optimum-rbln 0.1.11__py3-none-any.whl → 0.1.12__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +10 -7
- optimum/rbln/__version__.py +1 -1
- optimum/rbln/diffusers/models/autoencoder_kl.py +0 -2
- optimum/rbln/diffusers/models/controlnet.py +0 -6
- optimum/rbln/diffusers/models/unet_2d_condition.py +0 -3
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +4 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +18 -20
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +18 -20
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +19 -34
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +20 -35
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +12 -13
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +12 -14
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +13 -14
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +13 -14
- optimum/rbln/modeling_alias.py +4 -9
- optimum/rbln/modeling_base.py +105 -139
- optimum/rbln/modeling_config.py +51 -0
- optimum/rbln/transformers/__init__.py +8 -0
- optimum/rbln/transformers/models/__init__.py +4 -1
- optimum/rbln/transformers/models/auto/modeling_auto.py +1 -0
- optimum/rbln/transformers/models/bart/__init__.py +1 -1
- optimum/rbln/transformers/models/bart/bart_architecture.py +18 -12
- optimum/rbln/transformers/models/bart/modeling_bart.py +25 -6
- optimum/rbln/transformers/models/bert/modeling_bert.py +1 -2
- optimum/rbln/transformers/models/clip/modeling_clip.py +0 -1
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +172 -100
- optimum/rbln/transformers/models/dpt/modeling_dpt.py +0 -1
- optimum/rbln/transformers/models/exaone/__init__.py +32 -0
- optimum/rbln/transformers/models/exaone/exaone_architecture.py +72 -0
- optimum/rbln/transformers/models/exaone/hf_hub_cached/configuration_exaone.py +181 -0
- optimum/rbln/transformers/models/exaone/hf_hub_cached/modeling_exaone.py +1725 -0
- optimum/rbln/transformers/models/exaone/modeling_exaone.py +78 -0
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +148 -152
- optimum/rbln/transformers/models/midm/modeling_midm.py +5 -0
- optimum/rbln/transformers/models/qwen2/__init__.py +24 -0
- optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +67 -0
- optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +29 -0
- optimum/rbln/transformers/models/seq2seq/__init__.py +24 -0
- optimum/rbln/{modeling_seq2seq.py → transformers/models/seq2seq/modeling_seq2seq.py} +107 -166
- optimum/rbln/transformers/models/t5/__init__.py +1 -0
- optimum/rbln/transformers/models/t5/modeling_t5.py +55 -0
- optimum/rbln/transformers/models/t5/t5_architecture.py +46 -32
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +0 -1
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +37 -12
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +1 -2
- optimum/rbln/utils/import_utils.py +14 -0
- optimum/rbln/utils/logging.py +1 -1
- optimum/rbln/utils/runtime_utils.py +1 -1
- optimum/rbln/utils/timer_utils.py +26 -2
- {optimum_rbln-0.1.11.dist-info → optimum_rbln-0.1.12.dist-info}/METADATA +4 -3
- {optimum_rbln-0.1.11.dist-info → optimum_rbln-0.1.12.dist-info}/RECORD +54 -44
- {optimum_rbln-0.1.11.dist-info → optimum_rbln-0.1.12.dist-info}/WHEEL +1 -1
- {optimum_rbln-0.1.11.dist-info → optimum_rbln-0.1.12.dist-info}/entry_points.txt +0 -0
- {optimum_rbln-0.1.11.dist-info → optimum_rbln-0.1.12.dist-info}/licenses/LICENSE +0 -0
@@ -24,7 +24,7 @@
|
|
24
24
|
|
25
25
|
from diffusers import StableDiffusionPipeline
|
26
26
|
|
27
|
-
from ....
|
27
|
+
from ....modeling_config import use_rbln_config
|
28
28
|
from ....transformers import RBLNCLIPTextModel
|
29
29
|
from ....utils.runtime_utils import ContextRblnConfig
|
30
30
|
from ...models import RBLNAutoencoderKL, RBLNUNet2DConditionModel
|
@@ -32,6 +32,7 @@ from ...models import RBLNAutoencoderKL, RBLNUNet2DConditionModel
|
|
32
32
|
|
33
33
|
class RBLNStableDiffusionPipeline(StableDiffusionPipeline):
|
34
34
|
@classmethod
|
35
|
+
@use_rbln_config
|
35
36
|
def from_pretrained(cls, model_id, **kwargs):
|
36
37
|
"""
|
37
38
|
Pipeline for text-to-image generation using Stable Diffusion.
