
+ optimum/rbln/transformers/models/qwen2/qwen2_architecture.py,sha256=-X9OZ4HUCYDtwKnvidkWzCMPh_Xuu1wj-wRXIsQ9Pjg,1115
78
+ optimum/rbln/transformers/models/seq2seq/__init__.py,sha256=Oa11lBWDNQWahqvDco3JIsZldYS-lO8qjpnaGKSfR00,1045
79
+ optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py,sha256=ytDTNTTW221ShVRXClfQQBQV96NW-oYWwRjlbv9aXZU,18403
80
+ optimum/rbln/transformers/models/t5/__init__.py,sha256=BeLpy0izLHIpqkTCA1q0P7DynEjgRqwOZrGc-8MXQGI,1113
81
+ optimum/rbln/transformers/models/t5/modeling_t5.py,sha256=yjzvRGUME4LYUebUODrJRUkKHhI9rhcS5v8U3j8kMHc,1927
82
+ optimum/rbln/transformers/models/t5/t5_architecture.py,sha256=k3ROGNSGGuF1gFNV-LxoFFgfxo7ab5GSQA4GIi5MLsI,21074
73
83
  optimum/rbln/transformers/models/wav2vec2/__init__.py,sha256=mz4cXqG9b0tDpTAw3qYn3FaJuolX601VmKBE3gohLSw,1043
74
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py,sha256=Aft-BS-cZD_EfaMw611hrMVu58a9mJzOrHiijOc2EgI,4266
84
+ optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py,sha256=lTtLGKuAxuVNguqSc2y0D0MsE6eHCraDS7-l2-0QJEY,4236
75
85
  optimum/rbln/transformers/models/whisper/__init__.py,sha256=PZ8qeAAFMas2MizwVYFxlpFWd5k1Pe1x-0IJfYAMhT8,1059
76
86
  optimum/rbln/transformers/models/whisper/generation_whisper.py,sha256=Kwwskbp48wJxEkFGQLlm0L252rO7tx_YLYmOA-_IPwI,3387
77
- optimum/rbln/transformers/models/whisper/modeling_whisper.py,sha256=QFpuVBk4uzsJQFLA_CdZqD6UhSahklzDvH0vHQ6bBSY,14365
87
+ optimum/rbln/transformers/models/whisper/modeling_whisper.py,sha256=Yp5I1_cFClqzKr57X68Sz7Z9s5ri5cn_s9dLpRF3jpc,15343
78
88
  optimum/rbln/transformers/models/whisper/whisper_architecture.py,sha256=OQzkGa2WSUn3OVQ1DYVOY49N46QvxO1hdEbQ7Ke-o_c,17203
79
89
  optimum/rbln/transformers/models/xlm_roberta/__init__.py,sha256=NTj4hCpd8L2_i5DZuV5wp-h8OlTLYVUqTrJxzY_Dg9g,1047
80
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py,sha256=wjaUFJ_xCZyWTrHh4A2fEykdCzPv4lh2C96z0U_-gx8,4995
90
+ optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py,sha256=8xLhJvuFSCmURyKWpB3O1GLLUn00ewwdAdbzJCV7B78,4929
81
91
  optimum/rbln/transformers/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
82
92
  optimum/rbln/transformers/utils/rbln_quantization.py,sha256=aXlPjD17oi_rFgqv2yabkQZz6xFX7pHBLNJYJ2O95Qc,3530
83
93
  optimum/rbln/utils/__init__.py,sha256=F6hJP00eV1_hT_IVwqqYwLWcLQAvZbmmrNMJTia3mjI,1106
84
- optimum/rbln/utils/import_utils.py,sha256=U4FyEh4PLYZ3QrODkzVf9kF3HShIyUHf9XbmXLA6Nos,3453
85
- optimum/rbln/utils/logging.py,sha256=OtRrWQnnIrMnEg5byWetLDPtASu-hiemFqjiDvZVt-s,2274
86
- optimum/rbln/utils/runtime_utils.py,sha256=RdKnBGG7QzyBrP_kolbJ898GAIDS8ZTCabwDxxDkNwo,3782
94
+ optimum/rbln/utils/import_utils.py,sha256=ochkue99SxwaG5WdNg3GMyh1Cbn0JnYX1nnLyqfDOFg,3789
95
+ optimum/rbln/utils/logging.py,sha256=xIcLmUQoIJoBj3owkXN5_WQkQljcos6J6KSdX35IApw,2271
96
+ optimum/rbln/utils/runtime_utils.py,sha256=RgZzyUo-RfVCf3IRmEim1ZzJzuZ-VNB98LK1NQjBrUA,3802
87
97
  optimum/rbln/utils/save_utils.py,sha256=eFIPtmiblCJ3MvtxEPxmAR3iuLEUrzpyzwtVotDauhw,3283
88
- optimum/rbln/utils/timer_utils.py,sha256=MZkWB8Jm8X9Yo_h6BzIyp9FA-jmDJLvarIAFQbWeQOc,427
89
- optimum_rbln-0.1.11.dist-info/METADATA,sha256=6YmS99K9Gt0vcrDUJBPaqJN3Mo-wkmHrtC1RuYkhe9k,4590
90
- optimum_rbln-0.1.11.dist-info/WHEEL,sha256=Vza3XR51HW1KmFP0iIMUVYIvz0uQuKJpIXKYOBGQyFQ,90
91
- optimum_rbln-0.1.11.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
92
- optimum_rbln-0.1.11.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
93
- optimum_rbln-0.1.11.dist-info/RECORD,,
98
+ optimum/rbln/utils/timer_utils.py,sha256=9FtBJpqCcDWmilgP67IZqnj1UGZag4WO7XflEms-DB8,1229
99
+ optimum_rbln-0.1.12.dist-info/METADATA,sha256=RbGOydoke74MtRlasivGwjRNabuhuHonc8CFRV4PUVE,4601
100
+ optimum_rbln-0.1.12.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
101
+ optimum_rbln-0.1.12.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
102
+ optimum_rbln-0.1.12.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
103
+ optimum_rbln-0.1.12.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: pdm-backend (2.4.1)
2
+ Generator: pdm-backend (2.4.3)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any