onnx 1.16.2__cp311-cp311-win32.whl → 1.18.0__cp311-cp311-win32.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of onnx might be problematic. Click here for more details.
- onnx/__init__.py +17 -1
- onnx/_custom_element_types.py +69 -0
- onnx/backend/base.py +28 -17
- onnx/backend/sample/ops/__init__.py +10 -7
- onnx/backend/sample/ops/abs.py +1 -0
- onnx/backend/test/__init__.py +1 -0
- onnx/backend/test/case/__init__.py +2 -2
- onnx/backend/test/case/base.py +6 -5
- onnx/backend/test/case/model/__init__.py +11 -6
- onnx/backend/test/case/model/expand.py +5 -1
- onnx/backend/test/case/model/gradient.py +1 -0
- onnx/backend/test/case/model/sequence.py +28 -26
- onnx/backend/test/case/model/shrink.py +1 -0
- onnx/backend/test/case/model/sign.py +1 -0
- onnx/backend/test/case/model/single-relu.py +1 -0
- onnx/backend/test/case/model/stringnormalizer.py +5 -2
- onnx/backend/test/case/node/__init__.py +51 -43
- onnx/backend/test/case/node/_image_decoder_data.py +1 -0
- onnx/backend/test/case/node/abs.py +2 -2
- onnx/backend/test/case/node/acos.py +1 -0
- onnx/backend/test/case/node/acosh.py +1 -0
- onnx/backend/test/case/node/adagrad.py +3 -2
- onnx/backend/test/case/node/adam.py +4 -1
- onnx/backend/test/case/node/add.py +20 -7
- onnx/backend/test/case/node/affinegrid.py +1 -0
- onnx/backend/test/case/node/ai_onnx_ml/array_feature_extractor.py +1 -0
- onnx/backend/test/case/node/ai_onnx_ml/binarizer.py +1 -0
- onnx/backend/test/case/node/ai_onnx_ml/label_encoder.py +1 -0
- onnx/backend/test/case/node/ai_onnx_ml/tree_ensemble.py +1 -0
- onnx/backend/test/case/node/and.py +1 -0
- onnx/backend/test/case/node/argmax.py +1 -0
- onnx/backend/test/case/node/argmin.py +1 -0
- onnx/backend/test/case/node/asin.py +1 -0
- onnx/backend/test/case/node/asinh.py +1 -0
- onnx/backend/test/case/node/atan.py +1 -0
- onnx/backend/test/case/node/atanh.py +1 -0
- onnx/backend/test/case/node/attention.py +1399 -0
- onnx/backend/test/case/node/averagepool.py +96 -14
- onnx/backend/test/case/node/batchnorm.py +3 -2
- onnx/backend/test/case/node/bernoulli.py +2 -1
- onnx/backend/test/case/node/bitshift.py +1 -0
- onnx/backend/test/case/node/bitwiseand.py +2 -1
- onnx/backend/test/case/node/bitwisenot.py +2 -1
- onnx/backend/test/case/node/bitwiseor.py +2 -1
- onnx/backend/test/case/node/bitwisexor.py +2 -1
- onnx/backend/test/case/node/blackmanwindow.py +13 -3
- onnx/backend/test/case/node/cast.py +61 -2
- onnx/backend/test/case/node/castlike.py +1 -0
- onnx/backend/test/case/node/ceil.py +1 -0
- onnx/backend/test/case/node/celu.py +1 -0
- onnx/backend/test/case/node/center_crop_pad.py +1 -0
- onnx/backend/test/case/node/clip.py +12 -0
- onnx/backend/test/case/node/col2im.py +1 -1
- onnx/backend/test/case/node/compress.py +1 -0
- onnx/backend/test/case/node/concat.py +6 -2
- onnx/backend/test/case/node/constant.py +1 -0
- onnx/backend/test/case/node/constantofshape.py +1 -0
- onnx/backend/test/case/node/conv.py +1 -0
- onnx/backend/test/case/node/convinteger.py +1 -0
- onnx/backend/test/case/node/convtranspose.py +135 -0
- onnx/backend/test/case/node/cos.py +1 -0
- onnx/backend/test/case/node/cosh.py +1 -0
- onnx/backend/test/case/node/cumsum.py +25 -0
- onnx/backend/test/case/node/deformconv.py +17 -26
- onnx/backend/test/case/node/depthtospace.py +1 -0
- onnx/backend/test/case/node/dequantizelinear.py +23 -0
- onnx/backend/test/case/node/det.py +1 -0
- onnx/backend/test/case/node/dft.py +1 -0
- onnx/backend/test/case/node/div.py +26 -0
- onnx/backend/test/case/node/dropout.py +2 -1
- onnx/backend/test/case/node/dynamicquantizelinear.py +1 -0
- onnx/backend/test/case/node/einsum.py +2 -3
- onnx/backend/test/case/node/elu.py +1 -0
- onnx/backend/test/case/node/equal.py +31 -0
- onnx/backend/test/case/node/erf.py +1 -0
- onnx/backend/test/case/node/exp.py +1 -0
- onnx/backend/test/case/node/expand.py +1 -0
- onnx/backend/test/case/node/eyelike.py +1 -0
- onnx/backend/test/case/node/flatten.py +1 -0
- onnx/backend/test/case/node/floor.py +1 -0
- onnx/backend/test/case/node/gather.py +1 -0
- onnx/backend/test/case/node/gatherelements.py +2 -1
- onnx/backend/test/case/node/gathernd.py +1 -0
- onnx/backend/test/case/node/gelu.py +1 -0
- onnx/backend/test/case/node/gemm.py +3 -4
- onnx/backend/test/case/node/globalaveragepool.py +1 -0
- onnx/backend/test/case/node/globalmaxpool.py +1 -0
- onnx/backend/test/case/node/greater.py +31 -0
- onnx/backend/test/case/node/greater_equal.py +31 -0
- onnx/backend/test/case/node/gridsample.py +1 -0
- onnx/backend/test/case/node/groupnormalization.py +1 -0
- onnx/backend/test/case/node/gru.py +5 -4
- onnx/backend/test/case/node/hammingwindow.py +13 -2
- onnx/backend/test/case/node/hannwindow.py +10 -2
- onnx/backend/test/case/node/hardmax.py +1 -0
- onnx/backend/test/case/node/hardsigmoid.py +1 -0
- onnx/backend/test/case/node/hardswish.py +1 -0
- onnx/backend/test/case/node/identity.py +1 -0
- onnx/backend/test/case/node/if.py +2 -1
- onnx/backend/test/case/node/instancenorm.py +1 -0
- onnx/backend/test/case/node/isinf.py +1 -0
- onnx/backend/test/case/node/isnan.py +1 -0
- onnx/backend/test/case/node/layernormalization.py +3 -2
- onnx/backend/test/case/node/leakyrelu.py +1 -0
- onnx/backend/test/case/node/less.py +31 -0
- onnx/backend/test/case/node/less_equal.py +31 -0
- onnx/backend/test/case/node/log.py +1 -0
- onnx/backend/test/case/node/logsoftmax.py +1 -0
- onnx/backend/test/case/node/loop.py +5 -4
- onnx/backend/test/case/node/lppool.py +25 -5
- onnx/backend/test/case/node/lrn.py +1 -0
- onnx/backend/test/case/node/lstm.py +5 -4
- onnx/backend/test/case/node/matmul.py +1 -0
- onnx/backend/test/case/node/matmulinteger.py +1 -0
- onnx/backend/test/case/node/max.py +1 -0
- onnx/backend/test/case/node/maxpool.py +18 -6
- onnx/backend/test/case/node/maxunpool.py +1 -0
- onnx/backend/test/case/node/mean.py +1 -0
- onnx/backend/test/case/node/meanvariancenormalization.py +1 -0
- onnx/backend/test/case/node/melweightmatrix.py +1 -0
- onnx/backend/test/case/node/min.py +1 -0
- onnx/backend/test/case/node/mish.py +1 -0
- onnx/backend/test/case/node/mod.py +1 -0
- onnx/backend/test/case/node/momentum.py +3 -2
- onnx/backend/test/case/node/mul.py +26 -0
- onnx/backend/test/case/node/neg.py +1 -0
- onnx/backend/test/case/node/negativeloglikelihoodloss.py +4 -1
- onnx/backend/test/case/node/nonmaxsuppression.py +1 -0
- onnx/backend/test/case/node/nonzero.py +1 -0
- onnx/backend/test/case/node/not.py +1 -0
- onnx/backend/test/case/node/onehot.py +2 -1
- onnx/backend/test/case/node/optionalgetelement.py +3 -2
- onnx/backend/test/case/node/optionalhaselement.py +2 -3
- onnx/backend/test/case/node/or.py +1 -0
- onnx/backend/test/case/node/pad.py +3 -2
- onnx/backend/test/case/node/pow.py +1 -0
- onnx/backend/test/case/node/prelu.py +1 -0
- onnx/backend/test/case/node/qlinearconv.py +1 -0
- onnx/backend/test/case/node/qlinearmatmul.py +1 -0
- onnx/backend/test/case/node/quantizelinear.py +39 -0
- onnx/backend/test/case/node/rangeop.py +1 -0
- onnx/backend/test/case/node/reciprocal.py +1 -0
- onnx/backend/test/case/node/reduce_log_sum.py +1 -0
- onnx/backend/test/case/node/reduce_log_sum_exp.py +1 -0
- onnx/backend/test/case/node/reducel1.py +1 -0
- onnx/backend/test/case/node/reducel2.py +1 -0
- onnx/backend/test/case/node/reducemax.py +2 -1
- onnx/backend/test/case/node/reducemean.py +1 -0
- onnx/backend/test/case/node/reducemin.py +1 -0
- onnx/backend/test/case/node/reduceprod.py +1 -0
- onnx/backend/test/case/node/reducesum.py +2 -1
- onnx/backend/test/case/node/reducesumsquare.py +1 -0
- onnx/backend/test/case/node/regex_full_match.py +1 -0
- onnx/backend/test/case/node/relu.py +1 -0
- onnx/backend/test/case/node/reshape.py +1 -0
- onnx/backend/test/case/node/resize.py +3 -2
- onnx/backend/test/case/node/reversesequence.py +1 -0
- onnx/backend/test/case/node/rmsnormalization.py +126 -0
- onnx/backend/test/case/node/rnn.py +5 -4
- onnx/backend/test/case/node/roialign.py +2 -1
- onnx/backend/test/case/node/rotaryembedding.py +231 -0
- onnx/backend/test/case/node/round.py +4 -3
- onnx/backend/test/case/node/scan.py +1 -0
- onnx/backend/test/case/node/scatter.py +1 -0
- onnx/backend/test/case/node/scatterelements.py +7 -3
- onnx/backend/test/case/node/scatternd.py +1 -0
- onnx/backend/test/case/node/selu.py +1 -0
- onnx/backend/test/case/node/sequence_map.py +1 -0
- onnx/backend/test/case/node/sequenceinsert.py +4 -3
- onnx/backend/test/case/node/shape.py +1 -0
- onnx/backend/test/case/node/shrink.py +1 -0
- onnx/backend/test/case/node/sigmoid.py +1 -0
- onnx/backend/test/case/node/sign.py +1 -0
- onnx/backend/test/case/node/sin.py +1 -0
- onnx/backend/test/case/node/sinh.py +1 -0
- onnx/backend/test/case/node/size.py +1 -0
- onnx/backend/test/case/node/slice.py +1 -0
- onnx/backend/test/case/node/softmax.py +1 -0
- onnx/backend/test/case/node/softmaxcrossentropy.py +4 -1
- onnx/backend/test/case/node/softplus.py +1 -0
- onnx/backend/test/case/node/softsign.py +1 -0
- onnx/backend/test/case/node/spacetodepth.py +1 -0
- onnx/backend/test/case/node/split.py +1 -0
- onnx/backend/test/case/node/splittosequence.py +1 -0
- onnx/backend/test/case/node/sqrt.py +1 -0
- onnx/backend/test/case/node/squeeze.py +1 -0
- onnx/backend/test/case/node/stft.py +4 -1
- onnx/backend/test/case/node/string_concat.py +1 -0
- onnx/backend/test/case/node/string_split.py +1 -0
- onnx/backend/test/case/node/stringnormalizer.py +1 -0
- onnx/backend/test/case/node/sub.py +26 -0
- onnx/backend/test/case/node/sum.py +1 -0
- onnx/backend/test/case/node/tan.py +1 -0
- onnx/backend/test/case/node/tanh.py +1 -0
- onnx/backend/test/case/node/tfidfvectorizer.py +1 -0
- onnx/backend/test/case/node/thresholdedrelu.py +1 -0
- onnx/backend/test/case/node/tile.py +1 -0
- onnx/backend/test/case/node/topk.py +130 -2
- onnx/backend/test/case/node/transpose.py +1 -0
- onnx/backend/test/case/node/trilu.py +3 -2
- onnx/backend/test/case/node/unique.py +40 -1
- onnx/backend/test/case/node/unsqueeze.py +1 -0
- onnx/backend/test/case/node/upsample.py +1 -0
- onnx/backend/test/case/node/where.py +1 -0
- onnx/backend/test/case/node/xor.py +1 -0
- onnx/backend/test/case/test_case.py +11 -7
- onnx/backend/test/case/utils.py +6 -4
- onnx/backend/test/cmd_tools.py +1 -0
- onnx/backend/test/data/node/test_acos/model.onnx +0 -0
- onnx/backend/test/data/node/test_acos_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_acosh/model.onnx +0 -0
- onnx/backend/test/data/node/test_acosh_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_asin/model.onnx +0 -0
- onnx/backend/test/data/node/test_asin_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_asinh/model.onnx +0 -0
- onnx/backend/test/data/node/test_asinh_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_atan/model.onnx +0 -0
- onnx/backend/test/data/node/test_atan_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_atanh/model.onnx +0 -0
- onnx/backend/test/data/node/test_atanh_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_attn_mask/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_attn_mask/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_attn_mask/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_attn_mask/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_attn_mask/test_data_set_0/input_3.pb +1 -0
- onnx/backend/test/data/node/test_attention_3d_attn_mask/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_attn_mask_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_attn_mask_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_attn_mask_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_attn_mask_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_attn_mask_expanded/test_data_set_0/input_3.pb +1 -0
- onnx/backend/test/data/node/test_attention_3d_attn_mask_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_causal/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_causal/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_causal/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_causal/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_causal/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_causal_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_causal_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_causal_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_causal_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_causal_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask/test_data_set_0/input_3.pb +1 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask_expanded/test_data_set_0/input_3.pb +1 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_causal/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_causal/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_causal/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_causal/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_causal/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_causal_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_causal_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_causal_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_causal_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_causal_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_scaled/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_scaled/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_scaled/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_scaled/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_scaled/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_scaled_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_scaled_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_scaled_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_scaled_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_scaled_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_softcap/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_softcap/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_softcap/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_softcap/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_softcap/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_softcap_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_softcap_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_softcap_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_softcap_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_softcap_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_scaled/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_scaled/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_scaled/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_scaled/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_scaled/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_scaled_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_scaled_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_scaled_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_scaled_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_scaled_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_softcap/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_softcap/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_softcap/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_softcap/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_softcap/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_softcap_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_softcap_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_softcap_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_softcap_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_softcap_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/output_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/output_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/output_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/output_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/output_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask/test_data_set_0/input_3.pb +1 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask_bool/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask_bool/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask_bool/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask_bool/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask_bool/test_data_set_0/input_3.pb +1 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask_bool/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask_bool_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask_bool_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask_bool_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask_bool_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask_bool_expanded/test_data_set_0/input_3.pb +1 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask_bool_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask_expanded/test_data_set_0/input_3.pb +1 -0
- onnx/backend/test/data/node/test_attention_4d_attn_mask_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_causal/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_causal/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_causal/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_causal/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_causal/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_causal_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_causal_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_causal_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_causal_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_causal_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask/test_data_set_0/input_3.pb +1 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask_expanded/test_data_set_0/input_3.pb +1 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_causal/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_causal/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_causal/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_causal/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_causal/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_causal_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_causal_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_causal_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_causal_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_causal_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_scaled/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_scaled/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_scaled/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_scaled/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_scaled/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_scaled_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_scaled_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_scaled_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_scaled_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_scaled_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_softcap/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_softcap/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_softcap/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_softcap/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_softcap/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_softcap_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_softcap_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_softcap_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_softcap_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_softcap_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_scaled/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_scaled/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_scaled/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_scaled/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_scaled/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_scaled_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_scaled_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_scaled_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_scaled_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_scaled_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_softcap/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_softcap/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_softcap/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_softcap/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_softcap/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_softcap_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_softcap_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_softcap_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_softcap_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_softcap_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/output_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_5.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_3.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias/test_data_set_0/input_3.pb +1 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias_expanded/test_data_set_0/input_3.pb +1 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias_expanded/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_expanded/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap/test_data_set_0/input_3.pb +1 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap_expanded/test_data_set_0/input_3.pb +1 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap_expanded/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax/test_data_set_0/input_3.pb +1 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax_expanded/test_data_set_0/input_3.pb +1 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax_expanded/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_averagepool_1d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_ceil/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_ceil_last_window_starts_on_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_ceil_last_window_starts_on_pad/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_averagepool_2d_ceil_last_window_starts_on_pad/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_averagepool_2d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_dilations/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_pads/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_pads_count_include_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_precomputed_pads/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_precomputed_pads_count_include_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_precomputed_same_upper/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_precomputed_strides/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_same_lower/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_same_upper/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_strides/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_3d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_3d_dilations_large_count_include_pad_is_0_ceil_mode_is_False/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_3d_dilations_large_count_include_pad_is_0_ceil_mode_is_True/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_3d_dilations_large_count_include_pad_is_1_ceil_mode_is_False/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_3d_dilations_large_count_include_pad_is_1_ceil_mode_is_True/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_3d_dilations_large_count_include_pad_is_1_ceil_mode_is_True/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_averagepool_3d_dilations_small/model.onnx +0 -0
- onnx/backend/test/data/node/test_basic_conv_with_padding/model.onnx +0 -0
- onnx/backend/test/data/node/test_basic_conv_without_padding/model.onnx +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_with_padding/model.onnx +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_without_padding/model.onnx +0 -0
- onnx/backend/test/data/node/test_bernoulli/model.onnx +0 -0
- onnx/backend/test/data/node/test_bernoulli_double/model.onnx +0 -0
- onnx/backend/test/data/node/test_bernoulli_double_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_bernoulli_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_bernoulli_seed/model.onnx +0 -0
- onnx/backend/test/data/node/test_bernoulli_seed_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_BFLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT4E2M1/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT4E2M1/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT4E2M1/test_data_set_0/output_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT4E2M1_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT4E2M1_to_FLOAT/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_FLOAT4E2M1_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT4E2M1_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT4E2M1_to_FLOAT16/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_FLOAT4E2M1_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_BFLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT4E2M1/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT4E2M1/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT4E2M1/test_data_set_0/output_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_cast_FLOAT_to_STRING/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/test_data_set_0/input_0.pb +1 -1
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/test_data_set_0/input_0.pb +1 -1
- onnx/backend/test/data/node/test_cast_INT4_to_INT8/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_INT8/test_data_set_0/input_0.pb +1 -1
- onnx/backend/test/data/node/test_cast_STRING_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_clip_min_greater_than_max/model.onnx +0 -0
- onnx/backend/test/data/node/test_clip_min_greater_than_max/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_clip_min_greater_than_max/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_clip_min_greater_than_max/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_clip_min_greater_than_max/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_clip_min_greater_than_max_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_clip_min_greater_than_max_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_clip_min_greater_than_max_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_clip_min_greater_than_max_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_clip_min_greater_than_max_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_constant/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_constantofshape_float_ones/model.onnx +0 -0
