openlit 1.31.1__py3-none-any.whl → 1.32.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,159 @@
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment
2
+ """
3
+ Module for monitoring Reka API calls.
4
+ """
5
+
6
+ import logging
7
+ from opentelemetry.trace import SpanKind, Status, StatusCode
8
+ from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
9
+ from openlit.__helpers import (
10
+ handle_exception,
11
+ get_chat_model_cost,
12
+ )
13
+ from openlit.semcov import SemanticConvetion
14
+
15
+ # Initialize logger for logging potential issues and operations
16
+ logger = logging.getLogger(__name__)
17
+
18
+ def async_chat(gen_ai_endpoint, version, environment, application_name,
19
+ tracer, pricing_info, trace_content, metrics, disable_metrics):
20
+ """
21
+ Generates a telemetry wrapper for chat to collect metrics.
22
+
23
+ Args:
24
+ gen_ai_endpoint: Endpoint identifier for logging and tracing.
25
+ version: Version of the monitoring package.
26
+ environment: Deployment environment (e.g., production, staging).
27
+ application_name: Name of the application using the Reka API.
28
+ tracer: OpenTelemetry tracer for creating spans.
29
+ pricing_info: Information used for calculating the cost of Reka usage.
30
+ trace_content: Flag indicating whether to trace the actual content.
31
+
32
+ Returns:
33
+ A function that wraps the chat method to add telemetry.
34
+ """
35
+
36
+ async def wrapper(wrapped, instance, args, kwargs):
37
+ """
38
+ Wraps the 'chat' API call to add telemetry.
39
+
40
+ This collects metrics such as execution time, cost, and token usage, and handles errors
41
+ gracefully, adding details to the trace for observability.
42
+
43
+ Args:
44
+ wrapped: The original 'chat' method to be wrapped.
45
+ instance: The instance of the class where the original method is defined.
46
+ args: Positional arguments for the 'chat' method.
47
+ kwargs: Keyword arguments for the 'chat' method.
48
+
49
+ Returns:
50
+ The response from the original 'chat' method.
51
+ """
52
+
53
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
54
+ response = await wrapped(*args, **kwargs)
55
+
56
+ try:
57
+ # Format 'messages' into a single string
58
+ message_prompt = kwargs.get("messages", "")
59
+ formatted_messages = []
60
+ for message in message_prompt:
61
+ role = message["role"]
62
+ content = message["content"]
63
+
64
+ if isinstance(content, list):
65
+ content_str = ", ".join(
66
+ # pylint: disable=line-too-long
67
+ f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
68
+ if "type" in item else f'text: {item["text"]}'
69
+ for item in content
70
+ )
71
+ formatted_messages.append(f"{role}: {content_str}")
72
+ else:
73
+ formatted_messages.append(f"{role}: {content}")
74
+ prompt = "\n".join(formatted_messages)
75
+
76
+ # Set base span attribues
77
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
78
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
79
+ SemanticConvetion.GEN_AI_SYSTEM_REKAAI)
80
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
81
+ SemanticConvetion.GEN_AI_TYPE_CHAT)
82
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
83
+ gen_ai_endpoint)
84
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
85
+ environment)
86
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
87
+ application_name)
88
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
89
+ kwargs.get("model", "reka-core"))
90
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
91
+ False)
92
+ if trace_content:
93
+ span.add_event(
94
+ name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
95
+ attributes={
96
+ SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
97
+ },
98
+ )
99
+ span.add_event(
100
+ name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
101
+ attributes={
102
+ # pylint: disable=line-too-long
103
+ SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response.responses[0].message.content,
104
+ },
105
+ )
106
+
107
+ prompt_tokens = response.usage.input_tokens
108
+ completion_tokens = response.usage.output_tokens
109
+ total_tokens = prompt_tokens + completion_tokens
110
+ # Calculate cost of the operation
111
+ cost = get_chat_model_cost(kwargs.get("model", "reka-core"),
112
+ pricing_info, prompt_tokens, completion_tokens)
113
+
114
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
115
+ prompt_tokens)
116
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
117
+ completion_tokens)
118
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
119
+ total_tokens)
120
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
121
+ [response.responses[0].finish_reason])
122
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
123
+ cost)
124
+
125
+ span.set_status(Status(StatusCode.OK))
126
+
127
+ if disable_metrics is False:
128
+ attributes = {
129
+ TELEMETRY_SDK_NAME:
130
+ "openlit",
131
+ SemanticConvetion.GEN_AI_APPLICATION_NAME:
132
+ application_name,
133
+ SemanticConvetion.GEN_AI_SYSTEM:
134
+ SemanticConvetion.GEN_AI_SYSTEM_REKAAI,
135
+ SemanticConvetion.GEN_AI_ENVIRONMENT:
136
+ environment,
137
+ SemanticConvetion.GEN_AI_TYPE:
138
+ SemanticConvetion.GEN_AI_TYPE_CHAT,
139
+ SemanticConvetion.GEN_AI_REQUEST_MODEL:
140
+ kwargs.get("model", "reka-core")
141
+ }
142
+
143
+ metrics["genai_requests"].add(1, attributes)
144
+ metrics["genai_total_tokens"].add(total_tokens, attributes)
145
+ metrics["genai_completion_tokens"].add(completion_tokens, attributes)
146
+ metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
147
+ metrics["genai_cost"].record(cost, attributes)
148
+
149
+ # Return original response
150
+ return response
151
+
152
+ except Exception as e:
153
+ handle_exception(span, e)
154
+ logger.error("Error in trace creation: %s", e)
155
+
156
+ # Return original response
157
+ return response
158
+
159
+ return wrapper
@@ -0,0 +1,159 @@
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment
2
+ """
3
+ Module for monitoring Reka API calls.
4
+ """
5
+
6
+ import logging
7
+ from opentelemetry.trace import SpanKind, Status, StatusCode
8
+ from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
9
+ from openlit.__helpers import (
10
+ handle_exception,
11
+ get_chat_model_cost,
12
+ )
13
+ from openlit.semcov import SemanticConvetion
14
+
15
+ # Initialize logger for logging potential issues and operations
16
+ logger = logging.getLogger(__name__)
17
+
18
+ def chat(gen_ai_endpoint, version, environment, application_name,
19
+ tracer, pricing_info, trace_content, metrics, disable_metrics):
20
+ """
21
+ Generates a telemetry wrapper for chat to collect metrics.
22
+
23
+ Args:
24
+ gen_ai_endpoint: Endpoint identifier for logging and tracing.
25
+ version: Version of the monitoring package.
26
+ environment: Deployment environment (e.g., production, staging).
27
+ application_name: Name of the application using the Reka API.
28
+ tracer: OpenTelemetry tracer for creating spans.
29
+ pricing_info: Information used for calculating the cost of Reka usage.
30
+ trace_content: Flag indicating whether to trace the actual content.
31
+
32
+ Returns:
33
+ A function that wraps the chat method to add telemetry.
34
+ """
35
+
36
+ def wrapper(wrapped, instance, args, kwargs):
37
+ """
38
+ Wraps the 'chat' API call to add telemetry.
39
+
40
+ This collects metrics such as execution time, cost, and token usage, and handles errors
41
+ gracefully, adding details to the trace for observability.
42
+
43
+ Args:
44
+ wrapped: The original 'chat' method to be wrapped.
45
+ instance: The instance of the class where the original method is defined.
46
+ args: Positional arguments for the 'chat' method.
47
+ kwargs: Keyword arguments for the 'chat' method.
48
+
49
+ Returns:
50
+ The response from the original 'chat' method.
