opencv-contrib-python 4.12.0.88__cp37-abi3-win32.whl → 4.13.0.90__cp37-abi3-win32.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
cv2/text/__init__.pyi CHANGED
@@ -2,6 +2,7 @@ __all__: list[str] = []
2
2
 
3
3
  import cv2
4
4
  import cv2.typing
5
+ import os
5
6
  import typing as _typing
6
7
 
7
8
 
@@ -101,10 +102,10 @@ class OCRHMMDecoder(BaseOCR):
101
102
  def create(cls, classifier: OCRHMMDecoder.ClassifierCallback, vocabulary: str, transition_probabilities_table: cv2.UMat, emission_probabilities_table: cv2.UMat, mode: int = ...) -> OCRHMMDecoder: ...
102
103
  @classmethod
103
104
  @_typing.overload
104
- def create(cls, filename: str, vocabulary: str, transition_probabilities_table: cv2.typing.MatLike, emission_probabilities_table: cv2.typing.MatLike, mode: int = ..., classifier: int = ...) -> OCRHMMDecoder: ...
105
+ def create(cls, filename: str | os.PathLike[str], vocabulary: str, transition_probabilities_table: cv2.typing.MatLike, emission_probabilities_table: cv2.typing.MatLike, mode: int = ..., classifier: int = ...) -> OCRHMMDecoder: ...
105
106
  @classmethod
106
107
  @_typing.overload
107
- def create(cls, filename: str, vocabulary: str, transition_probabilities_table: cv2.UMat, emission_probabilities_table: cv2.UMat, mode: int = ..., classifier: int = ...) -> OCRHMMDecoder: ...
108
+ def create(cls, filename: str | os.PathLike[str], vocabulary: str, transition_probabilities_table: cv2.UMat, emission_probabilities_table: cv2.UMat, mode: int = ..., classifier: int = ...) -> OCRHMMDecoder: ...
108
109
 
109
110
 
110
111
  class OCRBeamSearchDecoder(BaseOCR):
@@ -160,12 +161,12 @@ def computeNMChannels(_src: cv2.UMat, _channels: _typing.Sequence[cv2.UMat] | No
160
161
  @_typing.overload
161
162
  def createERFilterNM1(cb: ERFilter.Callback, thresholdDelta: int = ..., minArea: float = ..., maxArea: float = ..., minProbability: float = ..., nonMaxSuppression: bool = ..., minProbabilityDiff: float = ...) -> ERFilter: ...
162
163
  @_typing.overload
163
- def createERFilterNM1(filename: str, thresholdDelta: int = ..., minArea: float = ..., maxArea: float = ..., minProbability: float = ..., nonMaxSuppression: bool = ..., minProbabilityDiff: float = ...) -> ERFilter: ...
164
+ def createERFilterNM1(filename: str | os.PathLike[str], thresholdDelta: int = ..., minArea: float = ..., maxArea: float = ..., minProbability: float = ..., nonMaxSuppression: bool = ..., minProbabilityDiff: float = ...) -> ERFilter: ...
164
165
 
165
166
  @_typing.overload
166
167
  def createERFilterNM2(cb: ERFilter.Callback, minProbability: float = ...) -> ERFilter: ...
167
168
  @_typing.overload
168
- def createERFilterNM2(filename: str, minProbability: float = ...) -> ERFilter: ...
169
+ def createERFilterNM2(filename: str | os.PathLike[str], minProbability: float = ...) -> ERFilter: ...
169
170
 
170
171
  def createOCRHMMTransitionsTable(vocabulary: str, lexicon: _typing.Sequence[str]) -> cv2.typing.MatLike: ...
171
172
 