|
@@ -52,12 +53,12 @@ class RBLNStableDiffusionPipeline(StableDiffusionPipeline):
|
|
52
53
|
export = kwargs.pop("export", None)
|
53
54
|
model_save_dir = kwargs.pop("model_save_dir", None)
|
54
55
|
rbln_config = kwargs.pop("rbln_config", None)
|
55
|
-
|
56
|
+
rbln_config = {} if rbln_config is None else rbln_config
|
56
57
|
|
57
|
-
device =
|
58
|
-
device_map =
|
59
|
-
create_runtimes =
|
60
|
-
optimize_host_memory =
|
58
|
+
device = rbln_config.get("device", None)
|
59
|
+
device_map = rbln_config.get("device_map", None)
|
60
|
+
create_runtimes = rbln_config.get("create_runtimes", None)
|
61
|
+
optimize_host_memory = rbln_config.get("optimize_host_memory", None)
|
61
62
|
|
62
63
|
with ContextRblnConfig(
|
63
64
|
device=device,
|
@@ -71,7 +72,7 @@ class RBLNStableDiffusionPipeline(StableDiffusionPipeline):
|
|
71
72
|
return model
|
72
73
|
|
73
74
|
do_classifier_free_guidance = (
|
74
|
-
|
75
|
+
rbln_config.pop("guidance_scale", 5.0) > 1.0 and model.unet.config.time_cond_proj_dim is None
|
75
76
|
)
|
76
77
|
|
77
78
|
vae = RBLNAutoencoderKL.from_pretrained(
|
@@ -81,17 +82,17 @@ class RBLNStableDiffusionPipeline(StableDiffusionPipeline):
|
|
81
82
|
model_save_dir=model_save_dir,
|
82
83
|
rbln_unet_sample_size=model.unet.config.sample_size,
|
83
84
|
rbln_use_encode=False,
|
84
|
-
rbln_config={**
|
85
|
+
rbln_config={**rbln_config},
|
85
86
|
)
|
86
87
|
text_encoder = RBLNCLIPTextModel.from_pretrained(
|
87
88
|
model_id=model_id,
|
88
89
|
subfolder="text_encoder",
|
89
90
|
export=True,
|
90
91
|
model_save_dir=model_save_dir,
|
91
|
-
rbln_config={**
|
92
|
+
rbln_config={**rbln_config},
|
92
93
|
)
|
93
94
|
|
94
|
-
batch_size =
|
95
|
+
batch_size = rbln_config.pop("batch_size", 1)
|
95
96
|
unet_batch_size = batch_size * 2 if do_classifier_free_guidance else batch_size
|
96
97
|
|
97
98
|
unet = RBLNUNet2DConditionModel.from_pretrained(
|
@@ -103,7 +104,7 @@ class RBLNStableDiffusionPipeline(StableDiffusionPipeline):
|
|
103
104
|
rbln_batch_size=unet_batch_size,
|
104
105
|
rbln_use_encode=False,
|
105
106
|
rbln_is_controlnet=True if "controlnet" in model.config.keys() else False,
|
106
|
-
rbln_config={**
|
107
|
+
rbln_config={**rbln_config},
|
107
108
|
)
|
108
109
|
|
109
110
|
if model_save_dir is not None:
|
@@ -131,8 +132,6 @@ class RBLNStableDiffusionPipeline(StableDiffusionPipeline):
|
|
131
132
|
# overwrite to replace incorrect config
|
132
133
|
model.save_config(model_save_dir)
|
133
134
|
|
134
|
-
model.models = [vae.model[0], text_encoder.model[0], unet.model[0]]
|
135
|
-
|
136
135
|
if optimize_host_memory is False:
|
137
136
|
model.compiled_models = [vae.compiled_models[0], text_encoder.compiled_models[0], unet.compiled_models[0]]
|
138
137
|
|
@@ -24,7 +24,7 @@
|
|
24
24
|
|
25
25
|
from diffusers import StableDiffusionImg2ImgPipeline
|
26
26
|
|
27
|
-
from ....