- onnx/backend/test/data/node/test_constantofshape_int_shape_zero/model.onnx +0 -0
- onnx/backend/test/data/node/test_constantofshape_int_zeros/model.onnx +0 -0
- onnx/backend/test/data/node/test_conv_with_autopad_same/model.onnx +0 -0
- onnx/backend/test/data/node/test_conv_with_strides_and_asymmetric_padding/model.onnx +0 -0
- onnx/backend/test/data/node/test_conv_with_strides_no_padding/model.onnx +0 -0
- onnx/backend/test/data/node/test_conv_with_strides_padding/model.onnx +0 -0
- onnx/backend/test/data/node/test_convtranspose/model.onnx +0 -0
- onnx/backend/test/data/node/test_convtranspose_1d/model.onnx +0 -0
- onnx/backend/test/data/node/test_convtranspose_3d/model.onnx +0 -0
- onnx/backend/test/data/node/test_convtranspose_autopad_same/model.onnx +0 -0
- onnx/backend/test/data/node/test_convtranspose_dilations/model.onnx +0 -0
- onnx/backend/test/data/node/test_convtranspose_group_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_convtranspose_group_2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_convtranspose_group_2/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_convtranspose_group_2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_convtranspose_group_2_image_3/model.onnx +0 -0
- onnx/backend/test/data/node/test_convtranspose_group_2_image_3/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_convtranspose_group_2_image_3/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_convtranspose_group_2_image_3/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_convtranspose_kernel_shape/model.onnx +0 -0
- onnx/backend/test/data/node/test_convtranspose_output_shape/model.onnx +0 -0
- onnx/backend/test/data/node/test_convtranspose_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_convtranspose_pads/model.onnx +0 -0
- onnx/backend/test/data/node/test_cos/model.onnx +0 -0
- onnx/backend/test/data/node/test_cos_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_cosh/model.onnx +0 -0
- onnx/backend/test/data/node/test_cosh_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_mask_bias/model.onnx +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn_zero_point/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e5m2/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_float4e2m1/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_float4e2m1/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_float4e2m1/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_float4e2m1/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_float4e2m1/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_0.pb +1 -1
- onnx/backend/test/data/node/test_dequantizelinear_uint16/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/model.onnx +0 -0
- onnx/backend/test/data/node/test_det_2d/model.onnx +0 -0
- onnx/backend/test/data/node/test_det_nd/model.onnx +0 -0
- onnx/backend/test/data/node/test_dropout_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_dropout_default_mask/model.onnx +0 -0
- onnx/backend/test/data/node/test_dropout_default_mask_ratio/model.onnx +0 -0
- onnx/backend/test/data/node/test_dropout_default_ratio/model.onnx +0 -0
- onnx/backend/test/data/node/test_edge_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_elu/model.onnx +0 -0
- onnx/backend/test/data/node/test_elu_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_elu_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_eyelike_populate_off_main_diagonal/model.onnx +0 -0
- onnx/backend/test/data/node/test_eyelike_with_dtype/model.onnx +0 -0
- onnx/backend/test/data/node/test_eyelike_without_dtype/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis0/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis1/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis2/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis3/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_default_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis1/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis2/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis3/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis4/model.onnx +0 -0
- onnx/backend/test/data/node/test_globalaveragepool/model.onnx +0 -0
- onnx/backend/test/data/node/test_globalaveragepool_precomputed/model.onnx +0 -0
- onnx/backend/test/data/node/test_globalmaxpool/model.onnx +0 -0
- onnx/backend/test/data/node/test_globalmaxpool_precomputed/model.onnx +0 -0
- onnx/backend/test/data/node/test_gridsample/model.onnx +0 -0
- onnx/backend/test/data/node/test_gridsample_aligncorners_true/model.onnx +0 -0
- onnx/backend/test/data/node/test_gridsample_bicubic/model.onnx +0 -0
- onnx/backend/test/data/node/test_gridsample_bicubic_align_corners_0_additional_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_gridsample_bicubic_align_corners_1_additional_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_gridsample_bilinear/model.onnx +0 -0
- onnx/backend/test/data/node/test_gridsample_bilinear_align_corners_0_additional_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_gridsample_bilinear_align_corners_1_additional_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_gridsample_border_padding/model.onnx +0 -0
- onnx/backend/test/data/node/test_gridsample_nearest/model.onnx +0 -0
- onnx/backend/test/data/node/test_gridsample_nearest_align_corners_0_additional_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_gridsample_nearest_align_corners_1_additional_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_gridsample_reflection_padding/model.onnx +0 -0
- onnx/backend/test/data/node/test_gridsample_volumetric_bilinear_align_corners_0/model.onnx +0 -0
- onnx/backend/test/data/node/test_gridsample_volumetric_bilinear_align_corners_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_gridsample_volumetric_nearest_align_corners_0/model.onnx +0 -0
- onnx/backend/test/data/node/test_gridsample_volumetric_nearest_align_corners_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_gridsample_zeros_padding/model.onnx +0 -0
- onnx/backend/test/data/node/test_gru_batchwise/model.onnx +0 -0
- onnx/backend/test/data/node/test_gru_defaults/model.onnx +0 -0
- onnx/backend/test/data/node/test_gru_seq_length/model.onnx +0 -0
- onnx/backend/test/data/node/test_gru_with_initial_bias/model.onnx +0 -0
- onnx/backend/test/data/node/test_hardsigmoid/model.onnx +0 -0
- onnx/backend/test/data/node/test_hardsigmoid_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_hardsigmoid_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_hardswish/model.onnx +0 -0
- onnx/backend/test/data/node/test_hardswish_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_identity/model.onnx +0 -0
- onnx/backend/test/data/node/test_identity_sequence/model.onnx +0 -0
- onnx/backend/test/data/node/test_instancenorm_epsilon/model.onnx +0 -0
- onnx/backend/test/data/node/test_instancenorm_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_1d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_1d_default/test_data_set_0/output_0.pb +2 -2
- onnx/backend/test/data/node/test_lppool_2d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_default/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_dilations/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_pads/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_pads/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_same_lower/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_same_lower/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_same_upper/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_same_upper/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_strides/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_strides/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_3d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_3d_default/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_lrn_default/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_lstm_batchwise/model.onnx +0 -0
- onnx/backend/test/data/node/test_lstm_defaults/model.onnx +0 -0
- onnx/backend/test/data/node/test_lstm_with_initial_bias/model.onnx +0 -0
- onnx/backend/test/data/node/test_lstm_with_peepholes/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_1d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_ceil/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_dilations/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_pads/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_precomputed_pads/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_precomputed_same_upper/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_precomputed_strides/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_same_lower/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_same_upper/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_strides/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_uint8/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_3d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_3d_dilations/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_3d_dilations_use_ref_impl/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_3d_dilations_use_ref_impl_large/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_with_argmax_2d_precomputed_pads/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_with_argmax_2d_precomputed_strides/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxunpool_export_with_output_shape/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxunpool_export_without_output_shape/model.onnx +0 -0
- onnx/backend/test/data/node/test_mish/model.onnx +0 -0
- onnx/backend/test/data/node/test_mish_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_mvn/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_mvn_expanded/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_mvn_expanded_ver18/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_nllloss_NC/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NC_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1_ii/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1_ii_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1_mean_weight_negative_ii/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1_mean_weight_negative_ii_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1_weight/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1_weight_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1_weight_ii/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1_weight_ii_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2_no_weight_reduction_mean_ii/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2_no_weight_reduction_mean_ii_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2_reduction_mean/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2_reduction_mean_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2_reduction_sum/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2_reduction_sum_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight_reduction_mean/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight_reduction_mean_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight_reduction_sum/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight_reduction_sum_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight_reduction_sum_ii/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight_reduction_sum_ii_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2d3_none_no_weight_negative_ii/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2d3_none_no_weight_negative_ii_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2d3_sum_weight_high_ii/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2d3_sum_weight_high_ii_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2d3d4d5_mean_weight/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2d3d4d5_mean_weight_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2d3d4d5_none_no_weight/model.onnx +0 -0
- onnx/backend/test/data/node/test_nllloss_NCd1d2d3d4d5_none_no_weight_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_pow/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_float4e2m1/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_float4e2m1/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_float4e2m1/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_float4e2m1/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_float4e2m1/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_quantizelinear_uint16/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/model.onnx +0 -0
- onnx/backend/test/data/node/test_reduce_max_empty_set/model.onnx +0 -0
- onnx/backend/test/data/node/test_reduce_max_empty_set/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_reduce_max_empty_set/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_reduce_max_empty_set/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_reduce_sum_empty_axes_input_noop/model.onnx +0 -0
- onnx/backend/test/data/node/test_reduce_sum_empty_axes_input_noop/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_reduce_sum_empty_axes_input_noop/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_reduce_sum_empty_axes_input_noop/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_reduce_sum_negative_axes_keepdims_random/model.onnx +0 -0
- onnx/backend/test/data/node/test_reduce_sum_negative_axes_keepdims_random/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_reduce_sum_negative_axes_keepdims_random/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_reflect_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_allowzero_reordered/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_extended_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_negative_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_negative_extended_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_one_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reduced_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reordered_all_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reordered_last_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_zero_and_negative_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_zero_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_tf_crop_and_resize/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_tf_crop_and_resize/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_resize_tf_crop_and_resize/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_resize_tf_crop_and_resize_extrapolation_value/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_tf_crop_and_resize_extrapolation_value/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_resize_tf_crop_and_resize_extrapolation_value/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_resize_tf_crop_and_resize_extrapolation_value/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_resize_tf_crop_and_resize_extrapolation_value/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_larger/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_larger/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_smaller/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_smaller/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_smaller/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_smaller/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis0/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis0/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis0/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis0/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis0_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis0_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis0_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis0_expanded/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis1/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis1/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis1/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis1/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis1_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis1_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis1_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis1_expanded/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1_expanded/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2_expanded/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon_expanded/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon_expanded/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon_expanded/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon/test_data_set_0/output_0.pb +3 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon_expanded/test_data_set_0/output_0.pb +3 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon_expanded/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis0/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis0/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis0/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis0/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis0_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis0_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis0_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis0_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis1/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis1/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis1/test_data_set_0/input_1.pb +3 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis1/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis1_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis1_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis1_expanded/test_data_set_0/input_1.pb +3 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis1_expanded/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis2/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis2/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis2/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis2_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis2_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis2_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis2_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis3/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis3/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis3/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis3/test_data_set_0/output_0.pb +2 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis3_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis3_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis3_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis3_expanded/test_data_set_0/output_0.pb +2 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3/test_data_set_0/output_0.pb +4 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3_expanded/test_data_set_0/output_0.pb +4 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4/test_data_set_0/input_1.pb +2 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4_expanded/test_data_set_0/input_1.pb +2 -0
- onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rms_normalization_default_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_default_axis/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_default_axis/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_default_axis/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rms_normalization_default_axis_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rms_normalization_default_axis_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_default_axis_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rms_normalization_default_axis_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rnn_seq_length/model.onnx +0 -0
- onnx/backend/test/data/node/test_roialign_aligned_false/model.onnx +0 -0
- onnx/backend/test/data/node/test_roialign_aligned_true/model.onnx +0 -0
- onnx/backend/test/data/node/test_roialign_mode_max/model.onnx +0 -0
- onnx/backend/test/data/node/test_rotary_embedding/model.onnx +0 -0
- onnx/backend/test/data/node/test_rotary_embedding/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_3d_input/model.onnx +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_3d_input/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_3d_input/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_3d_input/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_3d_input/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_3d_input/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_3d_input_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_3d_input_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_3d_input_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_3d_input_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_3d_input_expanded/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_3d_input_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_expanded/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_interleaved/model.onnx +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_interleaved/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_interleaved/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_interleaved/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_interleaved/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_interleaved/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_interleaved_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_interleaved_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_interleaved_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_interleaved_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_interleaved_expanded/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_interleaved_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids/model.onnx +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_expanded/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved/model.onnx +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved_expanded/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim_expanded/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim_expanded/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim_expanded/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim_expanded/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_round/model.onnx +0 -0
- onnx/backend/test/data/node/test_selu/model.onnx +0 -0
- onnx/backend/test/data/node/test_selu_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_selu_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_clip_end/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_clip_start/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_end_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_end_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1_end_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1_end_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_simple_rnn_batchwise/model.onnx +0 -0
- onnx/backend/test/data/node/test_simple_rnn_defaults/model.onnx +0 -0
- onnx/backend/test/data/node/test_simple_rnn_with_initial_bias/model.onnx +0 -0
- onnx/backend/test/data/node/test_sin/model.onnx +0 -0
- onnx/backend/test/data/node/test_sin_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_sinh/model.onnx +0 -0
- onnx/backend/test/data/node/test_sinh_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_size/model.onnx +0 -0
- onnx/backend/test/data/node/test_size_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_softplus/model.onnx +0 -0
- onnx/backend/test/data/node/test_softplus_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_softsign/model.onnx +0 -0
- onnx/backend/test/data/node/test_softsign_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_squeeze/model.onnx +0 -0
- onnx/backend/test/data/node/test_squeeze_negative_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_tan/model.onnx +0 -0
- onnx/backend/test/data/node/test_tan_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_thresholdedrelu/model.onnx +0 -0
- onnx/backend/test/data/node/test_thresholdedrelu_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_thresholdedrelu_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_top_k_same_values/model.onnx +0 -0
- onnx/backend/test/data/node/test_top_k_same_values/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_top_k_same_values/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_top_k_same_values/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_top_k_same_values/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_top_k_same_values_2d/model.onnx +0 -0
- onnx/backend/test/data/node/test_top_k_same_values_2d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_top_k_same_values_2d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_top_k_same_values_2d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_top_k_same_values_2d/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_top_k_same_values_largest/model.onnx +0 -0
- onnx/backend/test/data/node/test_top_k_same_values_largest/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_top_k_same_values_largest/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_top_k_same_values_largest/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_top_k_same_values_largest/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_top_k_uint64/model.onnx +0 -0
- onnx/backend/test/data/node/test_top_k_uint64/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_top_k_uint64/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_top_k_uint64/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_top_k_uint64/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_training_dropout/model.onnx +0 -0
- onnx/backend/test/data/node/test_training_dropout_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_training_dropout_default_mask/model.onnx +0 -0
- onnx/backend/test/data/node/test_training_dropout_mask/model.onnx +0 -0
- onnx/backend/test/data/node/test_training_dropout_zero_ratio/model.onnx +0 -0
