openlit 1.33.9__py3-none-any.whl → 1.33.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openlit/__helpers.py +5 -0
- openlit/__init__.py +3 -2
- openlit/instrumentation/ag2/ag2.py +3 -3
- openlit/instrumentation/ai21/ai21.py +1 -1
- openlit/instrumentation/ai21/async_ai21.py +1 -1
- openlit/instrumentation/anthropic/anthropic.py +1 -1
- openlit/instrumentation/anthropic/async_anthropic.py +1 -1
- openlit/instrumentation/astra/astra.py +5 -5
- openlit/instrumentation/astra/async_astra.py +5 -5
- openlit/instrumentation/azure_ai_inference/async_azure_ai_inference.py +3 -3
- openlit/instrumentation/azure_ai_inference/azure_ai_inference.py +3 -3
- openlit/instrumentation/chroma/chroma.py +5 -5
- openlit/instrumentation/cohere/async_cohere.py +1 -1
- openlit/instrumentation/cohere/cohere.py +2 -2
- openlit/instrumentation/controlflow/controlflow.py +3 -3
- openlit/instrumentation/crawl4ai/async_crawl4ai.py +3 -3
- openlit/instrumentation/crawl4ai/crawl4ai.py +3 -3
- openlit/instrumentation/crewai/crewai.py +4 -2
- openlit/instrumentation/dynamiq/dynamiq.py +3 -3
- openlit/instrumentation/elevenlabs/async_elevenlabs.py +1 -2
- openlit/instrumentation/elevenlabs/elevenlabs.py +1 -2
- openlit/instrumentation/embedchain/embedchain.py +5 -5
- openlit/instrumentation/firecrawl/firecrawl.py +3 -3
- openlit/instrumentation/gpt4all/__init__.py +2 -2
- openlit/instrumentation/gpt4all/gpt4all.py +345 -220
- openlit/instrumentation/gpu/__init__.py +5 -5
- openlit/instrumentation/groq/__init__.py +2 -2
- openlit/instrumentation/groq/async_groq.py +356 -240
- openlit/instrumentation/groq/groq.py +356 -240
- openlit/instrumentation/haystack/haystack.py +3 -3
- openlit/instrumentation/julep/async_julep.py +3 -3
- openlit/instrumentation/julep/julep.py +3 -3
- openlit/instrumentation/langchain/__init__.py +13 -7
- openlit/instrumentation/langchain/async_langchain.py +384 -0
- openlit/instrumentation/langchain/langchain.py +98 -490
- openlit/instrumentation/letta/letta.py +5 -3
- openlit/instrumentation/litellm/__init__.py +4 -5
- openlit/instrumentation/litellm/async_litellm.py +316 -245
- openlit/instrumentation/litellm/litellm.py +312 -241
- openlit/instrumentation/llamaindex/llamaindex.py +3 -3
- openlit/instrumentation/mem0/mem0.py +3 -3
- openlit/instrumentation/milvus/milvus.py +5 -5
- openlit/instrumentation/mistral/__init__.py +6 -6
- openlit/instrumentation/mistral/async_mistral.py +421 -248
- openlit/instrumentation/mistral/mistral.py +418 -244
- openlit/instrumentation/multion/async_multion.py +4 -2
- openlit/instrumentation/multion/multion.py +4 -2
- openlit/instrumentation/ollama/__init__.py +8 -30
- openlit/instrumentation/ollama/async_ollama.py +385 -417
- openlit/instrumentation/ollama/ollama.py +384 -417
- openlit/instrumentation/openai/async_openai.py +7 -9
- openlit/instrumentation/openai/openai.py +7 -9
- openlit/instrumentation/phidata/phidata.py +4 -2
- openlit/instrumentation/pinecone/pinecone.py +5 -5
- openlit/instrumentation/premai/__init__.py +2 -2
- openlit/instrumentation/premai/premai.py +262 -213
- openlit/instrumentation/qdrant/async_qdrant.py +5 -5
- openlit/instrumentation/qdrant/qdrant.py +5 -5
- openlit/instrumentation/reka/__init__.py +2 -2
- openlit/instrumentation/reka/async_reka.py +90 -52
- openlit/instrumentation/reka/reka.py +90 -52
- openlit/instrumentation/together/__init__.py +4 -4
- openlit/instrumentation/together/async_together.py +278 -236
- openlit/instrumentation/together/together.py +278 -236
- openlit/instrumentation/transformers/__init__.py +1 -1
- openlit/instrumentation/transformers/transformers.py +75 -44
- openlit/instrumentation/vertexai/__init__.py +14 -64
- openlit/instrumentation/vertexai/async_vertexai.py +329 -986
- openlit/instrumentation/vertexai/vertexai.py +329 -986
- openlit/instrumentation/vllm/__init__.py +1 -1
- openlit/instrumentation/vllm/vllm.py +62 -32
- openlit/semcov/__init__.py +3 -3
- {openlit-1.33.9.dist-info → openlit-1.33.10.dist-info}/METADATA +1 -1
- openlit-1.33.10.dist-info/RECORD +122 -0
- openlit-1.33.9.dist-info/RECORD +0 -121
- {openlit-1.33.9.dist-info → openlit-1.33.10.dist-info}/LICENSE +0 -0
- {openlit-1.33.9.dist-info → openlit-1.33.10.dist-info}/WHEEL +0 -0
@@ -4,9 +4,17 @@ Module for monitoring Langchain applications.