@@ -174,9 +175,9 @@ def detectRegions(image: cv2.typing.MatLike, er_filter1: ERFilter, er_filter2: E
174
175
  @_typing.overload
175
176
  def detectRegions(image: cv2.UMat, er_filter1: ERFilter, er_filter2: ERFilter) -> _typing.Sequence[_typing.Sequence[cv2.typing.Point]]: ...
176
177
  @_typing.overload
177
- def detectRegions(image: cv2.typing.MatLike, er_filter1: ERFilter, er_filter2: ERFilter, method: int = ..., filename: str = ..., minProbability: float = ...) -> _typing.Sequence[cv2.typing.Rect]: ...
178
+ def detectRegions(image: cv2.typing.MatLike, er_filter1: ERFilter, er_filter2: ERFilter, method: int = ..., filename: str | os.PathLike[str] = ..., minProbability: float = ...) -> _typing.Sequence[cv2.typing.Rect]: ...
178
179
  @_typing.overload
179
- def detectRegions(image: cv2.UMat, er_filter1: ERFilter, er_filter2: ERFilter, method: int = ..., filename: str = ..., minProbability: float = ...) -> _typing.Sequence[cv2.typing.Rect]: ...
180
+ def detectRegions(image: cv2.UMat, er_filter1: ERFilter, er_filter2: ERFilter, method: int = ..., filename: str | os.PathLike[str] = ..., minProbability: float = ...) -> _typing.Sequence[cv2.typing.Rect]: ...
180
181
 
181
182
  @_typing.overload
182
183
  def detectTextSWT(input: cv2.typing.MatLike, dark_on_light: bool, draw: cv2.typing.MatLike | None = ..., chainBBs: cv2.typing.MatLike | None = ...) -> tuple[_typing.Sequence[cv2.typing.Rect], cv2.typing.MatLike, cv2.typing.MatLike]: ...
@@ -184,20 +185,20 @@ def detectTextSWT(input: cv2.typing.MatLike, dark_on_light: bool, draw: cv2.typi
184
185
  def detectTextSWT(input: cv2.UMat, dark_on_light: bool, draw: cv2.UMat | None = ..., chainBBs: cv2.UMat | None = ...) -> tuple[_typing.Sequence[cv2.typing.Rect], cv2.UMat, cv2.UMat]: ...
185
186
 
186
187
  @_typing.overload
187
- def erGrouping(image: cv2.typing.MatLike, channel: cv2.typing.MatLike, regions: _typing.Sequence[_typing.Sequence[cv2.typing.Point]], method: int = ..., filename: str = ..., minProbablity: float = ...) -> _typing.Sequence[cv2.typing.Rect]: ...
188
+ def erGrouping(image: cv2.typing.MatLike, channel: cv2.typing.MatLike, regions: _typing.Sequence[_typing.Sequence[cv2.typing.Point]], method: int = ..., filename: str | os.PathLike[str] = ..., minProbablity: float = ...) -> _typing.Sequence[cv2.typing.Rect]: ...
188
189
  @_typing.overload
189
- def erGrouping(image: cv2.UMat, channel: cv2.UMat, regions: _typing.Sequence[_typing.Sequence[cv2.typing.Point]], method: int = ..., filename: str = ..., minProbablity: float = ...) -> _typing.Sequence[cv2.typing.Rect]: ...
190
+ def erGrouping(image: cv2.UMat, channel: cv2.UMat, regions: _typing.Sequence[_typing.Sequence[cv2.typing.Point]], method: int = ..., filename: str | os.PathLike[str] = ..., minProbablity: float = ...) -> _typing.Sequence[cv2.typing.Rect]: ...
190
191
 
191
- def loadClassifierNM1(filename: str) -> ERFilter.Callback: ...
192
+ def loadClassifierNM1(filename: str | os.PathLike[str]) -> ERFilter.Callback: ...
192
193
 
193
- def loadClassifierNM2(filename: str) -> ERFilter.Callback: ...
194
+ def loadClassifierNM2(filename: str | os.PathLike[str]) -> ERFilter.Callback: ...
194
195
 
195
- def loadOCRBeamSearchClassifierCNN(filename: str) -> OCRBeamSearchDecoder.ClassifierCallback: ...
196
+ def loadOCRBeamSearchClassifierCNN(filename: str | os.PathLike[str]) -> OCRBeamSearchDecoder.ClassifierCallback: ...
196
197
 
197
- def loadOCRHMMClassifier(filename: str, classifier: int) -> OCRHMMDecoder.ClassifierCallback: ...
198
+ def loadOCRHMMClassifier(filename: str | os.PathLike[str], classifier: int) -> OCRHMMDecoder.ClassifierCallback: ...
198
199
 
