openlit 1.33.9__py3-none-any.whl → 1.33.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openlit/__helpers.py +5 -0
- openlit/__init__.py +3 -2
- openlit/instrumentation/ag2/ag2.py +3 -3
- openlit/instrumentation/ai21/ai21.py +1 -1
- openlit/instrumentation/ai21/async_ai21.py +1 -1
- openlit/instrumentation/anthropic/anthropic.py +1 -1
- openlit/instrumentation/anthropic/async_anthropic.py +1 -1
- openlit/instrumentation/astra/astra.py +5 -5
- openlit/instrumentation/astra/async_astra.py +5 -5
- openlit/instrumentation/azure_ai_inference/async_azure_ai_inference.py +3 -3
- openlit/instrumentation/azure_ai_inference/azure_ai_inference.py +3 -3
- openlit/instrumentation/chroma/chroma.py +5 -5
- openlit/instrumentation/cohere/async_cohere.py +1 -1
- openlit/instrumentation/cohere/cohere.py +2 -2
- openlit/instrumentation/controlflow/controlflow.py +3 -3
- openlit/instrumentation/crawl4ai/async_crawl4ai.py +3 -3
- openlit/instrumentation/crawl4ai/crawl4ai.py +3 -3
- openlit/instrumentation/crewai/crewai.py +4 -2
- openlit/instrumentation/dynamiq/dynamiq.py +3 -3
- openlit/instrumentation/elevenlabs/async_elevenlabs.py +1 -2
- openlit/instrumentation/elevenlabs/elevenlabs.py +1 -2
- openlit/instrumentation/embedchain/embedchain.py +5 -5
- openlit/instrumentation/firecrawl/firecrawl.py +3 -3
- openlit/instrumentation/gpt4all/__init__.py +2 -2
- openlit/instrumentation/gpt4all/gpt4all.py +345 -220
- openlit/instrumentation/gpu/__init__.py +5 -5
- openlit/instrumentation/groq/__init__.py +2 -2
- openlit/instrumentation/groq/async_groq.py +356 -240
- openlit/instrumentation/groq/groq.py +356 -240
- openlit/instrumentation/haystack/haystack.py +3 -3
- openlit/instrumentation/julep/async_julep.py +3 -3
- openlit/instrumentation/julep/julep.py +3 -3
- openlit/instrumentation/langchain/__init__.py +13 -7
- openlit/instrumentation/langchain/async_langchain.py +384 -0
- openlit/instrumentation/langchain/langchain.py +98 -490
- openlit/instrumentation/letta/letta.py +5 -3
- openlit/instrumentation/litellm/__init__.py +4 -5
- openlit/instrumentation/litellm/async_litellm.py +316 -245
- openlit/instrumentation/litellm/litellm.py +312 -241
- openlit/instrumentation/llamaindex/llamaindex.py +3 -3
- openlit/instrumentation/mem0/mem0.py +3 -3
- openlit/instrumentation/milvus/milvus.py +5 -5
- openlit/instrumentation/mistral/__init__.py +6 -6
- openlit/instrumentation/mistral/async_mistral.py +421 -248
- openlit/instrumentation/mistral/mistral.py +418 -244
- openlit/instrumentation/multion/async_multion.py +4 -2
- openlit/instrumentation/multion/multion.py +4 -2
- openlit/instrumentation/ollama/__init__.py +8 -30
- openlit/instrumentation/ollama/async_ollama.py +385 -417
- openlit/instrumentation/ollama/ollama.py +384 -417
- openlit/instrumentation/openai/async_openai.py +7 -9
- openlit/instrumentation/openai/openai.py +7 -9
- openlit/instrumentation/phidata/phidata.py +4 -2
- openlit/instrumentation/pinecone/pinecone.py +5 -5
- openlit/instrumentation/premai/__init__.py +2 -2
- openlit/instrumentation/premai/premai.py +262 -213
- openlit/instrumentation/qdrant/async_qdrant.py +5 -5
- openlit/instrumentation/qdrant/qdrant.py +5 -5
- openlit/instrumentation/reka/__init__.py +2 -2
- openlit/instrumentation/reka/async_reka.py +90 -52
- openlit/instrumentation/reka/reka.py +90 -52
- openlit/instrumentation/together/__init__.py +4 -4
- openlit/instrumentation/together/async_together.py +278 -236
- openlit/instrumentation/together/together.py +278 -236
- openlit/instrumentation/transformers/__init__.py +1 -1
- openlit/instrumentation/transformers/transformers.py +75 -44
- openlit/instrumentation/vertexai/__init__.py +14 -64
- openlit/instrumentation/vertexai/async_vertexai.py +329 -986
- openlit/instrumentation/vertexai/vertexai.py +329 -986
- openlit/instrumentation/vllm/__init__.py +1 -1
- openlit/instrumentation/vllm/vllm.py +62 -32
- openlit/semcov/__init__.py +3 -3
- {openlit-1.33.9.dist-info → openlit-1.33.10.dist-info}/METADATA +1 -1
- openlit-1.33.10.dist-info/RECORD +122 -0
- openlit-1.33.9.dist-info/RECORD +0 -121
- {openlit-1.33.9.dist-info → openlit-1.33.10.dist-info}/LICENSE +0 -0
- {openlit-1.33.9.dist-info → openlit-1.33.10.dist-info}/WHEEL +0 -0
@@ -1,24 +1,31 @@
|
|
1
|
-
# pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, used-before-assignment, too-many-branches
|
2
1
|
"""
|
3
2
|
Module for monitoring Groq API calls.