|
|
4
4
|
"""
|
5
5
|
|
6
6
|
import logging
|
7
|
+
import time
|
7
8
|
from opentelemetry.trace import SpanKind, Status, StatusCode
|
8
|
-
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
|
-
from openlit.__helpers import
|
9
|
+
from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
|
10
|
+
from openlit.__helpers import (
|
11
|
+
get_chat_model_cost,
|
12
|
+
handle_exception,
|
13
|
+
general_tokens,
|
14
|
+
calculate_ttft,
|
15
|
+
calculate_tbt,
|
16
|
+
create_metrics_attributes,
|
17
|
+
)
|
10
18
|
from openlit.semcov import SemanticConvetion
|
11
19
|
|
12
20
|
# Initialize logger for logging potential issues and operations
|
@@ -83,11 +91,11 @@ def general_wrap(gen_ai_endpoint, version, environment, application_name,
|
|
83
91
|
SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN)
|
84
92
|
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
85
93
|
gen_ai_endpoint)
|
86
|
-
span.set_attribute(
|
94
|
+
span.set_attribute(DEPLOYMENT_ENVIRONMENT,
|
87
95
|
environment)
|
88
96
|
span.set_attribute(SemanticConvetion.GEN_AI_OPERATION,
|
89
97
|
SemanticConvetion.GEN_AI_OPERATION_TYPE_FRAMEWORK)
|
90
|
-
span.set_attribute(
|
98
|
+
span.set_attribute(SERVICE_NAME,
|
91
99
|
application_name)
|
92
100
|
span.set_attribute(SemanticConvetion.GEN_AI_RETRIEVAL_SOURCE,
|
93
101
|
response[0].metadata["source"])
|
@@ -157,11 +165,11 @@ def hub(gen_ai_endpoint, version, environment, application_name, tracer,
|
|
157
165
|
SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN)
|
158
166
|
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
159
167
|
gen_ai_endpoint)
|
160
|
-
span.set_attribute(
|
168
|
+
span.set_attribute(DEPLOYMENT_ENVIRONMENT,
|
161
169
|
environment)
|
162
170
|
span.set_attribute(SemanticConvetion.GEN_AI_OPERATION,
|
163
171
|
SemanticConvetion.GEN_AI_OPERATION_TYPE_FRAMEWORK)
|
164
|
-
span.set_attribute(
|
172
|
+
span.set_attribute(SERVICE_NAME,
|
165
173
|
application_name)
|
166
174
|
span.set_attribute(SemanticConvetion.GEN_AI_HUB_OWNER,
|
167
175
|
response.metadata["lc_hub_owner"])
|
@@ -180,148 +188,7 @@ def hub(gen_ai_endpoint, version, environment, application_name, tracer,
|
|
180
188
|
|
181
189
|
return wrapper
|
182
190
|
|
183
|
-
|
184
|
-
def allm(gen_ai_endpoint, version, environment, application_name,
|
185
|
-
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
186
|
-
"""
|
187
|
-
Creates a wrapper around a function call to trace and log its execution metrics.
|
188
|
-
|
189
|
-
This function wraps any given function to measure its execution time,
|
190
|
-
log its operation, and trace its execution using OpenTelemetry.
|
191
|
-
|
192
|
-
Parameters:
|
193
|
-
- gen_ai_endpoint (str): A descriptor or name for the endpoint being traced.
|
194
|
-
- version (str): The version of the Langchain application.
|
195
|
-
- environment (str): The deployment environment (e.g., 'production', 'development').