|
27
|
+
from ....modeling_config import use_rbln_config
|
28
28
|
from ....transformers import RBLNCLIPTextModel
|
29
29
|
from ....utils.runtime_utils import ContextRblnConfig
|
30
30
|
from ...models import RBLNAutoencoderKL, RBLNUNet2DConditionModel
|
@@ -32,6 +32,7 @@ from ...models import RBLNAutoencoderKL, RBLNUNet2DConditionModel
|
|
32
32
|
|
33
33
|
class RBLNStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline):
|
34
34
|
@classmethod
|
35
|
+
@use_rbln_config
|
35
36
|
def from_pretrained(cls, model_id, **kwargs):
|
36
37
|
"""
|
37
38
|
Pipeline for image-to-image generation using Stable Diffusion.
|
@@ -52,12 +53,12 @@ class RBLNStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline):
|
|
52
53
|
export = kwargs.pop("export", None)
|
53
54
|
model_save_dir = kwargs.pop("model_save_dir", None)
|
54
55
|
rbln_config = kwargs.pop("rbln_config", None)
|
55
|
-
|
56
|
+
rbln_config = {} if rbln_config is None else rbln_config
|
56
57
|
|
57
|
-
device =
|
58
|
-
device_map =
|
59
|
-
create_runtimes =
|
60
|
-
optimize_host_memory =
|
58
|
+
device = rbln_config.get("device", None)
|
59
|
+
device_map = rbln_config.get("device_map", None)
|
60
|
+
create_runtimes = rbln_config.get("create_runtimes", None)
|
61
|
+
optimize_host_memory = rbln_config.get("optimize_host_memory", None)
|
61
62
|
|
62
63
|
with ContextRblnConfig(
|
63
64
|
device=device,
|
@@ -71,7 +72,7 @@ class RBLNStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline):
|
|
71
72
|
return model
|
72
73
|
|
73
74
|
do_classifier_free_guidance = (
|
74
|
-
|
75
|
+
rbln_config.pop("guidance_scale", 5.0) > 1.0 and model.unet.config.time_cond_proj_dim is None
|
75
76
|
)
|
76
77
|
|
77
78
|
# compile model, create runtime
|
@@ -83,17 +84,17 @@ class RBLNStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline):
|
|
83
84
|
rbln_unet_sample_size=model.unet.config.sample_size,
|
84
85
|
rbln_use_encode=True,
|
85
86
|
rbln_vae_scale_factor=model.vae_scale_factor,
|
86
|
-
rbln_config={**
|
87
|
+
rbln_config={**rbln_config},
|
87
88
|
)
|
88
89
|
text_encoder = RBLNCLIPTextModel.from_pretrained(
|
89
90
|
model_id=model_id,
|
90
91
|
subfolder="text_encoder",
|
91
92
|
export=True,
|
92
93
|
model_save_dir=model_save_dir,
|
93
|
-
rbln_config={**
|
94
|
+
rbln_config={**rbln_config},
|
94
95
|
)
|
95
96
|
|
96
|
-
batch_size =
|
97
|
+
batch_size = rbln_config.pop("batch_size", 1)
|
97
98
|
unet_batch_size = batch_size * 2 if do_classifier_free_guidance else batch_size
|
98
99
|
|
99
100
|
unet = RBLNUNet2DConditionModel.from_pretrained(
|
@@ -106,7 +107,7 @@ class RBLNStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline):
|
|
106
107
|
rbln_use_encode=True,
|
107
108
|
rbln_vae_scale_factor=model.vae_scale_factor,
|
108
109
|
rbln_is_controlnet=True if "controlnet" in model.config.keys() else False,
|
109
|
-
rbln_config={**
|
110
|
+
rbln_config={**rbln_config},
|
110
111
|
)
|
111
112
|
|
112
113
|
if model_save_dir is not None:
|
@@ -134,9 +135,6 @@ class RBLNStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline):
|
|
134
135
|
# overwrite to replace incorrect config
|
135
136
|
model.save_config(model_save_dir)
|
136
137
|
|
137
|
-
# vae encoder, vae decoder, text_encoder, unet
|
138
|
-
model.models = [vae.model[0], vae.model[1], text_encoder.model[0], unet.model[0]]
|
139
|
-
|
140
138
|
if optimize_host_memory is False:
|
141
139
|
model.compiled_models = [
|
142
140
|
vae.compiled_models[0],
|
@@ -16,7 +16,7 @@
|
|
16
16
|
|
17
17
|
from diffusers import StableDiffusionXLPipeline
|
18
18
|
|
19
|
-
from ....