51
+ """
52
+
53
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
54
+ response = wrapped(*args, **kwargs)
55
+
56
+ try:
57
+ # Format 'messages' into a single string
58
+ message_prompt = kwargs.get("messages", "")
59
+ formatted_messages = []
60
+ for message in message_prompt:
61
+ role = message["role"]
62
+ content = message["content"]
63
+
64
+ if isinstance(content, list):
65
+ content_str = ", ".join(
66
+ # pylint: disable=line-too-long
67
+ f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
68
+ if "type" in item else f'text: {item["text"]}'
69
+ for item in content
70
+ )
71
+ formatted_messages.append(f"{role}: {content_str}")
72
+ else:
73
+ formatted_messages.append(f"{role}: {content}")
74
+ prompt = "\n".join(formatted_messages)
75
+
76
+ # Set base span attribues
77
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
78
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
79
+ SemanticConvetion.GEN_AI_SYSTEM_REKAAI)
80
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
81
+ SemanticConvetion.GEN_AI_TYPE_CHAT)
82
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
83
+ gen_ai_endpoint)
84
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
85
+ environment)
86
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
87
+ application_name)
88
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
89
+ kwargs.get("model", "reka-core"))
90
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
91
+ False)
92
+ if trace_content:
93
+ span.add_event(
94
+ name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
95
+ attributes={
96
+ SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
97
+ },
98
+ )
99
+ span.add_event(
100
+ name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
101
+ attributes={
102
+ # pylint: disable=line-too-long
103
+ SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response.responses[0].message.content,
104
+ },
105
+ )
106
+
107
+ prompt_tokens = response.usage.input_tokens
108
+ completion_tokens = response.usage.output_tokens
109
+ total_tokens = prompt_tokens + completion_tokens
110
+ # Calculate cost of the operation
111
+ cost = get_chat_model_cost(kwargs.get("model", "reka-core"),
112
+ pricing_info, prompt_tokens, completion_tokens)
113
+
114
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
115
+ prompt_tokens)
116
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
117
+ completion_tokens)
118
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
119
+ total_tokens)
120
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
121
+ [response.responses[0].finish_reason])
122
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
123
+ cost)
124
+
125
+ span.set_status(Status(StatusCode.OK))
126
+
127
+ if disable_metrics is False:
128
+ attributes = {
129
+ TELEMETRY_SDK_NAME:
130
+ "openlit",
131
+ SemanticConvetion.GEN_AI_APPLICATION_NAME:
132
+ application_name,
133
+ SemanticConvetion.GEN_AI_SYSTEM:
134
+ SemanticConvetion.GEN_AI_SYSTEM_REKAAI,
135
+ SemanticConvetion.GEN_AI_ENVIRONMENT:
136
+ environment,
137
+ SemanticConvetion.GEN_AI_TYPE:
138
+ SemanticConvetion.GEN_AI_TYPE_CHAT,
139
+ SemanticConvetion.GEN_AI_REQUEST_MODEL:
140
+ kwargs.get("model", "reka-core")
