optimum-rbln 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +115 -0
- optimum/rbln/__version__.py +1 -0
- optimum/rbln/diffusers/__init__.py +64 -0
- optimum/rbln/diffusers/models/__init__.py +26 -0
- optimum/rbln/diffusers/models/autoencoder_kl.py +313 -0
- optimum/rbln/diffusers/models/controlnet.py +180 -0
- optimum/rbln/diffusers/models/unet_2d_condition.py +352 -0
- optimum/rbln/diffusers/pipelines/__init__.py +30 -0
- optimum/rbln/diffusers/pipelines/controlnet/__init__.py +24 -0
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +266 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +26 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_controlnet_img2img.py +731 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +106 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +116 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +2 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +109 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +111 -0
- optimum/rbln/modeling.py +0 -0
- optimum/rbln/modeling_alias.py +49 -0
- optimum/rbln/modeling_base.py +645 -0
- optimum/rbln/modeling_config.py +169 -0
- optimum/rbln/modeling_seq2seq.py +469 -0
- optimum/rbln/transformers/__init__.py +59 -0
- optimum/rbln/transformers/generation/__init__.py +24 -0
- optimum/rbln/transformers/generation/streamers.py +122 -0
- optimum/rbln/transformers/models/__init__.py +28 -0
- optimum/rbln/transformers/models/bart/__init__.py +24 -0
- optimum/rbln/transformers/models/bart/bart_architecture.py +377 -0
- optimum/rbln/transformers/models/clip/__init__.py +24 -0
- optimum/rbln/transformers/models/clip/modeling_clip.py +116 -0
- optimum/rbln/transformers/models/gpt2/__init__.py +24 -0
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +253 -0
- optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +700 -0
- optimum/rbln/transformers/models/llama/__init__.py +24 -0
- optimum/rbln/transformers/models/llama/llama_architecture.py +607 -0
- optimum/rbln/transformers/models/llama/modeling_llama.py +409 -0
- optimum/rbln/transformers/models/t5/__init__.py +24 -0
- optimum/rbln/transformers/models/t5/t5_architecture.py +439 -0
- optimum/rbln/transformers/models/wav2vec2/__init__.py +24 -0
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +121 -0
- optimum/rbln/transformers/models/whisper/__init__.py +24 -0
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +374 -0
- optimum/rbln/transformers/models/whisper/whisper_architecture.py +406 -0
- optimum/rbln/utils/__init__.py +25 -0
- optimum/rbln/utils/import_utils.py +28 -0
- optimum/rbln/utils/runtime_utils.py +71 -0
- optimum/rbln/utils/save_utils.py +92 -0
- optimum_rbln-0.1.0.dist-info/METADATA +144 -0
- optimum_rbln-0.1.0.dist-info/RECORD +51 -0
- optimum_rbln-0.1.0.dist-info/WHEEL +4 -0
- optimum_rbln-0.1.0.dist-info/licenses/LICENSE +201 -0
@@ -0,0 +1,266 @@
|
|
1
|
+
# Copyright 2024 Rebellions Inc.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# Portions of this software are licensed under the Apache License,