|
4
3
|
"""
|
5
4
|
|
6
5
|
import logging
|
6
|
+
import time
|
7
7
|
from opentelemetry.trace import SpanKind, Status, StatusCode
|
8
|
-
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
|
-
from openlit.__helpers import
|
8
|
+
from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
|
9
|
+
from openlit.__helpers import (
|
10
|
+
get_chat_model_cost,
|
11
|
+
handle_exception,
|
12
|
+
response_as_dict,
|
13
|
+
calculate_ttft,
|
14
|
+
calculate_tbt,
|
15
|
+
create_metrics_attributes,
|
16
|
+
set_server_address_and_port
|
17
|
+
)
|
10
18
|
from openlit.semcov import SemanticConvetion
|
11
19
|
|
12
20
|
# Initialize logger for logging potential issues and operations
|
13
21
|
logger = logging.getLogger(__name__)
|
14
22
|
|
15
|
-
def async_chat(
|
23
|
+
def async_chat(version, environment, application_name,
|
16
24
|
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
17
25
|
"""
|
18
26
|
Generates a telemetry wrapper for chat completions to collect metrics.
|
19
27
|
|
20
28
|
Args:
|
21
|
-
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
22
29
|
version: Version of the monitoring package.
|
23
30
|
environment: Deployment environment (e.g., production, staging).
|
24
31
|
application_name: Name of the application using the Groq API.
|
@@ -30,10 +37,245 @@ def async_chat(gen_ai_endpoint, version, environment, application_name,
|
|
30
37
|
A function that wraps the chat completions method to add telemetry.
|
31
38
|
"""
|
32
39
|
|
40
|
+
class TracedAsyncStream:
|
41
|
+
"""
|
42
|
+
Wrapper for streaming responses to collect metrics and trace data.
|
43
|
+
Wraps the response to collect message IDs and aggregated response.
|
44
|
+
|
45
|
+
This class implements the '__aiter__' and '__anext__' methods that
|
46
|
+
handle asynchronous streaming responses.
|
47
|
+
|
48
|
+
This class also implements '__aenter__' and '__aexit__' methods that
|
49
|
+
handle asynchronous context management protocol.
|
50
|
+
"""
|
51
|
+
def __init__(
|
52
|
+
self,
|
53
|
+
wrapped,
|
54
|
+
span,
|
55
|
+
kwargs,
|
56
|
+
server_address,
|
57
|
+
server_port,
|
58
|
+
**args,
|
59
|
+
):
|
60
|
+
self.__wrapped__ = wrapped
|
61
|
+
self._span = span
|
62
|
+
# Placeholder for aggregating streaming response
|
63
|
+
self._llmresponse = ""
|
64
|
+
self._response_id = ""
|
65
|
+
self._response_model = ""
|
66
|
+
self._finish_reason = ""
|
67
|
+
self._system_fingerprint = ""
|
68
|
+
self._input_tokens = 0
|
69
|
+
self._output_tokens = 0
|
70
|
+
|
71
|
+
self._args = args
|
72
|
+
self._kwargs = kwargs
|
73
|
+
self._start_time = time.time()
|
74
|
+
self._end_time = None
|
75
|
+
self._timestamps = []
|
76
|
+
self._ttft = 0
|
77
|
+
self._tbt = 0
|
78
|
+
self._server_address = server_address
|
79
|
+
self._server_port = server_port
|
80
|
+
|
81
|
+
async def __aenter__(self):
|
82
|
+
await self.__wrapped__.__aenter__()
|
83
|
+
return self
|
84
|
+
|
85
|
+
async def __aexit__(self, exc_type, exc_value, traceback):
|
86
|
+
await self.__wrapped__.__aexit__(exc_type, exc_value, traceback)
|
87
|
+
|
88
|
+
def __aiter__(self):
|
89
|
+
return self
|
90
|
+
|
91
|
+
async def __getattr__(self, name):
|
92
|
+
"""Delegate attribute access to the wrapped object."""