|
196
|
-
- application_name (str): Name of the Langchain application.
|
197
|
-
- tracer (opentelemetry.trace.Tracer): The tracer object used for OpenTelemetry tracing.
|
198
|
-
- pricing_info (dict): Information about the pricing for internal metrics (currently not used).
|
199
|
-
- trace_content (bool): Flag indicating whether to trace the content of the response.
|
200
|
-
|
201
|
-
Returns:
|
202
|
-
- function: A higher-order function that takes a function 'wrapped' and returns
|
203
|
-
a new function that wraps 'wrapped' with additional tracing and logging.
|
204
|
-
"""
|
205
|
-
|
206
|
-
async def wrapper(wrapped, instance, args, kwargs):
|
207
|
-
"""
|
208
|
-
An inner wrapper function that executes the wrapped function, measures execution
|
209
|
-
time, and records trace data using OpenTelemetry.
|
210
|
-
|
211
|
-
Parameters:
|
212
|
-
- wrapped (Callable): The original function that this wrapper will execute.
|
213
|
-
- instance (object): The instance to which the wrapped function belongs. This
|
214
|
-
is used for instance methods. For static and classmethods,
|
215
|
-
this may be None.
|
216
|
-
- args (tuple): Positional arguments passed to the wrapped function.
|
217
|
-
- kwargs (dict): Keyword arguments passed to the wrapped function.
|
218
|
-
|
219
|
-
Returns:
|
220
|
-
- The result of the wrapped function call.
|
221
|
-
|
222
|
-
The wrapper initiates a span with the provided tracer, sets various attributes
|
223
|
-
on the span based on the function's execution and response, and ensures
|
224
|
-
errors are handled and logged appropriately.
|
225
|
-
"""
|
226
|
-
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
227
|
-
response = await wrapped(*args, **kwargs)
|
228
|
-
|
229
|
-
try:
|
230
|
-
if args:
|
231
|
-
prompt = str(args[0]) if args[0] is not None else ""
|
232
|
-
else:
|
233
|
-
prompt = ""
|
234
|
-
input_tokens = general_tokens(prompt)
|
235
|
-
output_tokens = general_tokens(response)
|
236
|
-
|
237
|
-
# Calculate cost of the operation
|
238
|
-
cost = get_chat_model_cost(
|
239
|
-
str(get_attribute_from_instance_or_kwargs(instance, 'model')),
|
240
|
-
pricing_info, input_tokens, output_tokens
|
241
|
-
)
|
242
|
-
|
243
|
-
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
244
|
-
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
245
|
-
SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN)
|
246
|
-
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
247
|
-
gen_ai_endpoint)
|
248
|
-
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
249
|
-
environment)
|
250
|
-
span.set_attribute(SemanticConvetion.GEN_AI_OPERATION,
|
251
|
-
SemanticConvetion.GEN_AI_OPERATION_TYPE_FRAMEWORK)
|
252
|
-
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
253
|
-
application_name)
|
254
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
255
|
-
str(get_attribute_from_instance_or_kwargs(instance, 'model')))
|
256
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
257
|
-
str(get_attribute_from_instance_or_kwargs(instance, 'temperature')))
|
258
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_K,
|
259
|
-
str(get_attribute_from_instance_or_kwargs(instance, 'top_k')))
|
260
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
261
|
-
str(get_attribute_from_instance_or_kwargs(instance, 'top_p')))
|
262
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
263
|
-
False)
|
264
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_INPUT_TOKENS,
|
265
|
-
input_tokens)
|
266
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_OUTPUT_TOKENS,
|
267
|
-
output_tokens)
|
268
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
269
|
-
input_tokens + output_tokens)
|
270
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
271
|
-
cost)
|
272
|
-
if trace_content:
|
273
|
-
span.add_event(
|
274
|
-
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
275
|
-
attributes={
|
276
|
-
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
277
|
-
},
|
278
|
-
)
|
279
|
-
span.add_event(
|
280
|
-
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
281
|
-
attributes={
|
282
|
-
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response,
|
283
|
-
},
|
284
|
-
)
|
285
|
-
|
286
|
-
span.set_status(Status(StatusCode.OK))
|
287
|
-
|
288
|
-
if disable_metrics is False:
|
289
|
-
attributes = {
|
290
|
-
TELEMETRY_SDK_NAME:
|
291
|
-
"openlit",
|