141
+ }
142
+
143
+ metrics["genai_requests"].add(1, attributes)
144
+ metrics["genai_total_tokens"].add(total_tokens, attributes)
145
+ metrics["genai_completion_tokens"].add(completion_tokens, attributes)
146
+ metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
147
+ metrics["genai_cost"].record(cost, attributes)
148
+
149
+ # Return original response
150
+ return response
151
+
152
+ except Exception as e:
153
+ handle_exception(span, e)
154
+ logger.error("Error in trace creation: %s", e)
155
+
156
+ # Return original response
157
+ return response
158
+
159
+ return wrapper
@@ -104,14 +104,18 @@ class SemanticConvetion:
104
104
  GEN_AI_SYSTEM_ELEVENLABS = "elevenlabs"
105
105
  GEN_AI_SYSTEM_VLLM = "vLLM"
106
106
  GEN_AI_SYSTEM_GOOGLE_AI_STUDIO = "google-ai-studio"
107
+ GEN_AI_SYSTEM_REKAAI = "rekaai"
108
+ GEN_AI_SYSTEM_PREMAI = "premai"
107
109
  GEN_AI_SYSTEM_AZURE_AI_INFERENCE = "azure-ai-inference"
108
110
  GEN_AI_SYSTEM_LANGCHAIN = "langchain"
109
111
  GEN_AI_SYSTEM_LLAMAINDEX = "llama_index"
110
112
  GEN_AI_SYSTEM_HAYSTACK = "haystack"
111
113
  GEN_AI_SYSTEM_EMBEDCHAIN = "embedchain"
114
+ GEN_AI_SYSTEM_MEM0 = "mem0"
112
115
  GEN_AI_SYSTEM_LITELLM = "litellm"
113
116
  GEN_AI_SYSTEM_CREWAI = "crewai"
114
117
  GEN_AI_SYSTEM_AG2 = "ag2"
118
+ GEN_AI_SYSTEM_MULTION = "multion"
115
119
  GEN_AI_SYSTEM_DYNAMIQ = "dynamiq"
116
120
  GEN_AI_SYSTEM_PHIDATA = "phidata"
117
121
 
@@ -155,6 +159,7 @@ class SemanticConvetion:
155
159
  DB_UPDATE_METADATA = "db.update.metadata"
156
160
  DB_UPDATE_VALUES = "db.update.values"
157
161
  DB_UPDATE_ID = "db.update.id"
162
+ DB_DELETE_ID = "db.delete.id"
158
163
 
159
164
  DB_SYSTEM_CHROMA = "chroma"
160
165
  DB_SYSTEM_PINECONE = "pinecone"
@@ -182,6 +187,9 @@ class SemanticConvetion:
182
187
  GEN_AI_AGENT_ACTUAL_OUTPUT = "gen_ai.agent.actual_output"
183
188
  GEN_AI_AGENT_HUMAN_INPUT = "gen_ai.agent.human_input"
184
189
  GEN_AI_AGENT_TASK_ASSOCIATION = "gen_ai.agent.task_associations"
190
+ GEN_AI_AGENT_BROWSE_URL = "gen_ai.agent.browse_url"
191
+ GEN_AI_AGENT_STEP_COUNT = "gen_ai.agent.step_count"
192
+ GEN_AI_AGENT_RESPONSE_TIME = "gen_ai.agent.response_time"
185
193
 
186
194
  # GPU
187
195
  GPU_INDEX = "gpu.index"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: openlit
3
- Version: 1.31.1
3
+ Version: 1.32.1
4
4
  Summary: OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications and GPUs, facilitating the integration of observability into your GenAI-driven projects
5
5
  Home-page: https://github.com/openlit/openlit/tree/main/openlit/python
6
6
  Keywords: OpenTelemetry,otel,otlp,llm,tracing,openai,anthropic,claude,cohere,llm monitoring,observability,monitoring,gpt,Generative AI,chatGPT,gpu
@@ -45,7 +45,7 @@ Description-Content-Type: text/markdown
45
45
  [![Slack](https://img.shields.io/badge/Slack-4A154B?logo=slack&logoColor=white)](https://join.slack.com/t/openlit/shared_invite/zt-2etnfttwg-TjP_7BZXfYg84oAukY8QRQ)
46
46
  [![X](https://img.shields.io/badge/follow-%40openlit__io-1DA1F2?logo=x&style=social)](https://twitter.com/openlit_io)
47
47
 
48
- ![OpenLIT Connections Banner](https://github.com/openlit/.github/blob/main/profile/assets/github-readme-connections-banner.png?raw=true)