199
- def loadOCRHMMClassifierCNN(filename: str) -> OCRHMMDecoder.ClassifierCallback: ...
200
+ def loadOCRHMMClassifierCNN(filename: str | os.PathLike[str]) -> OCRHMMDecoder.ClassifierCallback: ...
200
201
 
201
- def loadOCRHMMClassifierNM(filename: str) -> OCRHMMDecoder.ClassifierCallback: ...
202
+ def loadOCRHMMClassifierNM(filename: str | os.PathLike[str]) -> OCRHMMDecoder.ClassifierCallback: ...
202
203
 
203
204
 
cv2/typing/__init__.py CHANGED
@@ -58,12 +58,12 @@ __all__ = [
58
58
  "ExtractMetaCallback",
59
59
  ]
60
60
 
61
- import cv2.dnn
62
61
  import cv2.gapi.wip.draw
63
- import numpy
64
62
  import cv2
65
- import typing as _typing
63
+ import numpy
66
64
  import cv2.mat_wrapper
65
+ import typing as _typing
66
+ import cv2.dnn
67
67
 
68
68
 
69
69
  if _typing.TYPE_CHECKING:
cv2/utils/__init__.pyi CHANGED
@@ -6,6 +6,7 @@ import typing as _typing
6
6
 
7
7
 
8
8
  from cv2.utils import fs as fs
9
+ from cv2.utils import logging as logging
9
10
  from cv2.utils import nested as nested
10
11
 
11
12
 
@@ -0,0 +1,22 @@
1
+ __all__: list[str] = []
2
+
3
+ # Enumerations
4
+ LOG_LEVEL_SILENT: int
5
+ LOG_LEVEL_FATAL: int
6
+ LOG_LEVEL_ERROR: int
7
+ LOG_LEVEL_WARNING: int
8
+ LOG_LEVEL_INFO: int
9
+ LOG_LEVEL_DEBUG: int
10
+ LOG_LEVEL_VERBOSE: int
11
+ ENUM_LOG_LEVEL_FORCE_INT: int
12
+ LogLevel = int
13
+ """One of [LOG_LEVEL_SILENT, LOG_LEVEL_FATAL, LOG_LEVEL_ERROR, LOG_LEVEL_WARNING, LOG_LEVEL_INFO, LOG_LEVEL_DEBUG, LOG_LEVEL_VERBOSE, ENUM_LOG_LEVEL_FORCE_INT]"""
14
+
15
+
16
+
17
+ # Functions
18
+ def getLogLevel() -> LogLevel: ...
19
+
20
+ def setLogLevel(logLevel: LogLevel) -> LogLevel: ...
21
+
22
+
cv2/version.py CHANGED
@@ -1,4 +1,4 @@
1
- opencv_version = "4.12.0.88"
1
+ opencv_version = "4.13.0.90"
2
2
  contrib = True
3
3
  headless = False
4
4
  rolling = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: opencv-contrib-python
3
- Version: 4.12.0.88
3
+ Version: 4.13.0.90
4
4
  Summary: Wrapper package for OpenCV python bindings.
5
5
  Home-page: https://github.com/opencv/opencv-python
6
6
  Maintainer: OpenCV Team
@@ -28,6 +28,7 @@ Classifier: Programming Language :: Python :: 3.10
28
28
  Classifier: Programming Language :: Python :: 3.11
29
29
  Classifier: Programming Language :: Python :: 3.12
30
30
  Classifier: Programming Language :: Python :: 3.13
31
+ Classifier: Programming Language :: Python :: 3.14
31
32
  Classifier: Programming Language :: C++
32
33
  Classifier: Programming Language :: Python :: Implementation :: CPython
33
34
  Classifier: Topic :: Scientific/Engineering
@@ -38,7 +39,7 @@ Description-Content-Type: text/markdown
38
39
  License-File: LICENSE-3RD-PARTY.txt
39
40
  License-File: LICENSE.txt
40
41
  Requires-Dist: numpy<2.0; python_version < "3.9"
41
- Requires-Dist: numpy<2.3.0,>=2; python_version >= "3.9"
42
+ Requires-Dist: numpy>=2; python_version >= "3.9"
42
43
 
