optimum-rbln 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (51) hide show
  1. optimum/rbln/__init__.py +115 -0
  2. optimum/rbln/__version__.py +1 -0
  3. optimum/rbln/diffusers/__init__.py +64 -0
  4. optimum/rbln/diffusers/models/__init__.py +26 -0
  5. optimum/rbln/diffusers/models/autoencoder_kl.py +313 -0
  6. optimum/rbln/diffusers/models/controlnet.py +180 -0
  7. optimum/rbln/diffusers/models/unet_2d_condition.py +352 -0
  8. optimum/rbln/diffusers/pipelines/__init__.py +30 -0
  9. optimum/rbln/diffusers/pipelines/controlnet/__init__.py +24 -0
  10. optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +266 -0
  11. optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +26 -0
  12. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_controlnet_img2img.py +731 -0
  13. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +106 -0
  14. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +116 -0
  15. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +2 -0
  16. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +109 -0
  17. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +111 -0
  18. optimum/rbln/modeling.py +0 -0
  19. optimum/rbln/modeling_alias.py +49 -0
  20. optimum/rbln/modeling_base.py +645 -0
  21. optimum/rbln/modeling_config.py +169 -0
  22. optimum/rbln/modeling_seq2seq.py +469 -0
  23. optimum/rbln/transformers/__init__.py +59 -0
  24. optimum/rbln/transformers/generation/__init__.py +24 -0
  25. optimum/rbln/transformers/generation/streamers.py +122 -0
  26. optimum/rbln/transformers/models/__init__.py +28 -0
  27. optimum/rbln/transformers/models/bart/__init__.py +24 -0
  28. optimum/rbln/transformers/models/bart/bart_architecture.py +377 -0
  29. optimum/rbln/transformers/models/clip/__init__.py +24 -0
  30. optimum/rbln/transformers/models/clip/modeling_clip.py +116 -0
  31. optimum/rbln/transformers/models/gpt2/__init__.py +24 -0
  32. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +253 -0
  33. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +700 -0
  34. optimum/rbln/transformers/models/llama/__init__.py +24 -0
  35. optimum/rbln/transformers/models/llama/llama_architecture.py +607 -0
  36. optimum/rbln/transformers/models/llama/modeling_llama.py +409 -0
  37. optimum/rbln/transformers/models/t5/__init__.py +24 -0
  38. optimum/rbln/transformers/models/t5/t5_architecture.py +439 -0
  39. optimum/rbln/transformers/models/wav2vec2/__init__.py +24 -0
  40. optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +121 -0
  41. optimum/rbln/transformers/models/whisper/__init__.py +24 -0
  42. optimum/rbln/transformers/models/whisper/modeling_whisper.py +374 -0
  43. optimum/rbln/transformers/models/whisper/whisper_architecture.py +406 -0
  44. optimum/rbln/utils/__init__.py +25 -0
  45. optimum/rbln/utils/import_utils.py +28 -0
  46. optimum/rbln/utils/runtime_utils.py +71 -0
  47. optimum/rbln/utils/save_utils.py +92 -0
  48. optimum_rbln-0.1.0.dist-info/METADATA +144 -0
  49. optimum_rbln-0.1.0.dist-info/RECORD +51 -0
  50. optimum_rbln-0.1.0.dist-info/WHEEL +4 -0
  51. optimum_rbln-0.1.0.dist-info/licenses/LICENSE +201 -0
@@ -0,0 +1,374 @@
1
+ # Copyright 2024 Rebellions Inc.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # Portions of this software are licensed under the Apache License,
16
+ # Version 2.0. See the NOTICE file distributed with this work for
17
+ # additional information regarding copyright ownership.
18
+
19
+ # All other portions of this software, including proprietary code,
20
+ # are the intellectual property of Rebellions Inc. and may not be
21
+ # copied, modified, or distributed without prior written permission
22
+ # from Rebellions Inc.