|
93
|
+
return getattr(await self.__wrapped__, name)
|
94
|
+
|
95
|
+
async def __anext__(self):
|
96
|
+
try:
|
97
|
+
chunk = await self.__wrapped__.__anext__()
|
98
|
+
end_time = time.time()
|
99
|
+
# Record the timestamp for the current chunk
|
100
|
+
self._timestamps.append(end_time)
|
101
|
+
|
102
|
+
if len(self._timestamps) == 1:
|
103
|
+
# Calculate time to first chunk
|
104
|
+
self._ttft = calculate_ttft(self._timestamps, self._start_time)
|
105
|
+
|
106
|
+
chunked = response_as_dict(chunk)
|
107
|
+
# Collect message IDs and aggregated response from events
|
108
|
+
if (len(chunked.get('choices')) > 0 and ('delta' in chunked.get('choices')[0] and
|
109
|
+
'content' in chunked.get('choices')[0].get('delta'))):
|
110
|
+
|
111
|
+
content = chunked.get('choices')[0].get('delta').get('content')
|
112
|
+
if content:
|
113
|
+
self._llmresponse += content
|
114
|
+
|
115
|
+
if chunked.get('usage'):
|
116
|
+
self._input_tokens = chunked.get('usage').get('prompt_tokens')
|
117
|
+
self._output_tokens = chunked.get('usage').get('completion_tokens')
|
118
|
+
self._response_id = chunked.get('id')
|
119
|
+
self._response_model = chunked.get('model')
|
120
|
+
self._finish_reason = chunked.get('choices')[0].get('finish_reason')
|
121
|
+
self._system_fingerprint = chunked.get('system_fingerprint')
|
122
|
+
return chunk
|
123
|
+
except StopAsyncIteration:
|
124
|
+
# Handling exception ensure observability without disrupting operation
|
125
|
+
try:
|
126
|
+
self._end_time = time.time()
|
127
|
+
if len(self._timestamps) > 1:
|
128
|
+
self._tbt = calculate_tbt(self._timestamps)
|
129
|
+
|
130
|
+
# Format 'messages' into a single string
|
131
|
+
message_prompt = self._kwargs.get("messages", "")
|
132
|
+
formatted_messages = []
|
133
|
+
for message in message_prompt:
|
134
|
+
role = message["role"]
|
135
|
+
content = message["content"]
|
136
|
+
|
137
|
+
if isinstance(content, list):
|
138
|
+
content_str_list = []
|
139
|
+
for item in content:
|
140
|
+
if item["type"] == "text":
|
141
|
+
content_str_list.append(f'text: {item["text"]}')
|
142
|
+
elif (item["type"] == "image_url" and
|
143
|
+
not item["image_url"]["url"].startswith("data:")):
|
144
|
+
content_str_list.append(f'image_url: {item["image_url"]["url"]}')
|
145
|
+
content_str = ", ".join(content_str_list)
|
146
|
+
formatted_messages.append(f"{role}: {content_str}")
|
147
|
+
else:
|
148
|
+
formatted_messages.append(f"{role}: {content}")
|
149
|
+
prompt = "\n".join(formatted_messages)
|
150
|
+
|
151
|
+
request_model = self._kwargs.get("model", "gpt-4o")
|
152
|
+
|
153
|
+
# Calculate cost of the operation
|
154
|
+
cost = get_chat_model_cost(request_model,
|
155
|
+
pricing_info, self._input_tokens,
|
156
|
+
self._output_tokens)
|
157
|
+
|
158
|
+
# Set Span attributes (OTel Semconv)
|
159
|
+
self._span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
160
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_OPERATION,
|
161
|
+
SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT)
|
162
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
163
|
+
SemanticConvetion.GEN_AI_SYSTEM_GROQ)
|
164
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
165
|
+
request_model)
|
166
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
167
|
+
self._kwargs.get("seed", ""))
|
168
|
+
self._span.set_attribute(SemanticConvetion.SERVER_PORT,
|
169
|
+
self._server_port)
|
170
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
171
|
+
self._kwargs.get("frequency_penalty", 0.0))
|
172
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
173
|
+
self._kwargs.get("max_completion_tokens", -1))
|
174
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
175
|
+
self._kwargs.get("presence_penalty", 0.0))
|
176
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_STOP_SEQUENCES,
|
177
|
+
self._kwargs.get("stop", []))
|
178
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
179
|
+
self._kwargs.get("temperature", 1.0))
|
180
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
