openlit 1.31.1__py3-none-any.whl → 1.32.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openlit/__init__.py +12 -0
- openlit/instrumentation/crewai/crewai.py +2 -0
- openlit/instrumentation/mem0/__init__.py +79 -0
- openlit/instrumentation/mem0/mem0.py +115 -0
- openlit/instrumentation/multion/__init__.py +80 -0
- openlit/instrumentation/multion/async_multion.py +131 -0
- openlit/instrumentation/multion/multion.py +131 -0
- openlit/instrumentation/premai/__init__.py +51 -0
- openlit/instrumentation/premai/premai.py +507 -0
- openlit/instrumentation/reka/__init__.py +54 -0
- openlit/instrumentation/reka/async_reka.py +159 -0
- openlit/instrumentation/reka/reka.py +159 -0
- openlit/semcov/__init__.py +8 -0
- {openlit-1.31.1.dist-info → openlit-1.32.1.dist-info}/METADATA +9 -4
- {openlit-1.31.1.dist-info → openlit-1.32.1.dist-info}/RECORD +17 -7
- {openlit-1.31.1.dist-info → openlit-1.32.1.dist-info}/LICENSE +0 -0
- {openlit-1.31.1.dist-info → openlit-1.32.1.dist-info}/WHEEL +0 -0
@@ -0,0 +1,507 @@
|
|
1
|
+
# pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment, too-many-branches
|
2
|
+
"""
|
3
|
+
Module for monitoring Prem AI API calls.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import logging
|
7
|
+
from opentelemetry.trace import SpanKind, Status, StatusCode
|
8
|
+
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
|
+
from openlit.__helpers import (
|
10
|
+
handle_exception,
|
11
|
+
general_tokens,
|
12
|
+
get_chat_model_cost,
|
13
|
+
get_embed_model_cost,
|
14
|
+
response_as_dict
|
15
|
+
)
|
16
|
+
from openlit.semcov import SemanticConvetion
|
17
|
+
|
18
|
+
# Initialize logger for logging potential issues and operations
|
19
|
+
logger = logging.getLogger(__name__)
|
20
|
+
|
21
|
+
def chat(gen_ai_endpoint, version, environment, application_name,
|
22
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
23
|
+
"""
|
24
|
+
Generates a telemetry wrapper for chat completions to collect metrics.
|
25
|
+
|
26
|
+
Args:
|
27
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
28
|
+
version: Version of the monitoring package.
|
29
|
+
environment: Deployment environment (e.g., production, staging).
|
30
|
+
application_name: Name of the application using the PremAI API.
|
31
|
+
tracer: OpenTelemetry tracer for creating spans.
|
32
|
+
pricing_info: Information used for calculating the cost of PremAI usage.
|
33
|
+
trace_content: Flag indicating whether to trace the actual content.
|
34
|
+
|
35
|
+
Returns:
|
36
|
+
A function that wraps the chat completions method to add telemetry.
|
37
|
+
"""
|
38
|
+
|
39
|
+
class TracedSyncStream:
|
40
|
+
"""
|
41
|
+
Wrapper for streaming responses to collect metrics and trace data.
|
42
|
+
Wraps the response to collect message IDs and aggregated response.
|
43
|
+
"""
|
44
|
+
|
45
|
+
def __init__(self, wrapped, span, kwargs, **args):
|
46
|
+
self.__wrapped__ = wrapped
|
47
|
+
self._span = span
|
48
|
+
self._llmresponse = ""
|
49
|
+
self._response_id = ""
|
50
|
+
self._args = args
|
51
|
+
self._kwargs = kwargs
|
52
|
+
|
53
|
+
def __enter__(self):
|
54
|
+
# Using context management protocols (if needed)
|
55
|
+
return self
|
56
|
+
|
57
|
+
def __exit__(self, exc_type, exc_value, traceback):
|
58
|
+
# Add any resource cleanup or finalization if required.
|
59
|
+
pass
|
60
|
+
|
61
|
+
def __getattr__(self, name):
|
62
|
+
"""Delegate attribute access to the wrapped object."""