- onnx/backend/test/data/node/test_training_dropout_zero_ratio_mask/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_0/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_3/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_4/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_5/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_unique_length_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_unique_length_1/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_unique_length_1/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_unique_length_1/test_data_set_0/output_1.pb +0 -0
- onnx/backend/test/data/node/test_unique_length_1/test_data_set_0/output_2.pb +0 -0
- onnx/backend/test/data/node/test_unique_length_1/test_data_set_0/output_3.pb +0 -0
- onnx/backend/test/data/node/test_unsqueeze_axis_0/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_axis_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_axis_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_negative_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_three_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_two_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_unsorted_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_wrap_pad/model.onnx +0 -0
- onnx/backend/test/loader/__init__.py +11 -6
- onnx/backend/test/report/__init__.py +11 -5
- onnx/backend/test/report/base.py +1 -0
- onnx/backend/test/report/coverage.py +27 -30
- onnx/backend/test/runner/__init__.py +39 -33
- onnx/backend/test/runner/item.py +5 -3
- onnx/backend/test/stat_coverage.py +11 -7
- onnx/bin/checker.py +1 -0
- onnx/checker.cc +30 -30
- onnx/checker.h +9 -6
- onnx/checker.py +8 -7
- onnx/common/array_ref.h +12 -8
- onnx/common/assertions.h +1 -0
- onnx/common/file_utils.h +9 -3
- onnx/common/interned_strings.cc +3 -5
- onnx/common/interned_strings.h +12 -7
- onnx/common/ir.h +37 -60
- onnx/common/ir_pb_converter.cc +18 -17
- onnx/common/ir_pb_converter.h +0 -1
- onnx/common/model_helpers.cc +3 -6
- onnx/common/model_helpers.h +1 -1
- onnx/common/path.h +40 -11
- onnx/common/proto_util.h +3 -3
- onnx/common/status.cc +14 -13
- onnx/common/status.h +12 -10
- onnx/common/tensor.h +30 -87
- onnx/common/version.h +1 -1
- onnx/common/visitor.h +2 -2
- onnx/compose.py +88 -69
- onnx/cpp2py_export.cc +29 -20
- onnx/defs/__init__.py +10 -6
- onnx/defs/controlflow/defs.cc +13 -13
- onnx/defs/controlflow/old.cc +220 -39
- onnx/defs/controlflow/utils.cc +3 -3
- onnx/defs/data_propagators.h +10 -7
- onnx/defs/data_type_utils.cc +14 -16
- onnx/defs/data_type_utils.h +1 -2
- onnx/defs/function.cc +5 -9
- onnx/defs/function.h +36 -11
- onnx/defs/gen_doc.py +12 -8
- onnx/defs/gen_shape_inference_information.py +1 -0
- onnx/defs/generator/defs.cc +46 -113
- onnx/defs/generator/old.cc +498 -5
- onnx/defs/generator/utils.cc +1 -1
- onnx/defs/logical/defs.cc +3 -3
- onnx/defs/logical/old.cc +4 -4
- onnx/defs/math/defs.cc +328 -354
- onnx/defs/math/old.cc +1041 -50
- onnx/defs/math/utils.cc +14 -3
- onnx/defs/math/utils.h +4 -0
- onnx/defs/nn/defs.cc +1097 -105
- onnx/defs/nn/old.cc +1608 -21
- onnx/defs/object_detection/defs.cc +4 -7
- onnx/defs/object_detection/old.cc +117 -0
- onnx/defs/operator_sets.h +182 -22
- onnx/defs/operator_sets_ml.h +5 -5
- onnx/defs/operator_sets_preview.h +1 -1
- onnx/defs/operator_sets_training.h +1 -1
- onnx/defs/optional/defs.cc +0 -4
- onnx/defs/optional/old.cc +0 -4
- onnx/defs/parser.cc +70 -36
- onnx/defs/parser.h +57 -31
- onnx/defs/printer.cc +62 -21
- onnx/defs/quantization/defs.cc +55 -21
- onnx/defs/quantization/old.cc +200 -1
- onnx/defs/reduction/defs.cc +6 -6
- onnx/defs/reduction/old.cc +18 -15
- onnx/defs/reduction/utils.cc +10 -10
- onnx/defs/reduction/utils.h +1 -1
- onnx/defs/rnn/defs.cc +12 -15
- onnx/defs/rnn/old.cc +522 -7
- onnx/defs/schema.cc +550 -100
- onnx/defs/schema.h +106 -373
- onnx/defs/sequence/defs.cc +16 -18
- onnx/defs/shape_inference.cc +39 -32
- onnx/defs/shape_inference.h +113 -46
- onnx/defs/tensor/defs.cc +81 -66
- onnx/defs/tensor/old.cc +802 -22
- onnx/defs/tensor/utils.cc +10 -8
- onnx/defs/tensor/utils.h +2 -3
- onnx/defs/tensor_proto_util.cc +2 -2
- onnx/defs/tensor_proto_util.h +2 -2
- onnx/defs/tensor_util.cc +2 -2
- onnx/defs/tensor_util.h +2 -2
- onnx/defs/traditionalml/defs.cc +16 -4
- onnx/defs/traditionalml/utils.h +1 -2
- onnx/external_data_helper.py +38 -16
- onnx/gen_proto.py +8 -4
- onnx/helper.py +210 -116
- onnx/hub.py +33 -32
- onnx/inliner/inliner.cc +8 -10
- onnx/mapping.py +11 -6
- onnx/model_container.py +12 -8
- onnx/numpy_helper.py +261 -66
- onnx/onnx-ml.proto +116 -10
- onnx/onnx.in.proto +116 -10
- onnx/onnx.proto +116 -10
- onnx/onnx_cpp2py_export/defs.pyi +3 -4
- onnx/onnx_cpp2py_export/inliner.pyi +0 -4
- onnx/onnx_cpp2py_export/parser.pyi +0 -4
- onnx/onnx_cpp2py_export.cp311-win32.pyd +0 -0
- onnx/onnx_data_pb2.py +17 -16
- onnx/onnx_data_pb2.pyi +82 -142
- onnx/onnx_ml_pb2.py +84 -71
- onnx/onnx_ml_pb2.pyi +483 -645
- onnx/onnx_operators_ml_pb2.py +11 -10
- onnx/onnx_operators_ml_pb2.pyi +38 -64
- onnx/parser.py +2 -0
- onnx/printer.py +2 -3
- onnx/py_utils.h +1 -1
- onnx/reference/__init__.py +1 -0
- onnx/reference/custom_element_types.py +80 -9
- onnx/reference/op_run.py +25 -67
- onnx/reference/ops/__init__.py +1 -0
- onnx/reference/ops/_helpers.py +7 -4
- onnx/reference/ops/_op.py +19 -6
- onnx/reference/ops/_op_common_indices.py +1 -1
- onnx/reference/ops/_op_common_pool.py +38 -29
- onnx/reference/ops/_op_common_random.py +1 -1
- onnx/reference/ops/_op_common_window.py +2 -2
- onnx/reference/ops/_op_list.py +22 -18
- onnx/reference/ops/aionnx_preview_training/__init__.py +1 -0
- onnx/reference/ops/aionnx_preview_training/_op_list.py +10 -17
- onnx/reference/ops/aionnx_preview_training/_op_run_training.py +1 -1
- onnx/reference/ops/aionnx_preview_training/op_adagrad.py +14 -5
- onnx/reference/ops/aionnx_preview_training/op_adam.py +2 -2
- onnx/reference/ops/aionnx_preview_training/op_momentum.py +14 -2
- onnx/reference/ops/aionnxml/__init__.py +1 -0
- onnx/reference/ops/aionnxml/_common_classifier.py +1 -0
- onnx/reference/ops/aionnxml/_op_list.py +9 -14
- onnx/reference/ops/aionnxml/_op_run_aionnxml.py +1 -1
- onnx/reference/ops/aionnxml/op_array_feature_extractor.py +1 -1
- onnx/reference/ops/aionnxml/op_binarizer.py +1 -1
- onnx/reference/ops/aionnxml/op_dict_vectorizer.py +11 -20
- onnx/reference/ops/aionnxml/op_feature_vectorizer.py +1 -1
- onnx/reference/ops/aionnxml/op_imputer.py +3 -3
- onnx/reference/ops/aionnxml/op_label_encoder.py +1 -1
- onnx/reference/ops/aionnxml/op_linear_classifier.py +2 -2
- onnx/reference/ops/aionnxml/op_linear_regressor.py +1 -1
- onnx/reference/ops/aionnxml/op_normalizer.py +1 -1
- onnx/reference/ops/aionnxml/op_one_hot_encoder.py +1 -1
- onnx/reference/ops/aionnxml/op_scaler.py +1 -1
- onnx/reference/ops/aionnxml/op_svm_classifier.py +11 -9
- onnx/reference/ops/aionnxml/op_svm_helper.py +2 -2
- onnx/reference/ops/aionnxml/op_svm_regressor.py +1 -1
- onnx/reference/ops/aionnxml/op_tree_ensemble.py +3 -3
- onnx/reference/ops/aionnxml/op_tree_ensemble_classifier.py +1 -1
- onnx/reference/ops/aionnxml/op_tree_ensemble_helper.py +4 -3
- onnx/reference/ops/aionnxml/op_tree_ensemble_regressor.py +5 -3
- onnx/reference/ops/experimental/__init__.py +1 -0
- onnx/reference/ops/experimental/_op_list.py +24 -41
- onnx/reference/ops/experimental/_op_run_experimental.py +1 -1
- onnx/reference/ops/experimental/op_im2col.py +1 -1
- onnx/reference/ops/op_abs.py +1 -1
- onnx/reference/ops/op_acos.py +1 -1
- onnx/reference/ops/op_acosh.py +1 -1
- onnx/reference/ops/op_add.py +1 -1
- onnx/reference/ops/op_affine_grid.py +4 -4
- onnx/reference/ops/op_and.py +1 -1
- onnx/reference/ops/op_argmax.py +1 -1
- onnx/reference/ops/op_argmin.py +1 -1
- onnx/reference/ops/op_asin.py +1 -1
- onnx/reference/ops/op_asinh.py +1 -1
- onnx/reference/ops/op_atan.py +1 -1
- onnx/reference/ops/op_atanh.py +1 -1
- onnx/reference/ops/op_attention.py +211 -0
- onnx/reference/ops/op_attribute_has_value.py +15 -15
- onnx/reference/ops/op_average_pool.py +1 -1
- onnx/reference/ops/op_batch_normalization.py +13 -2
- onnx/reference/ops/op_bernoulli.py +1 -1
- onnx/reference/ops/op_bitshift.py +1 -1
- onnx/reference/ops/op_bitwise_and.py +1 -1
- onnx/reference/ops/op_bitwise_not.py +1 -1
- onnx/reference/ops/op_bitwise_or.py +1 -1
- onnx/reference/ops/op_bitwise_xor.py +1 -1
- onnx/reference/ops/op_blackman_window.py +1 -1
- onnx/reference/ops/op_cast.py +27 -10
- onnx/reference/ops/op_cast_like.py +4 -1
- onnx/reference/ops/op_ceil.py +1 -1
- onnx/reference/ops/op_celu.py +1 -1
- onnx/reference/ops/op_center_crop_pad.py +1 -1
- onnx/reference/ops/op_clip.py +1 -1
- onnx/reference/ops/op_col2im.py +10 -4
- onnx/reference/ops/op_compress.py +1 -1
- onnx/reference/ops/op_concat.py +1 -1
- onnx/reference/ops/op_concat_from_sequence.py +9 -5
- onnx/reference/ops/op_constant.py +5 -3
- onnx/reference/ops/op_constant_of_shape.py +1 -1
- onnx/reference/ops/op_conv.py +24 -23
- onnx/reference/ops/op_conv_integer.py +1 -1
- onnx/reference/ops/op_conv_transpose.py +35 -6
- onnx/reference/ops/op_cos.py +1 -1
- onnx/reference/ops/op_cosh.py +1 -1
- onnx/reference/ops/op_cum_sum.py +3 -8
- onnx/reference/ops/op_deform_conv.py +1 -1
- onnx/reference/ops/op_depth_to_space.py +1 -1
- onnx/reference/ops/op_dequantize_linear.py +37 -11
- onnx/reference/ops/op_det.py +1 -1
- onnx/reference/ops/op_dft.py +16 -2
- onnx/reference/ops/op_div.py +1 -1
- onnx/reference/ops/op_dropout.py +9 -8
- onnx/reference/ops/op_dynamic_quantize_linear.py +1 -1
- onnx/reference/ops/op_einsum.py +1 -1
- onnx/reference/ops/op_elu.py +1 -1
- onnx/reference/ops/op_equal.py +1 -1
- onnx/reference/ops/op_erf.py +1 -1
- onnx/reference/ops/op_exp.py +1 -1
- onnx/reference/ops/op_expand.py +1 -1
- onnx/reference/ops/op_eyelike.py +2 -2
- onnx/reference/ops/op_flatten.py +1 -1
- onnx/reference/ops/op_floor.py +1 -1
- onnx/reference/ops/op_gather.py +1 -1
- onnx/reference/ops/op_gather_elements.py +3 -3
- onnx/reference/ops/op_gathernd.py +2 -4
- onnx/reference/ops/op_gemm.py +12 -2
- onnx/reference/ops/op_global_average_pool.py +1 -1
- onnx/reference/ops/op_global_max_pool.py +1 -1
- onnx/reference/ops/op_greater.py +1 -1
- onnx/reference/ops/op_greater_or_equal.py +1 -1
- onnx/reference/ops/op_grid_sample.py +2 -3
- onnx/reference/ops/op_gru.py +7 -7
- onnx/reference/ops/op_hamming_window.py +1 -1
- onnx/reference/ops/op_hann_window.py +1 -1
- onnx/reference/ops/op_hard_sigmoid.py +1 -1
- onnx/reference/ops/op_hardmax.py +5 -2
- onnx/reference/ops/op_identity.py +3 -3
- onnx/reference/ops/op_if.py +6 -3
- onnx/reference/ops/op_instance_normalization.py +1 -1
- onnx/reference/ops/op_isinf.py +1 -1
- onnx/reference/ops/op_isnan.py +1 -1
- onnx/reference/ops/op_layer_normalization.py +2 -4
- onnx/reference/ops/op_leaky_relu.py +5 -2
- onnx/reference/ops/op_less.py +1 -1
- onnx/reference/ops/op_less_or_equal.py +1 -1
- onnx/reference/ops/op_log.py +1 -1
- onnx/reference/ops/op_log_softmax.py +1 -1
- onnx/reference/ops/op_loop.py +5 -3
- onnx/reference/ops/op_lp_normalization.py +1 -1
- onnx/reference/ops/op_lp_pool.py +4 -2
- onnx/reference/ops/op_lrn.py +1 -1
- onnx/reference/ops/op_lstm.py +9 -11
- onnx/reference/ops/op_matmul.py +1 -1
- onnx/reference/ops/op_matmul_integer.py +1 -1
- onnx/reference/ops/op_max.py +1 -1
- onnx/reference/ops/op_max_pool.py +8 -8
- onnx/reference/ops/op_max_unpool.py +5 -3
- onnx/reference/ops/op_mean.py +1 -1
- onnx/reference/ops/op_mel_weight_matrix.py +1 -1
- onnx/reference/ops/op_min.py +1 -1
- onnx/reference/ops/op_mod.py +1 -1
- onnx/reference/ops/op_mul.py +1 -1
- onnx/reference/ops/op_neg.py +1 -1
- onnx/reference/ops/op_negative_log_likelihood_loss.py +4 -2
- onnx/reference/ops/op_non_max_suppression.py +16 -19
- onnx/reference/ops/op_non_zero.py +1 -1
- onnx/reference/ops/op_not.py +1 -1
- onnx/reference/ops/op_one_hot.py +1 -1
- onnx/reference/ops/op_optional.py +1 -1
- onnx/reference/ops/op_optional_get_element.py +1 -1
- onnx/reference/ops/op_optional_has_element.py +1 -1
- onnx/reference/ops/op_or.py +1 -1
- onnx/reference/ops/op_pad.py +1 -1
- onnx/reference/ops/op_pool_common.py +52 -34
- onnx/reference/ops/op_pow.py +1 -1
- onnx/reference/ops/op_prelu.py +3 -3
- onnx/reference/ops/op_qlinear_conv.py +14 -1
- onnx/reference/ops/op_qlinear_matmul.py +1 -1
- onnx/reference/ops/op_quantize_linear.py +57 -13
- onnx/reference/ops/op_random_normal.py +1 -1
- onnx/reference/ops/op_random_normal_like.py +1 -1
- onnx/reference/ops/op_random_uniform.py +1 -1
- onnx/reference/ops/op_random_uniform_like.py +1 -1
- onnx/reference/ops/op_range.py +1 -1
- onnx/reference/ops/op_reciprocal.py +1 -1
- onnx/reference/ops/op_reduce_l1.py +1 -1
- onnx/reference/ops/op_reduce_l2.py +1 -1
- onnx/reference/ops/op_reduce_log_sum.py +1 -1
- onnx/reference/ops/op_reduce_log_sum_exp.py +1 -1
- onnx/reference/ops/op_reduce_max.py +1 -1
- onnx/reference/ops/op_reduce_mean.py +2 -2
- onnx/reference/ops/op_reduce_min.py +1 -1
- onnx/reference/ops/op_reduce_prod.py +1 -1
- onnx/reference/ops/op_reduce_sum.py +2 -2
- onnx/reference/ops/op_reduce_sum_square.py +1 -1
- onnx/reference/ops/op_regex_full_match.py +1 -1
- onnx/reference/ops/op_relu.py +1 -1
- onnx/reference/ops/op_reshape.py +1 -1
- onnx/reference/ops/op_reverse_sequence.py +1 -1
- onnx/reference/ops/op_rms_normalization.py +49 -0
- onnx/reference/ops/op_rnn.py +10 -8
- onnx/reference/ops/op_roi_align.py +5 -5
- onnx/reference/ops/op_rotary_embedding.py +117 -0
- onnx/reference/ops/op_round.py +1 -1
- onnx/reference/ops/op_scan.py +12 -13
- onnx/reference/ops/op_scatter_elements.py +19 -50
- onnx/reference/ops/op_scatternd.py +1 -1
- onnx/reference/ops/op_selu.py +1 -1
- onnx/reference/ops/op_sequence_at.py +1 -1
- onnx/reference/ops/op_sequence_construct.py +1 -1
- onnx/reference/ops/op_sequence_empty.py +2 -2
- onnx/reference/ops/op_sequence_erase.py +1 -1
- onnx/reference/ops/op_sequence_insert.py +6 -6
- onnx/reference/ops/op_sequence_length.py +1 -1
- onnx/reference/ops/op_sequence_map.py +1 -1
- onnx/reference/ops/op_shape.py +2 -6
- onnx/reference/ops/op_shrink.py +1 -1
- onnx/reference/ops/op_sigmoid.py +1 -1
- onnx/reference/ops/op_sign.py +1 -1
- onnx/reference/ops/op_sin.py +1 -1
- onnx/reference/ops/op_sinh.py +1 -1
- onnx/reference/ops/op_size.py +1 -1
- onnx/reference/ops/op_slice.py +3 -5
- onnx/reference/ops/op_softmax.py +1 -1
- onnx/reference/ops/op_softmax_cross_entropy_loss.py +1 -1
- onnx/reference/ops/op_softplus.py +1 -1
- onnx/reference/ops/op_softsign.py +1 -1
- onnx/reference/ops/op_space_to_depth.py +1 -1
- onnx/reference/ops/op_split.py +1 -1
- onnx/reference/ops/op_split_to_sequence.py +12 -11
- onnx/reference/ops/op_sqrt.py +1 -1
- onnx/reference/ops/op_squeeze.py +1 -1
- onnx/reference/ops/op_stft.py +3 -2
- onnx/reference/ops/op_string_concat.py +1 -1
- onnx/reference/ops/op_string_normalizer.py +8 -8
- onnx/reference/ops/op_string_split.py +4 -4
- onnx/reference/ops/op_sub.py +1 -1
- onnx/reference/ops/op_sum.py +1 -1
- onnx/reference/ops/op_tan.py +1 -1
- onnx/reference/ops/op_tanh.py +1 -1
- onnx/reference/ops/op_tfidf_vectorizer.py +11 -12
- onnx/reference/ops/op_thresholded_relu.py +1 -1
- onnx/reference/ops/op_tile.py +1 -1
- onnx/reference/ops/op_topk.py +13 -23
- onnx/reference/ops/op_transpose.py +1 -1
- onnx/reference/ops/op_trilu.py +1 -1
- onnx/reference/ops/op_unique.py +3 -1
- onnx/reference/ops/op_unsqueeze.py +2 -2
- onnx/reference/ops/op_upsample.py +1 -1
- onnx/reference/ops/op_where.py +1 -1
- onnx/reference/ops/op_xor.py +1 -1
- onnx/reference/ops_optimized/__init__.py +1 -0
- onnx/reference/ops_optimized/op_conv_optimized.py +1 -1
- onnx/reference/reference_evaluator.py +35 -27
- onnx/serialization.py +5 -2
- onnx/shape_inference/attribute_binder.h +1 -1
- onnx/shape_inference/implementation.cc +25 -12
- onnx/shape_inference/implementation.h +51 -19
- onnx/shape_inference.py +8 -5
- onnx/subbyte.py +134 -12
- onnx/test/basic_test.py +1 -0
- onnx/test/checker_test.py +41 -3
- onnx/test/compose_test.py +15 -11
- onnx/test/cpp/data_propagation_test.cc +19 -7
- onnx/test/cpp/function_context_test.cc +18 -19
- onnx/test/cpp/function_verify_test.cc +33 -29
- onnx/test/cpp/parser_test.cc +97 -0
- onnx/test/cpp/schema_registration_test.cc +3 -3
- onnx/test/cpp/shape_inference_test.cc +48 -11
- onnx/test/cpp/test_main.cc +1 -1
- onnx/test/cpp/utf8_conversion_test.cc +27 -0
- onnx/test/data_propagation_test.py +116 -2
- onnx/test/function_inference_test.py +6 -1
- onnx/test/function_test.py +2 -1
- onnx/test/helper_test.py +140 -112
- onnx/test/hub_test.py +1 -1
- onnx/test/inference_function_test.py +31 -9
- onnx/test/inliner_test.py +2 -0
- onnx/test/model_container_refeval_test.py +2 -1
- onnx/test/model_container_test.py +2 -1
- onnx/test/model_inference_test.py +2 -0
- onnx/test/numpy_helper_test.py +64 -12
- onnx/test/parser_test.py +71 -2
- onnx/test/printer_test.py +2 -0
- onnx/test/reference_evaluator_ml_test.py +2 -3
- onnx/test/reference_evaluator_model_test.py +2 -0
- onnx/test/reference_evaluator_test.py +417 -56
- onnx/test/schema_test.py +7 -2
- onnx/test/serialization_test.py +2 -0
- onnx/test/shape_inference_test.py +920 -160
- onnx/test/symbolic_shape_test.py +3 -3
- onnx/test/test_backend_reference.py +33 -3
- onnx/test/test_backend_test.py +12 -10
- onnx/test/test_external_data.py +99 -4
- onnx/test/tools_test.py +15 -14
- onnx/test/training_tool_test.py +1 -0
- onnx/test/utils_test.py +2 -1
- onnx/test/version_converter/automatic_conversion_test_base.py +6 -3
- onnx/test/version_converter/automatic_downgrade_test.py +2 -0
- onnx/test/version_converter/automatic_upgrade_test.py +176 -2
- onnx/test/version_converter_test.py +43 -9
- onnx/test/version_utils.py +8 -0
- onnx/tools/net_drawer.py +6 -5
- onnx/tools/replace_constants.py +11 -11
- onnx/tools/update_model_dims.py +8 -7
- onnx/utils.py +109 -72
- onnx/version.py +2 -2
- onnx/version_converter/BaseConverter.h +2 -7
- onnx/version_converter/adapters/adapter.h +6 -3
- onnx/version_converter/adapters/axes_attribute_to_input.h +1 -1
- onnx/version_converter/adapters/axes_input_to_attribute.h +4 -4
- onnx/version_converter/adapters/axis_attribute_to_input.h +2 -2
- onnx/version_converter/adapters/axis_input_to_attribute.h +4 -6
- onnx/version_converter/adapters/broadcast_backward_compatibility.h +1 -1
- onnx/version_converter/adapters/broadcast_forward_compatibility.h +2 -2
- onnx/version_converter/adapters/cast_9_8.h +1 -1
- onnx/version_converter/adapters/clip_10_11.h +4 -2
- onnx/version_converter/adapters/dropout_11_12.h +5 -2
- onnx/version_converter/adapters/extend_supported_types.h +3 -3
- onnx/version_converter/adapters/gemm_6_7.h +1 -1
- onnx/version_converter/adapters/gemm_7_6.h +1 -1
- onnx/version_converter/adapters/gridsample_19_20.h +3 -1
- onnx/version_converter/adapters/group_normalization_20_21.h +2 -2
- onnx/version_converter/adapters/maxpool_8_7.h +1 -1
- onnx/version_converter/adapters/pad_10_11.h +3 -1
- onnx/version_converter/adapters/q_dq_21_20.h +2 -2
- onnx/version_converter/adapters/reshape_4_5.h +1 -1
- onnx/version_converter/adapters/reshape_5_4.h +5 -5
- onnx/version_converter/adapters/resize_10_11.h +3 -1
- onnx/version_converter/adapters/scan_8_9.h +3 -3
- onnx/version_converter/adapters/scan_9_8.h +2 -2
- onnx/version_converter/adapters/scatter_10_11.h +3 -1
- onnx/version_converter/adapters/slice_9_10.h +4 -2
- onnx/version_converter/adapters/softmax_12_13.h +2 -2
- onnx/version_converter/adapters/softmax_13_12.h +66 -0
- onnx/version_converter/adapters/split_12_13.h +1 -1
- onnx/version_converter/adapters/split_13_12.h +4 -4
- onnx/version_converter/adapters/split_17_18.h +2 -2
- onnx/version_converter/adapters/sum_8_7.h +1 -1
- onnx/version_converter/adapters/topk_9_10.h +3 -1
- onnx/version_converter/adapters/transformers.h +6 -5
- onnx/version_converter/adapters/type_restriction.h +4 -4
- onnx/version_converter/adapters/upsample_6_7.h +1 -1
- onnx/version_converter/adapters/upsample_8_9.h +1 -1
- onnx/version_converter/adapters/upsample_9_10.h +4 -1
- onnx/version_converter/adapters/upsample_9_8.h +11 -11
- onnx/version_converter/convert.cc +14 -11
- onnx/version_converter/convert.h +160 -5
- onnx/version_converter/helper.cc +4 -9
- onnx/version_converter.py +4 -2
- onnx-1.18.0.dist-info/METADATA +134 -0
- {onnx-1.16.2.dist-info → onnx-1.18.0.dist-info}/RECORD +2005 -1042
- {onnx-1.16.2.dist-info → onnx-1.18.0.dist-info}/WHEEL +1 -1
- onnx/test/elu_test.py +0 -17
- onnx/test/relu_test.py +0 -16
- onnx/test/test_backend_onnxruntime.py +0 -328
- onnx/test/test_with_ort.py +0 -50
- onnx-1.16.2.dist-info/METADATA +0 -353
- {onnx-1.16.2.dist-info → onnx-1.18.0.dist-info}/entry_points.txt +0 -0
- {onnx-1.16.2.dist-info → onnx-1.18.0.dist-info/licenses}/LICENSE +0 -0
- {onnx-1.16.2.dist-info → onnx-1.18.0.dist-info}/top_level.txt +0 -0
onnx/defs/nn/old.cc
CHANGED
|
@@ -9,6 +9,1543 @@
|
|
|
9
9
|
|
|
10
10
|
namespace ONNX_NAMESPACE {
|
|
11
11
|
|
|
12
|
+
// For GlobalPool operations.
|
|
13
|
+
static void globalPoolTypeShapeInference_opset2(InferenceContext& ctx) {
|
|
14
|
+
propagateElemTypeFromInputToOutput(ctx, 0, 0);
|
|
15
|
+
|
|
16
|
+
// needs at least one input with shape.
|
|
17
|
+
if (!hasNInputShapes(ctx, 1)) {
|
|
18
|
+
return;
|
|
19
|
+
}
|
|
20
|
+
|
|
21
|
+
auto input_shape = ctx.getInputType(0)->tensor_type().shape();
|
|
22
|
+
if (input_shape.dim_size() < 2) {
|
|
23
|
+
return;
|
|
24
|
+
}
|
|
25
|
+
|
|
26
|
+
// first dim is the batch axis and the next is the number of channels.
|
|
27
|
+
size_t n_input_dims = static_cast<size_t>(input_shape.dim_size() - 2);
|
|
28
|
+
|
|
29
|
+
// (N, C, 1, 1, ..., 1)
|
|
30
|
+
auto output_shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
|
|
31
|
+
*output_shape->add_dim() = input_shape.dim(0);
|
|
32
|
+
*output_shape->add_dim() = input_shape.dim(1);
|
|
33
|
+
|
|
34
|
+
for (size_t i = 0; i < n_input_dims; ++i) {
|
|
35
|
+
output_shape->add_dim()->set_dim_value(1);
|
|
36
|
+
}
|
|
37
|
+
}
|
|
38
|
+
|
|
39
|
+
static std::function<void(OpSchema&)> GlobalLpPoolingOpSchemaGenerator_opset2(const char* op_type, const char* op) {
|
|
40
|
+
return [=](OpSchema& schema) {
|
|
41
|
+
std::string doc;
|
|
42
|
+
POPULATE_OP_DOC_STR(doc = R"DOC(
|
|
43
|
+
Global{op_type} consumes an input tensor X and applies {op} pooling across
|
|
44
|
+
the values in the same channel. This is equivalent to {op_type} with kernel size
|
|
45
|
+
equal to the spatial dimension of input tensor.)DOC";
|
|
46
|
+
ReplaceAll(doc, "{op_type}", op_type);
|
|
47
|
+
ReplaceAll(doc, "{op}", op););
|
|
48
|
+
schema.SetDoc(doc);
|
|
49
|
+
schema.Attr(
|
|
50
|
+
"p", "p value of the Lp norm used to pool over the input data.", AttributeProto::INT, static_cast<int64_t>(2));
|
|
51
|
+
schema.Input(
|
|
52
|
+
0,
|
|
53
|
+
"X",
|
|
54
|
+
"Input data tensor from the previous operator; "
|
|
55
|
+
"dimensions for image case are (N x C x H x W), "
|
|
56
|
+
"where N is the batch size, C is the number of "
|
|
57
|
+
"channels, and H and W are the height and the width "
|
|
58
|
+
"of the data. For non image case, the dimensions are "
|
|
59
|
+
"in the form of (N x C x D1 x D2 ... Dn), "
|
|
60
|
+
"where N is the batch size.",
|
|
61
|
+
"T",
|
|
62
|
+
OpSchema::Single,
|
|
63
|
+
true,
|
|
64
|
+
1,
|
|
65
|
+
OpSchema::Differentiable);
|
|
66
|
+
schema.Output(
|
|
67
|
+
0,
|
|
68
|
+
"Y",
|
|
69
|
+
"Output data tensor from pooling across the input "
|
|
70
|
+
"tensor. The output tensor has the same rank as the input. "
|
|
71
|
+
"The first two dimensions of output shape are the same as "
|
|
72
|
+
"the input (N x C), while the other dimensions are all 1.",
|
|
73
|
+
"T",
|
|
74
|
+
OpSchema::Single,
|
|
75
|
+
true,
|
|
76
|
+
1,
|
|
77
|
+
OpSchema::Differentiable);
|
|
78
|
+
schema.TypeConstraint(
|
|
79
|
+
"T",
|
|
80
|
+
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
|
81
|
+
"Constrain input and output types to float tensors.");
|
|
82
|
+
schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) { globalPoolTypeShapeInference_opset2(ctx); });
|
|
83
|
+
};
|
|
84
|
+
}
|
|
85
|
+
|
|
86
|
+
ONNX_OPERATOR_SET_SCHEMA(
|
|
87
|
+
GlobalLpPool,
|
|
88
|
+
2,
|
|
89
|
+
OpSchema().FillUsing(GlobalLpPoolingOpSchemaGenerator_opset2("LpPool", "lp pool")));
|
|
90
|
+
|
|
91
|
+
constexpr const char* pads_doc_opset11 =
|
|
92
|
+
"Padding for the beginning and ending along each spatial axis, it can take any value greater "
|
|
93
|
+
"than or equal to 0. The value represent the number of pixels added to the beginning "
|
|
94
|
+
"and end part of the corresponding axis. `pads` format should be as follow "
|
|
95
|
+
"[x1_begin, x2_begin...x1_end, x2_end,...], where xi_begin the number of pixels "
|
|
96
|
+
"added at the beginning of axis `i` and xi_end, the number of pixels added at "
|
|
97
|
+
"the end of axis `i`. This attribute cannot be used simultaneously with "
|
|
98
|
+
"auto_pad attribute. If not present, the padding defaults to 0 along start and end of each spatial axis.";
|
|
99
|
+
constexpr const char* conv_auto_pad_doc_opset19 =
|
|
100
|
+
"auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where "
|
|
101
|
+
"default value is NOTSET, which means explicit padding is used. "
|
|
102
|
+
"SAME_UPPER or SAME_LOWER mean pad the input so that "
|
|
103
|
+
"`output_shape[i] = ceil(input_shape[i] / strides[i])` for each axis `i`. "
|
|
104
|
+
"The padding is split between the two sides equally or almost equally (depending "
|
|
105
|
+
"on whether it is even or odd). In case the padding is an odd number, the extra "
|
|
106
|
+
"padding is added at the end for SAME_UPPER and at the beginning for SAME_LOWER.";
|
|
107
|
+
constexpr const char* conv_transpose_auto_pad_doc_opset19 =
|
|
108
|
+
"auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where "
|
|
109
|
+
"default value is NOTSET, which means explicit padding is used. "
|
|
110
|
+
"SAME_UPPER or SAME_LOWER mean pad the input so that "
|
|
111
|
+
"`output_shape[i] = input_shape[i] * strides[i]` for each axis `i`. "
|
|
112
|
+
"The padding is split between the two sides equally or almost equally (depending "
|
|
113
|
+
"on whether it is even or odd). In case the padding is an odd number, the extra "
|
|
114
|
+
"padding is added at the end for SAME_UPPER and at the beginning for SAME_LOWER.";
|
|
115
|
+
|
|
116
|
+
static void convPoolShapeInference_opset19(
|
|
117
|
+
InferenceContext& ctx,
|
|
118
|
+
bool use_dilation,
|
|
119
|
+
bool require_kernel_shape,
|
|
120
|
+
int input1Idx,
|
|
121
|
+
int input2Idx) {
|
|
122
|
+
// we need the first input shape for this inference.