|
16
|
+
# Version 2.0. See the NOTICE file distributed with this work for
|
17
|
+
# additional information regarding copyright ownership.
|
18
|
+
|
19
|
+
# All other portions of this software, including proprietary code,
|
20
|
+
# are the intellectual property of Rebellions Inc. and may not be
|
21
|
+
# copied, modified, or distributed without prior written permission
|
22
|
+
# from Rebellions Inc.
|
23
|
+
|
24
|
+
import logging
|
25
|
+
import os
|
26
|
+
from pathlib import Path
|
27
|
+
from tempfile import TemporaryDirectory
|
28
|
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
|
29
|
+
|
30
|
+
import rebel
|
31
|
+
import torch
|
32
|
+
from diffusers import ControlNetModel
|
33
|
+
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
34
|
+
from optimum.exporters import TasksManager
|
35
|
+
from transformers import AutoConfig, AutoModel, PretrainedConfig, PreTrainedModel
|
36
|
+
|
37
|
+
from ....modeling_base import RBLNBaseModel
|
38
|
+
from ....modeling_config import RBLNConfig
|
39
|
+
from ...models.controlnet import RBLNControlNetModel
|
40
|
+
|
41
|
+
|
42
|
+
logger = logging.getLogger(__name__)
|
43
|
+
|
44
|
+
if TYPE_CHECKING:
|
45
|
+
from transformers import (
|
46
|
+
PretrainedConfig,
|
47
|
+
PreTrainedModel,
|
48
|
+
)
|
49
|
+
|
50
|
+
|
51
|
+
class RBLNMultiControlNetModel(RBLNBaseModel):
|
52
|
+
model_type = "rbln_model"
|
53
|
+
auto_model_class = AutoModel
|
54
|
+
|
55
|
+
def __init__(
|
56
|
+
self,
|
57
|
+
models: List[Union[PreTrainedModel, rebel.RBLNCompiledModel]],
|
58
|
+
config: PretrainedConfig = None,
|
59
|
+
preprocessors: Optional[List] = None,
|
60
|
+
rbln_config: Optional[RBLNConfig] = None,
|
61
|
+
**kwargs,
|
62
|
+
):
|
63
|
+
super().__init__(
|
64
|
+
models,
|
65
|
+
config,
|
66
|
+
preprocessors,
|
67
|
+
rbln_config,
|
68
|
+
**kwargs,
|
69
|
+
)
|
70
|
+
|
71
|
+
if not isinstance(config, PretrainedConfig):
|
72
|
+
config = PretrainedConfig(**config)
|
73
|
+
|
74
|
+
for i in range(len(models)):
|
75
|
+
self.runtimes[i].config = config
|
76
|
+
self.nets = self.runtimes
|
77
|
+
self.dtype = torch.float32
|
78
|
+
|
79
|
+
@classmethod
|
80
|
+
def from_pretrained(cls, *args, **kwargs):
|
81
|
+
def get_model_from_task(
|
82
|
+
task: str,
|
83
|
+
model_name_or_path: Union[str, Path],
|
84
|
+
**kwargs,
|
85
|
+
):
|
86
|
+
return MultiControlNetModel.from_pretrained(pretrained_model_path=model_name_or_path, **kwargs)
|
87
|
+
|
88
|
+
tasktmp = TasksManager.get_model_from_task
|
89
|
+
configtmp = AutoConfig.from_pretrained
|
90
|
+
modeltmp = AutoModel.from_pretrained
|
91
|
+
TasksManager.get_model_from_task = get_model_from_task
|
92
|
+
AutoConfig.from_pretrained = ControlNetModel.load_config
|
93
|
+
AutoModel.from_pretrained = MultiControlNetModel.from_pretrained
|
94
|
+
rt = super().from_pretrained(*args, **kwargs)
|
95
|
+
AutoConfig.from_pretrained = configtmp
|
96
|
+
AutoModel.from_pretrained = modeltmp
|
97
|
+
TasksManager.get_model_from_task = tasktmp
|
98
|
+
return rt
|
99
|
+
|
100
|
+
@classmethod
|
101
|
+
def _from_pretrained(
|
102
|
+
cls,
|
103
|
+
model_id: Union[str, Path],
|
104
|
+
config: "PretrainedConfig",
|
105
|
+
use_auth_token: Optional[Union[bool, str]] = None,
|
106
|
+
revision: Optional[str] = None,
|
107
|
+
force_download: bool = False,
|
108
|
+
cache_dir: Optional[str] = None,
|
109
|
+
file_name: Optional[str] = None,