48
+ ![OpenLIT Connections Banner](https://github.com/openlit/.github/blob/main/profile/assets/openlit-integrations-banner.png?raw=true)
49
49
 
50
50
 
51
51
  </div>
@@ -69,20 +69,25 @@ This project proudly follows and maintains the [Semantic Conventions](https://gi
69
69
  | [✅ Ollama](https://docs.openlit.io/latest/integrations/ollama) | [✅ Pinecone](https://docs.openlit.io/latest/integrations/pinecone) | [✅ LiteLLM](https://docs.openlit.io/latest/integrations/litellm) | [✅ AMD](https://docs.openlit.io/latest/integrations/amd-gpu) |
70
70
  | [✅ Anthropic](https://docs.openlit.io/latest/integrations/anthropic) | [✅ Qdrant](https://docs.openlit.io/latest/integrations/qdrant) | [✅ LlamaIndex](https://docs.openlit.io/latest/integrations/llama-index) | |
71
71
  | [✅ GPT4All](https://docs.openlit.io/latest/integrations/gpt4all) | [✅ Milvus](https://docs.openlit.io/latest/integrations/milvus) | [✅ Haystack](https://docs.openlit.io/latest/integrations/haystack) | |
72
- | [✅ Cohere](https://docs.openlit.io/latest/integrations/cohere) | | [✅ EmbedChain](https://docs.openlit.io/latest/integrations/embedchain) | |
72
+ | [✅ Cohere](https://docs.openlit.io/latest/integrations/cohere) | | [✅ EmbedChain](https://docs.openlit.io/latest/integrations/embedchain) | |
73
73
  | [✅ Mistral](https://docs.openlit.io/latest/integrations/mistral) | | [✅ Guardrails](https://docs.openlit.io/latest/integrations/guardrails) | |
74
74
  | [✅ Azure OpenAI](https://docs.openlit.io/latest/integrations/azure-openai) | | [✅ CrewAI](https://docs.openlit.io/latest/integrations/crewai) | |
75
75
  | [✅ Azure AI Inference](https://docs.openlit.io/latest/integrations/azure-ai-inference) | | [✅ DSPy](https://docs.openlit.io/latest/integrations/dspy) | |
76
76
  | [✅ GitHub AI Models](https://docs.openlit.io/latest/integrations/github-models) | | [✅ AG2](https://docs.openlit.io/latest/integrations/ag2) | |
77
77
  | [✅ HuggingFace Transformers](https://docs.openlit.io/latest/integrations/huggingface) | | [✅ Dynamiq](https://docs.openlit.io/latest/integrations/dynamiq) | |
78
78
  | [✅ Amazon Bedrock](https://docs.openlit.io/latest/integrations/bedrock) | | [✅ Phidata](https://docs.openlit.io/latest/integrations/phidata) | |
79
- | [✅ Vertex AI](https://docs.openlit.io/latest/integrations/vertexai) | | | |
79
+ | | | [✅ mem0](https://docs.openlit.io/latest/integrations/mem0) | |
80
+ | [✅ Vertex AI](https://docs.openlit.io/latest/integrations/vertexai) | | [✅ MultiOn](https://docs.openlit.io/latest/integrations/multion) | |
80
81
  | [✅ Groq](https://docs.openlit.io/latest/integrations/groq) | | | |
81
82
  | [✅ ElevenLabs](https://docs.openlit.io/latest/integrations/elevenlabs) | | | |
82
83
  | [✅ vLLM](https://docs.openlit.io/latest/integrations/vllm) | | | |
83
84
  | [✅ OLA Krutrim](https://docs.openlit.io/latest/integrations/krutrim) | | | |
84
85
  | [✅ Google AI Studio](https://docs.openlit.io/latest/integrations/google-ai-studio) | | | |
85
86
  | [✅ NVIDIA NIM](https://docs.openlit.io/latest/integrations/nvidia-nim) | | | |
87
+ | [✅ Titan ML](https://docs.openlit.io/latest/integrations/titan-ml) | | | |