|
63
|
+
return getattr(self.__wrapped__, name)
|
64
|
+
|
65
|
+
def __iter__(self):
|
66
|
+
try:
|
67
|
+
for chunk in self.__wrapped__:
|
68
|
+
# Assuming `chunk` has similar structure as 'ChatCompletionResponseStream'
|
69
|
+
if chunk.choices:
|
70
|
+
first_choice = chunk.choices[0]
|
71
|
+
|
72
|
+
if first_choice.delta.get('content'):
|
73
|
+
self._llmresponse += first_choice.delta.get('content')
|
74
|
+
|
75
|
+
self._response_id = chunk.id
|
76
|
+
if not chunk:
|
77
|
+
# pylint: disable= stop-iteration-return
|
78
|
+
raise StopIteration
|
79
|
+
yield chunk
|
80
|
+
|
81
|
+
finally:
|
82
|
+
# Handling exception ensure observability without disrupting operation
|
83
|
+
try:
|
84
|
+
# Format 'messages' into a single string
|
85
|
+
message_prompt = self._kwargs.get("messages", "")
|
86
|
+
formatted_messages = []
|
87
|
+
for message in message_prompt:
|
88
|
+
role = message["role"]
|
89
|
+
content = message["content"]
|
90
|
+
|
91
|
+
if isinstance(content, list):
|
92
|
+
content_str = ", ".join(
|
93
|
+
# pylint: disable=line-too-long
|
94
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
95
|
+
if "type" in item else f'text: {item["text"]}'
|
96
|
+
for item in content
|
97
|
+
)
|
98
|
+
formatted_messages.append(f"{role}: {content_str}")
|
99
|
+
else:
|
100
|
+
formatted_messages.append(f"{role}: {content}")
|
101
|
+
prompt = "\n".join(formatted_messages)
|
102
|
+
|
103
|
+
# Calculate tokens using input prompt and aggregated response
|
104
|
+
prompt_tokens = general_tokens(prompt,)
|
105
|
+
completion_tokens = general_tokens(self._llmresponse)
|
106
|
+
|
107
|
+
# Calculate cost of the operation
|
108
|
+
cost = get_chat_model_cost(self._kwargs.get("model", "gpt-4o-mini"),
|
109
|
+
pricing_info, prompt_tokens,
|
110
|
+
completion_tokens)
|
111
|
+
print(self._kwargs)
|
112
|
+
# Set Span attributes
|
113
|
+
self._span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
114
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
115
|
+
SemanticConvetion.GEN_AI_SYSTEM_PREMAI)
|
116
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
117
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
118
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
119
|
+
gen_ai_endpoint)
|
120
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
121
|
+
self._response_id)
|
122
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
123
|
+
environment)
|
124
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
125
|
+
application_name)
|
126
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
127
|
+
self._kwargs.get("model", "gpt-4o-mini"))
|
128
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
129
|
+
self._kwargs.get("user", ""))
|
130
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
131
|
+
self._kwargs.get("top_p", 1.0))
|
132
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
133
|
+
self._kwargs.get("max_tokens", -1))
|
134
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
135
|
+
self._kwargs.get("temperature", 1.0))
|
136
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
137
|
+
self._kwargs.get("presence_penalty", 0.0))
|
138
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
139
|
+
self._kwargs.get("frequency_penalty", 0.0))
|
140
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
141
|
+
self._kwargs.get("seed", ""))
|
142
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
143
|
+
True)
|
144
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
145
|
+
prompt_tokens)
|
146
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
147
|
+
completion_tokens)
|
148
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
149
|
+
prompt_tokens + completion_tokens)
|
150
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
151
|
+
cost)
|
152
|
+
if trace_content:
|
153
|
+
self._span.add_event(
|
154
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
155
|
+
attributes={
|
156
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
157
|
+
},
|
158
|
+
)
|
159
|
+
self._span.add_event(
|
160
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
161
|
+
attributes={
|
162
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: self._llmresponse,
|
163
|
+
},
|
164
|
+
)
|
165
|
+
|
166
|
+
self._span.set_status(Status(StatusCode.OK))
|
167
|
+
|
168
|
+
if disable_metrics is False:
|
169
|
+
attributes = {
|
170
|
+
TELEMETRY_SDK_NAME:
|
171
|
+
"openlit",
|
172
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
173
|
+
application_name,
|
174
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
175
|
+
SemanticConvetion.GEN_AI_SYSTEM_PREMAI,
