onnx 1.16.2__cp311-cp311-win32.whl → 1.18.0__cp311-cp311-win32.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of onnx might be problematic. Click here for more details.

Files changed (2010) hide show
  1. onnx/__init__.py +17 -1
  2. onnx/_custom_element_types.py +69 -0
  3. onnx/backend/base.py +28 -17
  4. onnx/backend/sample/ops/__init__.py +10 -7
  5. onnx/backend/sample/ops/abs.py +1 -0
  6. onnx/backend/test/__init__.py +1 -0
  7. onnx/backend/test/case/__init__.py +2 -2
  8. onnx/backend/test/case/base.py +6 -5
  9. onnx/backend/test/case/model/__init__.py +11 -6
  10. onnx/backend/test/case/model/expand.py +5 -1
  11. onnx/backend/test/case/model/gradient.py +1 -0
  12. onnx/backend/test/case/model/sequence.py +28 -26
  13. onnx/backend/test/case/model/shrink.py +1 -0
  14. onnx/backend/test/case/model/sign.py +1 -0
  15. onnx/backend/test/case/model/single-relu.py +1 -0
  16. onnx/backend/test/case/model/stringnormalizer.py +5 -2
  17. onnx/backend/test/case/node/__init__.py +51 -43
  18. onnx/backend/test/case/node/_image_decoder_data.py +1 -0
  19. onnx/backend/test/case/node/abs.py +2 -2
  20. onnx/backend/test/case/node/acos.py +1 -0
  21. onnx/backend/test/case/node/acosh.py +1 -0
  22. onnx/backend/test/case/node/adagrad.py +3 -2
  23. onnx/backend/test/case/node/adam.py +4 -1
  24. onnx/backend/test/case/node/add.py +20 -7
  25. onnx/backend/test/case/node/affinegrid.py +1 -0
  26. onnx/backend/test/case/node/ai_onnx_ml/array_feature_extractor.py +1 -0
  27. onnx/backend/test/case/node/ai_onnx_ml/binarizer.py +1 -0
  28. onnx/backend/test/case/node/ai_onnx_ml/label_encoder.py +1 -0
  29. onnx/backend/test/case/node/ai_onnx_ml/tree_ensemble.py +1 -0
  30. onnx/backend/test/case/node/and.py +1 -0
  31. onnx/backend/test/case/node/argmax.py +1 -0
  32. onnx/backend/test/case/node/argmin.py +1 -0
  33. onnx/backend/test/case/node/asin.py +1 -0
  34. onnx/backend/test/case/node/asinh.py +1 -0
  35. onnx/backend/test/case/node/atan.py +1 -0
  36. onnx/backend/test/case/node/atanh.py +1 -0
  37. onnx/backend/test/case/node/attention.py +1399 -0
  38. onnx/backend/test/case/node/averagepool.py +96 -14
  39. onnx/backend/test/case/node/batchnorm.py +3 -2
  40. onnx/backend/test/case/node/bernoulli.py +2 -1
  41. onnx/backend/test/case/node/bitshift.py +1 -0
  42. onnx/backend/test/case/node/bitwiseand.py +2 -1
  43. onnx/backend/test/case/node/bitwisenot.py +2 -1
  44. onnx/backend/test/case/node/bitwiseor.py +2 -1
  45. onnx/backend/test/case/node/bitwisexor.py +2 -1
  46. onnx/backend/test/case/node/blackmanwindow.py +13 -3
  47. onnx/backend/test/case/node/cast.py +61 -2
  48. onnx/backend/test/case/node/castlike.py +1 -0
  49. onnx/backend/test/case/node/ceil.py +1 -0
  50. onnx/backend/test/case/node/celu.py +1 -0
  51. onnx/backend/test/case/node/center_crop_pad.py +1 -0
  52. onnx/backend/test/case/node/clip.py +12 -0
  53. onnx/backend/test/case/node/col2im.py +1 -1
  54. onnx/backend/test/case/node/compress.py +1 -0
  55. onnx/backend/test/case/node/concat.py +6 -2
  56. onnx/backend/test/case/node/constant.py +1 -0
  57. onnx/backend/test/case/node/constantofshape.py +1 -0
  58. onnx/backend/test/case/node/conv.py +1 -0
  59. onnx/backend/test/case/node/convinteger.py +1 -0
  60. onnx/backend/test/case/node/convtranspose.py +135 -0
  61. onnx/backend/test/case/node/cos.py +1 -0
  62. onnx/backend/test/case/node/cosh.py +1 -0
  63. onnx/backend/test/case/node/cumsum.py +25 -0
  64. onnx/backend/test/case/node/deformconv.py +17 -26
  65. onnx/backend/test/case/node/depthtospace.py +1 -0
  66. onnx/backend/test/case/node/dequantizelinear.py +23 -0
  67. onnx/backend/test/case/node/det.py +1 -0