88
+ | [✅ Reka AI](https://docs.openlit.io/latest/integrations/reka) | | | |
89
+ | [✅ xAI](https://docs.openlit.io/latest/integrations/xai) | | | |
90
+ | [✅ Prem AI](https://docs.openlit.io/latest/integrations/premai) | | | |
86
91
 
87
92
  ## Supported Destinations
88
93
  - [✅ OpenTelemetry Collector](https://docs.openlit.io/latest/connections/otelcol)
@@ -1,5 +1,5 @@
1
1
  openlit/__helpers.py,sha256=2OkGKOdsd9Hc011WxR70OqDlO6c4mZcu6McGuW1uAdA,6316
2
- openlit/__init__.py,sha256=WgRRoCn_FeqLJ67AQIVgNwuhsThaS3_mF92AAWIcGgk,20216
2
+ openlit/__init__.py,sha256=37fLwoY1_rtPgRnw0yvD2qev5CHlbOcNU3IJ6JWaMkk,20742
3
3
  openlit/evals/__init__.py,sha256=nJe99nuLo1b5rf7pt9U9BCdSDedzbVi2Fj96cgl7msM,380
4
4
  openlit/evals/all.py,sha256=oWrue3PotE-rB5WePG3MRYSA-ro6WivkclSHjYlAqGs,7154
5
5
  openlit/evals/bias_detection.py,sha256=mCdsfK7x1vX7S3psC3g641IMlZ-7df3h-V6eiICj5N8,8154
@@ -27,7 +27,7 @@ openlit/instrumentation/chroma/chroma.py,sha256=E80j_41UeZi8RzTsHbpvi1izOA_n-0-3
27
27
  openlit/instrumentation/cohere/__init__.py,sha256=PC5T1qIg9pwLNocBP_WjG5B_6p_z019s8quk_fNLAMs,1920
28
28
  openlit/instrumentation/cohere/cohere.py,sha256=62-P2K39v6pIJme6vTVViLJ9PP8q_UWkTv2l3Wa2gHA,21217
29
29
  openlit/instrumentation/crewai/__init__.py,sha256=cETkkwnKYEMAKlMrHbZ9-RvcRUPYaSNqNIhy2-vCDK8,1794
30
- openlit/instrumentation/crewai/crewai.py,sha256=V0ZAlNf6vPL6nZs_XvQYG2DqpgfbX_37yMnScAu3dsk,6917
30
+ openlit/instrumentation/crewai/crewai.py,sha256=mpEJql6aDs3wwBjLz686anOHkIA5gWfhFCCHAgJRY0w,7049
31
31
  openlit/instrumentation/dynamiq/__init__.py,sha256=2uIHHxFWca0g2YLO2RBfi2Al6uWUYvVZBfDiPOHCdpQ,2331
32
32
  openlit/instrumentation/dynamiq/dynamiq.py,sha256=ymEctNepwQ_9YGSoR_Sf1NwmSLwmGnFfWJZe3FZAE9M,5128
33
33
  openlit/instrumentation/elevenlabs/__init__.py,sha256=BZjAe-kzFJpKxT0tKksXVfZgirvgEp8qM3SfegWU5co,2631
@@ -53,11 +53,16 @@ openlit/instrumentation/litellm/async_litellm.py,sha256=1MKNZbvKaf1lFWbXi1MQy3qF
53
53
  openlit/instrumentation/litellm/litellm.py,sha256=4YqCQ4CEQ4sfDu7pTlnflL_AfUqYEQdJDTO7nHJ6noY,27450
54
54
  openlit/instrumentation/llamaindex/__init__.py,sha256=vPtK65G6b-TwJERowVRUVl7f_nBSlFdwPBtpg8dOGos,1977
55
55
  openlit/instrumentation/llamaindex/llamaindex.py,sha256=uiIigbwhonSbJWA7LpgOVI1R4kxxPODS1K5wyHIQ4hM,4048
56
+ openlit/instrumentation/mem0/__init__.py,sha256=guOkLoSKvHSVSmEWhCHMVRMUGEa5JzqI8CIluHtwirQ,2417
57
+ openlit/instrumentation/mem0/mem0.py,sha256=lX80WCvsgroBLgQS7TSS64yGuXv7-5GshFq02jDlNfY,5305
56
58
  openlit/instrumentation/milvus/__init__.py,sha256=qi1yfmMrvkDtnrN_6toW8qC9BRL78bq7ayWpObJ8Bq4,2961
57
59
  openlit/instrumentation/milvus/milvus.py,sha256=qhKIoggBAJhRctRrBYz69AcvXH-eh7oBn_l9WfxpAjI,9121
58
60
  openlit/instrumentation/mistral/__init__.py,sha256=niWn0gYNOTPS5zoTjtCciDqQVj-iJehnpdh7ElB-H9w,3088
59
61
  openlit/instrumentation/mistral/async_mistral.py,sha256=l-kcaGPrX3sqPH-RXWo6ope0Ui3nUvExNJ4KX9QgDMY,22246
60
62
  openlit/instrumentation/mistral/mistral.py,sha256=Q7MMRvVFsM8o0_ebZ0EfnhGjs16SJSnmu-oE798gYMQ,22087
63
+ openlit/instrumentation/multion/__init__.py,sha256=DUt70uINLYi4xTxZ6D3bxKUBHYi1FpKbliQ6E7D_SeQ,3069
64
+ openlit/instrumentation/multion/async_multion.py,sha256=6jeYiEu94_jUQF4yMA_Ua-OnsMX7th3__USf56T3PPU,5889