|
19
|
+
from ....modeling_config import use_rbln_config
|
20
20
|
from ....transformers import RBLNCLIPTextModel, RBLNCLIPTextModelWithProjection
|
21
21
|
from ....utils.runtime_utils import ContextRblnConfig
|
22
22
|
from ...models import RBLNAutoencoderKL, RBLNUNet2DConditionModel
|
@@ -24,6 +24,7 @@ from ...models import RBLNAutoencoderKL, RBLNUNet2DConditionModel
|
|
24
24
|
|
25
25
|
class RBLNStableDiffusionXLPipeline(StableDiffusionXLPipeline):
|
26
26
|
@classmethod
|
27
|
+
@use_rbln_config
|
27
28
|
def from_pretrained(cls, model_id, **kwargs):
|
28
29
|
"""
|
29
30
|
Pipeline for text-to-image generation using Stable Diffusion XL.
|
@@ -44,12 +45,12 @@ class RBLNStableDiffusionXLPipeline(StableDiffusionXLPipeline):
|
|
44
45
|
export = kwargs.pop("export", None)
|
45
46
|
model_save_dir = kwargs.pop("model_save_dir", None)
|
46
47
|
rbln_config = kwargs.pop("rbln_config", None)
|
47
|
-
|
48
|
+
rbln_config = {} if rbln_config is None else rbln_config
|
48
49
|
|
49
|
-
device =
|
50
|
-
device_map =
|
51
|
-
create_runtimes =
|
52
|
-
optimize_host_memory =
|
50
|
+
device = rbln_config.get("device", None)
|
51
|
+
device_map = rbln_config.get("device_map", None)
|
52
|
+
create_runtimes = rbln_config.get("create_runtimes", None)
|
53
|
+
optimize_host_memory = rbln_config.get("optimize_host_memory", None)
|
53
54
|
|
54
55
|
with ContextRblnConfig(
|
55
56
|
device=device,
|
@@ -63,7 +64,7 @@ class RBLNStableDiffusionXLPipeline(StableDiffusionXLPipeline):
|
|
63
64
|
return model
|
64
65
|
|
65
66
|
do_classifier_free_guidance = (
|
66
|
-
|
67
|
+
rbln_config.pop("guidance_scale", 5.0) > 1.0 and model.unet.config.time_cond_proj_dim is None
|
67
68
|
)
|
68
69
|
|
69
70
|
vae = RBLNAutoencoderKL.from_pretrained(
|
@@ -73,24 +74,24 @@ class RBLNStableDiffusionXLPipeline(StableDiffusionXLPipeline):
|
|
73
74
|
model_save_dir=model_save_dir,
|
74
75
|
rbln_unet_sample_size=model.unet.config.sample_size,
|
75
76
|
rbln_use_encode=False,
|
76
|
-
rbln_config={**
|
77
|
+
rbln_config={**rbln_config},
|
77
78
|
)
|
78
79
|
text_encoder = RBLNCLIPTextModel.from_pretrained(
|
79
80
|
model_id=model_id,
|
80
81
|
subfolder="text_encoder",
|
81
82
|
export=True,
|
82
83
|
model_save_dir=model_save_dir,
|
83
|
-
rbln_config={**
|
84
|
+
rbln_config={**rbln_config},
|
84
85
|
)
|
85
86
|
text_encoder_2 = RBLNCLIPTextModelWithProjection.from_pretrained(
|
86
87
|
model_id=model_id,
|
87
88
|
subfolder="text_encoder_2",
|
88
89
|
export=True,
|
89
90
|
model_save_dir=model_save_dir,
|
90
|
-
rbln_config={**
|
91
|
+
rbln_config={**rbln_config},
|
91
92
|
)
|
92
93
|
|
93
|
-
batch_size =
|
94
|
+
batch_size = rbln_config.pop("batch_size", 1)
|
94
95
|
unet_batch_size = batch_size * 2 if do_classifier_free_guidance else batch_size
|
95
96
|
|
96
97
|
unet = RBLNUNet2DConditionModel.from_pretrained(
|
@@ -103,7 +104,7 @@ class RBLNStableDiffusionXLPipeline(StableDiffusionXLPipeline):
|
|
103
104
|