|
176
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
177
|
+
environment,
|
178
|
+
SemanticConvetion.GEN_AI_TYPE:
|
179
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
180
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
181
|
+
self._kwargs.get("model", "gpt-3.5-turbo")
|
182
|
+
}
|
183
|
+
|
184
|
+
metrics["genai_requests"].add(1, attributes)
|
185
|
+
metrics["genai_total_tokens"].add(
|
186
|
+
prompt_tokens + completion_tokens, attributes
|
187
|
+
)
|
188
|
+
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
189
|
+
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
190
|
+
metrics["genai_cost"].record(cost, attributes)
|
191
|
+
|
192
|
+
except Exception as e:
|
193
|
+
handle_exception(self._span, e)
|
194
|
+
logger.error("Error in trace creation: %s", e)
|
195
|
+
finally:
|
196
|
+
self._span.end()
|
197
|
+
|
198
|
+
def wrapper(wrapped, instance, args, kwargs):
|
199
|
+
"""
|
200
|
+
Wraps the 'chat.completions' API call to add telemetry.
|
201
|
+
|
202
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
203
|
+
gracefully, adding details to the trace for observability.
|
204
|
+
|
205
|
+
Args:
|
206
|
+
wrapped: The original 'chat.completions' method to be wrapped.
|
207
|
+
instance: The instance of the class where the original method is defined.
|
208
|
+
args: Positional arguments for the 'chat.completions' method.
|
209
|
+
kwargs: Keyword arguments for the 'chat.completions' method.
|
210
|
+
|
211
|
+
Returns:
|
212
|
+
The response from the original 'chat.completions' method.
|
213
|
+
"""
|
214
|
+
|
215
|
+
# Check if streaming is enabled for the API call
|
216
|
+
streaming = kwargs.get("stream", False)
|
217
|
+
|
218
|
+
# pylint: disable=no-else-return
|
219
|
+
if streaming:
|
220
|
+
# Special handling for streaming response to accommodate the nature of data flow
|
221
|
+
awaited_wrapped = wrapped(*args, **kwargs)
|
222
|
+
span = tracer.start_span(gen_ai_endpoint, kind=SpanKind.CLIENT)
|
223
|
+
|
224
|
+
return TracedSyncStream(awaited_wrapped, span, kwargs)
|
225
|
+
|
226
|
+
# Handling for non-streaming responses
|
227
|
+
else:
|
228
|
+
# pylint: disable=line-too-long
|
229
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
230
|
+
response = wrapped(*args, **kwargs)
|
231
|
+
|
232
|
+
response_dict = response_as_dict(response)
|
233
|
+
|
234
|
+
try:
|
235
|
+
# Format 'messages' into a single string
|
236
|
+
message_prompt = kwargs.get("messages", "")
|
237
|
+
formatted_messages = []
|
238
|
+
for message in message_prompt:
|
239
|
+
role = message["role"]
|
240
|
+
content = message["content"]
|
241
|
+
|
242
|
+
if isinstance(content, list):
|
243
|
+
content_str = ", ".join(
|
244
|
+
# pylint: disable=line-too-long
|
245
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
246
|
+
if "type" in item else f'text: {item["text"]}'
|
247
|
+
for item in content
|
248
|
+
)
|
249
|
+
formatted_messages.append(f"{role}: {content_str}")
|
250
|
+
else:
|
251
|
+
formatted_messages.append(f"{role}: {content}")
|
252
|
+
prompt = "\n".join(formatted_messages)
|
253
|
+
|
254
|
+
# Set base span attribues
|
255
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
256
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
257
|
+
SemanticConvetion.GEN_AI_SYSTEM_PREMAI)
|
258
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
259
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
260
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
261
|
+
gen_ai_endpoint)
|
262
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
263
|
+
response_dict.additional_properties["id"])
|
264
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
265
|
+
environment)
|
266
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
267
|
+
application_name)
|
268
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
269
|
+
kwargs.get("model", "gpt-3.5-turbo"))
|
270
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
271
|
+
kwargs.get("top_p", 1.0))
|
272
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
273
|
+
kwargs.get("max_tokens", -1))
|
274
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
275
|
+
kwargs.get("user", ""))
|
276
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
277
|
+
kwargs.get("temperature", 1.0))
|
278
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
279
|
+
kwargs.get("presence_penalty", 0.0))
|
280
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
281
|
+
kwargs.get("frequency_penalty", 0.0))
|
282
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
283
|
+
kwargs.get("seed", ""))
|
284