65
+ openlit/instrumentation/multion/multion.py,sha256=X9HGCQ7KFu6aOOh9xKBBKXT73Xc1w3Y5s-1lELmrk_g,5871
61
66
  openlit/instrumentation/ollama/__init__.py,sha256=cOax8PiypDuo_FC4WvDCYBRo7lH5nV9xU92h7k-eZbg,3812
62
67
  openlit/instrumentation/ollama/async_ollama.py,sha256=7lbikD-I9k8VL63idqj3VMEfiEKJmFNUPR8Xb6g2phQ,31366
63
68
  openlit/instrumentation/ollama/ollama.py,sha256=lBt1d3rFnF1tFbfdOccwjEafHnmTAUGsiOKSHku6Fkw,31277
@@ -70,9 +75,14 @@ openlit/instrumentation/phidata/__init__.py,sha256=rfPCXYOIsJbxChee2p269UzkJ1Z-p
70
75
  openlit/instrumentation/phidata/phidata.py,sha256=9Aza2bLgeq688Ahyy7ekbxpSh4RTD7FFKtLmv4TNbrw,4667
71
76
  openlit/instrumentation/pinecone/__init__.py,sha256=Mv9bElqNs07_JQkYyNnO0wOM3hdbprmw7sttdMeKC7g,2526
72
77
  openlit/instrumentation/pinecone/pinecone.py,sha256=0EhLmtOuvwWVvAKh3e56wyd8wzQq1oaLOmF15SVHxVE,8765
78
+ openlit/instrumentation/premai/__init__.py,sha256=g7kBjxEsldQIiZpxH4LgXFmU-WSmqywW4aFxqwH-ptA,1844
79
+ openlit/instrumentation/premai/premai.py,sha256=DIAAXXrEmxXW6vZjGqRgtRGScucob1RusCdciXfYhME,26574
73
80
  openlit/instrumentation/qdrant/__init__.py,sha256=GMlZgRBKoQMgrL4cFbAKwytfdTHLzJEIuTQMxp0uZO0,8940
74
81
  openlit/instrumentation/qdrant/async_qdrant.py,sha256=Xuyw2N75mRIjltrmY8wJes5DHal0Ku3A8VcUqfbsOl0,15071
75
82
  openlit/instrumentation/qdrant/qdrant.py,sha256=K0cvEUbNx0hnk8AbEheYPSHcCgjFC482IZyHF9-P_b8,15488
83
+ openlit/instrumentation/reka/__init__.py,sha256=X0zZ8Q18Z_6pIpksa7pdWldK4SKZM7U24zNc2UeRXC8,1870
84
+ openlit/instrumentation/reka/async_reka.py,sha256=PDodlH_XycevE3k8u0drP7bokKtPDUcDfzfWRz6Fzt4,7439
85
+ openlit/instrumentation/reka/reka.py,sha256=CL9uNX_tYjw2eetTxLKRNRQJ-OgI_e5YRz9iu9f_gP4,7421
76
86
  openlit/instrumentation/transformers/__init__.py,sha256=4GBtjzcJU4XiPexIUYEqF3pNZMeQw4Gm5B-cyumaFjs,1468
77
87
  openlit/instrumentation/transformers/transformers.py,sha256=MWEVkxHRWTHrpD85I1leksDIVtBiTtR5fQCO3Z62qb4,7875
78
88
  openlit/instrumentation/vertexai/__init__.py,sha256=N3E9HtzefD-zC0fvmfGYiDmSqssoavp_i59wfuYLyMw,6079
@@ -82,8 +92,8 @@ openlit/instrumentation/vllm/__init__.py,sha256=OVWalQ1dXvip1DUsjUGaHX4J-2FrSp-T
82
92
  openlit/instrumentation/vllm/vllm.py,sha256=lDzM7F5pgxvh8nKL0dcKB4TD0Mc9wXOWeXOsOGN7Wd8,6527
83
93
  openlit/otel/metrics.py,sha256=y7SQDTyfLakMrz0V4DThN-WAeap7YZzyndeYGSP6nVg,4516
84
94
  openlit/otel/tracing.py,sha256=fG3vl-flSZ30whCi7rrG25PlkIhhr8PhnfJYCkZzCD0,3895
85
- openlit/semcov/__init__.py,sha256=DpZ690Tp-ks6QunvHCOV42gnedKkJRk-U7ZnCtJmavY,9493
86
- openlit-1.31.1.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
87
- openlit-1.31.1.dist-info/METADATA,sha256=mdzQDsOaxfPqVUIb7F_VrYcJD2fB_XPM7g7hvezVXG8,21122
88
- openlit-1.31.1.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
89
- openlit-1.31.1.dist-info/RECORD,,
95
+ openlit/semcov/__init__.py,sha256=AWpAd_lL-mH_BEGOyKKV8JlVCAVKltdbJf8odKshEJY,9843
96
+ openlit-1.32.1.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
97
+ openlit-1.32.1.dist-info/METADATA,sha256=vFZeDzEF2sGZtLQg3rbR66INZ6Htykf8V6x9dVzjJNY,22338
98
+ openlit-1.32.1.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
99
+ openlit-1.32.1.dist-info/RECORD,,