  68. onnx/backend/test/case/node/dft.py +1 -0
  69. onnx/backend/test/case/node/div.py +26 -0
  70. onnx/backend/test/case/node/dropout.py +2 -1
  71. onnx/backend/test/case/node/dynamicquantizelinear.py +1 -0
  72. onnx/backend/test/case/node/einsum.py +2 -3
  73. onnx/backend/test/case/node/elu.py +1 -0
  74. onnx/backend/test/case/node/equal.py +31 -0
  75. onnx/backend/test/case/node/erf.py +1 -0
  76. onnx/backend/test/case/node/exp.py +1 -0
  77. onnx/backend/test/case/node/expand.py +1 -0
  78. onnx/backend/test/case/node/eyelike.py +1 -0
  79. onnx/backend/test/case/node/flatten.py +1 -0
  80. onnx/backend/test/case/node/floor.py +1 -0
  81. onnx/backend/test/case/node/gather.py +1 -0
  82. onnx/backend/test/case/node/gatherelements.py +2 -1
  83. onnx/backend/test/case/node/gathernd.py +1 -0
  84. onnx/backend/test/case/node/gelu.py +1 -0
  85. onnx/backend/test/case/node/gemm.py +3 -4
  86. onnx/backend/test/case/node/globalaveragepool.py +1 -0
  87. onnx/backend/test/case/node/globalmaxpool.py +1 -0
  88. onnx/backend/test/case/node/greater.py +31 -0
  89. onnx/backend/test/case/node/greater_equal.py +31 -0
  90. onnx/backend/test/case/node/gridsample.py +1 -0
  91. onnx/backend/test/case/node/groupnormalization.py +1 -0
  92. onnx/backend/test/case/node/gru.py +5 -4
  93. onnx/backend/test/case/node/hammingwindow.py +13 -2
  94. onnx/backend/test/case/node/hannwindow.py +10 -2
  95. onnx/backend/test/case/node/hardmax.py +1 -0
  96. onnx/backend/test/case/node/hardsigmoid.py +1 -0
  97. onnx/backend/test/case/node/hardswish.py +1 -0
  98. onnx/backend/test/case/node/identity.py +1 -0
  99. onnx/backend/test/case/node/if.py +2 -1
  100. onnx/backend/test/case/node/instancenorm.py +1 -0
  101. onnx/backend/test/case/node/isinf.py +1 -0
  102. onnx/backend/test/case/node/isnan.py +1 -0
  103. onnx/backend/test/case/node/layernormalization.py +3 -2
  104. onnx/backend/test/case/node/leakyrelu.py +1 -0
  105. onnx/backend/test/case/node/less.py +31 -0
  106. onnx/backend/test/case/node/less_equal.py +31 -0
  107. onnx/backend/test/case/node/log.py +1 -0
  108. onnx/backend/test/case/node/logsoftmax.py +1 -0
  109. onnx/backend/test/case/node/loop.py +5 -4
  110. onnx/backend/test/case/node/lppool.py +25 -5
  111. onnx/backend/test/case/node/lrn.py +1 -0
  112. onnx/backend/test/case/node/lstm.py +5 -4
  113. onnx/backend/test/case/node/matmul.py +1 -0
  114. onnx/backend/test/case/node/matmulinteger.py +1 -0
  115. onnx/backend/test/case/node/max.py +1 -0
  116. onnx/backend/test/case/node/maxpool.py +18 -6
  117. onnx/backend/test/case/node/maxunpool.py +1 -0
  118. onnx/backend/test/case/node/mean.py +1 -0
  119. onnx/backend/test/case/node/meanvariancenormalization.py +1 -0
  120. onnx/backend/test/case/node/melweightmatrix.py +1 -0
  121. onnx/backend/test/case/node/min.py +1 -0
  122. onnx/backend/test/case/node/mish.py +1 -0
  123. onnx/backend/test/case/node/mod.py +1 -0
  124. onnx/backend/test/case/node/momentum.py +3 -2
  125. onnx/backend/test/case/node/mul.py +26 -0
  126. onnx/backend/test/case/node/neg.py +1 -0
  127. onnx/backend/test/case/node/negativeloglikelihoodloss.py +4 -1
  128. onnx/backend/test/case/node/nonmaxsuppression.py +1 -0
  129. onnx/backend/test/case/node/nonzero.py +1 -0
  130. onnx/backend/test/case/node/not.py +1 -0
  131. onnx/backend/test/case/node/onehot.py +2 -1
  132. onnx/backend/test/case/node/optionalgetelement.py +3 -2
  133. onnx/backend/test/case/node/optionalhaselement.py +2 -3
  134. onnx/backend/test/case/node/or.py +1 -0
  135. onnx/backend/test/case/node/pad.py +3 -2
  136. onnx/backend/test/case/node/pow.py +1 -0
  137. onnx/backend/test/case/node/prelu.py +1 -0