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
285
|
+
False)
|
286
|
+
if trace_content:
|
287
|
+
span.add_event(
|
288
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
289
|
+
attributes={
|
290
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
291
|
+
},
|
292
|
+
)
|
293
|
+
|
294
|
+
# Set span attributes when tools is not passed to the function call
|
295
|
+
if "tools" not in kwargs:
|
296
|
+
# Calculate cost of the operation
|
297
|
+
cost = get_chat_model_cost(kwargs.get("model", "gpt-4o-mini"),
|
298
|
+
pricing_info, response_dict.usage.prompt_tokens,
|
299
|
+
response_dict.usage.completion_tokens)
|
300
|
+
|
301
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
302
|
+
response_dict.usage.prompt_tokens)
|
303
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
304
|
+
response_dict.usage.completion_tokens)
|
305
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
306
|
+
response_dict.usage.total_tokens)
|
307
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
308
|
+
[response_dict.choices[0].finish_reason])
|
309
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
310
|
+
cost)
|
311
|
+
|
312
|
+
# Set span attributes for when n = 1 (default)
|
313
|
+
if "n" not in kwargs or kwargs["n"] == 1:
|
314
|
+
if trace_content:
|
315
|
+
span.add_event(
|
316
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
317
|
+
attributes={
|
318
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response_dict.choices[0].message.content,
|
319
|
+
},
|
320
|
+
)
|
321
|
+
|
322
|
+
# Set span attributes for when n > 0
|
323
|
+
else:
|
324
|
+
i = 0
|
325
|
+
while i < kwargs["n"] and trace_content is True:
|
326
|
+
attribute_name = f"gen_ai.content.completion.{i}"
|
327
|
+
span.add_event(
|
328
|
+
name=attribute_name,
|
329
|
+
attributes={
|
330
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response_dict.choices[i].message.content,
|
331
|
+
},
|
332
|
+
)
|
333
|
+
i += 1
|
334
|
+
|
335
|
+
# Return original response
|
336
|
+
return response
|
337
|
+
|
338
|
+
# Set span attributes when tools is passed to the function call
|
339
|
+
elif "tools" in kwargs:
|
340
|
+
# Calculate cost of the operation
|
341
|
+
cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
|
342
|
+
pricing_info, response_dict.usage.prompt_tokens,
|
343
|
+
response_dict.usage.completion_tokens)
|
344
|
+
span.add_event(
|
345
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
346
|
+
attributes={
|
347
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: "Function called with tools",
|
348
|
+
},
|
349
|
+
)
|
350
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
351
|
+
response_dict.usage.prompt_tokens)
|
352
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
353
|
+
response_dict.usage.completion_tokens)
|
354
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
355
|
+
response_dict.usage.total_tokens)
|
356
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
357
|
+
cost)
|
358
|
+
|
359
|
+
span.set_status(Status(StatusCode.OK))
|
360
|
+
|
361
|
+
if disable_metrics is False:
|
362
|
+
attributes = {
|
363
|
+
TELEMETRY_SDK_NAME:
|
364
|
+
"openlit",
|
365
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
366
|
+
application_name,
|
367
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
368
|
+
SemanticConvetion.GEN_AI_SYSTEM_PREMAI,
|
369
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
370
|
+
environment,
|
371
|
+
SemanticConvetion.GEN_AI_TYPE:
|
372
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
373
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
374
|
+
kwargs.get("model", "gpt-3.5-turbo")
|
375
|
+
}
|
376
|
+
|
377
|
+
metrics["genai_requests"].add(1, attributes)
|
378
|
+
metrics["genai_total_tokens"].add(response_dict.usage.total_tokens, attributes)
|
379
|
+
metrics["genai_completion_tokens"].add(response_dict.usage.completion_tokens, attributes)
|
380
|
+
metrics["genai_prompt_tokens"].add(response_dict.usage.prompt_tokens, attributes)
|
381
|
+
metrics["genai_cost"].record(cost, attributes)
|
382
|
+
|
383
|
+
# Return original response
|
384
|
+
return response
|
385
|
+
|
386
|
+
except Exception as e:
|
387
|
+
handle_exception(span, e)
|
388
|
+
logger.error("Error in trace creation: %s", e)
|
389
|
+
|
390
|
+
# Return original response
|
391
|
+
return response
|
392
|
+
|
393
|
+
return wrapper
|
394
|
+
|
395
|
+
def embedding(gen_ai_endpoint, version, environment, application_name,
|
396
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
397
|
+
"""
|
398
|
+
Generates a telemetry wrapper for embeddings to collect metrics.