43
44
  [![Downloads](https://static.pepy.tech/badge/opencv-python)](http://pepy.tech/project/opencv-python)
44
45
 
@@ -1,19 +1,19 @@
1
1
  cv2/LICENSE-3RD-PARTY.txt,sha256=2OyIgyD8udmTF6d69KSjqRIIZ2Bn7B-pvBlnpSJBFzA,177945
2
2
  cv2/LICENSE.txt,sha256=7e8PrB6wjSnTRWP3JHQuB42iUT4ZYTOhLGrZ_wHiYQc,1090
3
3
  cv2/__init__.py,sha256=lXqRv9mP-wehDNeJt8XEaAZWhHa2HjTHrVagAJK5gaU,6793
4
- cv2/__init__.pyi,sha256=KyLe1kQ8r7A5dJPF5nemEgUEApfDTr5nW9Zd24mLYvw,325547
4
+ cv2/__init__.pyi,sha256=ig1iNnpeO3cV_8XElQ_JdD_7stXQiRqgcyaYXr97A10,331522
5
5
  cv2/config-3.py,sha256=3ijHtSE8yhSPCUaZFlhGEbPWbByMQyiAJZ1qOpI4AhM,748
6
6
  cv2/config.py,sha256=KO3cc3sMAbinm1M0ceC7QGljiWVaJxpK5IHcXWu1Gt0,123
7
- cv2/cv2.pyd,sha256=54MQQ9wyx65EISn4vB_BWj8ljmcA0QEflU69N5t0KSg,64262656
7
+ cv2/cv2.pyd,sha256=ufjH7Gsw9CiHyw2vyU8EwZDTbcnq25zzhxBpj35EY_U,66118656
8
8
  cv2/load_config_py2.py,sha256=e0zdTYwgVMiD16RafBWr7PRov5r8IDkfHs5p6dGLSJc,157
9
- cv2/load_config_py3.py,sha256=_1g6WHS-j4SOc8L2GzpxaAmVkmR5ybxDbmVlxcznygc,271
10
- cv2/opencv_videoio_ffmpeg4120.dll,sha256=jJOuUp9FxtPEJMMfb2-FSuGjEGg4AYRwmNM-rlqEI-k,25516032
9
+ cv2/load_config_py3.py,sha256=B0368grJTyyjgVOT3jo5SURHAzTFGoW5Uh9FLg4Xu4U,253
10
+ cv2/opencv_videoio_ffmpeg4130.dll,sha256=35260RFnj3U7iTL3MBCGavit9fXrnhS-d4z2ayW0bkQ,25699328
11
11
  cv2/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
12
- cv2/version.py,sha256=FbfA-hdVt7zB6rqiSFdqLSRIkN_3r_O0U4-BakaymAQ,96
12
+ cv2/version.py,sha256=VoiKQ-iLs7gFqc7pEMuZHqpYi1ESLO6sSp_15Y9fEXU,96
13
13
  cv2/Error/__init__.pyi,sha256=vQNfAGSIi0Hs_kO9KFV3zZv920KEBDcZpdOFnmkZkDg,4194
14
- cv2/aruco/__init__.pyi,sha256=uZyqIPk2Qer1Qud4x_j-nRPcBxRlYyDL-bchnYdSCl0,27898
15
- cv2/barcode/__init__.pyi,sha256=-tWHNaRNKDmy741nNDClIeTepyLgToWbbifRL9F2668,1480
16
- cv2/bgsegm/__init__.pyi,sha256=d5xPW2oUFLEEH38H_mZTMTzw4h7T865zMaMFjxGWBrg,7439
14
+ cv2/aruco/__init__.pyi,sha256=0EwyzLCwRwe-lygHRZRIWS8MJW-FegN6YxgEKZQY2wA,28719
15
+ cv2/barcode/__init__.pyi,sha256=0JM8vaNeUV55UxarJ56jR87HmPiD9wuaXRynCm0aTl0,1529
16
+ cv2/bgsegm/__init__.pyi,sha256=PgFxM1klzoMuToeehE3d2d550IW5F94aUy0wzuaY__w,9613
17
17