292
|
-
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
293
|
-
application_name,
|
294
|
-
SemanticConvetion.GEN_AI_SYSTEM:
|
295
|
-
SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN,
|
296
|
-
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
297
|
-
environment,
|
298
|
-
SemanticConvetion.GEN_AI_OPERATION:
|
299
|
-
SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT,
|
300
|
-
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
301
|
-
str(get_attribute_from_instance_or_kwargs(instance, 'model'))
|
302
|
-
}
|
303
|
-
|
304
|
-
metrics["genai_requests"].add(1, attributes)
|
305
|
-
metrics["genai_total_tokens"].add(
|
306
|
-
input_tokens + output_tokens, attributes
|
307
|
-
)
|
308
|
-
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
309
|
-
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
310
|
-
metrics["genai_cost"].record(cost, attributes)
|
311
|
-
|
312
|
-
# Return original response
|
313
|
-
return response
|
314
|
-
|
315
|
-
except Exception as e:
|
316
|
-
handle_exception(span, e)
|
317
|
-
logger.error("Error in trace creation: %s", e)
|
318
|
-
|
319
|
-
# Return original response
|
320
|
-
return response
|
321
|
-
|
322
|
-
return wrapper
|
323
|
-
|
324
|
-
def llm(gen_ai_endpoint, version, environment, application_name,
|
191
|
+
def chat(gen_ai_endpoint, version, environment, application_name,
|
325
192
|
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
326
193
|
"""
|
327
194
|
Creates a wrapper around a function call to trace and log its execution metrics.
|
@@ -330,7 +197,6 @@ def llm(gen_ai_endpoint, version, environment, application_name,
|
|
330
197
|
log its operation, and trace its execution using OpenTelemetry.
|
331
198
|
|
332
199
|
Parameters:
|
333
|
-
- gen_ai_endpoint (str): A descriptor or name for the endpoint being traced.
|
334
200
|
- version (str): The version of the Langchain application.
|
335
201
|
- environment (str): The deployment environment (e.g., 'production', 'development').
|
336
202
|
- application_name (str): Name of the Langchain application.
|
@@ -363,365 +229,105 @@ def llm(gen_ai_endpoint, version, environment, application_name,
|
|
363
229
|
on the span based on the function's execution and response, and ensures
|
364
230
|
errors are handled and logged appropriately.
|
365
231
|
"""
|
366
|
-
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
367
|
-
response = wrapped(*args, **kwargs)
|
368
232
|
|
369
|
-
|
370
|
-
if args:
|
371
|
-
prompt = str(args[0]) if args[0] is not None else ""
|
372
|
-
else:
|
373
|
-
prompt = ""
|
374
|
-
input_tokens = general_tokens(prompt)
|
375
|
-
output_tokens = general_tokens(response)
|
233
|
+
server_address, server_port = "NOT_FOUND", "NOT_FOUND"
|
376
234
|
|
377
|
-
|
378
|
-
|
379
|
-
|
380
|
-
|
381
|
-
|
235
|
+
if hasattr(instance, "model_id"):
|
236
|
+
request_model = instance.model_id
|
237
|
+
elif hasattr(instance, "model"):
|
238
|
+
request_model = instance.model
|
239
|
+
elif hasattr(instance, "model_name"):
|
240
|
+
request_model = instance.model_name
|
241
|
+
else:
|
242
|
+
request_model = "NOT_FOUND"
|
382
243
|
|
383
|
-
|
384
|
-
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
385
|
-
SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN)
|
386
|
-
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
387
|
-
gen_ai_endpoint)
|
388
|
-
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
389
|
-
environment)
|
390
|
-
span.set_attribute(SemanticConvetion.GEN_AI_OPERATION,
|
391
|
-
SemanticConvetion.GEN_AI_OPERATION_TYPE_FRAMEWORK)
|
392
|
-
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
393
|
-
application_name)
|
394
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
395
|
-
str(get_attribute_from_instance_or_kwargs(instance, 'model')))
|
396
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
397
|
-
str(get_attribute_from_instance_or_kwargs(instance, 'temperature')))
|
398
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_K,
|
399
|
-
str(get_attribute_from_instance_or_kwargs(instance, 'top_k')))
|
400
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
401
|
-
str(get_attribute_from_instance_or_kwargs(instance, 'top_p')))
|
402
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
403
|
-
False)
|
404
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_INPUT_TOKENS,
|
405
|
-
input_tokens)
|
406