181
|
+
self._kwargs.get("top_p", 1.0))
|
182
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
183
|
+
[self._finish_reason])
|
184
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
185
|
+
self._response_id)
|
186
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_MODEL,
|
187
|
+
self._response_model)
|
188
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_INPUT_TOKENS,
|
189
|
+
self._input_tokens)
|
190
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_OUTPUT_TOKENS,
|
191
|
+
self._output_tokens)
|
192
|
+
self._span.set_attribute(SemanticConvetion.SERVER_ADDRESS,
|
193
|
+
self._server_address)
|
194
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SERVICE_TIER,
|
195
|
+
self._kwargs.get("service_tier", "on_demand"))
|
196
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_SYSTEM_FINGERPRINT,
|
197
|
+
self._system_fingerprint)
|
198
|
+
if isinstance(self._llmresponse, str):
|
199
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
|
200
|
+
"text")
|
201
|
+
else:
|
202
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
|
203
|
+
"json")
|
204
|
+
|
205
|
+
# Set Span attributes (Extra)
|
206
|
+
self._span.set_attribute(DEPLOYMENT_ENVIRONMENT,
|
207
|
+
environment)
|
208
|
+
self._span.set_attribute(SERVICE_NAME,
|
209
|
+
application_name)
|
210
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
211
|
+
self._kwargs.get("user", ""))
|
212
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
213
|
+
True)
|
214
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
215
|
+
self._input_tokens + self._output_tokens)
|
216
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
217
|
+
cost)
|
218
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_SERVER_TBT,
|
219
|
+
self._tbt)
|
220
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_SERVER_TTFT,
|
221
|
+
self._ttft)
|
222
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_SDK_VERSION,
|
223
|
+
version)
|
224
|
+
if trace_content:
|
225
|
+
self._span.add_event(
|
226
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
227
|
+
attributes={
|
228
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
229
|
+
},
|
230
|
+
)
|
231
|
+
self._span.add_event(
|
232
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
233
|
+
attributes={
|
234
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: self._llmresponse,
|
235
|
+
},
|
236
|
+
)
|
237
|
+
self._span.set_status(Status(StatusCode.OK))
|
238
|
+
|
239
|
+
if disable_metrics is False:
|
240
|
+
attributes = create_metrics_attributes(
|
241
|
+
service_name=application_name,
|
242
|
+
deployment_environment=environment,
|
243
|
+
operation=SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT,
|
244
|
+
system=SemanticConvetion.GEN_AI_SYSTEM_GROQ,
|
245
|
+
request_model=request_model,
|
246
|
+
server_address=self._server_address,
|
247
|
+
server_port=self._server_port,
|
248
|
+
response_model=self._response_model,
|
249
|
+
)
|
250
|
+
|
251
|
+
metrics["genai_client_usage_tokens"].record(
|
252
|
+
self._input_tokens + self._output_tokens, attributes
|
253
|
+
)
|
254
|
+
metrics["genai_client_operation_duration"].record(
|
255
|
+
self._end_time - self._start_time, attributes
|
256
|
+
)
|
257
|
+
metrics["genai_server_tbt"].record(
|
258
|
+
self._tbt, attributes
|
259
|
+
)
|
260
|
+
metrics["genai_server_ttft"].record(
|
261
|
+
self._ttft, attributes
|
262
|
+
)
|
263
|
+
metrics["genai_requests"].add(1, attributes)
|
264
|
+
metrics["genai_completion_tokens"].add(self._output_tokens, attributes)
|
265
|
+
metrics["genai_prompt_tokens"].add(self._input_tokens, attributes)
|
266
|
+
metrics["genai_cost"].record(cost, attributes)
|
267
|
+
|
268
|
+
except Exception as e:
|
269
|
+
handle_exception(self._span, e)
|
270
|
+
logger.error("Error in trace creation: %s", e)
|
271
|
+
finally:
|
272
|
+
self._span.end()
|
273
|
+
raise
|
274
|
+
|
33
275
|
async def wrapper(wrapped, instance, args, kwargs):
|
34
276
|
"""
|
35
277
|
Wraps the 'chat.completions' API call to add telemetry.