|
399
|
+
|
400
|
+
Args:
|
401
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
402
|
+
version: Version of the monitoring package.
|
403
|
+
environment: Deployment environment (e.g., production, staging).
|
404
|
+
application_name: Name of the application using the Prem AI API.
|
405
|
+
tracer: OpenTelemetry tracer for creating spans.
|
406
|
+
pricing_info: Information used for calculating the cost of Prem AI usage.
|
407
|
+
trace_content: Flag indicating whether to trace the actual content.
|
408
|
+
|
409
|
+
Returns:
|
410
|
+
A function that wraps the embeddings method to add telemetry.
|
411
|
+
"""
|
412
|
+
|
413
|
+
def wrapper(wrapped, instance, args, kwargs):
|
414
|
+
"""
|
415
|
+
Wraps the 'embeddings' API call to add telemetry.
|
416
|
+
|
417
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
418
|
+
gracefully, adding details to the trace for observability.
|
419
|
+
|
420
|
+
Args:
|
421
|
+
wrapped: The original 'embeddings' method to be wrapped.
|
422
|
+
instance: The instance of the class where the original method is defined.
|
423
|
+
args: Positional arguments for the 'embeddings' method.
|
424
|
+
kwargs: Keyword arguments for the 'embeddings' method.
|
425
|
+
|
426
|
+
Returns:
|
427
|
+
The response from the original 'embeddings' method.
|
428
|
+
"""
|
429
|
+
|
430
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
431
|
+
response = wrapped(*args, **kwargs)
|
432
|
+
response_dict = response_as_dict(response)
|
433
|
+
try:
|
434
|
+
# Calculate cost of the operation
|
435
|
+
cost = get_embed_model_cost(kwargs.get("model", "text-embedding-ada-002"),
|
436
|
+
pricing_info, response_dict.usage.prompt_tokens)
|
437
|
+
|
438
|
+
# Set Span attributes
|
439
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
440
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
441
|
+
SemanticConvetion.GEN_AI_SYSTEM_PREMAI)
|
442
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
443
|
+
SemanticConvetion.GEN_AI_TYPE_EMBEDDING)
|
444
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
445
|
+
gen_ai_endpoint)
|
446
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
447
|
+
environment)
|
448
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
449
|
+
application_name)
|
450
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
451
|
+
kwargs.get("model", "text-embedding-3-large"))
|
452
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_EMBEDDING_FORMAT,
|
453
|
+
kwargs.get("encoding_format", "float"))
|
454
|
+
# span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_EMBEDDING_DIMENSION,
|
455
|
+
# kwargs.get("dimensions", "null"))
|
456
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
457
|
+
kwargs.get("user", ""))
|
458
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
459
|
+
response_dict.usage.prompt_tokens)
|
460
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
461
|
+
response_dict.usage.total_tokens)
|
462
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
463
|
+
cost)
|
464
|
+
if trace_content:
|
465
|
+
span.add_event(
|
466
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
467
|
+
attributes={
|
468
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: kwargs.get("input", ""),
|
469
|
+
},
|
470
|
+
)
|
471
|
+
|
472
|
+
span.set_status(Status(StatusCode.OK))