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_OUTPUT_TOKENS,
|
407
|
-
output_tokens)
|
408
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
409
|
-
input_tokens + output_tokens)
|
410
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
411
|
-
cost)
|
412
|
-
if trace_content:
|
413
|
-
span.add_event(
|
414
|
-
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
415
|
-
attributes={
|
416
|
-
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
417
|
-
},
|
418
|
-
)
|
419
|
-
span.add_event(
|
420
|
-
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
421
|
-
attributes={
|
422
|
-
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response,
|
423
|
-
},
|
424
|
-
)
|
425
|
-
|
426
|
-
span.set_status(Status(StatusCode.OK))
|
427
|
-
|
428
|
-
if disable_metrics is False:
|
429
|
-
attributes = {
|
430
|
-
TELEMETRY_SDK_NAME:
|
431
|
-
"openlit",
|
432
|
-
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
433
|
-
application_name,
|
434
|
-
SemanticConvetion.GEN_AI_SYSTEM:
|
435
|
-
SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN,
|
436
|
-
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
437
|
-
environment,
|
438
|
-
SemanticConvetion.GEN_AI_OPERATION:
|
439
|
-
SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT,
|
440
|
-
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
441
|
-
str(get_attribute_from_instance_or_kwargs(instance, 'model'))
|
442
|
-
}
|
244
|
+
span_name = f"{SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT} {request_model}"
|
443
245
|
|
444
|
-
|
445
|
-
|
446
|
-
input_tokens + output_tokens, attributes
|
447
|
-
)
|
448
|
-
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
449
|
-
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
450
|
-
metrics["genai_cost"].record(cost, attributes)
|
451
|
-
|
452
|
-
# Return original response
|
453
|
-
return response
|
454
|
-
|
455
|
-
except Exception as e:
|
456
|
-
handle_exception(span, e)
|
457
|
-
logger.error("Error in trace creation: %s", e)
|
458
|
-
|
459
|
-
# Return original response
|
460
|
-
return response
|
461
|
-
|
462
|
-
return wrapper
|
463
|
-
|
464
|
-
def chat(gen_ai_endpoint, version, environment, application_name,
|
465
|
-
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
466
|
-
"""
|
467
|
-
Creates a wrapper around a function call to trace and log its execution metrics.
|
468
|
-
|
469
|
-
This function wraps any given function to measure its execution time,
|
470
|
-
log its operation, and trace its execution using OpenTelemetry.
|
471
|
-
|
472
|
-
Parameters:
|
473
|
-
- gen_ai_endpoint (str): A descriptor or name for the endpoint being traced.
|
474
|
-
- version (str): The version of the Langchain application.
|
475
|
-
- environment (str): The deployment environment (e.g., 'production', 'development').
|
476
|
-
- application_name (str): Name of the Langchain application.
|
477
|
-
- tracer (opentelemetry.trace.Tracer): The tracer object used for OpenTelemetry tracing.
|
478
|
-
- pricing_info (dict): Information about the pricing for internal metrics (currently not used).
|
479
|
-
- trace_content (bool): Flag indicating whether to trace the content of the response.
|
480
|
-
|
481
|
-
Returns:
|
482
|
-
- function: A higher-order function that takes a function 'wrapped' and returns
|
483
|
-
a new function that wraps 'wrapped' with additional tracing and logging.
|
484
|
-
"""
|
485
|
-
|
486
|
-
def wrapper(wrapped, instance, args, kwargs):
|
487
|
-
"""
|
488
|
-
An inner wrapper function that executes the wrapped function, measures execution
|
489
|
-
time, and records trace data using OpenTelemetry.
|
490
|
-
|
491
|
-
Parameters:
|
492
|
-
- wrapped (Callable): The original function that this wrapper will execute.
|
493
|
-
- instance (object): The instance to which the wrapped function belongs. This
|
494
|
-
is used for instance methods. For static and classmethods,
|
495
|
-
this may be None.
|
496
|
-
- args (tuple): Positional arguments passed to the wrapped function.
|
497
|
-
- kwargs (dict): Keyword arguments passed to the wrapped function.
|
498
|
-
|
499
|
-
Returns:
|
500
|
-
- The result of the wrapped function call.
|
501
|
-
|
502
|
-
The wrapper initiates a span with the provided tracer, sets various attributes
|
503
|
-
on the span based on the function's execution and response, and ensures
|
504
|
-
errors are handled and logged appropriately.