|
36
|
-
|
278
|
+
|
37
279
|
This collects metrics such as execution time, cost, and token usage, and handles errors
|
38
280
|
gracefully, adding details to the trace for observability.
|
39
281
|
|
@@ -49,148 +291,27 @@ def async_chat(gen_ai_endpoint, version, environment, application_name,
|
|
49
291
|
|
50
292
|
# Check if streaming is enabled for the API call
|
51
293
|
streaming = kwargs.get("stream", False)
|
294
|
+
server_address, server_port = set_server_address_and_port(instance, "api.groq.com", 443)
|
295
|
+
request_model = kwargs.get("model", "gpt-4o")
|
296
|
+
|
297
|
+
span_name = f"{SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT} {request_model}"
|
52
298
|
|
53
299
|
# pylint: disable=no-else-return
|
54
300
|
if streaming:
|
55
301
|
# Special handling for streaming response to accommodate the nature of data flow
|
56
|
-
|
57
|
-
|
58
|
-
# Placeholder for aggregating streaming response
|
59
|
-
llmresponse = ""
|
60
|
-
|
61
|
-
# Loop through streaming events capturing relevant details
|
62
|
-
async for chunk in await wrapped(*args, **kwargs):
|
63
|
-
# Collect message IDs and aggregated response from events
|
64
|
-
if len(chunk.choices) > 0:
|
65
|
-
# pylint: disable=line-too-long
|
66
|
-
if hasattr(chunk.choices[0], "delta") and hasattr(chunk.choices[0].delta, "content"):
|
67
|
-
content = chunk.choices[0].delta.content
|
68
|
-
if content:
|
69
|
-
llmresponse += content
|
70
|
-
if chunk.x_groq is not None and chunk.x_groq.usage is not None:
|
71
|
-
prompt_tokens = chunk.x_groq.usage.prompt_tokens
|
72
|
-
completion_tokens = chunk.x_groq.usage.completion_tokens
|
73
|
-
total_tokens = chunk.x_groq.usage.total_tokens
|
74
|
-
response_id = chunk.x_groq.id
|
75
|
-
yield chunk
|
76
|
-
|
77
|
-
# Handling exception ensure observability without disrupting operation
|
78
|
-
try:
|
79
|
-
# Format 'messages' into a single string
|
80
|
-
message_prompt = kwargs.get("messages", "")
|
81
|
-
formatted_messages = []
|
82
|
-
for message in message_prompt:
|
83
|
-
role = message["role"]
|
84
|
-
content = message["content"]
|
85
|
-
|
86
|
-
if isinstance(content, list):
|
87
|
-
content_str = ", ".join(
|
88
|
-
# pylint: disable=line-too-long
|
89
|
-
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
90
|
-
if "type" in item else f'text: {item["text"]}'
|
91
|
-
for item in content
|
92
|
-
)
|
93
|
-
formatted_messages.append(f"{role}: {content_str}")
|
94
|
-
else:
|
95
|
-
formatted_messages.append(f"{role}: {content}")
|
96
|
-
prompt = "\n".join(formatted_messages)
|
97
|
-
|
98
|
-
# Calculate cost of the operation
|
99
|
-
cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
|
100
|
-
pricing_info, prompt_tokens,
|
101
|
-
completion_tokens)
|
102
|
-
|
103
|
-
# Set Span attributes
|
104
|
-
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
105
|
-
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
106
|
-
SemanticConvetion.GEN_AI_SYSTEM_GROQ)
|
107
|
-
span.set_attribute(SemanticConvetion.GEN_AI_OPERATION,
|
108
|
-
SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT)
|
109
|
-
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
110
|
-
gen_ai_endpoint)
|
111
|
-
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
112
|
-
response_id)
|
113
|
-
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
114
|
-
environment)
|
115
|
-
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
116
|
-
application_name)
|
117
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
118
|
-
kwargs.get("model", "gpt-3.5-turbo"))
|
119
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
120
|
-
kwargs.get("user", ""))
|
121
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
122
|
-
kwargs.get("top_p", 1.0))
|
123
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
124
|
-
kwargs.get("max_tokens", -1))
|
125
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
126
|
-
kwargs.get("temperature", 1.0))
|
127
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
128
|
-
kwargs.get("presence_penalty", 0.0))
|
129
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
130
|
-
kwargs.get("frequency_penalty", 0.0))
|
131