|
|
123
|
+
if (!hasInputShape(ctx, input1Idx)) {
|
|
124
|
+
return;
|
|
125
|
+
}
|
|
126
|
+
|
|
127
|
+
// if kernel shape is an input (and not attribute)
|
|
128
|
+
// we need the shape of the second input.
|
|
129
|
+
if (!require_kernel_shape && !hasInputShape(ctx, input2Idx)) {
|
|
130
|
+
return;
|
|
131
|
+
}
|
|
132
|
+
|
|
133
|
+
auto input_shape = ctx.getInputType(input1Idx)->tensor_type().shape();
|
|
134
|
+
if (input_shape.dim_size() < 2) {
|
|
135
|
+
fail_shape_inference("Input tensor must have at least 2 dimensions");
|
|
136
|
+
}
|
|
137
|
+
|
|
138
|
+
// first dim is the batch axis and the next is the number of channels.
|
|
139
|
+
size_t n_input_dims = static_cast<size_t>(input_shape.dim_size() - 2);
|
|
140
|
+
|
|
141
|
+
// Only MaxPool and Conv support dilation. For
|
|
142
|
+
// simplicity of the code, we just treat the rest of them as having all-1s
|
|
143
|
+
// dilation.
|
|
144
|
+
std::vector<int64_t> dilations;
|
|
145
|
+
if (use_dilation && getRepeatedAttribute(ctx, "dilations", dilations)) {
|
|
146
|
+
if (dilations.size() != n_input_dims) {
|
|
147
|
+
fail_shape_inference("Attribute dilations has incorrect size");
|
|
148
|
+
}
|
|
149
|
+
} else {
|
|
150
|
+
dilations.assign(n_input_dims, 1);
|
|
151
|
+
}
|
|
152
|
+
|
|
153
|
+
std::vector<int64_t> strides;
|
|
154
|
+
if (getRepeatedAttribute(ctx, "strides", strides)) {
|
|
155
|
+
if (strides.size() != n_input_dims) {
|
|
156
|
+
fail_shape_inference("Attribute strides has incorrect size");
|
|
157
|
+
}
|
|
158
|
+
} else {
|
|
159
|
+
strides.assign(n_input_dims, 1);
|
|
160
|
+
}
|
|
161
|
+
|
|
162
|
+
std::vector<int64_t> kernel_shape;
|
|
163
|
+
if (getRepeatedAttribute(ctx, "kernel_shape", kernel_shape)) {
|
|
164
|
+
if (kernel_shape.size() != n_input_dims) {
|
|
165
|
+
fail_shape_inference("Attribute kernel_shape has incorrect size");
|
|
166
|
+
}
|
|
167
|
+
} else if (require_kernel_shape) {
|
|
168
|
+
fail_shape_inference("Attribute kernel_shape must be specified");
|
|
169
|
+
} else {
|
|
170
|
+
auto second_input_shape = ctx.getInputType(input2Idx)->tensor_type().shape();
|
|
171
|
+
for (int i = 2; i < second_input_shape.dim_size(); ++i) {
|
|
172
|
+
if (!second_input_shape.dim(i).has_dim_value()) {
|
|
173
|
+
return;
|
|
174
|
+
}
|
|
175
|
+
kernel_shape.push_back(second_input_shape.dim(i).dim_value());
|
|
176
|
+
}
|
|
177
|
+
}
|
|
178
|
+
|
|
179
|
+
std::vector<int64_t> effective_kernel_shape = kernel_shape;
|
|
180
|
+
for (int i = 0; i < static_cast<int>(kernel_shape.size()); i++) {
|
|
181
|
+
// accounting for dilation, how big is the kernel in this dimension
|
|
182
|
+
effective_kernel_shape[i] = (effective_kernel_shape[i] - 1) * dilations[i] + 1;
|
|
183
|
+
}
|
|
184
|
+
|
|
185
|
+
std::vector<int64_t> pads;
|
|
186
|
+
if (getRepeatedAttribute(ctx, "pads", pads)) {
|
|
187
|
+
if (pads.size() != n_input_dims * 2) {
|
|
188
|
+
fail_shape_inference("Attribute pads has incorrect size");
|
|
189
|
+
}
|
|
190
|
+
} else {
|
|
191
|
+
pads.assign(n_input_dims * 2, 0);
|
|
192
|
+
const auto* auto_pad_attr = ctx.getAttribute("auto_pad");
|
|
193
|
+
if ((nullptr != auto_pad_attr) && (auto_pad_attr->s() != "VALID")) {
|
|
194
|
+
int input_dims_size = static_cast<int>(n_input_dims);
|
|
195
|
+
for (int i = 0; i < input_dims_size; ++i) {
|
|
196
|
+
int64_t residual = 0;
|
|
197
|
+
int64_t stride = strides[i];
|
|
198
|
+
if (stride > 1) {
|
|
199
|
+
if (!input_shape.dim(2 + i).has_dim_value()) {
|
|
200
|
+
continue;
|
|
201
|
+
}
|
|
202
|
+
residual = input_shape.dim(2 + i).dim_value();
|
|
203
|
+
while (residual >= stride) {
|
|
204
|
+
residual -= stride;
|
|
205
|
+
}
|
|
206
|
+
}
|
|
207
|
+
if (i >= static_cast<int>(effective_kernel_shape.size())) {
|
|
208
|
+
fail_shape_inference("kernel shape should have ", input_dims_size, " values in ", ctx.getDisplayName(), ".");
|
|
209
|
+
}
|
|
210
|
+
int64_t total_pad = residual == 0 ? effective_kernel_shape[i] - stride : effective_kernel_shape[i] - residual;
|
|
211
|
+
if (total_pad < 0)
|
|
212
|
+
total_pad = 0;
|
|
213
|
+
int64_t half_pad_small = total_pad >> 1;
|
|
214
|
+
int64_t half_pad_big = total_pad - half_pad_small;
|
|
215
|
+
if (auto_pad_attr->s() == "SAME_UPPER") {
|
|
216
|
+
pads[i] = half_pad_small;
|
|
217
|
+
pads[i + input_dims_size] = half_pad_big;
|
|
218
|
+
} else if (auto_pad_attr->s() == "SAME_LOWER") {
|
|
219
|
+
pads[i] = half_pad_big;
|
|
220
|
+
pads[i + input_dims_size] = half_pad_small;
|
|
221
|
+
}
|
|
222
|
+
}
|
|
223
|
+
}
|
|
224
|
+
}
|
|
225
|
+
|
|
226
|
+
auto output_shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
|
|
227
|
+
|
|
228
|
+
if (require_kernel_shape) {
|
|
229
|
+
// add the first two dimensions from the input.
|
|
230
|
+
*output_shape->add_dim() = input_shape.dim(0);
|
|
231
|
+
*output_shape->add_dim() = input_shape.dim(1);
|
|
232
|
+
} else {
|
|
233
|
+
*output_shape->add_dim() = input_shape.dim(0);
|
|
234
|
+
auto& second_input_shape = getInputShape(ctx, input2Idx);
|
|
235
|
+
if (second_input_shape.dim_size() < 1) {
|
|
236
|
+
fail_shape_inference("Second input tensor has wrong dimension");
|
|
237
|
+
}
|
|
238
|
+
*output_shape->add_dim() = second_input_shape.dim(0);
|
|
239
|
+
}
|
|
240
|
+
|
|
241
|
+
int kernel_shape_size = static_cast<int>(kernel_shape.size());
|
|
242
|
+
for (int i = 0; i < kernel_shape_size; ++i) {
|
|
243
|
+
auto newdim = output_shape->add_dim();
|
|
244
|
+
if (!input_shape.dim(2 + i).has_dim_value()) {
|
|
245
|
+
continue;
|
|
246
|
+
}
|
|
247
|
+
// how big is the input, including padding
|
|
248
|
+
int64_t effective_input_size = input_shape.dim(2 + i).dim_value();
|
|
249
|
+
effective_input_size += pads[i];
|
|
250
|
+
effective_input_size += pads[i + kernel_shape_size];
|
|
251
|
+
|
|
252
|
+
// default is floor mode .i.e. ceil_mode is set to 0
|
|
253
|
+
auto ceil_mode = getAttribute(ctx, "ceil_mode", 0);
|
|
254
|
+
|
|
255
|
+
// how many times we can move the kernel from it's initial position, based
|
|
256
|
+
// on the stride
|
|
257
|
+
int64_t strided_kernel_positions = 0;
|
|
258
|
+
|
|
259
|
+
if (ceil_mode == 1)
|
|
260
|
+
strided_kernel_positions =
|
|
261
|
+
(int64_t)(std::ceil((effective_input_size - effective_kernel_shape[i]) / float(strides[i])));
|
|
262
|
+
else
|
|
263
|
+
strided_kernel_positions = (effective_input_size - effective_kernel_shape[i]) / strides[i];
|
|
264
|
+
|
|
265
|
+
// add in the initial position
|
|
266
|
+
newdim->set_dim_value(1 + strided_kernel_positions);
|
|
267
|
+
}
|
|
268
|
+
|
|
269
|
+
if (ctx.getNumOutputs() > 1) {
|
|
270
|
+
// MaxPool with two outputs case.
|
|
271
|
+
auto second_output_shape = ctx.getOutputType(1)->mutable_tensor_type()->mutable_shape();
|
|
272
|
+
second_output_shape->CopyFrom(*output_shape);
|
|
273
|
+
}
|
|
274
|
+
}
|
|
275
|
+
|
|
276
|
+
static const char* Dropout_ver13_doc = R"DOC(
|
|
277
|
+
Dropout takes an input floating-point tensor, an optional input ratio (floating-point scalar) and an optional input training_mode (boolean scalar). It produces two tensor outputs,
|
|
278
|
+
output (floating-point tensor) and mask (optional `Tensor<bool>`). If `training_mode` is true then the output Y will be a random dropout;
|
|
279
|
+
Note that this Dropout scales the masked input data by the following equation, so to convert the trained model into inference mode,
|
|
280
|
+
the user can simply not pass `training_mode` input or set it to false.
|
|
281
|
+
```
|
|
282
|
+
output = scale * data * mask,
|
|
283
|
+
```
|
|
284
|
+
where
|
|
285
|
+
```
|
|
286
|
+
scale = 1. / (1. - ratio).
|
|
287
|
+
```
|
|
288
|
+
)DOC";
|
|
289
|
+
|
|
290
|
+
ONNX_OPERATOR_SET_SCHEMA(
|
|
291
|
+
Dropout,
|
|
292
|
+
13,
|
|
293
|
+
OpSchema()
|
|
294
|
+
.SetDoc(GET_OP_DOC_STR(std::string(Dropout_ver13_doc) + GenerateOptionalArgumentsDoc()))
|
|
295
|
+
.Attr(
|
|
296
|
+
"seed",
|
|
297
|
+
"(Optional) Seed to the random generator, if not specified we will auto generate one.",
|
|
298
|
+
AttributeProto::INT,
|
|
299
|
+
OPTIONAL_VALUE)
|
|
300
|
+
.Input(0, "data", "The input data as Tensor.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
|
|
301
|
+
.Input(
|
|
302
|
+
1,
|
|
303
|
+
"ratio",
|
|
304
|
+
"The ratio of random dropout, with value in [0, 1). If this input was not set, "
|
|
305
|
+
"or if it was set to 0, the output would be a simple copy of the input. "
|
|
306
|
+
"If it's non-zero, output will be a random dropout of the scaled input, which is typically "
|
|
307
|
+
"the case during training. It is an optional value, if not specified it will default to 0.5.",
|
|
308
|
+
"T1",
|
|
309
|
+
OpSchema::Optional,
|
|
310
|
+
true,
|
|
311
|
+
1,
|
|
312
|
+
OpSchema::NonDifferentiable)
|
|
313
|
+
.Input(
|
|
314
|
+
2,
|
|
315
|
+
"training_mode",
|
|
316
|
+
"If set to true then it indicates dropout is being used for training. It is an optional value hence unless "
|
|
317
|
+
"specified explicitly, it is false. If it is false, ratio is ignored and the operation mimics inference mode where "
|
|
318
|
+
"nothing will be dropped from the input data and if mask is requested as output it will contain all ones.",
|
|
319
|
+
"T2",
|
|
320
|
+
OpSchema::Optional,
|
|
321
|
+
true,
|
|
322
|
+
1,
|
|
323
|
+
OpSchema::NonDifferentiable)
|
|
324
|
+
.Output(0, "output", "The output.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
|
|
325
|
+
.Output(1, "mask", "The output mask.", "T2", OpSchema::Optional, true, 1, OpSchema::NonDifferentiable)
|
|
326
|
+
.TypeConstraint(
|
|
327
|
+
"T",
|
|
328
|
+
{"tensor(float16)", "tensor(float)", "tensor(double)", "tensor(bfloat16)"},
|
|
329
|
+
"Constrain input and output types to float tensors.")
|
|
330
|
+
.TypeConstraint(
|
|
331
|
+
"T1",
|
|
332
|
+
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
|
333
|
+
"Constrain input 'ratio' types to float tensors.")
|
|
334
|
+
.TypeConstraint("T2", {"tensor(bool)"}, "Constrain output 'mask' types to boolean tensors.")
|
|
335
|
+
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
|
|
336
|
+
propagateElemTypeFromInputToOutput(ctx, 0, 0);
|
|
337
|
+
if (hasInputShape(ctx, 0)) {
|
|
338
|
+
propagateShapeFromInputToOutput(ctx, 0, 0);
|
|
339
|
+
}
|
|
340
|
+
|
|
341
|
+
if (ctx.getNumInputs() > 1 && hasInputShape(ctx, 1)) {
|
|
342
|
+
auto& ratio_input_shape = getInputShape(ctx, 1);
|
|
343
|
+
if (static_cast<int>(ratio_input_shape.dim_size()) != 0) {
|
|
344
|
+
fail_shape_inference("Ratio of Dropout must be a scalar.");
|
|
345
|
+
}
|
|
346
|
+
}
|
|
347
|
+
|
|
348
|
+
if (ctx.getNumInputs() > 2 && hasInputShape(ctx, 2)) {
|
|
349
|
+
auto& training_mode_input_shape = getInputShape(ctx, 2);
|
|
350
|
+
if (static_cast<int>(training_mode_input_shape.dim_size()) != 0) {
|
|
351
|
+
fail_shape_inference("training_mode of Dropout must be a scalar.");
|
|
352
|
+
}
|
|
353
|
+
}
|
|
354
|
+
|
|
355
|
+
if (ctx.getNumOutputs() == 2) {
|
|
356
|
+
updateOutputElemType(ctx, 1, TensorProto::BOOL);
|
|
357
|
+
if (hasNInputShapes(ctx, 1)) {
|
|
358
|
+
propagateShapeFromInputToOutput(ctx, 0, 1);
|
|
359
|
+
}
|
|
360
|
+
}
|
|
361
|
+
}));
|
|
362
|
+
|
|
363
|
+
static const char* LpNormalization_ver1_doc = R"DOC(
|
|
364
|
+
Given a matrix, apply Lp-normalization along the provided axis.
|
|
365
|
+
)DOC";
|
|
366
|
+
|
|
367
|
+
ONNX_OPERATOR_SET_SCHEMA(
|
|
368
|
+
LpNormalization,
|
|
369
|
+
1,
|
|
370
|
+
OpSchema()
|
|
371
|
+
.Input(0, "input", "Input matrix", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
|
|
372
|
+
.Output(0, "output", "Matrix after normalization", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
|
|
373
|
+
.TypeConstraint(
|
|
374
|
+
"T",
|
|
375
|
+
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
|
376
|
+
"Constrain input and output types to float tensors.")
|
|
377
|
+
.SetDoc(LpNormalization_ver1_doc)
|
|
378
|
+
.Attr(
|
|
379
|
+
"axis",
|
|
380
|
+
"The axis on which to apply normalization, -1 mean last axis.",
|
|
381
|
+
AttributeProto::INT,
|
|
382
|
+
static_cast<int64_t>(-1))
|
|
383
|
+
.Attr(
|
|
384
|
+
"p",
|
|
385
|
+
"The order of the normalization, only 1 or 2 are supported.",
|
|
386
|
+
AttributeProto::INT,
|
|
387
|
+
static_cast<int64_t>(2))
|
|
388
|
+
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) { propagateShapeAndTypeFromFirstInput(ctx); }));
|
|
389
|
+
|
|
390
|
+
static const char* InstanceNormalization_ver6_doc = R"DOC(
|
|
391
|
+
Carries out instance normalization as described in the paper
|
|
392
|
+
https://arxiv.org/abs/1607.08022.
|
|
393
|
+
|
|
394
|
+
y = scale * (x - mean) / sqrt(variance + epsilon) + B,
|
|
395
|
+
where mean and variance are computed per instance per channel.
|
|
396
|
+
|
|
397
|
+
)DOC";
|
|
398
|
+
|
|
399
|
+
ONNX_OPERATOR_SET_SCHEMA(
|
|
400
|
+
InstanceNormalization,
|
|
401
|
+
6,
|
|
402
|
+
OpSchema()
|
|
403
|
+
.SetDoc(InstanceNormalization_ver6_doc)
|
|
404
|
+
.Attr("epsilon", "The epsilon value to use to avoid division by zero.", AttributeProto::FLOAT, 1e-5f)
|
|
405
|
+
.Input(
|
|
406
|
+
0,
|
|
407
|
+
"input",
|
|
408
|
+
"Input data tensor from the previous operator; "
|
|
409
|
+
"dimensions for image case are (N x C x H x W), "
|
|
410
|
+
"where N is the batch size, C is the number of "
|
|
411
|
+
"channels, and H and W are the height and the "
|
|
412
|
+
"width of the data. For non image case, the "
|
|
413
|
+
"dimensions are in the form of "
|
|
414
|
+
"(N x C x D1 x D2 ... Dn), where N is the batch "
|
|
415
|
+
"size.",
|
|
416
|
+
"T",
|
|
417
|
+
OpSchema::Single,
|
|
418
|
+
true,
|
|
419
|
+
1,
|
|
420
|
+
OpSchema::Differentiable)
|
|
421
|
+
.Input(
|
|
422
|
+
1,
|
|
423
|
+
"scale",
|
|
424
|
+
"The input 1-dimensional scale tensor of size C.",
|
|
425
|
+
"T",
|
|
426
|
+
OpSchema::Single,
|
|
427
|
+
true,
|
|
428
|
+
1,
|
|
429
|
+
OpSchema::Differentiable)
|
|
430
|
+
.Input(
|
|
431
|
+
2,
|
|
432
|
+
"B",
|
|
433
|
+
"The input 1-dimensional bias tensor of size C.",
|
|
434
|
+
"T",
|
|
435
|
+
OpSchema::Single,
|
|
436
|
+
true,
|
|
437
|
+
1,
|
|
438
|
+
OpSchema::Differentiable)
|
|
439
|
+
.Output(
|
|
440
|
+
0,
|
|
441
|
+
"output",
|
|
442
|
+
"The output tensor of the same shape as input.",
|
|
443
|
+
"T",
|
|
444
|
+
OpSchema::Single,
|
|
445
|
+
true,
|
|
446
|
+
1,
|
|
447
|
+
OpSchema::Differentiable)
|
|
448
|
+
.TypeConstraint(
|
|
449
|
+
"T",
|
|
450
|
+
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
|
451
|
+
"Constrain input and output types to float tensors.")