|
505
|
-
"""
|
506
|
-
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
246
|
+
with tracer.start_as_current_span(span_name, kind=SpanKind.CLIENT) as span:
|
247
|
+
start_time = time.time()
|
507
248
|
response = wrapped(*args, **kwargs)
|
249
|
+
end_time = time.time()
|
508
250
|
|
509
251
|
try:
|
510
|
-
|
511
|
-
|
512
|
-
|
513
|
-
|
514
|
-
|
515
|
-
|
516
|
-
|
252
|
+
# Format 'messages' into a single string
|
253
|
+
message_prompt = kwargs.get("messages", "") or args[0]
|
254
|
+
formatted_messages = []
|
255
|
+
|
256
|
+
for message in message_prompt:
|
257
|
+
# Handle the case where message is a tuple
|
258
|
+
if isinstance(message, tuple) and len(message) == 2:
|
259
|
+
role, content = message
|
260
|
+
# Handle the case where message is a dictionary
|
261
|
+
elif isinstance(message, dict):
|
262
|
+
role = message["role"]
|
263
|
+
content = message["content"]
|
517
264
|
else:
|
518
|
-
|
519
|
-
|
520
|
-
|
521
|
-
if
|
522
|
-
|
523
|
-
|
524
|
-
|
525
|
-
|
526
|
-
|
527
|
-
|
528
|
-
|
529
|
-
|
530
|
-
|
531
|
-
|
265
|
+
continue
|
266
|
+
|
267
|
+
# Check if the content is a list
|
268
|
+
if isinstance(content, list):
|
269
|
+
content_str = ", ".join(
|
270
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
271
|
+
if "type" in item else f'text: {item["text"]}'
|
272
|
+
for item in content
|
273
|
+
)
|
274
|
+
formatted_messages.append(f"{role}: {content_str}")
|
275
|
+
else:
|
276
|
+
formatted_messages.append(f"{role}: {content}")
|
277
|
+
|
278
|
+
# Join all formatted messages with newline
|
279
|
+
prompt = "\n".join(formatted_messages)
|
280
|
+
|
281
|
+
input_tokens = general_tokens(str(prompt))
|
282
|
+
output_tokens = general_tokens(str(response))
|
532
283
|
|
533
284
|
# Calculate cost of the operation
|
534
285
|
cost = get_chat_model_cost(
|
535
|
-
|
286
|
+
request_model,
|
536
287
|
pricing_info, input_tokens, output_tokens
|
537
288
|
)
|
538
289
|
|
290
|
+
# Set base span attribues (OTel Semconv)
|
539
291
|
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
540
|
-
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
541
|
-
SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN)
|
542
|
-
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
543
|
-
gen_ai_endpoint)
|
544
|
-
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
545
|
-
environment)
|
546
292
|
span.set_attribute(SemanticConvetion.GEN_AI_OPERATION,
|
547
293
|
SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT)
|
548
|
-
span.set_attribute(SemanticConvetion.
|
549
|
-
|
294
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
295
|
+
SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN)
|
550
296
|
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
551
|
-
|
297
|
+
request_model)
|
298
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_MODEL,
|
299
|
+
request_model)
|
552
300
|
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
553
301
|
str(getattr(instance, 'temperature', 1)))
|
554
302
|
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_K,
|
555
303
|
str(getattr(instance, 'top_k', 1)))
|
556
304
|
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
557
305
|
str(getattr(instance, 'top_p', 1)))
|
558
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
559
|
-
False)
|
560
306
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_INPUT_TOKENS,
|
561
307
|
input_tokens)
|
562
308
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_OUTPUT_TOKENS,
|
563
309
|
output_tokens)
|
564
|
-
span.set_attribute(SemanticConvetion.
|
565
|
-
|
566
|
-
span.set_attribute(SemanticConvetion.