23
+
24
+ import inspect
25
+ import logging
26
+ from pathlib import Path
27
+ from tempfile import TemporaryDirectory
28
+ from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Union
29
+
30
+ import rebel
31
+ import torch
32
+ from optimum.exporters import TasksManager
33
+ from transformers import (
34
+ AutoModelForSpeechSeq2Seq,
35
+ AutoProcessor,
36
+ GenerationMixin,
37
+ PretrainedConfig,
38
+ WhisperForConditionalGeneration,
39
+ WhisperModel,
40
+ )
41
+ from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
42
+
43
+ from ....modeling_base import RBLNBaseModel
44
+ from ....modeling_config import DEFAULT_COMPILED_MODEL_NAME, RBLNConfig, RBLNRuntimeConfig
45
+ from ....utils.runtime_utils import RBLNPytorchRuntime
46
+ from ....utils.save_utils import maybe_save_preprocessors
47
+ from .whisper_architecture import (
48
+ _WhisperDecoderWrapper,
49
+ _WhisperEncoderWrapper,
50
+ )
51
+
52
+
53
+ logger = logging.getLogger(__name__)
54
+
55
+ if TYPE_CHECKING:
56
+ from transformers import (
57
+ AutoFeatureExtractor,
58
+ AutoProcessor,
59
+ PretrainedConfig,
60
+ )
61
+
62
+
63
+ class RBLNRuntimeEncoder(RBLNPytorchRuntime):
64
+ mandatory_members = ["main_input_name"]
65
+
66
+ def forward(self, *args: List[torch.Tensor], **kwargs: Dict[str, torch.Tensor]):
67
+ _ = super().forward(input_features=kwargs["input_features"])
68
+ return BaseModelOutput(last_hidden_state=torch.tensor([1.0]))
69
+
70
+
71
+ class RBLNRuntimeDecoder(RBLNPytorchRuntime):
72
+ mandatory_members = ["main_input_name"]
73
+
74
+ def forward(self, *args: List[torch.Tensor], **kwargs: Dict[str, torch.Tensor]):
75
+ outputs = super().forward(*args, **kwargs)
76
+ return Seq2SeqLMOutput(logits=outputs)
77
+
78
+
79
+ class RBLNWhisperForConditionalGeneration(RBLNBaseModel, GenerationMixin):
80
+ """
81
+ The Whisper Model with a language modeling head. Can be used for automatic speech recognition.
82
+ This model inherits from [`RBLNBaseModel`]. Check the superclass documentation for the generic methods the library implements for all its models.
83
+
84
+ A class to convert and run pre-trained transformers based LlamaForCausalLM model on RBLN devices.
85
+ It implements the methods to convert a pre-trained transformers LlamaForCausalLM model into a RBLN transformer model by:
86
+ - transferring the checkpoint weights of the original into an optimized RBLN graph,
87
+ - compiling the resulting graph using the RBLN compiler.
88
+ """
89
+
90
+ model_type = "rbln_model"
91
+ auto_model_class = AutoModelForSpeechSeq2Seq
92
+ main_input_name = "input_ids"
93
+
94
+ def __post_init__(self, **kwargs):
95
+ self.batch_size = self.rbln_config[DEFAULT_COMPILED_MODEL_NAME][0].batch_size
96
+ self.enc_max_seq_len = self.rbln_config.meta["input_max_length"]
97
+ self.dec_max_seq_len = self.rbln_config.meta["rbln_dec_max_seq_len"]
98
+
99
+ self.encoder = RBLNRuntimeEncoder(runtime=self.runtimes[0], main_input_name="input_features")
100
+ self.decoder = RBLNRuntimeDecoder(runtime=self.runtimes[1], main_input_name="input_ids")
101
+ self.forced_decoder_ids = self.config.forced_decoder_ids
102
+
103
+ # used in GenerationMixin.generate()
104
+ self.model = WhisperModel(self.config)
105
+ self.pad_token_id = self.config.pad_token_id
106
+
107
+ def can_generate(self):
108
+ return True
109
+
110
+ def get_encoder(self):
111
+ return self.encoder
112
+
113
+ def get_decoder(self):
114
+ return self.decoder
115
+
116
+ def __getattr__(self, __name: str) -> Any:
117
+ """This is the key method to implement RBLN-Whisper.