|
|
452
|
+
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) { propagateShapeAndTypeFromFirstInput(ctx); }));
|
|
453
|
+
|
|
454
|
+
static void maxUnpoolShapeInference_opset11(InferenceContext& ctx) {
|
|
455
|
+
// we need at least two inputs to have a shape for this inference.
|
|
456
|
+
if (ctx.getNumInputs() != 2 && ctx.getNumInputs() != 3) {
|
|
457
|
+
fail_type_inference("MaxUnpool op must have either two or three inputs.");
|
|
458
|
+
}
|
|
459
|
+
propagateElemTypeFromInputToOutput(ctx, 0, 0);
|
|
460
|
+
if (!hasInputShape(ctx, 0)) {
|
|
461
|
+
return; // If first input does not have shape, we cannot infer much.
|
|
462
|
+
}
|
|
463
|
+
auto input_shape = ctx.getInputType(0)->tensor_type().shape();
|
|
464
|
+
if (input_shape.dim_size() < 2) {
|
|
465
|
+
fail_shape_inference("Input tensor X must have at least 2 dimensions.");
|
|
466
|
+
}
|
|
467
|
+
|
|
468
|
+
// first dim is the batch axis and the next is the number of channels.
|
|
469
|
+
size_t n_input_dims = static_cast<size_t>(input_shape.dim_size() - 2);
|
|
470
|
+
|
|
471
|
+
std::vector<int64_t> pads;
|
|
472
|
+
if (getRepeatedAttribute(ctx, "pads", pads)) {
|
|
473
|
+
if (pads.size() != n_input_dims * 2) {
|
|
474
|
+
fail_shape_inference("Attribute pads has incorrect size.");
|
|
475
|
+
}
|
|
476
|
+
} else {
|
|
477
|
+
pads.assign(n_input_dims * 2, 0);
|
|
478
|
+
}
|
|
479
|
+
|
|
480
|
+
std::vector<int64_t> strides;
|
|
481
|
+
if (getRepeatedAttribute(ctx, "strides", strides)) {
|
|
482
|
+
if (strides.size() != n_input_dims) {
|
|
483
|
+
fail_shape_inference("Attribute strides has incorrect size.");
|
|
484
|
+
}
|
|
485
|
+
} else {
|
|
486
|
+
strides.assign(n_input_dims, 1);
|
|
487
|
+
}
|
|
488
|
+
|
|
489
|
+
std::vector<int64_t> kernel_shape;
|
|
490
|
+
if (getRepeatedAttribute(ctx, "kernel_shape", kernel_shape)) {
|
|
491
|
+
if (kernel_shape.size() != n_input_dims) {
|
|
492
|
+
fail_shape_inference("Attribute kernel_shape has incorrect size.");
|
|
493
|
+
}
|
|
494
|
+
} else {
|
|
495
|
+
fail_shape_inference("Attribute kernel_shape must be specified.");
|
|
496
|
+
}
|
|
497
|
+
|
|
498
|
+
if (ctx.getNumInputs() == 3) {
|
|
499
|
+
// If the third input, output_size, is specified, then use that instead
|
|
500
|
+
// of inferring shape from inputs.
|
|
501
|
+
if (hasInputShape(ctx, 2)) {
|
|
502
|
+
auto& output_shape = getInputShape(ctx, 2);
|
|
503
|
+
if (output_shape.dim_size() != 1) {
|
|
504
|
+
fail_type_inference("'output_shape' must be rank 1 tensor.");
|
|
505
|
+
}
|
|
506
|
+
if (output_shape.dim(static_cast<int>(0)).has_dim_value() &&
|
|
507
|
+
static_cast<int>(output_shape.dim(static_cast<int>(0)).dim_value()) != input_shape.dim_size()) {
|
|
508
|
+
fail_shape_inference("'output_shape' must have same number of elements as the shape of input tensor X.");
|
|
509
|
+
}
|
|
510
|
+
}
|
|
511
|
+
return; // 'output_shape' is specified as input. Actual shape will be
|
|
512
|
+
// determined at runtime.
|
|
513
|
+
}
|
|
514
|
+
|
|
515
|
+
auto final_output_shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
|
|
516
|
+
|
|
517
|
+
*final_output_shape->add_dim() = input_shape.dim(0);
|
|
518
|
+
*final_output_shape->add_dim() =
|
|
519
|
+
ctx.getInputType(1)->tensor_type().shape().dim(1); // channels should be the second dim of second input.
|
|
520
|
+
|
|
521
|
+
int kernel_shape_size = static_cast<int>(kernel_shape.size());
|
|
522
|
+
for (int i = 0; i < kernel_shape_size; ++i) {
|
|
523
|
+
auto newdim = final_output_shape->add_dim();
|
|
524
|
+
if (!input_shape.dim(2 + i).has_dim_value()) {
|
|
525
|
+
continue;
|
|
526
|
+
}
|
|
527
|
+
|
|
528
|
+
int64_t newdim_value = strides[i] * (input_shape.dim(2 + i).dim_value() - 1);
|
|
529
|
+
newdim_value += kernel_shape[i];
|
|
530
|
+
newdim_value -= pads[i];
|
|
531
|
+
newdim_value -= pads[i + kernel_shape_size];
|
|
532
|
+
|
|
533
|
+
// add in the initial position
|
|
534
|
+
newdim->set_dim_value(newdim_value);
|
|
535
|
+
}
|
|
536
|
+
}
|
|
537
|
+
|
|
538
|
+
// For GlobalPool operations.
|
|
539
|
+
static void globalPoolTypeShapeInference_opset1(InferenceContext& ctx) {
|
|
540
|
+
propagateElemTypeFromInputToOutput(ctx, 0, 0);
|
|
541
|
+
|
|
542
|
+
// needs at least one input with shape.
|
|
543
|
+
if (!hasNInputShapes(ctx, 1)) {
|
|
544
|
+
return;
|
|
545
|
+
}
|
|
546
|
+
|
|
547
|
+
auto input_shape = ctx.getInputType(0)->tensor_type().shape();
|
|
548
|
+
if (input_shape.dim_size() < 2) {
|
|
549
|
+
return;
|
|
550
|
+
}
|
|
551
|
+
|
|
552
|
+
// first dim is the batch axis and the next is the number of channels.
|
|
553
|
+
size_t n_input_dims = static_cast<size_t>(input_shape.dim_size() - 2);
|
|
554
|
+
|
|
555
|
+
// (N, C, 1, 1, ..., 1)
|
|
556
|
+
auto output_shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
|
|
557
|
+
*output_shape->add_dim() = input_shape.dim(0);
|
|
558
|
+
*output_shape->add_dim() = input_shape.dim(1);
|
|
559
|
+
|
|
560
|
+
for (size_t i = 0; i < n_input_dims; ++i) {
|
|
561
|
+
output_shape->add_dim()->set_dim_value(1);
|
|
562
|
+
}
|
|
563
|
+
}
|
|
564
|
+
|
|
565
|
+
static std::function<void(OpSchema&)> GlobalPoolingOpSchemaGenerator_opset1(const char* op_type, const char* op) {
|
|
566
|
+
return [=](OpSchema& schema) {
|
|
567
|
+
std::string doc;
|
|
568
|
+
POPULATE_OP_DOC_STR(doc = R"DOC(
|
|
569
|
+
Global{op_type} consumes an input tensor X and applies {op} pooling across
|
|
570
|
+
the values in the same channel. This is equivalent to {op_type} with kernel size
|
|
571
|
+
equal to the spatial dimension of input tensor.)DOC";
|
|
572
|
+
ReplaceAll(doc, "{op_type}", op_type);
|
|
573
|
+
ReplaceAll(doc, "{op}", op););
|
|
574
|
+
schema.SetDoc(doc);
|
|
575
|
+
schema.Input(
|
|
576
|
+
0,
|
|
577
|
+
"X",
|
|
578
|
+
"Input data tensor from the previous operator; "
|
|
579
|
+
"dimensions for image case are (N x C x H x W), "
|
|
580
|
+
"where N is the batch size, C is the number of "
|
|
581
|
+
"channels, and H and W are the height and the width "
|
|
582
|
+
"of the data. For non image case, the dimensions are "
|
|
583
|
+
"in the form of (N x C x D1 x D2 ... Dn), "
|
|
584
|
+
"where N is the batch size.",
|
|
585
|
+
"T",
|
|
586
|
+
OpSchema::Single,
|
|
587
|
+
true,
|
|
588
|
+
1,
|
|
589
|
+
OpSchema::Differentiable);
|
|
590
|
+
schema.Output(
|
|
591
|
+
0,
|
|
592
|
+
"Y",
|
|
593
|
+
"Output data tensor from pooling across the input "
|
|
594
|
+
"tensor. The output tensor has the same rank as the input. "
|
|
595
|
+
"The first two dimensions of output shape are the same as "
|
|
596
|
+
"the input (N x C), while the other dimensions are all 1.",
|
|
597
|
+
"T",
|
|
598
|
+
OpSchema::Single,
|
|
599
|
+
true,
|
|
600
|
+
1,
|
|
601
|
+
OpSchema::Differentiable);
|
|
602
|
+
schema.TypeConstraint(
|
|
603
|
+
"T",
|
|
604
|
+
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
|
605
|
+
"Constrain input and output types to float tensors.");
|
|
606
|
+
schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) { globalPoolTypeShapeInference_opset1(ctx); });
|
|
607
|
+
};
|
|
608
|
+
}
|
|
609
|
+
ONNX_OPERATOR_SET_SCHEMA(
|
|
610
|
+
GlobalAveragePool,
|
|
611
|
+
1,
|
|
612
|
+
OpSchema().FillUsing(GlobalPoolingOpSchemaGenerator_opset1("AveragePool", "average")));
|
|
613
|
+
ONNX_OPERATOR_SET_SCHEMA(
|
|
614
|
+
GlobalMaxPool,
|
|
615
|
+
1,
|
|
616
|
+
OpSchema().FillUsing(GlobalPoolingOpSchemaGenerator_opset1("MaxPool", "max")));
|
|
617
|
+
|
|
618
|
+
static void convTransposeShapeInference_opset11(InferenceContext& ctx) {
|
|
619
|
+
propagateElemTypeFromInputToOutput(ctx, 0, 0);
|
|
620
|
+
|
|
621
|
+
// we need at least two inputs to have a shape for this inference.
|
|
622
|
+
if (!hasNInputShapes(ctx, 2)) {
|
|
623
|
+
return;
|
|
624
|
+
}
|
|
625
|
+
|
|
626
|
+
int64_t group = getAttribute(ctx, "group", 1);
|
|
627
|
+
|
|
628
|
+
auto input_shape = ctx.getInputType(0)->tensor_type().shape();
|
|
629
|
+
if (input_shape.dim_size() < 2) {
|
|
630
|
+
return; // Input tensor should have at least two dimensions.
|
|
631
|
+
}
|
|
632
|
+
|
|
633
|
+
// first dim is the batch axis and the next is the number of channels.
|
|
634
|
+
size_t n_input_dims = static_cast<size_t>(input_shape.dim_size() - 2);
|
|
635
|
+
|
|
636
|
+
std::vector<int64_t> dilations;
|
|
637
|
+
if (getRepeatedAttribute(ctx, "dilations", dilations)) {
|
|
638
|
+
if (dilations.size() != n_input_dims) {
|
|
639
|
+
return;
|
|
640
|
+
}
|
|
641
|
+
} else {
|
|
642
|
+
dilations.assign(n_input_dims, 1);
|
|
643
|
+
}
|
|
644
|
+
|
|
645
|
+
std::vector<int64_t> strides;
|
|
646
|
+
if (getRepeatedAttribute(ctx, "strides", strides)) {
|
|
647
|
+
if (strides.size() != n_input_dims) {
|
|
648
|
+
return;
|
|
649
|
+
}
|
|
650
|
+
} else {
|
|
651
|
+
strides.assign(n_input_dims, 1);
|
|
652
|
+
}
|
|
653
|
+
|
|
654
|
+
std::vector<int64_t> kernel_shape;
|
|
655
|
+
if (getRepeatedAttribute(ctx, "kernel_shape", kernel_shape)) {
|
|
656
|
+
if (kernel_shape.size() != n_input_dims) {
|
|
657
|
+
return;
|
|
658
|
+
}
|
|
659
|
+
} else {
|
|
660
|
+
auto second_input_shape = ctx.getInputType(1)->tensor_type().shape();
|
|
661
|
+
for (int i = 2; i < second_input_shape.dim_size(); ++i) {
|
|
662
|
+
if (!second_input_shape.dim(i).has_dim_value()) {
|
|
663
|
+
return;
|
|
664
|
+
}
|
|
665
|
+
kernel_shape.push_back(second_input_shape.dim(i).dim_value());
|
|
666
|
+
}
|
|
667
|
+
}
|
|
668
|
+
|
|
669
|
+
std::vector<int64_t> effective_kernel_shape = kernel_shape;
|
|
670
|
+
for (int i = 0; i < static_cast<int>(kernel_shape.size()); i++) {
|
|
671
|
+
// accounting for dilation, how big is the kernel in this dimension
|
|
672
|
+
effective_kernel_shape[i] = (effective_kernel_shape[i] - 1) * dilations[i] + 1;
|
|
673
|
+
}
|
|
674
|
+
|
|
675
|
+
std::vector<int64_t> pads;
|
|
676
|
+
if (getRepeatedAttribute(ctx, "pads", pads)) {
|
|
677
|
+
if (pads.size() != n_input_dims * 2) {
|
|
678
|
+
fail_shape_inference("Attribute pads has incorrect size");
|
|
679
|
+
}
|
|
680
|
+
const auto* auto_pad_attr = ctx.getAttribute("auto_pad");
|
|
681
|
+
if (nullptr != auto_pad_attr && auto_pad_attr->s() != "NOTSET") {
|
|
682
|
+
fail_shape_inference("The pads attribute cannot be used simultaneously with auto_pad attribute");
|
|
683
|
+
}
|
|
684
|
+
} else {
|
|
685
|
+
pads.assign(n_input_dims * 2, 0);
|
|
686
|
+
const auto* auto_pad_attr = ctx.getAttribute("auto_pad");
|
|
687
|
+
if ((nullptr != auto_pad_attr) && (auto_pad_attr->s() != "VALID")) {
|
|
688
|
+
int input_dims_size = static_cast<int>(n_input_dims);
|
|
689
|
+
for (int i = 0; i < input_dims_size; ++i) {
|
|
690
|
+
int64_t total_pad = effective_kernel_shape[i] - strides[i];
|
|
691
|
+
if (total_pad < 0)
|
|
692
|
+
total_pad = 0;
|
|
693
|
+
int64_t half_pad_small = total_pad >> 1;
|
|
694
|
+
int64_t half_pad_big = total_pad - half_pad_small;
|
|
695
|
+
if (auto_pad_attr->s() == "SAME_UPPER") {
|
|
696
|
+
pads[i] = half_pad_small;
|
|
697
|
+
pads[i + input_dims_size] = half_pad_big;
|
|
698
|
+
} else if (auto_pad_attr->s() == "SAME_LOWER") {
|
|
699
|
+
pads[i] = half_pad_big;
|
|
700
|
+
pads[i + input_dims_size] = half_pad_small;
|
|
701
|
+
}
|
|
702
|
+
}
|
|
703
|
+
}
|
|
704
|
+
}
|
|
705
|
+
|
|
706
|
+
std::vector<int64_t> output_shape;
|
|
707
|
+
bool output_shape_presented = true;
|
|
708
|
+
if (getRepeatedAttribute(ctx, "output_shape", output_shape)) {
|
|
709
|
+
if (output_shape.size() != n_input_dims) {
|
|
710
|
+
return;
|
|
711
|
+
}
|
|
712
|
+
} else {
|
|
713
|
+
output_shape_presented = false;
|
|
714
|
+
}
|
|
715
|
+
|
|
716
|
+
std::vector<int64_t> output_padding;
|
|
717
|
+
if (getRepeatedAttribute(ctx, "output_padding", output_padding)) {
|
|
718
|
+
if (output_padding.size() != n_input_dims) { // Added only to one side.
|
|
719
|
+
return;
|
|
720
|
+
}
|
|
721
|
+
} else {
|
|
722
|
+
output_padding.assign(n_input_dims, 0);
|
|
723
|
+
}
|
|
724
|
+
|
|
725
|
+
auto final_output_shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
|
|
726
|
+
|
|
727
|
+
*final_output_shape->add_dim() = input_shape.dim(0);
|
|
728
|
+
*final_output_shape->add_dim() =
|
|
729
|
+
ctx.getInputType(1)->tensor_type().shape().dim(1) * group; // channels should be the second dim of second input
|
|
730
|
+
// multiply group.
|
|
731
|
+
|
|
732
|
+
int size_of_output = 0;
|
|
733
|
+
if (output_shape_presented) {
|
|
734
|
+
size_of_output = static_cast<int>(output_shape.size());
|
|
735
|
+
for (int i = 0; i < size_of_output; ++i) {
|
|
736
|
+
if (input_shape.dim(i + 2).has_dim_value()) {
|
|
737
|
+
if (output_shape[i] < input_shape.dim(i + 2).dim_value()) {
|
|
738
|
+
// TODO: throw exception?
|
|
739
|
+
return; // output shape value cannot be smaller than the input shape
|
|
740
|
+
// value
|
|
741
|
+
}
|
|
742
|
+
}
|
|
743
|
+
final_output_shape->add_dim()->set_dim_value(output_shape[i]);
|
|
744
|
+
}
|
|
745
|
+
return;
|
|
746
|
+
} else {
|
|
747
|
+
size_of_output = input_shape.dim_size() - 2;
|
|
748
|
+
for (int i = 0; i < size_of_output; ++i) {
|
|
749
|
+
if (input_shape.dim(i + 2).has_dim_value()) {
|
|
750
|
+
int64_t output_shape_dim = strides[i] * (input_shape.dim(i + 2).dim_value() - 1) + output_padding[i] +
|
|
751
|
+
effective_kernel_shape[i] - pads[i] - pads[i + n_input_dims];
|
|
752
|
+
final_output_shape->add_dim()->set_dim_value(output_shape_dim);
|
|
753
|
+
} else {
|
|
754
|
+
final_output_shape->add_dim();
|
|
755
|
+
}
|
|
756
|
+
}
|
|
757
|
+
return;
|
|
758
|
+
}
|
|
759
|
+
}
|
|
760
|
+
|
|
761
|
+
static const char* DeformConv_ver19_doc = R"DOC(
|
|
762
|
+
Performs deformable convolution as described in https://arxiv.org/abs/1703.06211 and https://arxiv.org/abs/1811.11168.
|
|
763
|
+
This operator specification supports the general N-D case. Note that most common use cases have 2D or 3D data.
|
|
764
|
+
)DOC";
|
|
765
|
+
|
|
766
|
+
ONNX_OPERATOR_SET_SCHEMA(
|
|
767
|
+
DeformConv,
|
|
768
|
+
19,
|
|
769
|
+
OpSchema()
|
|
770
|
+
.SetDoc(DeformConv_ver19_doc)
|
|
771
|
+
.Input(
|
|
772
|
+
0,
|
|
773
|
+
"X",
|
|
774
|
+
"Input data tensor. For 2D image data, it has shape (N, C, H, W) where N is the batch size, "
|
|
775
|
+
"C is the number of input channels, and H and W are the height and width. "
|
|
776
|
+
"In general, the shape is (N, C, D1, D2, ... , Dn) for n-dimensional data, where "
|
|
777
|
+
"D1 to Dn are the spatial dimension sizes. Most common use cases have n = 2 or 3.",
|
|
778
|
+
"T")
|
|
779
|
+
.Input(
|
|
780
|
+
1,
|
|
781
|
+
"W",
|
|
782
|
+
"Weight tensor that will be used in the convolutions. It has shape (oC, C/group, kH, kW), "
|
|
783
|
+
"where oC is the number of output channels and kH and kW are the kernel height and width. "
|
|
784
|
+
"For more than 2 dimensions, it has shape (oC, C/group, k1, k2, ... , kn).",
|
|
785
|
+
"T")
|
|
786
|
+
.Input(
|
|
787
|
+
2,
|
|
788
|
+
"offset",
|
|
789
|
+
"Offset tensor denoting the offset for the sampling locations in the convolution kernel. "
|
|
790
|
+
"It has shape (N, offset_group * kH * kW * 2, oH, oW) for 2D data or "
|
|
791
|
+
"(N, offset_group * k1 * k2 * ... * kn * n, o1, o2, ... , on) for nD data. Use linear interpolation"
|
|
792
|
+
"for fractional offset values. Sampling locations outside of the padded input tensor gives zero.",
|
|
793
|
+
"T")
|
|
794
|
+
.Input(
|
|
795
|
+
3,
|
|
796
|
+
"B",
|
|
797
|
+
"Optional 1D bias of length oC to be added to the convolution. Default is a tensor of zeros.",
|
|
798
|
+
"T",
|
|
799
|
+
OpSchema::Optional)
|
|
800
|
+
.Input(
|
|
801
|
+
4,
|
|
802
|
+
"mask",
|
|
803
|
+
"The mask tensor to be applied to each position in the convolution kernel. "
|
|
804
|
+
"It has shape (N, offset_group * kH * kW, oH, oW) for 2D data or "
|
|
805
|
+
"(N, offset_group * k1 * k2 * ... * kn * n, o1, o2, ... , on) for nD data. Default is a "
|
|
806
|
+
"tensor of ones.",
|
|
807
|
+
"T",
|
|
808
|
+
OpSchema::Optional)
|
|
809
|
+
.Output(
|
|
810
|
+
0,
|
|
811
|
+
"Y",
|
|
812
|
+
"Output data tensor that contains the result of convolution. It has shape (N, oC, oH, oW) "
|
|
813
|
+
"for 2D data or (N, oC, o1, o2, ..., on) for nD data",
|
|
814
|
+
"T")
|
|
815
|
+
.TypeConstraint(
|
|
816
|
+
"T",
|
|
817
|
+
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
|
818
|
+
"Constrain input and output types to float tensors.")