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
132
|
-
kwargs.get("seed", ""))
|
133
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
134
|
-
True)
|
135
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_INPUT_TOKENS,
|
136
|
-
prompt_tokens)
|
137
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_OUTPUT_TOKENS,
|
138
|
-
completion_tokens)
|
139
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
140
|
-
prompt_tokens + completion_tokens)
|
141
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
142
|
-
cost)
|
143
|
-
if trace_content:
|
144
|
-
span.add_event(
|
145
|
-
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
146
|
-
attributes={
|
147
|
-
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
148
|
-
},
|
149
|
-
)
|
150
|
-
span.add_event(
|
151
|
-
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
152
|
-
attributes={
|
153
|
-
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: llmresponse,
|
154
|
-
},
|
155
|
-
)
|
156
|
-
|
157
|
-
span.set_status(Status(StatusCode.OK))
|
158
|
-
|
159
|
-
if disable_metrics is False:
|
160
|
-
attributes = {
|
161
|
-
TELEMETRY_SDK_NAME:
|
162
|
-
"openlit",
|
163
|
-
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
164
|
-
application_name,
|
165
|
-
SemanticConvetion.GEN_AI_SYSTEM:
|
166
|
-
SemanticConvetion.GEN_AI_SYSTEM_GROQ,
|
167
|
-
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
168
|
-
environment,
|
169
|
-
SemanticConvetion.GEN_AI_OPERATION:
|
170
|
-
SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT,
|
171
|
-
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
172
|
-
kwargs.get("model", "gpt-3.5-turbo")
|
173
|
-
}
|
174
|
-
|
175
|
-
metrics["genai_requests"].add(1, attributes)
|
176
|
-
metrics["genai_total_tokens"].add(
|
177
|
-
total_tokens, attributes
|
178
|
-
)
|
179
|
-
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
180
|
-
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
181
|
-
metrics["genai_cost"].record(cost, attributes)
|
182
|
-
|
183
|
-
except Exception as e:
|
184
|
-
handle_exception(span, e)
|
185
|
-
logger.error("Error in trace creation: %s", e)
|
302
|
+
awaited_wrapped = await wrapped(*args, **kwargs)
|
303
|
+
span = tracer.start_span(span_name, kind=SpanKind.CLIENT)
|
186
304
|
|
187
|
-
return
|
305
|
+
return TracedAsyncStream(awaited_wrapped, span, kwargs, server_address, server_port)
|
188
306
|
|
189
307
|
# Handling for non-streaming responses
|
190
308
|
else:
|
191
|
-
|
192
|
-
|
309
|
+
with tracer.start_as_current_span(span_name, kind= SpanKind.CLIENT) as span:
|
310
|
+
start_time = time.time()
|
193
311
|
response = await wrapped(*args, **kwargs)
|
312
|
+
end_time = time.time()
|
313
|
+
|
314
|
+
response_dict = response_as_dict(response)
|
194
315
|
|
195
316
|
try:
|
196
317
|
# Format 'messages' into a single string
|
@@ -202,7 +323,6 @@ def async_chat(gen_ai_endpoint, version, environment, application_name,
|
|
202
323
|
|
203
324
|
if isinstance(content, list):
|
204
325
|
content_str = ", ".join(
|
205
|
-
# pylint: disable=line-too-long
|
206
326
|
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
207
327
|
if "type" in item else f'text: {item["text"]}'
|
208
328
|
for item in content
|
@@ -212,38 +332,70 @@ def async_chat(gen_ai_endpoint, version, environment, application_name,
|
|
212
332
|
formatted_messages.append(f"{role}: {content}")
|
213
333
|
prompt = "\n".join(formatted_messages)
|
214
334
|
|
215
|
-
|
335
|
+
input_tokens = response_dict.get('usage').get('prompt_tokens')
|
336
|
+
output_tokens = response_dict.get('usage').get('completion_tokens')
|
337
|
+
|
338
|
+
# Calculate cost of the operation
|
339
|
+
cost = get_chat_model_cost(request_model,
|
340
|
+
pricing_info, input_tokens,
|
341
|
+
output_tokens)
|
342
|
+
|
343
|
+
# Set base span attribues (OTel Semconv)
|
216
344
|
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
217
|
-
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
218
|
-
SemanticConvetion.GEN_AI_SYSTEM_GROQ)
|
219
345
|
span.set_attribute(SemanticConvetion.GEN_AI_OPERATION,
|
220
346
|
SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT)
|
221
|
-
span.set_attribute(SemanticConvetion.