|
567
|
-
|
568
|
-
|
569
|
-
|
570
|
-
|
571
|
-
|
572
|
-
|
573
|
-
},
|
574
|
-
)
|
575
|
-
completion_content = getattr(response, 'content', "")
|
576
|
-
span.add_event(
|
577
|
-
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
578
|
-
attributes={
|
579
|
-
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: completion_content,
|
580
|
-
},
|
581
|
-
)
|
582
|
-
|
583
|
-
span.set_status(Status(StatusCode.OK))
|
584
|
-
|
585
|
-
if disable_metrics is False:
|
586
|
-
attributes = {
|
587
|
-
TELEMETRY_SDK_NAME:
|
588
|
-
"openlit",
|
589
|
-
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
590
|
-
application_name,
|
591
|
-
SemanticConvetion.GEN_AI_SYSTEM:
|
592
|
-
SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN,
|
593
|
-
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
594
|
-
environment,
|
595
|
-
SemanticConvetion.GEN_AI_OPERATION:
|
596
|
-
SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT,
|
597
|
-
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
598
|
-
model
|
599
|
-
}
|
600
|
-
|
601
|
-
metrics["genai_requests"].add(1, attributes)
|
602
|
-
metrics["genai_total_tokens"].add(
|
603
|
-
input_tokens + output_tokens, attributes
|
604
|
-
)
|
605
|
-
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
606
|
-
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
607
|
-
metrics["genai_cost"].record(cost, attributes)
|
608
|
-
|
609
|
-
# Return original response
|
610
|
-
return response
|
611
|
-
|
612
|
-
except Exception as e:
|
613
|
-
handle_exception(span, e)
|
614
|
-
logger.error("Error in trace creation: %s", e)
|
615
|
-
|
616
|
-
# Return original response
|
617
|
-
return response
|
618
|
-
|
619
|
-
return wrapper
|
620
|
-
|
621
|
-
def achat(gen_ai_endpoint, version, environment, application_name,
|
622
|
-
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
623
|
-
"""
|
624
|
-
Creates a wrapper around a function call to trace and log its execution metrics.
|
625
|
-
|
626
|
-
This function wraps any given function to measure its execution time,
|
627
|
-
log its operation, and trace its execution using OpenTelemetry.
|
628
|
-
|
629
|
-
Parameters:
|
630
|
-
- gen_ai_endpoint (str): A descriptor or name for the endpoint being traced.
|
631
|
-
- version (str): The version of the Langchain application.
|
632
|
-
- environment (str): The deployment environment (e.g., 'production', 'development').
|
633
|
-
- application_name (str): Name of the Langchain application.
|
634
|
-
- tracer (opentelemetry.trace.Tracer): The tracer object used for OpenTelemetry tracing.
|
635
|
-
- pricing_info (dict): Information about the pricing for internal metrics (currently not used).
|
636
|
-
- trace_content (bool): Flag indicating whether to trace the content of the response.
|
637
|
-
|
638
|
-
Returns:
|
639
|
-
- function: A higher-order function that takes a function 'wrapped' and returns
|
640
|
-
a new function that wraps 'wrapped' with additional tracing and logging.
|
641
|
-
"""
|
642
|
-
|
643
|
-
async def wrapper(wrapped, instance, args, kwargs):
|
644
|
-
"""
|
645
|
-
An inner wrapper function that executes the wrapped function, measures execution
|
646
|
-
time, and records trace data using OpenTelemetry.
|
647
|
-
|
648
|
-
Parameters:
|
649
|
-
- wrapped (Callable): The original function that this wrapper will execute.
|
650
|
-
- instance (object): The instance to which the wrapped function belongs. This
|
651
|
-
is used for instance methods. For static and classmethods,
|
652
|
-
this may be None.
|
653
|
-
- args (tuple): Positional arguments passed to the wrapped function.
|
654
|
-
- kwargs (dict): Keyword arguments passed to the wrapped function.
|
655
|
-
|
656
|
-
Returns:
|
657
|
-
- The result of the wrapped function call.
|
658
|
-
|
659
|
-
The wrapper initiates a span with the provided tracer, sets various attributes
|
660
|
-
on the span based on the function's execution and response, and ensures
|
661
|
-
errors are handled and logged appropriately.