|
|
819
|
+
.Attr(
|
|
820
|
+
"dilations",
|
|
821
|
+
"Dilation value along each spatial axis of the kernel. Default is 1 along each axis.",
|
|
822
|
+
AttributeProto::INTS,
|
|
823
|
+
OPTIONAL_VALUE)
|
|
824
|
+
.Attr(
|
|
825
|
+
"group",
|
|
826
|
+
"Number of groups the input and output channels, C and oC, are divided into. C and oC must both "
|
|
827
|
+
"be divisible by group. Default is 1.",
|
|
828
|
+
AttributeProto::INT,
|
|
829
|
+
static_cast<int64_t>(1))
|
|
830
|
+
.Attr(
|
|
831
|
+
"kernel_shape",
|
|
832
|
+
"Shape of the convolution kernel. If not present, it is inferred from the shape of input W.",
|
|
833
|
+
AttributeProto::INTS,
|
|
834
|
+
OPTIONAL_VALUE)
|
|
835
|
+
.Attr(
|
|
836
|
+
"offset_group",
|
|
837
|
+
"Number of groups of offset. C must be divisible by offset_group. Default is 1.",
|
|
838
|
+
AttributeProto::INT,
|
|
839
|
+
static_cast<int64_t>(1))
|
|
840
|
+
.Attr(
|
|
841
|
+
"pads",
|
|
842
|
+
"Padding for the beginning and end along each spatial axis. The values represent the number of pixels "
|
|
843
|
+
"added to the beginning and end of the corresponding axis and can take any nonnegative value. "
|
|
844
|
+
"The format should be as follows: [x1_begin, x2_begin, ..., x1_end, x2_end, ...], where xi_begin "
|
|
845
|
+
"is the number of pixels added at the beginning of axis `i` and xi_end is the number of pixels "
|
|
846
|
+
"added at the end of axis `i`. Default is 0 along each axis.",
|
|
847
|
+
AttributeProto::INTS,
|
|
848
|
+
OPTIONAL_VALUE)
|
|
849
|
+
.Attr(
|
|
850
|
+
"strides",
|
|
851
|
+
"Stride along each spatial axis. Default is 1 along each axis.",
|
|
852
|
+
AttributeProto::INTS,
|
|
853
|
+
OPTIONAL_VALUE)
|
|
854
|
+
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
|
|
855
|
+
propagateElemTypeFromInputToOutput(ctx, 0, 0);
|
|
856
|
+
convPoolShapeInference_opset19(ctx, true, false, 0, 1);
|
|
857
|
+
}));
|
|
858
|
+
|
|
859
|
+
static std::function<void(OpSchema&)> ConvTransposeOpSchemaGenerator_opset11(const char* filter_desc) {
|
|
860
|
+
return [=](OpSchema& schema) {
|
|
861
|
+
std::string doc;
|
|
862
|
+
POPULATE_OP_DOC_STR(doc = R"DOC(
|
|
863
|
+
The convolution transpose operator consumes an input tensor and {filter_desc},
|
|
864
|
+
and computes the output.
|
|
865
|
+
|
|
866
|
+
If the pads parameter is provided the shape of the output is calculated via the following equation:
|
|
867
|
+
|
|
868
|
+
output_shape[i] = stride[i] * (input_size[i] - 1) + output_padding[i] + ((kernel_shape[i] - 1) * dilations[i] + 1) - pads[start_i] - pads[end_i]
|
|
869
|
+
|
|
870
|
+
output_shape can also be explicitly specified in which case pads values are auto generated using these equations:
|
|
871
|
+
|
|
872
|
+
total_padding[i] = stride[i] * (input_size[i] - 1) + output_padding[i] + ((kernel_shape[i] - 1) * dilations[i] + 1) - output_shape[i]
|
|
873
|
+
If (auto_pads == SAME_UPPER): pads[start_i] = total_padding[i]/2; pads[end_i] = total_padding[i] - (total_padding[i]/2)
|
|
874
|
+
Else: pads[start_i] = total_padding[i] - (total_padding[i]/2); pads[end_i] = (total_padding[i]/2).
|
|
875
|
+
|
|
876
|
+
)DOC";
|
|
877
|
+
ReplaceAll(doc, "{filter_desc}", filter_desc););
|
|
878
|
+
schema.SetDoc(doc);
|
|
879
|
+
schema.Input(
|
|
880
|
+
0,
|
|
881
|
+
"X",
|
|
882
|
+
"Input data tensor from previous layer; has size (N x C x H x W)"
|
|
883
|
+
", where N is the batch size, C is the number of channels, and"
|
|
884
|
+
" H and W are the height and width. Note that this is for the 2D image. "
|
|
885
|
+
"Otherwise the size is (N x C x D1 x D2 ... x Dn)",
|
|
886
|
+
"T",
|
|
887
|
+
OpSchema::Single,
|
|
888
|
+
true,
|
|
889
|
+
1,
|
|
890
|
+
OpSchema::Differentiable);
|
|
891
|
+
schema.Input(
|
|
892
|
+
1,
|
|
893
|
+
"W",
|
|
894
|
+
"The weight tensor that will be used in the "
|
|
895
|
+
"convolutions; has size (C x M/group x kH x kW), where C "
|
|
896
|
+
"is the number of channels, and kH and kW are the "
|
|
897
|
+
"height and width of the kernel, and M is the number "
|
|
898
|
+
"of feature maps. For more than 2 dimensions, the "
|
|
899
|
+
"weight shape will be (C x M/group x k1 x k2 x ... x kn), "
|
|
900
|
+
"where (k1 x k2 x ... x kn) is the dimension of the kernel. "
|
|
901
|
+
"The number of channels in the output should be equal to W.shape[1] * group "
|
|
902
|
+
"(assuming zero based indices of the shape array)",
|
|
903
|
+
"T",
|
|
904
|
+
OpSchema::Single,
|
|
905
|
+
true,
|
|
906
|
+
1,
|
|
907
|
+
OpSchema::Differentiable);
|
|
908
|
+
schema.Input(
|
|
909
|
+
2,
|
|
910
|
+
"B",
|
|
911
|
+
"Optional 1D bias to be added to the convolution, has size of M.",
|
|
912
|
+
"T",
|
|
913
|
+
OpSchema::Optional,
|
|
914
|
+
true,
|
|
915
|
+
1,
|
|
916
|
+
OpSchema::Differentiable);
|
|
917
|
+
schema.Output(
|
|
918
|
+
0,
|
|
919
|
+
"Y",
|
|
920
|
+
"Output data tensor that contains the result of the convolution. The "
|
|
921
|
+
"output dimensions are functions of the kernel size, stride size, "
|
|
922
|
+
"pad lengths and group count. "
|
|
923
|
+
"The number of channels in the output should be equal to W.shape[1] * group "
|
|
924
|
+
"(assuming zero based indices of the shape array)",
|
|
925
|
+
"T",
|
|
926
|
+
OpSchema::Single,
|
|
927
|
+
true,
|
|
928
|
+
1,
|
|
929
|
+
OpSchema::Differentiable);
|
|
930
|
+
schema.TypeConstraint(
|
|
931
|
+
"T",
|
|
932
|
+
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
|
933
|
+
"Constrain input and output types to float tensors.");
|
|
934
|
+
schema.Attr(
|
|
935
|
+
"kernel_shape",
|
|
936
|
+
"The shape of the convolution kernel. If not present, should be inferred from input W.",
|
|
937
|
+
AttributeProto::INTS,
|
|
938
|
+
OPTIONAL_VALUE);
|
|
939
|
+
schema.Attr(
|
|
940
|
+
"output_shape",
|
|
941
|
+
"The shape of the output can be explicitly set which will cause pads values to be auto generated. If output_shape is specified "
|
|
942
|
+
"pads values are ignored. See doc for details for equations to generate pads. Note that the output_shape attribute value "
|
|
943
|
+
"should not include dimensions for batch size and channels, which are automatically inferred.",
|
|
944
|
+
AttributeProto::INTS,
|
|
945
|
+
OPTIONAL_VALUE);
|
|
946
|
+
schema.Attr(
|
|
947
|
+
"output_padding",
|
|
948
|
+
"Additional elements added to the side with higher coordinate indices in the output. "
|
|
949
|
+
"Each padding value in \"output_padding\" must be less than the corresponding stride/dilation dimension. "
|
|
950
|
+
"By default, this attribute is a zero vector. "
|
|
951
|
+
"Note that this attribute doesn't directly affect the computed output values. "
|
|
952
|
+
"It only controls the selection of the computed values, "
|
|
953
|
+
"so changing this attribute only adds or removes output elements. "
|
|
954
|
+
"If \"output_shape\" is explicitly provided, "
|
|
955
|
+
"\"output_padding\" does not contribute additional size to \"output_shape\" but "
|
|
956
|
+
"participates in the computation of the needed padding amount. "
|
|
957
|
+
"This is also called adjs or adjustment in some frameworks.",
|
|
958
|
+
AttributeProto::INTS,
|
|
959
|
+
OPTIONAL_VALUE);
|
|
960
|
+
schema.Attr(
|
|
961
|
+
"dilations",
|
|
962
|
+
"dilation value along each spatial axis of the filter. If not present, the dilation defaults to 1 along each spatial axis.",
|
|
963
|
+
AttributeProto::INTS,
|
|
964
|
+
OPTIONAL_VALUE);
|
|
965
|
+
schema.Attr(
|
|
966
|
+
"strides",
|
|
967
|
+
"Stride along each spatial axis. If not present, the stride defaults to 1 along each spatial axis.",
|
|
968
|
+
AttributeProto::INTS,
|
|
969
|
+
OPTIONAL_VALUE);
|
|
970
|
+
schema.Attr("auto_pad", conv_transpose_auto_pad_doc_opset19, AttributeProto::STRING, std::string("NOTSET"));
|
|
971
|
+
schema.Attr("pads", pads_doc_opset11, AttributeProto::INTS, OPTIONAL_VALUE);
|
|
972
|
+
schema.Attr(
|
|
973
|
+
"group",
|
|
974
|
+
"number of groups input channels and output channels are divided into.",
|
|
975
|
+
AttributeProto::INT,
|
|
976
|
+
static_cast<int64_t>(1));
|
|
977
|
+
schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) { convTransposeShapeInference_opset11(ctx); });
|
|
978
|
+
};
|
|
979
|
+
}
|
|
980
|
+
|
|
981
|
+
ONNX_OPERATOR_SET_SCHEMA(ConvTranspose, 11, OpSchema().FillUsing(ConvTransposeOpSchemaGenerator_opset11("a filter")));
|
|
982
|
+
|
|
983
|
+
static std::function<void(OpSchema&)> ConvOpSchemaGenerator_opset11(const char* filter_desc) {
|
|
984
|
+
return [=](OpSchema& schema) {
|
|
985
|
+
std::string doc;
|
|
986
|
+
POPULATE_OP_DOC_STR(doc = R"DOC(
|
|
987
|
+
The convolution operator consumes an input tensor and {filter_desc}, and
|
|
988
|
+
computes the output.)DOC";
|
|
989
|
+
ReplaceAll(doc, "{filter_desc}", filter_desc););
|
|
990
|
+
schema.SetDoc(doc);
|
|
991
|
+
schema.Input(
|
|
992
|
+
0,
|
|
993
|
+
"X",
|
|
994
|
+
"Input data tensor from previous layer; "
|
|
995
|
+
"has size (N x C x H x W), where N is the batch size, "
|
|
996
|
+
"C is the number of channels, and H and W are the "
|
|
997
|
+
"height and width. Note that this is for the 2D image. "
|
|
998
|
+
"Otherwise the size is (N x C x D1 x D2 ... x Dn). "
|
|
999
|
+
"Optionally, if dimension denotation is "
|
|
1000
|
+
"in effect, the operation expects input data tensor "
|
|
1001
|
+
"to arrive with the dimension denotation of [DATA_BATCH, "
|
|
1002
|
+
"DATA_CHANNEL, DATA_FEATURE, DATA_FEATURE ...].",
|
|
1003
|
+
"T",
|
|
1004
|
+
OpSchema::Single,
|
|
1005
|
+
true,
|
|
1006
|
+
1,
|
|
1007
|
+
OpSchema::Differentiable);
|
|
1008
|
+
schema.Input(
|
|
1009
|
+
1,
|
|
1010
|
+
"W",
|
|
1011
|
+
"The weight tensor that will be used in the "
|
|
1012
|
+
"convolutions; has size (M x C/group x kH x kW), where C "
|
|
1013
|
+
"is the number of channels, and kH and kW are the "
|
|
1014
|
+
"height and width of the kernel, and M is the number "
|
|
1015
|
+
"of feature maps. For more than 2 dimensions, the "
|
|
1016
|
+
"kernel shape will be (M x C/group x k1 x k2 x ... x kn), "
|
|
1017
|
+
"where (k1 x k2 x ... kn) is the dimension of the kernel. "
|
|
1018
|
+
"Optionally, if dimension denotation is in effect, "
|
|
1019
|
+
"the operation expects the weight tensor to arrive "
|
|
1020
|
+
"with the dimension denotation of [FILTER_OUT_CHANNEL, "
|
|
1021
|
+
"FILTER_IN_CHANNEL, FILTER_SPATIAL, FILTER_SPATIAL ...]. "
|
|
1022
|
+
"Assuming zero based indices for the shape array, "
|
|
1023
|
+
"X.shape[1] == (W.shape[1] * group) == C and "
|
|
1024
|
+
"W.shape[0] mod G == 0. Or in other words "
|
|
1025
|
+
"FILTER_IN_CHANNEL multiplied by the number of groups "
|
|
1026
|
+
"should be equal to DATA_CHANNEL and the number of "
|
|
1027
|
+
"feature maps M should be a multiple of the number of "
|
|
1028
|
+
"groups G.",
|
|
1029
|
+
"T",
|
|
1030
|
+
OpSchema::Single,
|
|
1031
|
+
true,
|
|
1032
|
+
1,
|
|
1033
|
+
OpSchema::Differentiable);
|
|
1034
|
+
schema.Input(
|
|
1035
|
+
2,
|
|
1036
|
+
"B",
|
|
1037
|
+
"Optional 1D bias to be added to the convolution, has size of M.",
|
|
1038
|
+
"T",
|
|
1039
|
+
OpSchema::Optional,
|
|
1040
|
+
true,
|
|
1041
|
+
1,
|
|
1042
|
+
OpSchema::Differentiable);
|
|
1043
|
+
schema.Output(
|
|
1044
|
+
0,
|
|
1045
|
+
"Y",
|
|
1046
|
+
"Output data tensor that contains the result of the "
|
|
1047
|
+
"convolution. The output dimensions are functions "
|
|
1048
|
+
"of the kernel size, stride size, and pad lengths.",
|
|
1049
|
+
"T",
|
|
1050
|
+
OpSchema::Single,
|
|
1051
|
+
true,
|
|
1052
|
+
1,
|
|
1053
|
+
OpSchema::Differentiable);
|
|
1054
|
+
schema.TypeConstraint(
|
|
1055
|
+
"T",
|
|
1056
|
+
{"tensor(float16)", "tensor(float16)", "tensor(float)", "tensor(double)"},
|
|
1057
|
+
"Constrain input and output types to float tensors.");
|
|
1058
|
+
schema.Attr(
|
|
1059
|
+
"kernel_shape",
|
|
1060
|
+
"The shape of the convolution kernel. If not present, should be inferred from input W.",
|
|
1061
|
+
AttributeProto::INTS,
|
|
1062
|
+
OPTIONAL_VALUE);
|
|
1063
|
+
schema.Attr(
|
|
1064
|
+
"dilations",
|
|
1065
|
+
"dilation value along each spatial axis of the filter. If not present, the dilation defaults is 1 along each spatial axis.",
|
|
1066
|
+
AttributeProto::INTS,
|
|
1067
|
+
OPTIONAL_VALUE);
|
|
1068
|
+
schema.Attr(
|
|
1069
|
+
"strides",
|
|
1070
|
+
"Stride along each spatial axis. If not present, the stride defaults is 1 along each spatial axis.",
|
|
1071
|
+
AttributeProto::INTS,
|
|
1072
|
+
OPTIONAL_VALUE);
|
|
1073
|
+
schema.Attr("auto_pad", conv_auto_pad_doc_opset19, AttributeProto::STRING, std::string("NOTSET"));
|
|
1074
|
+
schema.Attr("pads", pads_doc_opset11, AttributeProto::INTS, OPTIONAL_VALUE);
|
|
1075
|
+
schema.Attr(
|
|
1076
|
+
"group",
|
|
1077
|
+
"number of groups input channels and output channels are divided into.",
|
|
1078
|
+
AttributeProto::INT,
|
|
1079
|
+
static_cast<int64_t>(1));
|
|
1080
|
+
schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
|
|
1081
|
+
propagateElemTypeFromInputToOutput(ctx, 0, 0);
|
|
1082
|
+
convPoolShapeInference_opset19(ctx, true, false, 0, 1);
|
|
1083
|
+
});
|
|
1084
|
+
};
|
|
1085
|
+
}
|
|
1086
|
+
|
|
1087
|
+
ONNX_OPERATOR_SET_SCHEMA(Conv, 11, OpSchema().FillUsing(ConvOpSchemaGenerator_opset11("a filter")));
|
|
1088
|
+
|
|
1089
|
+
static void roiPoolTypeShapeInference_opset1(InferenceContext& ctx) {
|
|
1090
|
+
propagateElemTypeFromInputToOutput(ctx, 0, 0);
|
|
1091
|
+
|
|
1092
|
+
// rois is the second input.
|
|
1093
|
+
if (!hasNInputShapes(ctx, 2)) {
|
|
1094
|
+
return;
|
|
1095
|
+
}
|
|
1096
|
+
|
|
1097
|
+
auto input_shape = ctx.getInputType(0)->tensor_type().shape();
|
|
1098
|
+
auto rios_shape = ctx.getInputType(1)->tensor_type().shape();
|
|
1099
|
+
|
|
1100
|
+
if (input_shape.dim_size() < 2) {
|
|
1101
|
+
fail_shape_inference("Input tensor must have at least 2 dimensions");
|
|
1102
|
+
}
|
|
1103
|
+
if (rios_shape.dim_size() != 2) {
|
|
1104
|
+
fail_shape_inference("RoIs tensor must have 2 dimensions");
|
|
1105
|
+
}
|
|
1106
|
+
|
|
1107
|
+
// first dim is the batch axis and the next is the number of channels.
|
|
1108
|
+
size_t n_input_dims = static_cast<size_t>(input_shape.dim_size() - 2);
|
|
1109
|
+
|
|
1110
|
+
std::vector<int64_t> pooled_shape;
|
|
1111
|
+
if (getRepeatedAttribute(ctx, "pooled_shape", pooled_shape)) {
|
|
1112
|
+
if (pooled_shape.size() != n_input_dims) {
|
|
1113
|
+
fail_shape_inference("Attribute pooled_shape has incorrect length");
|
|
1114
|
+
}
|
|
1115
|
+
} else {
|
|
1116
|
+
fail_shape_inference("Attribute pooled_shape must be specified");
|
|
1117
|
+
}
|
|
1118
|
+
|
|
1119
|
+
// (num_rois, channels, pooled_shape[0], pooled_shape[1])
|
|
1120
|
+
auto output_shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
|
|
1121
|
+
|
|
1122
|
+
*output_shape->add_dim() = rios_shape.dim(0);
|
|
1123
|
+
*output_shape->add_dim() = input_shape.dim(1);
|
|
1124
|
+
output_shape->add_dim()->set_dim_value(pooled_shape[0]);
|
|
1125
|
+
output_shape->add_dim()->set_dim_value(pooled_shape[1]);
|
|
1126
|
+
}
|
|
1127
|
+
|
|
1128
|
+
static std::function<void(OpSchema&)> RoiPoolOpSchemaGenerator_opset1(const char* name) {
|
|
1129
|
+
return [=](OpSchema& schema) {
|
|
1130
|
+
std::string doc;
|
|
1131
|
+
POPULATE_OP_DOC_STR(doc = R"DOC(
|
|
1132
|
+
ROI {name} pool consumes an input tensor X and region of interests (RoIs) to
|
|
1133
|
+
apply {name} pooling across each RoI, to produce output 4-D tensor of shape
|
|
1134
|
+
(num_rois, channels, pooled_shape[0], pooled_shape[1]).)DOC";
|
|
1135
|
+
ReplaceAll(doc, "{name}", name););
|
|
1136
|
+
schema.SetDoc(doc);
|
|
1137
|
+
schema.Attr("pooled_shape", "ROI pool output shape (height, width).", AttributeProto::INTS);
|
|
1138
|
+
schema.Attr(
|
|
1139
|
+
"spatial_scale",
|
|
1140
|
+
"Multiplicative spatial scale factor to translate ROI coordinates from their input scale to the scale used when pooling.",
|
|
1141
|
+
AttributeProto::FLOAT,
|
|
1142
|
+
1.f);
|
|
1143
|
+
schema.Input(
|
|
1144
|
+
0,
|
|
1145
|
+
"X",
|
|
1146
|
+
"Input data tensor from the previous operator; "
|
|
1147
|
+
"dimensions for image case are (N x C x H x W), "
|
|
1148
|
+
"where N is the batch size, C is the number of "
|
|
1149
|
+
"channels, and H and W are the height and the "
|
|
1150
|
+
"width of the data.",
|
|
1151
|
+
"T",
|
|
1152
|
+
OpSchema::Single,
|
|
1153
|
+
true,
|
|
1154
|
+
1,
|
|
1155
|
+
OpSchema::Differentiable);
|
|
1156
|
+
schema.Input(
|
|
1157
|
+
1,
|
|
1158
|
+
"rois",
|
|
1159
|
+
"RoIs (Regions of Interest) to pool over. Should "
|
|
1160
|
+
"be a 2-D tensor of shape (num_rois, 5) given as "
|
|
1161
|
+
"[[batch_id, x1, y1, x2, y2], ...].",
|
|
1162
|
+
"T",
|
|
1163
|
+
OpSchema::Single,
|
|
1164
|
+
true,
|
|
1165
|
+
1,
|
|
1166
|
+
OpSchema::NonDifferentiable);
|
|
1167
|
+
schema.Output(
|
|
1168
|
+
0,
|
|
1169
|
+
"Y",
|
|
1170
|
+
"RoI pooled output 4-D tensor of shape (num_rois, channels, pooled_shape[0], pooled_shape[1]).",
|
|
1171
|
+
"T",
|
|
1172
|
+
OpSchema::Single,
|
|
1173
|
+
true,
|
|
1174
|
+
1,
|
|
1175
|
+
OpSchema::Differentiable);
|
|
1176
|
+
schema.TypeConstraint(
|
|
1177
|
+
"T",
|
|
1178
|
+
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
|
1179
|
+
"Constrain input and output types to float tensors.");
|
|
1180
|
+
schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) { roiPoolTypeShapeInference_opset1(ctx); });
|
|
1181
|
+
};
|
|
1182
|
+
}
|
|
1183
|
+
|
|
1184
|
+
ONNX_OPERATOR_SET_SCHEMA(MaxRoiPool, 1, OpSchema().FillUsing(RoiPoolOpSchemaGenerator_opset1("max")));
|
|
1185
|
+
|
|
1186
|
+
static std::function<void(OpSchema&)> LpPoolOpSchemaGenerator_opset18(const char* name) {
|
|
1187
|
+
return [=](OpSchema& schema) {
|
|
1188
|
+
std::string doc;
|
|
1189
|
+
POPULATE_OP_DOC_STR(doc = R"DOC(
|
|
1190
|
+
{name} consumes an input tensor X and applies Lp pooling across
|
|
1191
|
+
the tensor according to kernel sizes, stride sizes, and pad lengths.