118
+ Returns:
119
+ Any: Whisper's corresponding method
120
+ """
121
+
122
+ def redirect(func):
123
+ return lambda *pargs, **kwargs: func(self, *pargs, **kwargs)
124
+
125
+ val = getattr(WhisperForConditionalGeneration, __name)
126
+ if isinstance(val, Callable) and "self" in set(inspect.signature(val).parameters):
127
+ return redirect(val)
128
+ return val
129
+
130
+ def _reorder_cache(self, past_key_values, beam_idx):
131
+ # TODO(jongho): implement
132
+ raise NotImplementedError
133
+
134
+ def prepare_inputs_for_generation(
135
+ self,
136
+ input_ids,
137
+ decoder_attention_mask=None,
138
+ input_features=None, # Must be explicit
139
+ **kwargs,
140
+ ):
141
+ max_seq_len = self.dec_max_seq_len
142
+ cur_seq_len = input_ids.shape[-1]
143
+ input_ids = input_ids[:, cur_seq_len - 1 : cur_seq_len].contiguous()
144
+ decoder_attention_mask = torch.zeros(self.batch_size, max_seq_len, dtype=torch.int64)
145
+ decoder_attention_mask[:, :cur_seq_len] = 1
146
+ cache_position = torch.tensor(cur_seq_len - 1, dtype=torch.int32)
147
+
148
+ return {
149
+ "decoder_input_ids": input_ids,
150
+ "decoder_attention_mask": decoder_attention_mask,
151
+ "cache_position": cache_position,
152
+ }
153
+
154
+ @classmethod
155
+ def _export(
156
+ cls,
157
+ model_id: str,
158
+ config: "PretrainedConfig",
159
+ use_auth_token: Optional[Union[bool, str]] = None,
160
+ revision: Optional[str] = None,
161
+ force_download: bool = False,
162
+ cache_dir: Optional[str] = None,
163
+ subfolder: str = "",
164
+ local_files_only: bool = False,
165
+ trust_remote_code: bool = False,
166
+ **kwargs,
167
+ ) -> "RBLNWhisperForConditionalGeneration":
168
+ """
169
+ Exports a vanilla Transformers model into a rbln-compiled Module.
170
+ """
171
+ task = kwargs.pop("task", None)
172
+ if task is None:
173
+ task = TasksManager.infer_task_from_model(cls.auto_model_class)
174
+
175
+ save_dir = TemporaryDirectory()
176
+ save_dir_path = Path(save_dir.name)
177
+
178
+ kwargs.update(
179
+ {
180
+ "torchscript": True,
181
+ "return_dict": False,
182
+ "use_cache": False,
183
+ }
184
+ )
185
+ rbln_config_kwargs, rbln_constructor_kwargs = cls.pop_rbln_kwargs_from_kwargs(kwargs)
186
+
187
+ model: WhisperForConditionalGeneration = TasksManager.get_model_from_task(
188
+ task=task,
189
+ model_name_or_path=model_id,
190
+ subfolder=subfolder,
191
+ revision=revision,
192
+ framework="pt",
193
+ cache_dir=cache_dir,
194
+ use_auth_token=use_auth_token,
195
+ local_files_only=local_files_only,
196
+ force_download=force_download,
197
+ trust_remote_code=trust_remote_code,
198
+ **kwargs,
199
+ )
200
+
201
+ if config is None:
202
+ config = model.config
203
+
204
+ config.save_pretrained(save_dir_path)
205
+ preprocessors = maybe_save_preprocessors(model_id, save_dir_path, src_subfolder=subfolder)
206
+
207
+ # Get compilation arguments
208
+ if rbln_config_kwargs.get("rbln_config", None) is None:
209
+ rbln_config = cls.get_rbln_config(
210