  cv2/bioinspired/__init__.pyi,sha256=vM8f2ZZcQQN5kWwcw0h1jIoFa1djNa9PHl35REJFdlE,5154
18
18
  cv2/ccm/__init__.pyi,sha256=KPMtVRNoTarobq2y54rPeGoMS71Tf4qiZLu_jIqweDk,6462
19
19
  cv2/colored_kinfu/__init__.pyi,sha256=JYxLs-JCjV-7wW_X3xmVN7unHwSnD9M9IEpClXJdezc,3369
@@ -38,13 +38,13 @@ cv2/data/haarcascade_smile.xml,sha256=TKHzBOq9C1rjAYDIGstT4Walhn5b4Xsxa9PzLP34fY
38
38
  cv2/data/haarcascade_upperbody.xml,sha256=cyirT9sVkvU9mNfqWxudkOAa9dlfISrzeMfrV5BIu18,785819
39
39
  cv2/datasets/__init__.pyi,sha256=wVphAB3jhFVxVzuoxutX08nv-D6wvl86eGXR67x8R0M,1470
40
40
  cv2/detail/__init__.pyi,sha256=IG4S-577ahgwh9UlVNZyScpDKo2l97-BLcrRTbJ0_JY,24021
41
- cv2/dnn/__init__.pyi,sha256=6rdBdBxevYLqp9DYxX6Kd3bKoFHPI2cqC-ANBZfI3gc,23647
41
+ cv2/dnn/__init__.pyi,sha256=ZZbrf5doRps0jOeRMEjuWhYLV-3prxzhWrE5btF_tDU,24694
42
42
  cv2/dnn_superres/__init__.pyi,sha256=n8vwq542eBpBumO_3TuHijF0NIR9SLFhVoou1ze7mFQ,1212
43
43
  cv2/dpm/__init__.pyi,sha256=aJZBYGvoQCaVA5Zvnvst-DWaChRV28QJYUdtVQQZFiI,120
44
44
  cv2/dynafu/__init__.pyi,sha256=lFpp15cozT0SCe0Dy9yyl3DSDty6Rnja5gICAOUWZsw,1524
45
- cv2/face/__init__.pyi,sha256=WpN1u4oDJhJVXMNyr-48PIEHXRL1CbLrUQlMgv6O3aI,7609
46
- cv2/fisheye/__init__.pyi,sha256=_yXNOowvjPflSnkcpV_8d1hYgScR8A2fAzmM3p4Kcy8,10019
47
- cv2/flann/__init__.pyi,sha256=76rbelMvJhD-DlSPL4X6iMCrDUA4gJU3u89wAIwv6dk,2741
45
+ cv2/face/__init__.pyi,sha256=yZYoKFIAUz4lbkCG9WRSrZ904B9D7s1CeSBuWYERAHc,7753
46
+ cv2/fisheye/__init__.pyi,sha256=EaSPpM7ajbVtwDbGLbB1ZJi8o_9_AdsZ6jsEVCd5iyI,10033
47
+ cv2/flann/__init__.pyi,sha256=J03AXPrC4cXrFc8zg2Y8FjgKQeB07THQ3WefP0ePaM4,2809
48
48
  cv2/ft/__init__.pyi,sha256=R-1xVIIOrznHPfk2Q0ljIeO8zCu3en9rDPh9ioFAhzs,5740
49
49
  cv2/gapi/__init__.py,sha256=dPX9KhQqMbCkcHtwwL42N_D7-KlA7sQ3Lnuoflpc7bg,10621
50
50
  cv2/gapi/__init__.pyi,sha256=xYmFoArWh9r_yxGCbn7HNzB7Cd680FCE5djtYKoenUM,14985
@@ -68,12 +68,13 @@ cv2/gapi/render/__init__.pyi,sha256=tGz4zgSK_JHLfRXydFfO7_Q-halDGTYzZYE2VU9tSsc,
68
68
  cv2/gapi/render/ocv/__init__.pyi,sha256=TjQnus2HhRKbZksmRWx8CjEZqLoXuKXILBF3vixp_XI,102
69
69
  cv2/gapi/streaming/__init__.pyi,sha256=tTY9UO8_OIpoeMwKM-2IJu6shwY5JQ0QsD-sMvWE8es,855