|
473
|
+
|
474
|
+
if disable_metrics is False:
|
475
|
+
attributes = {
|
476
|
+
TELEMETRY_SDK_NAME:
|
477
|
+
"openlit",
|
478
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
479
|
+
application_name,
|
480
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
481
|
+
SemanticConvetion.GEN_AI_SYSTEM_PREMAI,
|
482
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
483
|
+
environment,
|
484
|
+
SemanticConvetion.GEN_AI_TYPE:
|
485
|
+
SemanticConvetion.GEN_AI_TYPE_EMBEDDING,
|
486
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
487
|
+
kwargs.get("model", "text-embedding-ada-002")
|
488
|
+
}
|
489
|
+
|
490
|
+
metrics["genai_requests"].add(1, attributes)
|
491
|
+
metrics["genai_total_tokens"].add(
|
492
|
+
response_dict.usage.total_tokens, attributes)
|
493
|
+
metrics["genai_prompt_tokens"].add(
|
494
|
+
response_dict.usageprompt_tokens, attributes)
|
495
|
+
metrics["genai_cost"].record(cost, attributes)
|
496
|
+
|
497
|
+
# Return original response
|
498
|
+
return response
|
499
|
+
|
500
|
+
except Exception as e:
|
501
|
+
handle_exception(span, e)
|
502
|
+
logger.error("Error in trace creation: %s", e)
|
503
|
+
|
504
|
+
# Return original response
|
505
|
+
return response
|
506
|
+
|
507
|
+
return wrapper
|
@@ -0,0 +1,54 @@
|
|
1
|
+
# pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
|
2
|
+
"""Initializer of Auto Instrumentation of Reka Functions"""
|
3
|
+
|
4
|
+
from typing import Collection
|
5
|
+
import importlib.metadata
|
6
|
+
from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
|
7
|
+
from wrapt import wrap_function_wrapper
|
8
|
+
|
9
|
+
from openlit.instrumentation.reka.reka import (
|
10
|
+
chat
|
11
|
+
)
|
12
|
+
from openlit.instrumentation.reka.async_reka import (
|
13
|
+
async_chat
|
14
|
+
)
|
15
|
+
|
16
|
+
_instruments = ("reka-api >= 3.2.0",)
|
17
|
+
|
18
|
+
class RekaInstrumentor(BaseInstrumentor):
|
19
|
+
"""
|
20
|
+
An instrumentor for Reka's client library.
|
21
|
+
"""
|
22
|
+
|
23
|
+
def instrumentation_dependencies(self) -> Collection[str]:
|
24
|
+
return _instruments
|
25
|
+
|
26
|
+
def _instrument(self, **kwargs):
|
27
|
+
application_name = kwargs.get("application_name", "default_application")
|
28
|
+
environment = kwargs.get("environment", "default_environment")
|
29
|
+
tracer = kwargs.get("tracer")
|
30
|
+
metrics = kwargs.get("metrics_dict")
|
31
|
+
pricing_info = kwargs.get("pricing_info", {})
|
32
|
+
trace_content = kwargs.get("trace_content", False)
|
33
|
+
disable_metrics = kwargs.get("disable_metrics")
|
34
|
+
version = importlib.metadata.version("reka-api")
|
35
|
+
|
36
|
+
# sync chat
|
37
|
+
wrap_function_wrapper(
|
38
|
+
"reka.chat.client",
|
39
|
+
"ChatClient.create",
|
40
|
+
chat("reka.chat", version, environment, application_name,
|
41
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
42
|
+
)
|
43
|
+
|
44
|
+
# async chat
|
45
|
+
wrap_function_wrapper(
|
46
|
+
"reka.chat.client",
|
47
|
+
"AsyncChatClient.create",
|
48
|
+
async_chat("reka.chat", version, environment, application_name,
|
49
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
50
|
+
)
|
51
|
+
|
52
|
+
def _uninstrument(self, **kwargs):
|
53
|
+
# Proper uninstrumentation logic to revert patched methods
|
54
|
+
pass
|