+ preprocessors=preprocessors, model_config=model.config, **rbln_config_kwargs
211
+ )
212
+
213
+ def compile_whisper():
214
+ wrapped_encoder = _WhisperEncoderWrapper(model).eval()
215
+ wrapped_decoder = _WhisperDecoderWrapper(model).eval()
216
+
217
+ enc_rbln_runtime_config = rbln_config[DEFAULT_COMPILED_MODEL_NAME][0]
218
+ dec_rbln_runtime_config = rbln_config[DEFAULT_COMPILED_MODEL_NAME][1]
219
+
220
+ enc_example_inputs = enc_rbln_runtime_config.get_dummy_inputs(fill=1)
221
+ dec_example_inputs = dec_rbln_runtime_config.get_dummy_inputs(fill=1)
222
+
223
+ enc_scripted_model = torch.jit.trace(wrapped_encoder, enc_example_inputs[0]).eval()
224
+ dec_scripted_model = torch.jit.trace(wrapped_decoder, dec_example_inputs).eval()
225
+
226
+ enc_ir = rebel.torchscript_to_ir(
227
+ enc_scripted_model,
228
+ input_names=[v[0] for v in enc_rbln_runtime_config.input_info],
229
+ name=enc_rbln_runtime_config.rbln_mod_name,
230
+ )
231
+ dec_ir = rebel.torchscript_to_ir(
232
+ dec_scripted_model,
233
+ input_names=[v[0] for v in dec_rbln_runtime_config.input_info],
234
+ name=dec_rbln_runtime_config.rbln_mod_name,
235
+ )
236
+ dec_ir.batch_size = dec_rbln_runtime_config.batch_size
237
+
238
+ # Caching encoder/decoder I/O
239
+ connections = [
240
+ (enc_ir.outputs[0], dec_ir.inputs[4]),
241
+ (dec_ir.outputs[1], dec_ir.inputs[3]),
242
+ ]
243
+ compiled_model = rebel.compile(
244
+ enc_ir,
245
+ dec_ir,
246
+ connections=connections,
247
+ fusion=enc_rbln_runtime_config.fusion,
248
+ npu=enc_rbln_runtime_config.npu,
249
+ tensor_parallel_size=enc_rbln_runtime_config.tensor_parallel_size,
250
+ )
251
+ compiled_model.save(save_dir_path / f"{DEFAULT_COMPILED_MODEL_NAME}.rbln")
252
+
253
+ compile_whisper()
254
+ rbln_config.save(save_dir_path)
255
+
256
+ return cls._from_pretrained(
257
+ model_id=save_dir_path,
258
+ config=config,
259
+ model_save_dir=save_dir,
260
+ **rbln_constructor_kwargs,
261
+ **kwargs,
262
+ )
263
+
264
+ @classmethod
265
+ def _get_rbln_config(
266
+ cls,
267
+ preprocessors: Union["AutoFeatureExtractor", "AutoProcessor"],
268
+ model_config: "PretrainedConfig",
269
+ rbln_batch_size: Optional[int] = 1,
270
+ ) -> RBLNConfig:
271
+ meta = {}
272
+
273
+ input_max_length = 3000
274
+ rbln_enc_num_mel_bins = getattr(model_config, "num_mel_bins", None)
275
+ if rbln_enc_num_mel_bins is None:
276
+ for feature_extractor in preprocessors:
277
+ if hasattr(feature_extractor, "feature_size"):
278
+ rbln_enc_num_mel_bins = feature_extractor.feature_size
279
+ break
280
+ raise ValueError("`rbln_enc_num_mel_bins` should be specified!")
281
+
282
+ rbln_enc_max_seq_len = getattr(model_config, "max_source_positions", None)
283
+ if rbln_enc_max_seq_len is None:
284
+ raise ValueError("`rbln_enc_max_seq_len` should be specified!")
285
+
286
+ rbln_dec_max_seq_len = getattr(model_config, "max_length", None)
287
+ if rbln_dec_max_seq_len is None:
288
+ raise ValueError("`rbln_dec_max_seq_len` should be specified!")