|
662
|
-
"""
|
663
|
-
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
664
|
-
response = await wrapped(*args, **kwargs)
|
665
|
-
|
666
|
-
try:
|
667
|
-
prompt = ""
|
668
|
-
if hasattr(response, 'usage_metadata') and response.usage_metadata:
|
669
|
-
token_usage = response.usage_metadata
|
670
|
-
input_tokens = token_usage.get("input_tokens", 0)
|
671
|
-
output_tokens = token_usage.get("output_tokens", 0)
|
672
|
-
if hasattr(instance, "model_id"):
|
673
|
-
model = instance.model_id
|
674
|
-
else:
|
675
|
-
model = instance.model_name
|
676
|
-
prompt = "" if isinstance(args[0], list) else args[0]
|
677
|
-
else:
|
678
|
-
if not isinstance(response, dict) or "output_text" not in response:
|
679
|
-
return response
|
680
|
-
# Fallback: Calculate tokens manually if response_metadata is missing
|
681
|
-
model = "gpt-4o-mini" # Fallback model
|
682
|
-
input_texts = [
|
683
|
-
doc.page_content for doc in response.get("input_documents", [])
|
684
|
-
if isinstance(doc.page_content, str)
|
685
|
-
]
|
686
|
-
input_tokens = sum(general_tokens(text) for text in input_texts)
|
687
|
-
output_text = response.get("output_text", "")
|
688
|
-
output_tokens = general_tokens(output_text)
|
689
|
-
|
690
|
-
# Calculate cost of the operation
|
691
|
-
cost = get_chat_model_cost(
|
692
|
-
model,
|
693
|
-
pricing_info, input_tokens, output_tokens
|
694
|
-
)
|
695
|
-
|
696
|
-
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
697
|
-
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
698
|
-
SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN)
|
699
|
-
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
700
|
-
gen_ai_endpoint)
|
701
|
-
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
702
|
-
environment)
|
703
|
-
span.set_attribute(SemanticConvetion.GEN_AI_OPERATION,
|
704
|
-
SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT)
|
705
|
-
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
310
|
+
span.set_attribute(SemanticConvetion.SERVER_ADDRESS,
|
311
|
+
server_address)
|
312
|
+
span.set_attribute(SemanticConvetion.SERVER_PORT,
|
313
|
+
server_port)
|
314
|
+
|
315
|
+
# Set base span attribues (Extras)
|
316
|
+
span.set_attribute(DEPLOYMENT_ENVIRONMENT,
|
317
|
+
environment)
|
318
|
+
span.set_attribute(SERVICE_NAME,
|
706
319
|
application_name)
|
707
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
708
|
-
model)
|
709
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
710
|
-
str(getattr(instance, 'temperature',1)))
|
711
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_K,
|
712
|
-
str(getattr(instance, 'top_k',1)))
|
713
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
714
|
-
str(getattr(instance, 'top_p',1)))
|
715
320
|
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
716
321
|
False)
|
717
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_INPUT_TOKENS,
|
718
|
-
input_tokens)
|
719
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_OUTPUT_TOKENS,
|
720
|
-
output_tokens)
|
721
322
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
722
323
|
input_tokens + output_tokens)
|
723
324
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
724
325
|
cost)
|
326
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SERVER_TTFT,
|
327
|
+
end_time - start_time)
|
328
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SDK_VERSION,
|
329
|
+
version)
|
330
|
+
|
725
331
|
if trace_content:
|
726
332
|
span.add_event(
|
727
333
|
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
@@ -732,32 +338,34 @@ def achat(gen_ai_endpoint, version, environment, application_name,
|
|
732
338
|
span.add_event(
|
733
339
|
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
734
340
|
attributes={
|
735
|
-
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response
|
341
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response,
|
736
342
|
},
|
737
343
|
)
|
738
344
|
|
739
345
|
span.set_status(Status(StatusCode.OK))
|
740
346
|
|
741
347
|
if disable_metrics is False:
|
742
|
-
attributes =
|
743
|
-
|
744
|
-
|
745
|
-
SemanticConvetion.
|
746
|
-
|
747
|
-
|
748
|
-
|
749
|
-
|
750
|
-
|
751
|
-
|
752
|
-
SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT,
|
753
|
-
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
754
|
-
model
|
755
|
-
}
|
348
|
+
attributes = create_metrics_attributes(
|
349
|
+
service_name=application_name,
|
350
|
+
deployment_environment=environment,
|
351
|
+
operation=SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT,
|
352
|
+
system=SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN,
|
353
|
+
request_model=request_model,
|
354
|
+
server_address=server_address,
|
355
|
+
server_port=server_port,
|
356
|
+
response_model=request_model,
|
357
|
+
)
|
756
358
|
|
757
|
-
metrics["
|
758
|
-
metrics["genai_total_tokens"].add(
|
359
|
+
metrics["genai_client_usage_tokens"].record(
|
759
360
|
input_tokens + output_tokens, attributes
|
760
361
|
)
|
362
|
+
metrics["genai_client_operation_duration"].record(
|
363
|
+
end_time - start_time, attributes
|
364
|
+
)
|
365
|
+
metrics["genai_server_ttft"].record(
|
366
|
+
end_time - start_time, attributes
|
367
|
+
)
|
368
|
+
metrics["genai_requests"].add(1, attributes)
|
761
369
|
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
762
370
|
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
763
371
|
metrics["genai_cost"].record(cost, attributes)
|