70
70
  cv2/gapi/video/__init__.pyi,sha256=byBGGnlpcEpg9Uvkiuogs29zn7Ettu7a54DQ5sTbXxg,160
71
- cv2/gapi/wip/__init__.pyi,sha256=2tPCiodQeKqsW30msJTQIWZuG582wVNo9g45cq8_G3o,1127
71
+ cv2/gapi/wip/__init__.pyi,sha256=argZYIlDNMSNnGV6CHxiq4Ch5fOnI_1cjfHSydDhHD4,1188
72
72
  cv2/gapi/wip/draw/__init__.pyi,sha256=wr-aOE4cPg3-DhASW1VSd9W8Jz9gcyc7wTU18lTzadA,3281
73
73
  cv2/gapi/wip/gst/__init__.pyi,sha256=xnEGuDNceIX6TV3gwtoa_8MufhN8K3I_wl8Nli60HvQ,484
74
74
  cv2/gapi/wip/onevpl/__init__.pyi,sha256=6pFrmrGjjqy16UWfP5jsCs_pcFXM4IkrmS_IHJ_LyE0,413
75
75
  cv2/hfs/__init__.pyi,sha256=VCUplKxcVvm13CIklD5r6lIZgxuJsxua8xqcfH9zVNc,1669
76
76
  cv2/img_hash/__init__.pyi,sha256=DKK4u8k6PzH_9jQDOywKYxbEOyxaEezPhxM-onSMb6E,3795
77
+ cv2/instr/__init__.pyi,sha256=DzvWQcOqamnrlu9a83l_m46Mb2MABRaeiIAgoCAUgTs,461
77
78
  cv2/intensity_transform/__init__.pyi,sha256=BQVkITtSk0BUZ5XwRfY-B2xiJo16R23YHA8eC6pjUWY,1139
78
79
  cv2/ipp/__init__.pyi,sha256=nuM46LgRNAVzwz_N17ekKzM-UWYiMl6f0WvMT6YwROo,237
79
80
  cv2/kinfu/__init__.pyi,sha256=uPyo8OAwofdAo14UJtHE6APABvflfYfO5-pMQotxjfM,4213
@@ -86,7 +87,7 @@ cv2/mat_wrapper/__init__.py,sha256=xEcH6hx281UYrlcrbBmJ12wq2n6FBDLkGAXf4RLU4wY,1
86
87
  cv2/mcc/__init__.pyi,sha256=x4_6kR6_fxZCw0EmJljFf9DaU7Z9RrFudbv1pgMI5WQ,3288
87
88
  cv2/misc/__init__.py,sha256=SVvXlZTM4XRnPjcshcTdj0_98rOnP9RiOVWw1V3g1GI,38
88
89
  cv2/misc/version.py,sha256=yTpBh5P8sVubQxbAdBuDNnQOSQ6U87fR6-jNX28jgVw,95
89
- cv2/ml/__init__.pyi,sha256=80LEjHnLHhPKI8wOyjiLk14WHl7oCgQ9xAwXCLP6YxE,23498
90
+ cv2/ml/__init__.pyi,sha256=Y-DTFUzx4DAT_tL2_qxiGKgFc--ND9sOKQ97-qk59kc,23699
90
91
  cv2/motempl/__init__.pyi,sha256=VEYXEtXMdAQ94cSf4YyPZCmjeikb9N0Zwdg4upIvAu8,1599
91
92
  cv2/multicalib/__init__.pyi,sha256=MAh8Hf_qjyxcS1ECyIzLWk2JrU2U6IWb6AO5quTViUI,212
92
93
  cv2/ocl/__init__.pyi,sha256=21xbasu56BrLPuqkfeIAVe1gCWByzg4ngBL5Kc4ETnA,5779
@@ -96,22 +97,23 @@ cv2/optflow/__init__.pyi,sha256=9w168EwR4CX6DYWMxbg-RhERVFaT_-OZTakRdqEE4do,1070
96
97
  cv2/parallel/__init__.pyi,sha256=PyChkEzYlrHr5UsgQeh9Fh8E43XjURc0uY8It3IHJ3c,135
97
98