289
+
290
+ decoder_batch_size = rbln_batch_size
291
+
292
+ meta["rbln_dec_max_seq_len"] = rbln_dec_max_seq_len
293
+ meta["rbln_enc_max_seq_len"] = rbln_enc_max_seq_len
294
+ meta["num_mel_bins"] = rbln_enc_num_mel_bins
295
+ meta["input_max_length"] = input_max_length
296
+ meta["decoder_batch_size"] = decoder_batch_size
297
+ meta["forced_decoder_ids"] = model_config.forced_decoder_ids
298
+
299
+ # model input info
300
+ enc_input_info = [("input_features", [rbln_batch_size, rbln_enc_num_mel_bins, input_max_length], "float32")]
301
+ dec_input_info = [
302
+ ("decoder_input_ids", [decoder_batch_size, 1], "int64"),
303
+ ("decoder_attention_mask", [decoder_batch_size, rbln_dec_max_seq_len], "int64"),
304
+ ("cache_position", [], "int32"),
305
+ ]
306
+ dec_input_info.extend(
307
+ [
308
+ (
309
+ "self_key_value_states",
310
+ [
311
+ model_config.decoder_layers * 2,
312
+ decoder_batch_size,
313
+ model_config.decoder_attention_heads,
314
+ rbln_dec_max_seq_len,
315
+ model_config.d_model // model_config.encoder_attention_heads,
316
+ ],
317
+ "float32",
318
+ )
319
+ ]
320
+ )
321
+ dec_input_info.extend(
322
+ [
323
+ (
324
+ "cross_key_value_states",
325
+ [
326
+ model_config.decoder_layers * 2,
327
+ rbln_batch_size,
328
+ model_config.decoder_attention_heads,
329
+ rbln_enc_max_seq_len,
330
+ model_config.d_model // model_config.encoder_attention_heads,
331
+ ],
332
+ "float32",
333
+ )
334
+ ]
335
+ )
336
+
337
+ enc_rbln_runtime_config = RBLNRuntimeConfig(rbln_mod_name="encoder", input_info=enc_input_info)
338
+ dec_rbln_runtime_config = RBLNRuntimeConfig(rbln_mod_name="decoder", input_info=dec_input_info)
339
+
340
+ enc_rbln_runtime_config.batch_size = rbln_batch_size
341
+ dec_rbln_runtime_config.batch_size = decoder_batch_size
342
+
343
+ rbln_config = RBLNConfig.from_rbln_runtime_configs(
344
+ [enc_rbln_runtime_config, dec_rbln_runtime_config],
345
+ _rbln_meta=meta,
346
+ )
347
+
348
+ return rbln_config
349
+
350
+ def _create_runtimes(self, rbln_device_map: Dict[str, int]) -> List[rebel.Runtime]:
351
+ device_val = rbln_device_map[DEFAULT_COMPILED_MODEL_NAME]
352
+ return [
353
+ self.compiled_models[0].create_runtime("encoder", tensor_type="pt", device=device_val),
354
+ self.compiled_models[0].create_runtime("decoder", tensor_type="pt", device=device_val),
355
+ ]
356
+
357
+ def forward(
358
+ self,
359
+ decoder_input_ids: Optional[torch.LongTensor] = None,
360
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
361
+ cache_position: Optional[torch.Tensor] = None,
362
+ **kwargs,
363
+ ) -> Seq2SeqLMOutput:
364
+ decoder_output = self.decoder(
365
+ decoder_input_ids=decoder_input_ids,
366
+ decoder_attention_mask=decoder_attention_mask,
367
+ cache_position=cache_position,
368
+ )
369
+ lm_logits = decoder_output.logits
370
+
371
+ return Seq2SeqLMOutput(logits=lm_logits)
372
+
373
+ def __repr__(self):
374
+ return repr(self.runtimes[0]) + "\n" + repr(self.runtimes[1])