  138. onnx/backend/test/case/node/qlinearconv.py +1 -0
  139. onnx/backend/test/case/node/qlinearmatmul.py +1 -0
  140. onnx/backend/test/case/node/quantizelinear.py +39 -0
  141. onnx/backend/test/case/node/rangeop.py +1 -0
  142. onnx/backend/test/case/node/reciprocal.py +1 -0
  143. onnx/backend/test/case/node/reduce_log_sum.py +1 -0
  144. onnx/backend/test/case/node/reduce_log_sum_exp.py +1 -0
  145. onnx/backend/test/case/node/reducel1.py +1 -0
  146. onnx/backend/test/case/node/reducel2.py +1 -0
  147. onnx/backend/test/case/node/reducemax.py +2 -1
  148. onnx/backend/test/case/node/reducemean.py +1 -0
  149. onnx/backend/test/case/node/reducemin.py +1 -0
  150. onnx/backend/test/case/node/reduceprod.py +1 -0
  151. onnx/backend/test/case/node/reducesum.py +2 -1
  152. onnx/backend/test/case/node/reducesumsquare.py +1 -0
  153. onnx/backend/test/case/node/regex_full_match.py +1 -0
  154. onnx/backend/test/case/node/relu.py +1 -0
  155. onnx/backend/test/case/node/reshape.py +1 -0
  156. onnx/backend/test/case/node/resize.py +3 -2
  157. onnx/backend/test/case/node/reversesequence.py +1 -0
  158. onnx/backend/test/case/node/rmsnormalization.py +126 -0
  159. onnx/backend/test/case/node/rnn.py +5 -4
  160. onnx/backend/test/case/node/roialign.py +2 -1
  161. onnx/backend/test/case/node/rotaryembedding.py +231 -0
  162. onnx/backend/test/case/node/round.py +4 -3
  163. onnx/backend/test/case/node/scan.py +1 -0
  164. onnx/backend/test/case/node/scatter.py +1 -0
  165. onnx/backend/test/case/node/scatterelements.py +7 -3
  166. onnx/backend/test/case/node/scatternd.py +1 -0
  167. onnx/backend/test/case/node/selu.py +1 -0
  168. onnx/backend/test/case/node/sequence_map.py +1 -0
  169. onnx/backend/test/case/node/sequenceinsert.py +4 -3
  170. onnx/backend/test/case/node/shape.py +1 -0
  171. onnx/backend/test/case/node/shrink.py +1 -0
  172. onnx/backend/test/case/node/sigmoid.py +1 -0
  173. onnx/backend/test/case/node/sign.py +1 -0
  174. onnx/backend/test/case/node/sin.py +1 -0
  175. onnx/backend/test/case/node/sinh.py +1 -0
  176. onnx/backend/test/case/node/size.py +1 -0
  177. onnx/backend/test/case/node/slice.py +1 -0
  178. onnx/backend/test/case/node/softmax.py +1 -0
  179. onnx/backend/test/case/node/softmaxcrossentropy.py +4 -1
  180. onnx/backend/test/case/node/softplus.py +1 -0
  181. onnx/backend/test/case/node/softsign.py +1 -0
  182. onnx/backend/test/case/node/spacetodepth.py +1 -0
  183. onnx/backend/test/case/node/split.py +1 -0
  184. onnx/backend/test/case/node/splittosequence.py +1 -0
  185. onnx/backend/test/case/node/sqrt.py +1 -0
  186. onnx/backend/test/case/node/squeeze.py +1 -0
  187. onnx/backend/test/case/node/stft.py +4 -1
  188. onnx/backend/test/case/node/string_concat.py +1 -0
  189. onnx/backend/test/case/node/string_split.py +1 -0
  190. onnx/backend/test/case/node/stringnormalizer.py +1 -0
  191. onnx/backend/test/case/node/sub.py +26 -0
  192. onnx/backend/test/case/node/sum.py +1 -0
  193. onnx/backend/test/case/node/tan.py +1 -0
  194. onnx/backend/test/case/node/tanh.py +1 -0
  195. onnx/backend/test/case/node/tfidfvectorizer.py +1 -0
  196. onnx/backend/test/case/node/thresholdedrelu.py +1 -0
  197. onnx/backend/test/case/node/tile.py +1 -0
  198. onnx/backend/test/case/node/topk.py +130 -2
  199. onnx/backend/test/case/node/transpose.py +1 -0
  200. onnx/backend/test/case/node/trilu.py +3 -2
  201. onnx/backend/test/case/node/unique.py +40 -1
  202. onnx/backend/test/case/node/unsqueeze.py +1 -0
  203. onnx/backend/test/case/node/upsample.py +1 -0
  204. onnx/backend/test/case/node/where.py +1 -0
  205. onnx/backend/test/case/node/xor.py +1 -0
  206. onnx/backend/test/case/test_case.py +11 -7