  cv2/phase_unwrapping/__init__.pyi,sha256=ZciUeaXnYC_jEBKhwFz-HReD7j1jIMDwTxBkaVjXqs8,1233
98
99
  cv2/plot/__init__.pyi,sha256=wfgIPNW2BJj0GI8GTi8225oVyKlwmpyOx5mXyS8mYqg,2010
99
- cv2/ppf_match_3d/__init__.pyi,sha256=u_ibqp9OJ1KZtz54zwqUxxsFUE4p-rCVgLjwv00AaPA,3215
100
- cv2/quality/__init__.pyi,sha256=g8VqimrtI5tZD4zaXS3fIeGUJrHzKuDj4QOlMg15smE,5431
100
+ cv2/ppf_match_3d/__init__.pyi,sha256=GPUz8G0r7zglKDrTrLidvtzlqE0oyzj0-h9nA9aIuiY,3283
101
+ cv2/quality/__init__.pyi,sha256=MSbz77h3FMAILjs_qObfTdUZuTHwTVXaoQOGGMXp1Q8,5655
101
102
  cv2/rapid/__init__.pyi,sha256=74g6oO7aIyFwaIZDsY5hmtFcm2GOKp9swnPBPW--DbQ,5059
102
103
  cv2/reg/__init__.pyi,sha256=Qgb96k3kLUB752xoVLnOnR88jWzy6H-PWZwvBuePb9Y,6519
103
104
  cv2/rgbd/__init__.pyi,sha256=cTEk4GpsGJ8XCP3q1z0HPF-nmDDUF-ilOgdC2FDjGeo,17353
104
- cv2/saliency/__init__.pyi,sha256=Ez64S5qdqqXN26S1p_VSa6ZD30Le6qN5PzvrTAsPZtA,3758
105
+ cv2/saliency/__init__.pyi,sha256=QBuBCvdOjH6XR39GiatJytmgCYJ9SW62sX_FLaD_urA,3744
105
106
  cv2/samples/__init__.pyi,sha256=HnrSW6_dgL9sYkyCZ2qx2SoLNrA05oaI4tCSS4i2TOQ,336
106
107
  cv2/segmentation/__init__.pyi,sha256=lvZlHkp75KCijtkNZu3HkOmH9_pN6emzFZ0e421bJ2I,1778
107
108
  cv2/signal/__init__.pyi,sha256=4Dk67p6HzAHCKpu_4D_pfKplcl_yo4u3t-LwvwPLjcc,415
108
- cv2/stereo/__init__.pyi,sha256=h4VWeISZFGYrKKfED8f6plyt9AZRcbOuiyuj8tyLMQ4,2163
109
+ cv2/stereo/__init__.pyi,sha256=Wum0TM7e_iYT4xr4TkPLAFPHlxx5gt6jtilo5MKrotk,2212
109
110
  cv2/structured_light/__init__.pyi,sha256=4qQ9MjebJ9cjUbuXqm99-JdTdqWA6f9VmmzUaJSlkE4,4547
110
- cv2/text/__init__.pyi,sha256=nA5aIm_1iUeJqz_x_a2XkUHH0XIQV3eSymxCmmQxbGk,9438
111
- cv2/typing/__init__.py,sha256=LMRAlxg01t1RBCqBwotrT4fcpexofCalVVQDj9-cF_k,5545
111
+ cv2/text/__init__.pyi,sha256=3B6TNu2iJX-RhnGic8MuZyGPWQ_eIcEtjbt84NRwNuo,9715
112
+ cv2/typing/__init__.py,sha256=tHTKyyoY-3Ip9AjrNn5doLFKHjZjAFr4zeeadq-Asrk,5545
112
113
  cv2/utils/__init__.py,sha256=KxaZCzW1aa8cpyOdwQ97JOxi8npGYmseLxJx0uGqNVQ,344
113
- cv2/utils/__init__.pyi,sha256=A2n4iAX8yr1EA1fOuGdKzIE39uM1gIMbRvlzW-DPZuk,3701
114
+ cv2/utils/__init__.pyi,sha256=n9rUPU4wJra4kCJ_q73c7APQh8ovmEZcCuq7Sow_VQ0,3743
114
115