|
110
|
+
subfolder: str = "",
|
111
|
+
local_files_only: bool = False,
|
112
|
+
**kwargs,
|
113
|
+
) -> RBLNBaseModel:
|
114
|
+
|
115
|
+
if isinstance(model_id, str):
|
116
|
+
model_path = Path(model_id)
|
117
|
+
else:
|
118
|
+
model_path = model_id / "controlnet"
|
119
|
+
|
120
|
+
rbln_files = []
|
121
|
+
rbln_config_filenames = []
|
122
|
+
idx = 0
|
123
|
+
model_load_path = model_path
|
124
|
+
|
125
|
+
while model_load_path.is_dir():
|
126
|
+
rbln_files.append(list(model_load_path.glob("**/*.rbln"))[0])
|
127
|
+
rbln_config_filenames.append(model_load_path)
|
128
|
+
idx += 1
|
129
|
+
model_load_path = Path(str(model_path) + f"_{idx}")
|
130
|
+
|
131
|
+
if len(rbln_files) == 0:
|
132
|
+
raise FileNotFoundError(f"Could not find any rbln model file in {model_path}")
|
133
|
+
|
134
|
+
if len(rbln_config_filenames) == 0:
|
135
|
+
raise FileNotFoundError(f"Could not find `rbln_config.json` file in {model_path}")
|
136
|
+
|
137
|
+
models = []
|
138
|
+
for rconf, rfiles in zip(rbln_config_filenames, rbln_files):
|
139
|
+
rbln_config = RBLNConfig.load(str(rconf))
|
140
|
+
models.append(rebel.RBLNCompiledModel(rfiles))
|
141
|
+
|
142
|
+
preprocessors = []
|
143
|
+
|
144
|
+
return cls(
|
145
|
+
models,
|
146
|
+
config,
|
147
|
+
preprocessors,
|
148
|
+
rbln_config=rbln_config,
|
149
|
+
**kwargs,
|
150
|
+
)
|
151
|
+
|
152
|
+
def _save_pretrained(self, save_directory: Union[str, Path]):
|
153
|
+
idx = 0
|
154
|
+
real_save_dir_path = save_directory
|
155
|
+
for compiled_model in self.compiled_models:
|
156
|
+
dst_path = Path(real_save_dir_path) / "compiled_model.rbln"
|
157
|
+
if not os.path.exists(real_save_dir_path):
|
158
|
+
os.makedirs(real_save_dir_path)
|
159
|
+
compiled_model.save(dst_path)
|
160
|
+
self.rbln_config.save(real_save_dir_path)
|
161
|
+
idx += 1
|
162
|
+
real_save_dir_path = save_directory + f"_{idx}"
|
163
|
+
|
164
|
+
@classmethod
|
165
|
+
@torch.no_grad()
|
166
|
+
def _export(
|
167
|
+
cls,
|
168
|
+
model_id: str,
|
169
|
+
config: "PretrainedConfig",
|
170
|
+
use_auth_token: Optional[Union[bool, str]] = None,
|
171
|
+
revision: Optional[str] = None,
|
172
|
+
force_download: bool = False,
|
173
|
+
cache_dir: Optional[str] = None,
|
174
|
+
subfolder: str = "",
|
175
|
+
local_files_only: bool = False,
|
176
|
+
trust_remote_code: bool = False,
|
177
|
+
**kwargs,
|
178
|
+
) -> "RBLNMultiControlNetModel":
|
179
|
+
|
180
|
+
task = kwargs.pop("task", None)
|
181
|
+
if task is None:
|
182
|
+
task = TasksManager.infer_task_from_model(cls.auto_model_class)
|
183
|
+
|
184
|
+
save_dir = TemporaryDirectory()
|
185
|
+
save_dir_path = Path(save_dir.name)
|
186
|
+
|
187
|
+
rbln_config_kwargs, rbln_constructor_kwargs = cls.pop_rbln_kwargs_from_kwargs(kwargs)
|
188
|
+
img_width = rbln_config_kwargs.pop("rbln_img_width", None)
|
189
|
+
img_height = rbln_config_kwargs.pop("rbln_img_height", None)
|
190
|
+
vae_scale_factor = rbln_config_kwargs.pop("rbln_vae_scale_factor", None)
|
191
|
+
batch_size = rbln_config_kwargs.pop("rbln_batch_size", None)
|
192
|
+
|
193
|
+
model: MultiControlNetModel = TasksManager.get_model_from_task(
|
194
|
+
task=task,
|
195
|
+
model_name_or_path=model_id,
|
196
|
+
)
|
197
|
+
|
198
|
+
model_path_to_load = model_id
|
199
|
+
real_save_dir_path = save_dir_path / "controlnet"
|
200
|
+
|
201
|
+
for idx in range(len(model.nets)):