rbln_batch_size=unet_batch_size,
|
104
105
|
rbln_use_encode=False,
|
105
106
|
rbln_is_controlnet=True if "controlnet" in model.config.keys() else False,
|
106
|
-
rbln_config={**
|
107
|
+
rbln_config={**rbln_config},
|
107
108
|
)
|
108
109
|
|
109
110
|
if model_save_dir is not None:
|
@@ -130,8 +131,6 @@ class RBLNStableDiffusionXLPipeline(StableDiffusionXLPipeline):
|
|
130
131
|
# overwrite to replace incorrect config
|
131
132
|
model.save_config(model_save_dir)
|
132
133
|
|
133
|
-
model.models = [vae.model[0], unet.model[0], text_encoder.model[0], text_encoder_2.model[0]]
|
134
|
-
|
135
134
|
if optimize_host_memory is False:
|
136
135
|
model.compiled_models = [
|
137
136
|
vae.compiled_models[0],
|
optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py
CHANGED
@@ -16,7 +16,7 @@
|
|
16
16
|
|
17
17
|
from diffusers import StableDiffusionXLImg2ImgPipeline
|
18
18
|
|
19
|
-
from ....
|
19
|
+
from ....modeling_config import use_rbln_config
|
20
20
|
from ....transformers import RBLNCLIPTextModel, RBLNCLIPTextModelWithProjection
|
21
21
|
from ....utils.runtime_utils import ContextRblnConfig
|
22
22
|
from ...models import RBLNAutoencoderKL, RBLNUNet2DConditionModel
|
@@ -24,6 +24,7 @@ from ...models import RBLNAutoencoderKL, RBLNUNet2DConditionModel
|
|
24
24
|
|
25
25
|
class RBLNStableDiffusionXLImg2ImgPipeline(StableDiffusionXLImg2ImgPipeline):
|
26
26
|
@classmethod
|
27
|
+
@use_rbln_config
|
27
28
|
def from_pretrained(cls, model_id, **kwargs):
|
28
29
|
"""
|
29
30
|
Pipeline for image-to-image generation using Stable Diffusion XL.
|
@@ -44,12 +45,12 @@ class RBLNStableDiffusionXLImg2ImgPipeline(StableDiffusionXLImg2ImgPipeline):
|
|
44
45
|
export = kwargs.pop("export", None)
|
45
46
|
model_save_dir = kwargs.pop("model_save_dir", None)
|
46
47
|
rbln_config = kwargs.pop("rbln_config", None)
|
47
|
-
|
48
|
+
rbln_config = {} if rbln_config is None else rbln_config
|
48
49
|
|
49
|
-
device =
|
50
|
-
device_map =
|
51
|
-
create_runtimes =
|
52
|
-
optimize_host_memory =
|
50
|
+
device = rbln_config.get("device", None)
|
51
|
+
device_map = rbln_config.get("device_map", None)
|
52
|
+
create_runtimes = rbln_config.get("create_runtimes", None)
|
53
|
+
optimize_host_memory = rbln_config.get("optimize_host_memory", None)
|
53
54
|
|
54
55
|
with ContextRblnConfig(
|
55
56
|
device=device,
|
@@ -63,7 +64,7 @@ class RBLNStableDiffusionXLImg2ImgPipeline(StableDiffusionXLImg2ImgPipeline):
|
|
63
64
|
return model
|
64
65
|
|
65
66
|
do_classifier_free_guidance = (
|
66
|
-
|
67
|
+
rbln_config.pop("guidance_scale", 5.0) > 1.0 and model.unet.config.time_cond_proj_dim is None
|
67
68
|
)
|
68
69
|
|
69
70
|
vae = RBLNAutoencoderKL.from_pretrained(
|
@@ -74,24 +75,24 @@ class RBLNStableDiffusionXLImg2ImgPipeline(StableDiffusionXLImg2ImgPipeline):
|
|
74
75
|
rbln_unet_sample_size=model.unet.config.sample_size,
|
75
76
|
rbln_use_encode=True,
|
76
77
|
rbln_vae_scale_factor=model.vae_scale_factor,