|
222
|
-
|
223
|
-
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
224
|
-
response.x_groq["id"])
|
225
|
-
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
226
|
-
environment)
|
227
|
-
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
228
|
-
application_name)
|
347
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
348
|
+
SemanticConvetion.GEN_AI_SYSTEM_GROQ)
|
229
349
|
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
230
|
-
|
231
|
-
span.set_attribute(SemanticConvetion.
|
232
|
-
kwargs.get("
|
350
|
+
request_model)
|
351
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
352
|
+
kwargs.get("seed", ""))
|
353
|
+
span.set_attribute(SemanticConvetion.SERVER_PORT,
|
354
|
+
server_port)
|
355
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
356
|
+
kwargs.get("frequency_penalty", 0.0))
|
233
357
|
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
234
|
-
kwargs.get("
|
235
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
236
|
-
kwargs.get("name", ""))
|
237
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
238
|
-
kwargs.get("temperature", 1.0))
|
358
|
+
kwargs.get("max_completion_tokens", -1))
|
239
359
|
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
240
360
|
kwargs.get("presence_penalty", 0.0))
|
241
|
-
span.set_attribute(SemanticConvetion.
|
242
|
-
kwargs.get("
|
243
|
-
span.set_attribute(SemanticConvetion.
|
244
|
-
kwargs.get("
|
361
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_STOP_SEQUENCES,
|
362
|
+
kwargs.get("stop", []))
|
363
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
364
|
+
kwargs.get("temperature", 1.0))
|
365
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
366
|
+
kwargs.get("top_p", 1.0))
|
367
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
368
|
+
response_dict.get("id"))
|
369
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_MODEL,
|
370
|
+
response_dict.get('model'))
|
371
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_INPUT_TOKENS,
|
372
|
+
input_tokens)
|
373
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_OUTPUT_TOKENS,
|
374
|
+
output_tokens)
|
375
|
+
span.set_attribute(SemanticConvetion.SERVER_ADDRESS,
|
376
|
+
server_address)
|
377
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SERVICE_TIER,
|
378
|
+
kwargs.get("service_tier", "on_demand"))
|
379
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_SYSTEM_FINGERPRINT,
|
380
|
+
response_dict.get('system_fingerprint'))
|
381
|
+
|
382
|
+
# Set base span attribues (Extras)
|
383
|
+
span.set_attribute(DEPLOYMENT_ENVIRONMENT,
|
384
|
+
environment)
|
385
|
+
span.set_attribute(SERVICE_NAME,
|
386
|
+
application_name)
|
387
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
388
|
+
kwargs.get("user", ""))
|
245
389
|
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
246
390
|
False)
|
391
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
392
|
+
input_tokens + output_tokens)
|
393
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
394
|
+
cost)
|
395
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SERVER_TTFT,
|
396
|
+
end_time - start_time)
|
397
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SDK_VERSION,
|
398
|
+
version)
|
247
399
|
if trace_content:
|
248
400
|
span.add_event(
|
249
401
|
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
@@ -252,90 +404,54 @@ def async_chat(gen_ai_endpoint, version, environment, application_name,
|
|
252
404
|
},
|
253
405
|
)
|
254
406
|
|
255
|
-
|
256
|
-
if "tools" not in kwargs:
|
257
|
-
# Calculate cost of the operation
|
258
|
-
cost = get_chat_model_cost(kwargs.get("model", "llama3-8b-8192"),
|
259
|
-
pricing_info, response.usage.prompt_tokens,
|
260
|
-
response.usage.completion_tokens)
|
261
|
-
|
262
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_INPUT_TOKENS,
|
263
|
-
response.usage.prompt_tokens)
|
264
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_OUTPUT_TOKENS,
|
265
|
-