|
202
|
+
suffix = "" if idx == 0 else f"_{idx}"
|
203
|
+
controlnet = RBLNControlNetModel.from_pretrained(
|
204
|
+
model_path_to_load + suffix,
|
205
|
+
export=True,
|
206
|
+
rbln_batch_size=batch_size,
|
207
|
+
rbln_img_width=img_width,
|
208
|
+
rbln_img_height=img_height,
|
209
|
+
rbln_vae_scale_factor=vae_scale_factor,
|
210
|
+
)
|
211
|
+
controlnet.save_pretrained(real_save_dir_path)
|
212
|
+
real_save_dir_path = save_dir_path / f"controlnet_{idx+1}"
|
213
|
+
|
214
|
+
return cls._from_pretrained(
|
215
|
+
model_id=save_dir_path,
|
216
|
+
config=config,
|
217
|
+
model_save_dir=save_dir,
|
218
|
+
**rbln_constructor_kwargs,
|
219
|
+
**kwargs,
|
220
|
+
)
|
221
|
+
|
222
|
+
def _create_runtimes(self, rbln_device_map: Dict[str, int]) -> List[rebel.Runtime]:
|
223
|
+
device_val = rbln_device_map["compiled_model"]
|
224
|
+
|
225
|
+
return [
|
226
|
+
compiled_model.create_runtime(tensor_type="pt", device=device_val)
|
227
|
+
for compiled_model in self.compiled_models
|
228
|
+
]
|
229
|
+
|
230
|
+
def forward(
|
231
|
+
self,
|
232
|
+
sample: torch.FloatTensor,
|
233
|
+
timestep: Union[torch.Tensor, float, int],
|
234
|
+
encoder_hidden_states: torch.Tensor,
|
235
|
+
controlnet_cond: List[torch.tensor],
|
236
|
+
conditioning_scale: List[float],
|
237
|
+
class_labels: Optional[torch.Tensor] = None,
|
238
|
+
timestep_cond: Optional[torch.Tensor] = None,
|
239
|
+
attention_mask: Optional[torch.Tensor] = None,
|
240
|
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
241
|
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
242
|
+
guess_mode: bool = False,
|
243
|
+
return_dict: bool = True,
|
244
|
+
):
|
245
|
+
for i, (image, scale, controlnet) in enumerate(zip(controlnet_cond, conditioning_scale, self.nets)):
|
246
|
+
output = controlnet(
|
247
|
+
sample=sample.contiguous(),
|
248
|
+
timestep=timestep,
|
249
|
+
encoder_hidden_states=encoder_hidden_states,
|
250
|
+
controlnet_cond=image,
|
251
|
+
conditioning_scale=torch.tensor(scale),
|
252
|
+
)
|
253
|
+
|
254
|
+
down_samples, mid_sample = output[:-1], output[-1]
|
255
|
+
|
256
|
+
# merge samples
|
257
|
+
if i == 0:
|
258
|
+
down_block_res_samples, mid_block_res_sample = down_samples, mid_sample
|
259
|
+
else:
|
260
|
+
down_block_res_samples = [
|
261
|
+
samples_prev + samples_curr
|
262
|
+
for samples_prev, samples_curr in zip(down_block_res_samples, down_samples)
|
263
|
+
]
|
264
|
+
mid_block_res_sample += mid_sample
|
265
|
+
|
266
|
+
return down_block_res_samples, mid_block_res_sample
|
@@ -0,0 +1,26 @@
|
|
1
|
+
# Copyright 2024 Rebellions Inc.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# Portions of this software are licensed under the Apache License,
|
16
|
+
# Version 2.0. See the NOTICE file distributed with this work for
|
17
|
+
# additional information regarding copyright ownership.
|
18
|
+
|
19
|
+
# All other portions of this software, including proprietary code,
|
20
|
+
# are the intellectual property of Rebellions Inc. and may not be
|
21
|
+
# copied, modified, or distributed without prior written permission
|
22
|
+
# from Rebellions Inc.
|
23
|
+
|
24
|
+
from .pipeline_controlnet_img2img import RBLNStableDiffusionControlNetImg2ImgPipeline
|
25
|
+
from .pipeline_stable_diffusion import RBLNStableDiffusionPipeline
|
26
|
+
from .pipeline_stable_diffusion_img2img import RBLNStableDiffusionImg2ImgPipeline
|