|
77
|
-
rbln_config={**
|
78
|
+
rbln_config={**rbln_config},
|
78
79
|
)
|
79
80
|
text_encoder = RBLNCLIPTextModel.from_pretrained(
|
80
81
|
model_id=model_id,
|
81
82
|
subfolder="text_encoder",
|
82
83
|
export=True,
|
83
84
|
model_save_dir=model_save_dir,
|
84
|
-
rbln_config={**
|
85
|
+
rbln_config={**rbln_config},
|
85
86
|
)
|
86
87
|
text_encoder_2 = RBLNCLIPTextModelWithProjection.from_pretrained(
|
87
88
|
model_id=model_id,
|
88
89
|
subfolder="text_encoder_2",
|
89
90
|
export=True,
|
90
91
|
model_save_dir=model_save_dir,
|
91
|
-
rbln_config={**
|
92
|
+
rbln_config={**rbln_config},
|
92
93
|
)
|
93
94
|
|
94
|
-
batch_size =
|
95
|
+
batch_size = rbln_config.pop("batch_size", 1)
|
95
96
|
unet_batch_size = batch_size * 2 if do_classifier_free_guidance else batch_size
|
96
97
|
|
97
98
|
unet = RBLNUNet2DConditionModel.from_pretrained(
|
@@ -105,7 +106,7 @@ class RBLNStableDiffusionXLImg2ImgPipeline(StableDiffusionXLImg2ImgPipeline):
|
|
105
106
|
rbln_use_encode=True,
|
106
107
|
rbln_vae_scale_factor=model.vae_scale_factor,
|
107
108
|
rbln_is_controlnet=True if "controlnet" in model.config.keys() else False,
|
108
|
-
rbln_config={**
|
109
|
+
rbln_config={**rbln_config},
|
109
110
|
)
|
110
111
|
|
111
112
|
if model_save_dir is not None:
|
@@ -132,8 +133,6 @@ class RBLNStableDiffusionXLImg2ImgPipeline(StableDiffusionXLImg2ImgPipeline):
|
|
132
133
|
# overwrite to replace incorrect config
|
133
134
|
model.save_config(model_save_dir)
|
134
135
|
|
135
|
-
model.models = [vae.model[0], vae.model[1], unet.model[0], text_encoder.model[0], text_encoder_2.model[0]]
|
136
|
-
|
137
136
|
if optimize_host_memory is False:
|
138
137
|
model.compiled_models = [
|
139
138
|
vae.compiled_models[0],
|
optimum/rbln/modeling_alias.py
CHANGED
@@ -28,7 +28,6 @@ from .modeling_base import (
|
|
28
28
|
RBLNModelForQuestionAnswering,
|
29
29
|
RBLNModelForSequenceClassification,
|
30
30
|
)
|
31
|
-
from .modeling_seq2seq import RBLNModelForSeq2SeqLM
|
32
31
|
|
33
32
|
|
34
33
|
class RBLNASTForAudioClassification(RBLNModelForAudioClassification):
|
@@ -47,14 +46,6 @@ class RBLNResNetForImageClassification(RBLNModelForImageClassification):
|
|
47
46
|
pass
|
48
47
|
|
49
48
|
|
50
|
-
class RBLNT5ForConditionalGeneration(RBLNModelForSeq2SeqLM):
|
51
|
-
pass
|
52
|
-
|
53
|
-
|
54
|
-
class RBLNBartForConditionalGeneration(RBLNModelForSeq2SeqLM):
|
55
|
-
pass
|
56
|
-
|
57
|
-
|
58
49
|
class RBLNXLMRobertaForSequenceClassification(RBLNModelForSequenceClassification):
|
59
50
|
rbln_model_input_names = ["input_ids", "attention_mask"]
|
60
51
|
|
@@ -65,3 +56,7 @@ class RBLNRobertaForSequenceClassification(RBLNModelForSequenceClassification):
|
|
65
56
|
|
66
57
|
class RBLNRobertaForMaskedLM(RBLNModelForMaskedLM):
|
67
58
|
rbln_model_input_names = ["input_ids", "attention_mask"]
|
59
|
+
|
60
|
+
|
61
|
+
class RBLNViTForImageClassification(RBLNModelForImageClassification):
|
62
|
+
pass
|