|
|
1192
|
+
Lp pooling consisting of computing the Lp norm on all values of a subset
|
|
1193
|
+
of the input tensor according to the kernel size and downsampling the
|
|
1194
|
+
data into the output tensor Y for further processing. The output spatial shape will be following:
|
|
1195
|
+
```
|
|
1196
|
+
output_spatial_shape[i] = floor((input_spatial_shape[i] + pad_shape[i] - {kernelSpatialShape}) / strides_spatial_shape[i] + 1)
|
|
1197
|
+
```
|
|
1198
|
+
or
|
|
1199
|
+
```
|
|
1200
|
+
output_spatial_shape[i] = ceil((input_spatial_shape[i] + pad_shape[i] - {kernelSpatialShape}) / strides_spatial_shape[i] + 1)
|
|
1201
|
+
```
|
|
1202
|
+
if ceil_mode is enabled `pad_shape[i]` is the sum of pads along axis `i`.
|
|
1203
|
+
|
|
1204
|
+
`auto_pad` is a DEPRECATED attribute. If you are using them currently, the output spatial shape will be following:
|
|
1205
|
+
```
|
|
1206
|
+
VALID: output_spatial_shape[i] = ceil((input_spatial_shape[i] - {kernelSpatialShape} + 1) / strides_spatial_shape[i])
|
|
1207
|
+
SAME_UPPER or SAME_LOWER: output_spatial_shape[i] = ceil(input_spatial_shape[i] / strides_spatial_shape[i])
|
|
1208
|
+
```
|
|
1209
|
+
And pad shape will be following if `SAME_UPPER` or `SAME_LOWER`:
|
|
1210
|
+
```
|
|
1211
|
+
pad_shape[i] = (output_spatial_shape[i] - 1) * strides_spatial_shape[i] + {kernelSpatialShape} - input_spatial_shape[i]
|
|
1212
|
+
```)DOC";
|
|
1213
|
+
ReplaceAll(doc, "{name}", name););
|
|
1214
|
+
schema.SetDoc(doc);
|
|
1215
|
+
schema.Attr("kernel_shape", "The size of the kernel along each axis.", AttributeProto::INTS);
|
|
1216
|
+
schema.Attr(
|
|
1217
|
+
"strides",
|
|
1218
|
+
"Stride along each spatial axis. If not present, the stride defaults to 1 along each spatial axis.",
|
|
1219
|
+
AttributeProto::INTS,
|
|
1220
|
+
OPTIONAL_VALUE);
|
|
1221
|
+
schema.Attr(
|
|
1222
|
+
"dilations",
|
|
1223
|
+
"dilation value along each spatial axis of the filter. If not present, the dilation defaults is 1 along each spatial axis.",
|
|
1224
|
+
AttributeProto::INTS,
|
|
1225
|
+
OPTIONAL_VALUE);
|
|
1226
|
+
schema.Attr("auto_pad", conv_auto_pad_doc_opset19, AttributeProto::STRING, std::string("NOTSET"));
|
|
1227
|
+
schema.Attr("pads", pads_doc_opset11, AttributeProto::INTS, OPTIONAL_VALUE);
|
|
1228
|
+
schema.Attr(
|
|
1229
|
+
"p", "p value of the Lp norm used to pool over the input data.", AttributeProto::INT, static_cast<int64_t>(2));
|
|
1230
|
+
schema.Attr(
|
|
1231
|
+
"ceil_mode",
|
|
1232
|
+
"Whether to use ceil or floor (default) to compute the output shape.",
|
|
1233
|
+
AttributeProto::INT,
|
|
1234
|
+
static_cast<int64_t>(0));
|
|
1235
|
+
schema.Input(
|
|
1236
|
+
0,
|
|
1237
|
+
"X",
|
|
1238
|
+
"Input data tensor from the previous operator; "
|
|
1239
|
+
"dimensions for image case are (N x C x H x W), "
|
|
1240
|
+
"where N is the batch size, C is the number of "
|
|
1241
|
+
"channels, and H and W are the height and the "
|
|
1242
|
+
"width of the data. For non image case, the "
|
|
1243
|
+
"dimensions are in the form of "
|
|
1244
|
+
"(N x C x D1 x D2 ... Dn), where N is the "
|
|
1245
|
+
"batch size.",
|
|
1246
|
+
"T",
|
|
1247
|
+
OpSchema::Single,
|
|
1248
|
+
true,
|
|
1249
|
+
1,
|
|
1250
|
+
OpSchema::Differentiable);
|
|
1251
|
+
schema.Output(
|
|
1252
|
+
0,
|
|
1253
|
+
"Y",
|
|
1254
|
+
"Output data tensor from Lp pooling across the input "
|
|
1255
|
+
"tensor. Dimensions will vary based on various kernel, stride, and pad "
|
|
1256
|
+
"sizes.",
|
|
1257
|
+
"T",
|
|
1258
|
+
OpSchema::Single,
|
|
1259
|
+
true,
|
|
1260
|
+
1,
|
|
1261
|
+
OpSchema::Differentiable);
|
|
1262
|
+
schema.TypeConstraint(
|
|
1263
|
+
"T",
|
|
1264
|
+
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
|
1265
|
+
"Constrain input and output types to float tensors.");
|
|
1266
|
+
schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
|
|
1267
|
+
propagateElemTypeFromInputToOutput(ctx, 0, 0);
|
|
1268
|
+
convPoolShapeInference_opset19(ctx, true, true, 0, 1);
|
|
1269
|
+
});
|
|
1270
|
+
};
|
|
1271
|
+
}
|
|
1272
|
+
|
|
1273
|
+
ONNX_OPERATOR_SET_SCHEMA(LpPool, 18, OpSchema().FillUsing(LpPoolOpSchemaGenerator_opset18("LpPool")));
|
|
1274
|
+
|
|
1275
|
+
static const char* MaxUnpool_ver11_doc = R"DOC(
|
|
1276
|
+
MaxUnpool essentially computes the partial inverse of the MaxPool op.
|
|
1277
|
+
The input information to this op is typically the output information from a MaxPool op. The first
|
|
1278
|
+
input tensor X is the tensor that needs to be unpooled, which is typically the pooled tensor (first output)
|
|
1279
|
+
from MaxPool. The second input tensor, I, contains the indices to the (locally maximal) elements corresponding
|
|
1280
|
+
to the elements in the first input tensor X. Input tensor I is typically the second output of the MaxPool op.
|
|
1281
|
+
The third (optional) input is a tensor that specifies the output size of the unpooling operation.
|
|
1282
|
+
|
|
1283
|
+
MaxUnpool is intended to do 'partial' inverse of the MaxPool op. 'Partial' because all the non-maximal
|
|
1284
|
+
values from the original input to MaxPool are set to zero in the output of the MaxUnpool op. Pooling
|
|
1285
|
+
the result of an unpooling operation should give back the original input to the unpooling op.
|
|
1286
|
+
|
|
1287
|
+
MaxUnpool can produce the same output size for several input sizes, which makes unpooling op ambiguous.
|
|
1288
|
+
The third input argument, output_size, is meant to disambiguate the op and produce output tensor of
|
|
1289
|
+
known/predictable size.
|
|
1290
|
+
|
|
1291
|
+
In addition to the inputs, MaxUnpool takes three attributes, namely kernel_shape, strides, and pads,
|
|
1292
|
+
which define the exact unpooling op. The attributes typically have the same values as the corresponding
|
|
1293
|
+
pooling op that the unpooling op is trying to invert.
|
|
1294
|
+
)DOC";
|
|
1295
|
+
|
|
1296
|
+
ONNX_OPERATOR_SET_SCHEMA(
|
|
1297
|
+
MaxUnpool,
|
|
1298
|
+
11,
|
|
1299
|
+
OpSchema()
|
|
1300
|
+
.SetDoc(MaxUnpool_ver11_doc)
|
|
1301
|
+
.Attr("kernel_shape", "The size of the kernel along each axis.", AttributeProto::INTS)
|
|
1302
|
+
.Attr(
|
|
1303
|
+
"strides",
|
|
1304
|
+
"Stride along each spatial axis. If not present, the stride defaults to 1 along each spatial axis.",
|
|
1305
|
+
AttributeProto::INTS,
|
|
1306
|
+
OPTIONAL_VALUE)
|
|
1307
|
+
.Attr("pads", pads_doc_opset11, AttributeProto::INTS, OPTIONAL_VALUE)
|
|
1308
|
+
.Input(
|
|
1309
|
+
0,
|
|
1310
|
+
"X",
|
|
1311
|
+
"Input data tensor that has to be unpooled. "
|
|
1312
|
+
"This tensor is typically the first output of the MaxPool op."
|
|
1313
|
+
"Dimensions for image case are (N x C x H x W), "
|
|
1314
|
+
"where N is the batch size, C is the number of "
|
|
1315
|
+
"channels, and H and W are the height and the "
|
|
1316
|
+
"width of the data. For non-image case, the "
|
|
1317
|
+
"dimensions are in the form of "
|
|
1318
|
+
"(N x C x D1 x D2 ... Dn), where N is the batch "
|
|
1319
|
+
"size. Optionally, if dimension denotation is "
|
|
1320
|
+
"in effect, the operation expects the input "
|
|
1321
|
+
"data tensor to arrive with the dimension denotation "
|
|
1322
|
+
"of [DATA_BATCH, DATA_CHANNEL, DATA_FEATURE, DATA_FEATURE ...].",
|
|
1323
|
+
"T1",
|
|
1324
|
+
OpSchema::Single,
|
|
1325
|
+
true,
|
|
1326
|
+
1,
|
|
1327
|
+
OpSchema::Differentiable)
|
|
1328
|
+
.Input(
|
|
1329
|
+
1,
|
|
1330
|
+
"I",
|
|
1331
|
+
"Input data tensor containing the indices corresponding to "
|
|
1332
|
+
"elements in the first input tensor X."
|
|
1333
|
+
"This tensor is typically the second output of the MaxPool op."
|
|
1334
|
+
"Dimensions must be the same as input tensor X. "
|
|
1335
|
+
"The indices are linear, i.e. computed considering the tensor as flattened 1-D tensor, "
|
|
1336
|
+
"assuming row-major storage. Also, the linear indices should not consider padding. "
|
|
1337
|
+
"So the values in indices are in the range [0, N x C x D1 x ... x Dn).",
|
|
1338
|
+
"T2",
|
|
1339
|
+
OpSchema::Single,
|
|
1340
|
+
true,
|
|
1341
|
+
1,
|
|
1342
|
+
OpSchema::NonDifferentiable)
|
|
1343
|
+
.Input(
|
|
1344
|
+
2,
|
|
1345
|
+
"output_shape",
|
|
1346
|
+
"The shape of the output can be explicitly set which will cause pads values to be auto generated. If 'output_shape' is specified, "
|
|
1347
|
+
"'pads' values are ignored.",
|
|
1348
|
+
"T2",
|
|
1349
|
+
OpSchema::Optional,
|
|
1350
|
+
true,
|
|
1351
|
+
1,
|
|
1352
|
+
OpSchema::NonDifferentiable)
|
|
1353
|
+
.Output(
|
|
1354
|
+
0,
|
|
1355
|
+
"output",
|
|
1356
|
+
"Output data tensor that contains the result of the unpooling.",
|
|
1357
|
+
"T1",
|
|
1358
|
+
OpSchema::Single,
|
|
1359
|
+
true,
|
|
1360
|
+
1,
|
|
1361
|
+
OpSchema::Differentiable)
|
|
1362
|
+
.TypeConstraint(
|
|
1363
|
+
"T1",
|
|
1364
|
+
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
|
1365
|
+
"Constrain input and output types to float tensors.")
|
|
1366
|
+
.TypeConstraint("T2", {"tensor(int64)"}, "Constrain index tensor to int64")
|
|
1367
|
+
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) { maxUnpoolShapeInference_opset11(ctx); }));
|
|
1368
|
+
|
|
1369
|
+
static std::vector<std::string> GetSupportedDataTypesForPoolingOps_opset19(bool supports8bit) {
|
|
1370
|
+
if (supports8bit) {
|
|
1371
|
+
return {"tensor(float16)", "tensor(float)", "tensor(double)", "tensor(int8)", "tensor(uint8)"};
|
|
1372
|
+
}
|
|
1373
|
+
return {"tensor(float16)", "tensor(float)", "tensor(double)"};
|
|
1374
|
+
}
|
|
1375
|
+
|
|
1376
|
+
static std::function<void(OpSchema&)> PoolOpSchemaGenerator_opset19(
|
|
1377
|
+
const char* name,
|
|
1378
|
+
const char* opName,
|
|
1379
|
+
const char* additionalDescription,
|
|
1380
|
+
bool use_dilation,
|
|
1381
|
+
bool supports8bit = false) {
|
|
1382
|
+
return [=](OpSchema& schema) {
|
|
1383
|
+
std::string doc;
|
|
1384
|
+
POPULATE_OP_DOC_STR(
|
|
1385
|
+
doc = R"DOC(
|
|
1386
|
+
{name} consumes an input tensor X and applies {opName} pooling across
|
|
1387
|
+
the tensor according to kernel sizes, stride sizes, and pad lengths.
|
|
1388
|
+
{opName} pooling consisting of computing the {opName} on all values of a
|
|
1389
|
+
subset of the input tensor according to the kernel size and downsampling the
|
|
1390
|
+
data into the output tensor Y for further processing. The output spatial shape is calculated differently
|
|
1391
|
+
depending on whether explicit padding is used, where pads is employed, or auto padding is used, where auto_pad is utilized.
|
|
1392
|
+
With explicit padding (https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html?highlight=maxpool#torch.nn.MaxPool2d):
|
|
1393
|
+
```
|
|
1394
|
+
output_spatial_shape[i] = floor((input_spatial_shape[i] + pad_shape[i] - dilation[i] * (kernel_shape[i] - 1) - 1) / strides_spatial_shape[i] + 1)
|
|
1395
|
+
```
|
|
1396
|
+
or
|
|
1397
|
+
```
|
|
1398
|
+
output_spatial_shape[i] = ceil((input_spatial_shape[i] + pad_shape[i] - dilation[i] * (kernel_shape[i] - 1) - 1) / strides_spatial_shape[i] + 1)
|
|
1399
|
+
```
|
|
1400
|
+
if ceil_mode is enabled. `pad_shape[i]` is the sum of pads along axis `i`.
|
|
1401
|
+
|
|
1402
|
+
`auto_pad` is a DEPRECATED attribute. If you are using them currently, the output spatial shape will be following when ceil_mode is enabled:
|
|
1403
|
+
```
|
|
1404
|
+
VALID: output_spatial_shape[i] = ceil((input_spatial_shape[i] - {kernelSpatialShape} + 1) / strides_spatial_shape[i])
|
|
1405
|
+
SAME_UPPER or SAME_LOWER: output_spatial_shape[i] = ceil(input_spatial_shape[i] / strides_spatial_shape[i])
|
|
1406
|
+
```
|
|
1407
|
+
or when ceil_mode is disabled (https://www.tensorflow.org/api_docs/python/tf/keras/layers/AveragePooling2D):
|
|
1408
|
+
```
|
|
1409
|
+
VALID: output_spatial_shape[i] = floor((input_spatial_shape[i] - {kernelSpatialShape}) / strides_spatial_shape[i]) + 1
|
|
1410
|
+
SAME_UPPER or SAME_LOWER: output_spatial_shape[i] = floor((input_spatial_shape[i] - 1) / strides_spatial_shape[i]) + 1
|
|
1411
|
+
```
|
|
1412
|
+
And pad shape will be following if `SAME_UPPER` or `SAME_LOWER`:
|
|
1413
|
+
```
|
|
1414
|
+
pad_shape[i] = (output_spatial_shape[i] - 1) * strides_spatial_shape[i] + {kernelSpatialShape} - input_spatial_shape[i]
|
|
1415
|
+
```
|
|
1416
|
+
{additionalDescription}
|
|
1417
|
+
)DOC";
|
|
1418
|
+
ReplaceAll(doc, "{name}", name);
|
|
1419
|
+
ReplaceAll(doc, "{opName}", opName);
|
|
1420
|
+
ReplaceAll(doc, "{additionalDescription}", additionalDescription);
|
|
1421
|
+
ReplaceAll(
|
|
1422
|
+
doc,
|
|
1423
|
+
"{kernelSpatialShape}",
|
|
1424
|
+
use_dilation ? "((kernel_spatial_shape[i] - 1) * dilations[i] + 1)" : "kernel_spatial_shape[i]"););
|
|
1425
|
+
schema.SetDoc(doc);
|
|
1426
|
+
schema.Attr("kernel_shape", "The size of the kernel along each axis.", AttributeProto::INTS);
|
|
1427
|
+
schema.Attr(
|
|
1428
|
+
"strides",
|
|
1429
|
+
"Stride along each spatial axis. If not present, the stride defaults to 1 along each spatial axis.",
|
|
1430
|
+
AttributeProto::INTS,
|
|
1431
|
+
OPTIONAL_VALUE);
|
|
1432
|
+
schema.Attr("auto_pad", conv_auto_pad_doc_opset19, AttributeProto::STRING, std::string("NOTSET"));
|
|
1433
|
+
schema.Attr("pads", pads_doc_opset11, AttributeProto::INTS, OPTIONAL_VALUE);
|
|
1434
|
+
schema.Attr(
|
|
1435
|
+
"ceil_mode",
|
|
1436
|
+
"Whether to use ceil or floor (default) to compute the output shape.",
|
|
1437
|
+
AttributeProto::INT,
|
|
1438
|
+
static_cast<int64_t>(0));
|
|
1439
|
+
schema.Input(
|
|
1440
|
+
0,
|
|
1441
|
+
"X",
|
|
1442
|
+
"Input data tensor from the previous operator; "
|
|
1443
|
+
"dimensions for image case are (N x C x H x W), "
|
|
1444
|
+
"where N is the batch size, C is the number of "
|
|
1445
|
+
"channels, and H and W are the height and the "
|
|
1446
|
+
"width of the data. For non image case, the "
|
|
1447
|
+
"dimensions are in the form of "
|
|
1448
|
+
"(N x C x D1 x D2 ... Dn), where N is the batch "
|
|
1449
|
+
"size. Optionally, if dimension denotation is "
|
|
1450
|
+
"in effect, the operation expects the input "
|
|
1451
|
+
"data tensor to arrive with the dimension denotation "
|
|
1452
|
+
"of [DATA_BATCH, DATA_CHANNEL, DATA_FEATURE, DATA_FEATURE ...].",
|
|
1453
|
+
"T",
|
|
1454
|
+
OpSchema::Single,
|
|
1455
|
+
true,
|
|
1456
|
+
1,
|
|
1457
|
+
OpSchema::Differentiable);
|
|
1458
|
+
schema.Output(
|
|
1459
|
+
0,
|
|
1460
|
+
"Y",
|
|
1461
|
+
"Output data tensor from average or max pooling across "
|
|
1462
|
+
"the input tensor. Dimensions will vary based "
|
|
1463
|
+
"on various kernel, stride, and pad sizes. Floor value of "
|
|
1464
|
+
"the dimension is used",
|
|
1465
|
+
"T",
|
|
1466
|
+
OpSchema::Single,
|
|
1467
|
+
true,
|
|
1468
|
+
1,
|
|
1469
|
+
OpSchema::Differentiable);
|
|
1470
|
+
schema.TypeConstraint(
|
|
1471
|
+
"T",
|
|
1472
|
+
GetSupportedDataTypesForPoolingOps_opset19(supports8bit),
|
|
1473
|
+
supports8bit ? "Constrain input and output types to float and 8 bit tensors."
|
|
1474
|
+
: "Constrain input and output types to float tensors.");
|
|
1475
|
+
schema.TypeAndShapeInferenceFunction([use_dilation](InferenceContext& ctx) {
|
|
1476
|
+
propagateElemTypeFromInputToOutput(ctx, 0, 0);
|
|
1477
|
+
if (ctx.getNumOutputs() > 1) {
|
|
1478
|
+
// MaxPool with two outputs case.