  cv2/utils/fs/__init__.pyi,sha256=BPwL654636kP4k95U4QPp7oMZcgJ2QDIYrb9F8h4c7I,93
116
+ cv2/utils/logging/__init__.pyi,sha256=BRE1x-vI6p3QH8X-AkTurkcnO47ypKhq8VshG0I746I,527
115
117
  cv2/utils/nested/__init__.pyi,sha256=u3osqQeekndY9_-xxK1PAD44dXZaGLYhyfeFYbV4npA,604
116
118
  cv2/videoio_registry/__init__.pyi,sha256=_ZZH2FSYJNuOWgDSLTTfUMkycnYYzXZufjyg9HmlQNw,993
117
119
  cv2/videostab/__init__.pyi,sha256=EPiTC8NADassKZjIxf_T-Mr13Y-eKTliHRqrNFoq7yk,359
@@ -120,9 +122,9 @@ cv2/xfeatures2d/__init__.pyi,sha256=uguHHO9zGR2BN0ZCE-G3CXvZTIyt6Hi3AYqQOW4frnY,
120
122
  cv2/ximgproc/__init__.pyi,sha256=12TExSxpXF_humFgxK9J8KsAVJ4yJwZvw8WReY7ie0Y,33381
121
123
  cv2/ximgproc/segmentation/__init__.pyi,sha256=v6ju1fo9wwcnElKYZxkdNdVwTaM0y9JPLlDhgQchgP4,4563
122
124
  cv2/xphoto/__init__.pyi,sha256=NuwaRzJKl_mlPg7sX56xB0Lr7DgpuvVZRsELinzHlvI,5706
123
- opencv_contrib_python-4.12.0.88.dist-info/LICENSE-3RD-PARTY.txt,sha256=2OyIgyD8udmTF6d69KSjqRIIZ2Bn7B-pvBlnpSJBFzA,177945
124
- opencv_contrib_python-4.12.0.88.dist-info/LICENSE.txt,sha256=7e8PrB6wjSnTRWP3JHQuB42iUT4ZYTOhLGrZ_wHiYQc,1090
125
- opencv_contrib_python-4.12.0.88.dist-info/METADATA,sha256=WS82G_4067DlXd-o94-9ORARF57AZf9MghlYqMt8fB4,20006
126
- opencv_contrib_python-4.12.0.88.dist-info/WHEEL,sha256=3n2S71C294Tj2g93sB3qDDL3szZn04oBhsjcovPhGI8,90
127
- opencv_contrib_python-4.12.0.88.dist-info/top_level.txt,sha256=SY8vrf_sYOg99OP9euhz7q36pPy_2VK5vbeEWXwwSoc,4
128
- opencv_contrib_python-4.12.0.88.dist-info/RECORD,,
125
+ opencv_contrib_python-4.13.0.90.dist-info/LICENSE-3RD-PARTY.txt,sha256=2OyIgyD8udmTF6d69KSjqRIIZ2Bn7B-pvBlnpSJBFzA,177945
126
+ opencv_contrib_python-4.13.0.90.dist-info/LICENSE.txt,sha256=7e8PrB6wjSnTRWP3JHQuB42iUT4ZYTOhLGrZ_wHiYQc,1090
127
+ opencv_contrib_python-4.13.0.90.dist-info/METADATA,sha256=7o8675YPBmwSvQLA5XTqVooNFzU4y5bvlq33vhVh6nI,20051
128
+ opencv_contrib_python-4.13.0.90.dist-info/WHEEL,sha256=3n2S71C294Tj2g93sB3qDDL3szZn04oBhsjcovPhGI8,90
129
+ opencv_contrib_python-4.13.0.90.dist-info/top_level.txt,sha256=SY8vrf_sYOg99OP9euhz7q36pPy_2VK5vbeEWXwwSoc,4
130
+ opencv_contrib_python-4.13.0.90.dist-info/RECORD,,