response.usage.completion_tokens)
|
266
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
267
|
-
response.usage.total_tokens)
|
407
|
+
for i in range(kwargs.get('n',1)):
|
268
408
|
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
span.add_event(
|
289
|
-
name=attribute_name,
|
290
|
-
attributes={
|
291
|
-
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response.choices[i].message.content,
|
292
|
-
},
|
293
|
-
)
|
294
|
-
i += 1
|
295
|
-
|
296
|
-
# Return original response
|
297
|
-
return response
|
298
|
-
|
299
|
-
# Set span attributes when tools is passed to the function call
|
300
|
-
elif "tools" in kwargs:
|
301
|
-
# Calculate cost of the operation
|
302
|
-
cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
|
303
|
-
pricing_info, response.usage.prompt_tokens,
|
304
|
-
response.usage.completion_tokens)
|
305
|
-
|
306
|
-
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
|
307
|
-
"Function called with tools")
|
308
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_INPUT_TOKENS,
|
309
|
-
response.usage.prompt_tokens)
|
310
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_OUTPUT_TOKENS,
|
311
|
-
response.usage.completion_tokens)
|
312
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
313
|
-
response.usage.total_tokens)
|
314
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
315
|
-
cost)
|
409
|
+
[response_dict.get('choices')[i].get('finish_reason')])
|
410
|
+
if trace_content:
|
411
|
+
span.add_event(
|
412
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
413
|
+
attributes={
|
414
|
+
# pylint: disable=line-too-long
|
415
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: str(response_dict.get('choices')[i].get('message').get('content')),
|
416
|
+
},
|
417
|
+
)
|
418
|
+
if kwargs.get('tools'):
|
419
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TOOL_CALLS,
|
420
|
+
str(response_dict.get('choices')[i].get('message').get('tool_calls')))
|
421
|
+
|
422
|
+
if isinstance(response_dict.get('choices')[i].get('message').get('content'), str):
|
423
|
+
span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
|
424
|
+
"text")
|
425
|
+
elif response_dict.get('choices')[i].get('message').get('content') is not None:
|
426
|
+
span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
|
427
|
+
"json")
|
316
428
|
|
317
429
|
span.set_status(Status(StatusCode.OK))
|
318
430
|
|
319
431
|
if disable_metrics is False:
|
320
|
-
attributes =
|
321
|
-
|
322
|
-
|
323
|
-
SemanticConvetion.
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
|
329
|
-
|
330
|
-
SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT,
|
331
|
-
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
332
|
-
kwargs.get("model", "gpt-3.5-turbo")
|
333
|
-
}
|
432
|
+
attributes = create_metrics_attributes(
|
433
|
+
service_name=application_name,
|
434
|
+
deployment_environment=environment,
|
435
|
+
operation=SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT,
|
436
|
+
system=SemanticConvetion.GEN_AI_SYSTEM_GROQ,
|
437
|
+
request_model=request_model,
|
438
|
+
server_address=server_address,
|
439
|
+
server_port=server_port,
|
440
|
+
response_model=response_dict.get('model'),
|
441
|
+
)
|
334
442
|
|
443
|
+
metrics["genai_client_usage_tokens"].record(
|
444
|
+
input_tokens + output_tokens, attributes
|
445
|
+
)
|
446
|
+
metrics["genai_client_operation_duration"].record(
|
447
|
+
end_time - start_time, attributes
|
448
|
+
)
|
449
|
+
metrics["genai_server_ttft"].record(
|
450
|
+
end_time - start_time, attributes
|
451
|
+
)
|
335
452
|
metrics["genai_requests"].add(1, attributes)
|
336
|
-
metrics["
|
337
|
-
metrics["
|
338
|
-
metrics["genai_prompt_tokens"].add(response.usage.prompt_tokens, attributes)
|
453
|
+
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
454
|
+
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
339
455
|
metrics["genai_cost"].record(cost, attributes)
|
340
456
|
|
341
457
|
# Return original response
|