|
|
1479
|
+
auto output_type = ctx.getOutputType(1);
|
|
1480
|
+
if (output_type->value_case() == TypeProto::kTensorType ||
|
|
1481
|
+
output_type->value_case() == TypeProto::VALUE_NOT_SET) {
|
|
1482
|
+
output_type->mutable_tensor_type()->set_elem_type(TensorProto::INT64);
|
|
1483
|
+
}
|
|
1484
|
+
}
|
|
1485
|
+
convPoolShapeInference_opset19(ctx, use_dilation, true, 0, 1);
|
|
1486
|
+
});
|
|
1487
|
+
};
|
|
1488
|
+
}
|
|
1489
|
+
|
|
1490
|
+
ONNX_OPERATOR_SET_SCHEMA(
|
|
1491
|
+
AveragePool,
|
|
1492
|
+
19,
|
|
1493
|
+
OpSchema()
|
|
1494
|
+
.FillUsing(PoolOpSchemaGenerator_opset19(
|
|
1495
|
+
"AveragePool",
|
|
1496
|
+
"average",
|
|
1497
|
+
"The output of each pooling window is divided by the number of elements (exclude pad when attribute count_include_pad is zero).",
|
|
1498
|
+
true, /* use_dilation: dilations attribute has been added in opset 19. */
|
|
1499
|
+
false /* supports8bit: does not support 8bit. */))
|
|
1500
|
+
.Attr(
|
|
1501
|
+
"dilations",
|
|
1502
|
+
"Dilation value along each spatial axis of filter. If not present, the dilation defaults to 1 along each spatial axis.",
|
|
1503
|
+
AttributeProto::INTS,
|
|
1504
|
+
OPTIONAL_VALUE)
|
|
1505
|
+
.Attr(
|
|
1506
|
+
"count_include_pad",
|
|
1507
|
+
"Whether include pad pixels when calculating values for the edges. Default is 0, doesn't count include pad.",
|
|
1508
|
+
AttributeProto::INT,
|
|
1509
|
+
static_cast<int64_t>(0)));
|
|
1510
|
+
|
|
1511
|
+
ONNX_OPERATOR_SET_SCHEMA(
|
|
1512
|
+
MaxPool,
|
|
1513
|
+
12,
|
|
1514
|
+
OpSchema()
|
|
1515
|
+
.FillUsing(PoolOpSchemaGenerator_opset19(
|
|
1516
|
+
"MaxPool",
|
|
1517
|
+
"max",
|
|
1518
|
+
"The output of each pooling window is maximum number of elements exclude pad. ",
|
|
1519
|
+
true,
|
|
1520
|
+
true))
|
|
1521
|
+
.Attr(
|
|
1522
|
+
"storage_order",
|
|
1523
|
+
"The storage order of the tensor. 0 is row major, and 1 is column major. "
|
|
1524
|
+
"This attribute is used only to convert an n-tuple index value into "
|
|
1525
|
+
"a single integer value for producing the second output. ",
|
|
1526
|
+
AttributeProto::INT,
|
|
1527
|
+
static_cast<int64_t>(0))
|
|
1528
|
+
.Attr(
|
|
1529
|
+
"dilations",
|
|
1530
|
+
"Dilation value along each spatial axis of filter. If not present, the dilation defaults to 1 along each spatial axis.",
|
|
1531
|
+
AttributeProto::INTS,
|
|
1532
|
+
OPTIONAL_VALUE)
|
|
1533
|
+
.Output(
|
|
1534
|
+
1,
|
|
1535
|
+
"Indices",
|
|
1536
|
+
"Indices tensor from max pooling across the input tensor. "
|
|
1537
|
+
"The dimensions of indices are the same as output tensor. "
|
|
1538
|
+
"The values in indices of are the indices of the selected values during pooling. "
|
|
1539
|
+
"The indices are computed as flatten 1-D tensor, "
|
|
1540
|
+
"and the indices do not consider padding. "
|
|
1541
|
+
"So the values in indices are in [0, N x C x D1 x ... x Dn).",
|
|
1542
|
+
"I",
|
|
1543
|
+
OpSchema::Optional,
|
|
1544
|
+
true,
|
|
1545
|
+
1,
|
|
1546
|
+
OpSchema::NonDifferentiable)
|
|
1547
|
+
.TypeConstraint("I", {"tensor(int64)"}, "Constrain index tensor to int64"));
|
|
1548
|
+
|
|
12
1549
|
static const char* Dropout_ver12_doc = R"DOC(
|
|
13
1550
|
Dropout takes an input floating-point tensor, an optional input ratio (floating-point scalar) and an optional input training_mode (boolean scalar). It produces two tensor outputs,
|
|
14
1551
|
output (floating-point tensor) and mask (optional `Tensor<bool>`). If `training_mode` is true then the output Y will be a random dropout;
|
|
@@ -96,6 +1633,55 @@ Flattens the input tensor into a 2D matrix. If input tensor has shape
|
|
|
96
1633
|
(d_0 X d_1 ... d_(axis-1), d_axis X d_(axis+1) ... X dn).
|
|
97
1634
|
)DOC";
|
|
98
1635
|
|
|
1636
|
+
ONNX_OPERATOR_SET_SCHEMA(
|
|
1637
|
+
Flatten,
|
|
1638
|
+
21,
|
|
1639
|
+
OpSchema()
|
|
1640
|
+
.SetDoc(Flatten_ver11_doc)
|
|
1641
|
+
.Input(0, "input", "A tensor of rank >= axis.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
|
|
1642
|
+
.Output(
|
|
1643
|
+
0,
|
|
1644
|
+
"output",
|
|
1645
|
+
"A 2D tensor with the contents of the input tensor, "
|
|
1646
|
+
"with input dimensions up to axis flattened to the outer dimension "
|
|
1647
|
+
"of the output and remaining input dimensions flattened into the inner "
|
|
1648
|
+
"dimension of the output.",
|
|
1649
|
+
"T",
|
|
1650
|
+
OpSchema::Single,
|
|
1651
|
+
true,
|
|
1652
|
+
1,
|
|
1653
|
+
OpSchema::Differentiable)
|
|
1654
|
+
.TypeConstraint(
|
|
1655
|
+
"T",
|
|
1656
|
+
OpSchema::all_tensor_types_ir10(),
|
|
1657
|
+
"Constrain input and output to all tensor types up to IRv10.")
|
|
1658
|
+
.Attr(
|
|
1659
|
+
"axis",
|
|
1660
|
+
"Indicate up to which input dimensions "
|
|
1661
|
+
"(exclusive) should be flattened to the outer dimension of the output. "
|
|
1662
|
+
"The value for axis must be in the range [-r, r], where r is the rank of the input tensor. "
|
|
1663
|
+
"Negative value means counting dimensions from the back. "
|
|
1664
|
+
"When axis = 0, the shape of the output tensor is (1, (d_0 X d_1 ... d_n), "
|
|
1665
|
+
"where the shape of the input tensor is (d_0, d_1, ... d_n). ",
|
|
1666
|
+
AttributeProto::INT,
|
|
1667
|
+
static_cast<int64_t>(1))
|
|
1668
|
+
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
|
|
1669
|
+
propagateElemTypeFromInputToOutput(ctx, 0, 0);
|
|
1670
|
+
if (!hasInputShape(ctx, 0))
|
|
1671
|
+
return;
|
|
1672
|
+
auto& input_shape = getInputShape(ctx, 0);
|
|
1673
|
+
int rank = static_cast<int>(input_shape.dim_size());
|
|
1674
|
+
int axis = static_cast<int>(getAttribute(ctx, "axis", 1));
|
|
1675
|
+
if (axis < 0) {
|
|
1676
|
+
axis += rank;
|
|
1677
|
+
}
|
|
1678
|
+
if (axis > rank || axis < 0) {
|
|
1679
|
+
fail_shape_inference("Invalid value(", axis, ") for attribute 'axis'");
|
|
1680
|
+
}
|
|
1681
|
+
// TODO: is the operation defined for input-rank < 2?
|
|
1682
|
+
updateOutputShape(ctx, 0, {multiplyDims(input_shape, 0, axis), multiplyDims(input_shape, axis, rank)});
|
|
1683
|
+
}));
|
|
1684
|
+
|
|
99
1685
|
ONNX_OPERATOR_SET_SCHEMA(
|
|
100
1686
|
Flatten,
|
|
101
1687
|
13,
|
|
@@ -269,7 +1855,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
269
1855
|
{{"Processed_STD"}, "Add", {"STD", "Epsilon"}},
|
|
270
1856
|
{{"Y"}, "Div", {"X_variance", "Processed_STD"}}})));
|
|
271
1857
|
|
|
272
|
-
const char* pads_doc2 =
|
|
1858
|
+
constexpr const char* pads_doc2 =
|
|
273
1859
|
"Padding for the beginning and ending along each spatial axis, it can take any value greater "
|
|
274
1860
|
"than or equal to 0. The value represent the number of pixels added to the beginning "
|
|
275
1861
|
"and end part of the corresponding axis. `pads` format should be as follow "
|
|
@@ -277,13 +1863,13 @@ const char* pads_doc2 =
|
|
|
277
1863
|
"added at the beginning of axis `i` and xi_end, the number of pixels added at "
|
|
278
1864
|
"the end of axis `i`. This attribute cannot be used simultaneously with "
|
|
279
1865
|
"auto_pad attribute. If not present, the padding defaults to 0 along start and end of each spatial axis.";
|
|
280
|
-
const char* auto_pad_doc2 =
|
|
1866
|
+
constexpr const char* auto_pad_doc2 =
|
|
281
1867
|
"auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where "
|
|
282
1868
|
"default value is NOTSET, which means explicit padding is used. "
|
|
283
1869
|
"SAME_UPPER or SAME_LOWER mean pad the input so that the output spatial size match the input."
|
|
284
1870
|
"In case of odd number add the extra padding at the end for SAME_UPPER and at the "
|
|
285
1871
|
"beginning for SAME_LOWER. VALID mean no padding.";
|
|
286
|
-
const char* auto_pad_doc3 =
|
|
1872
|
+
constexpr const char* auto_pad_doc3 =
|
|
287
1873
|
"auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where "
|
|
288
1874
|
"default value is NOTSET, which means explicit padding is used. "
|
|
289
1875
|
"SAME_UPPER or SAME_LOWER mean pad the input so that "
|
|
@@ -292,7 +1878,7 @@ const char* auto_pad_doc3 =
|
|
|
292
1878
|
"on whether it is even or odd). In case the padding is an odd number, the extra "
|
|
293
1879
|
"padding is added at the end for SAME_UPPER and at the beginning for SAME_LOWER.";
|
|
294
1880
|
|
|
295
|
-
void convPoolShapeInference1(
|
|
1881
|
+
static void convPoolShapeInference1(
|
|
296
1882
|
InferenceContext& ctx,
|
|
297
1883
|
bool use_dilation,
|
|
298
1884
|
bool require_kernel_shape,
|
|
@@ -430,7 +2016,7 @@ void convPoolShapeInference1(
|
|
|
430
2016
|
|
|
431
2017
|
// how many times we can move the kernel from it's initial position, based
|
|
432
2018
|
// on the stride
|
|
433
|
-
int64_t strided_kernel_positions;
|
|
2019
|
+
int64_t strided_kernel_positions = 0;
|
|
434
2020
|
|
|
435
2021
|
if (ceil_mode == 1)
|
|
436
2022
|
strided_kernel_positions =
|
|
@@ -449,7 +2035,7 @@ void convPoolShapeInference1(
|
|
|
449
2035
|
}
|
|
450
2036
|
}
|
|
451
2037
|
|
|
452
|
-
std::function<void(OpSchema&)>
|
|
2038
|
+
static std::function<void(OpSchema&)>
|
|
453
2039
|
PoolOpSchemaGenerator_9(const char* name, const char* opName, const char* additionalDescription) {
|
|
454
2040
|
return [=](OpSchema& schema) {
|
|
455
2041
|
std::string doc;
|
|
@@ -526,7 +2112,7 @@ PoolOpSchemaGenerator_9(const char* name, const char* opName, const char* additi
|
|
|
526
2112
|
};
|
|
527
2113
|
}
|
|
528
2114
|
|
|
529
|
-
std::function<void(OpSchema&)> PoolOpSchemaGenerator_10(
|
|
2115
|
+
static std::function<void(OpSchema&)> PoolOpSchemaGenerator_10(
|
|
530
2116
|
const char* name,
|
|
531
2117
|
const char* opName,
|
|
532
2118
|
const char* additionalDescription,
|
|
@@ -630,14 +2216,14 @@ std::function<void(OpSchema&)> PoolOpSchemaGenerator_10(
|
|
|
630
2216
|
};
|
|
631
2217
|
}
|
|
632
2218
|
|
|
633
|
-
std::vector<std::string> GetSupportedDataTypesForPoolingOps_1(bool supports8bit) {
|
|
2219
|
+
static std::vector<std::string> GetSupportedDataTypesForPoolingOps_1(bool supports8bit) {
|
|
634
2220
|
if (supports8bit) {
|
|
635
2221
|
return {"tensor(float16)", "tensor(float)", "tensor(double)", "tensor(int8)", "tensor(uint8)"};
|
|
636
2222
|
}
|
|
637
2223
|
return {"tensor(float16)", "tensor(float)", "tensor(double)"};
|
|
638
2224
|
}
|
|
639
2225
|
|
|
640
|
-
std::function<void(OpSchema&)> PoolOpSchemaGenerator_11(
|
|
2226
|
+
static std::function<void(OpSchema&)> PoolOpSchemaGenerator_11(
|
|
641
2227
|
const char* name,
|
|
642
2228
|
const char* opName,
|
|
643
2229
|
const char* additionalDescription,
|
|
@@ -904,7 +2490,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
904
2490
|
OpSchema::Optional)
|
|
905
2491
|
.TypeConstraint("I", {"tensor(int64)"}, "Constrain index tensor to int64"));
|
|
906
2492
|
|
|
907
|
-
void maxUnpoolShapeInference1(InferenceContext& ctx) {
|
|
2493
|
+
static void maxUnpoolShapeInference1(InferenceContext& ctx) {
|
|
908
2494
|
// we need at least two inputs to have a shape for this inference.
|
|
909
2495
|
if (ctx.getNumInputs() != 2 && ctx.getNumInputs() != 3) {
|
|
910
2496
|
fail_type_inference("MaxUnpool op must have either two or three inputs.");
|
|
@@ -956,8 +2542,8 @@ void maxUnpoolShapeInference1(InferenceContext& ctx) {
|
|
|
956
2542
|
if (output_shape.dim_size() != 1) {
|
|
957
2543
|
fail_type_inference("'output_shape' must be rank 1 tensor.");
|
|
958
2544
|
}
|
|
959
|
-
if (output_shape.dim((
|
|
960
|
-
static_cast<int>(output_shape.dim((
|
|
2545
|
+
if (output_shape.dim(static_cast<int>(0)).has_dim_value() &&
|
|
2546
|
+
static_cast<int>(output_shape.dim(static_cast<int>(0)).dim_value()) != input_shape.dim_size()) {
|
|
961
2547
|
fail_shape_inference("'output_shape' must have same number of elements as the shape of input tensor X.");
|
|
962
2548
|
}
|
|
963
2549
|
}
|
|
@@ -1059,7 +2645,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
1059
2645
|
.TypeConstraint("T2", {"tensor(int64)"}, "Constrain index tensor to int64")
|
|
1060
2646
|
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) { maxUnpoolShapeInference1(ctx); }));
|
|
1061
2647
|
|
|
1062
|
-
const char* pads_doc1 =
|
|
2648
|
+
constexpr const char* pads_doc1 =
|
|
1063
2649
|
"Padding for the beginning and ending along each axis, it can take any value greater "
|
|
1064
2650
|
"than or equal to 0. The value represent the number of pixels added to the beginning "
|
|
1065
2651
|
"and end part of the corresponding axis. `pads` format should be as follow "
|
|
@@ -1067,7 +2653,7 @@ const char* pads_doc1 =
|
|
|
1067
2653
|
"added at the beginning of axis `i` and xi_end, the number of pixels added at "
|
|
1068
2654
|
"the end of axis `i`. This attribute cannot be used simultaneously with "
|
|
1069
2655
|
"auto_pad attribute.";
|
|
1070
|
-
const char* auto_pad_doc1 =
|
|
2656
|
+
constexpr const char* auto_pad_doc1 =
|
|
1071
2657
|
"auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where "
|
|
1072
2658
|
"default value is NOTSET, which means explicit padding is used. "
|
|
1073
2659
|
"SAME_UPPER or SAME_LOWER mean pad the input so that the output size match the input."
|
|
@@ -1076,7 +2662,7 @@ const char* auto_pad_doc1 =
|
|
|
1076
2662
|
"only intended to support legacy uses, and for framework authors, one is explicitly "
|
|
1077
2663
|
"encouraged to use explicit padding specified in the pads attribute.";
|
|
1078
2664
|
|
|
1079
|
-
|
|
2665
|
+
constexpr const char* LpPool_ver1_doc = R"DOC(
|
|
1080
2666
|
LpPool consumes an input tensor X and applies Lp pooling across the
|
|
1081
2667
|
the tensor according to kernel sizes, stride sizes, and pad lengths.
|
|
1082
2668
|
Lp pooling consisting of computing the Lp norm on all values of a subset
|
|
@@ -1121,7 +2707,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
1121
2707
|
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
|
1122
2708
|
"Constrain input and output types to float tensors."));
|
|
1123
2709
|
|
|
1124
|
-
std::function<void(OpSchema&)> LpPoolOpSchemaGenerator_10(const char* name) {
|
|
2710
|
+
static std::function<void(OpSchema&)> LpPoolOpSchemaGenerator_10(const char* name) {
|
|
1125
2711
|
return [=](OpSchema& schema) {
|
|
1126
2712
|
std::string doc;
|
|
1127
2713
|
POPULATE_OP_DOC_STR(doc = R"DOC(
|
|
@@ -1175,7 +2761,7 @@ static const char* GlobalLpPool_ver1_doc = R"DOC(
|
|
|
1175
2761
|
the values in the same channel. This is equivalent to LpPool with kernel size
|
|
1176
2762
|
equal to the spatial dimension of input tensor.)DOC";
|
|
1177
2763
|
|
|
1178
|
-
std::function<void(OpSchema&)> LpPoolOpSchemaGenerator_11(const char* name) {
|
|
2764
|
+
static std::function<void(OpSchema&)> LpPoolOpSchemaGenerator_11(const char* name) {
|
|
1179
2765
|
return [=](OpSchema& schema) {
|
|
1180
2766
|
std::string doc;
|
|
1181
2767
|
POPULATE_OP_DOC_STR(doc = R"DOC(
|
|
@@ -1236,7 +2822,7 @@ std::function<void(OpSchema&)> LpPoolOpSchemaGenerator_11(const char* name) {
|
|
|
1236
2822
|
|
|
1237
2823
|
ONNX_OPERATOR_SET_SCHEMA(LpPool, 11, OpSchema().FillUsing(LpPoolOpSchemaGenerator_11("LpPool")));
|
|
1238
2824
|
|
|
1239
|
-
std::function<void(OpSchema&)> ConvOpSchemaGenerator_10(const char* filter_desc) {
|
|
2825
|
+
static std::function<void(OpSchema&)> ConvOpSchemaGenerator_10(const char* filter_desc) {
|
|
1240
2826
|
return [=](OpSchema& schema) {
|
|
1241
2827
|
std::string doc;
|
|
1242
2828
|
POPULATE_OP_DOC_STR(doc = R"DOC(
|
|
@@ -1311,7 +2897,7 @@ computes the output.)DOC";
|
|
|
1311
2897
|
|
|
1312
2898
|
ONNX_OPERATOR_SET_SCHEMA(Conv, 1, OpSchema().FillUsing(ConvOpSchemaGenerator_10("a filter")));
|
|
1313
2899
|
|
|
1314
|
-
void convTransposeShapeInference1(InferenceContext& ctx) {
|
|
2900
|
+
static void convTransposeShapeInference1(InferenceContext& ctx) {
|
|
1315
2901
|
propagateElemTypeFromInputToOutput(ctx, 0, 0);
|
|
1316
2902
|
|
|
1317
2903
|
// we need at least two inputs to have a shape for this inference.
|
|
@@ -1421,7 +3007,7 @@ void convTransposeShapeInference1(InferenceContext& ctx) {
|
|
|
1421
3007
|
ctx.getInputType(1)->tensor_type().shape().dim(1) * group; // channels should be the second dim of second input
|
|
1422
3008
|
// multiply group.
|
|
1423
3009
|
|
|
1424
|
-
int size_of_output;
|
|
3010
|
+
int size_of_output = 0;
|
|
1425
3011
|
if (output_shape_presented) {
|
|
1426
3012
|
size_of_output = static_cast<int>(output_shape.size());
|
|
1427
3013
|
for (int i = 0; i < size_of_output; ++i) {
|
|
@@ -1450,7 +3036,7 @@ void convTransposeShapeInference1(InferenceContext& ctx) {
|
|
|
1450
3036
|
}
|
|
1451
3037
|
}
|
|
1452
3038
|
|
|
1453
|
-
std::function<void(OpSchema&)> ConvTransposeOpSchemaGenerator_10(const char* filter_desc) {
|
|
3039
|
+
static std::function<void(OpSchema&)> ConvTransposeOpSchemaGenerator_10(const char* filter_desc) {
|
|
1454
3040
|
return [=](OpSchema& schema) {
|
|
1455
3041
|
std::string doc;
|
|
1456
3042
|
POPULATE_OP_DOC_STR(doc = R"DOC(
|
|
@@ -2437,6 +4023,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
2437
4023
|
GroupNormalization,
|
|
2438
4024
|
18,
|
|
2439
4025
|
OpSchema()
|
|
4026
|
+
.Deprecate()
|
|
2440
4027
|
.SetDoc(GroupNormalization_ver18_doc)
|
|
2441
4028
|
.Attr("epsilon", "The epsilon value to use to avoid division by zero.", AttributeProto::FLOAT, 1e-5f)
|
|
2442
4029
|
.Attr(
|