  207. onnx/backend/test/case/utils.py +6 -4
  208. onnx/backend/test/cmd_tools.py +1 -0
  209. onnx/backend/test/data/node/test_acos/model.onnx +0 -0
  210. onnx/backend/test/data/node/test_acos_example/model.onnx +0 -0
  211. onnx/backend/test/data/node/test_acosh/model.onnx +0 -0
  212. onnx/backend/test/data/node/test_acosh_example/model.onnx +0 -0
  213. onnx/backend/test/data/node/test_asin/model.onnx +0 -0
  214. onnx/backend/test/data/node/test_asin_example/model.onnx +0 -0
  215. onnx/backend/test/data/node/test_asinh/model.onnx +0 -0
  216. onnx/backend/test/data/node/test_asinh_example/model.onnx +0 -0
  217. onnx/backend/test/data/node/test_atan/model.onnx +0 -0
  218. onnx/backend/test/data/node/test_atan_example/model.onnx +0 -0
  219. onnx/backend/test/data/node/test_atanh/model.onnx +0 -0
  220. onnx/backend/test/data/node/test_atanh_example/model.onnx +0 -0
  221. onnx/backend/test/data/node/test_attention_3d/model.onnx +0 -0
  222. onnx/backend/test/data/node/test_attention_3d/test_data_set_0/input_0.pb +0 -0
  223. onnx/backend/test/data/node/test_attention_3d/test_data_set_0/input_1.pb +0 -0
  224. onnx/backend/test/data/node/test_attention_3d/test_data_set_0/input_2.pb +0 -0
  225. onnx/backend/test/data/node/test_attention_3d/test_data_set_0/output_0.pb +0 -0
  226. onnx/backend/test/data/node/test_attention_3d_attn_mask/model.onnx +0 -0
  227. onnx/backend/test/data/node/test_attention_3d_attn_mask/test_data_set_0/input_0.pb +0 -0
  228. onnx/backend/test/data/node/test_attention_3d_attn_mask/test_data_set_0/input_1.pb +0 -0
  229. onnx/backend/test/data/node/test_attention_3d_attn_mask/test_data_set_0/input_2.pb +0 -0
  230. onnx/backend/test/data/node/test_attention_3d_attn_mask/test_data_set_0/input_3.pb +1 -0
  231. onnx/backend/test/data/node/test_attention_3d_attn_mask/test_data_set_0/output_0.pb +0 -0
  232. onnx/backend/test/data/node/test_attention_3d_attn_mask_expanded/model.onnx +0 -0
  233. onnx/backend/test/data/node/test_attention_3d_attn_mask_expanded/test_data_set_0/input_0.pb +0 -0
  234. onnx/backend/test/data/node/test_attention_3d_attn_mask_expanded/test_data_set_0/input_1.pb +0 -0
  235. onnx/backend/test/data/node/test_attention_3d_attn_mask_expanded/test_data_set_0/input_2.pb +0 -0
  236. onnx/backend/test/data/node/test_attention_3d_attn_mask_expanded/test_data_set_0/input_3.pb +1 -0
  237. onnx/backend/test/data/node/test_attention_3d_attn_mask_expanded/test_data_set_0/output_0.pb +0 -0
  238. onnx/backend/test/data/node/test_attention_3d_causal/model.onnx +0 -0
  239. onnx/backend/test/data/node/test_attention_3d_causal/test_data_set_0/input_0.pb +0 -0
  240. onnx/backend/test/data/node/test_attention_3d_causal/test_data_set_0/input_1.pb +0 -0
  241. onnx/backend/test/data/node/test_attention_3d_causal/test_data_set_0/input_2.pb +0 -0
  242. onnx/backend/test/data/node/test_attention_3d_causal/test_data_set_0/output_0.pb +0 -0
  243. onnx/backend/test/data/node/test_attention_3d_causal_expanded/model.onnx +0 -0
  244. onnx/backend/test/data/node/test_attention_3d_causal_expanded/test_data_set_0/input_0.pb +0 -0
  245. onnx/backend/test/data/node/test_attention_3d_causal_expanded/test_data_set_0/input_1.pb +0 -0
  246. onnx/backend/test/data/node/test_attention_3d_causal_expanded/test_data_set_0/input_2.pb +0 -0
  247. onnx/backend/test/data/node/test_attention_3d_causal_expanded/test_data_set_0/output_0.pb +0 -0
  248. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes/model.onnx +0 -0
  249. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes/test_data_set_0/input_0.pb +0 -0
  250. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes/test_data_set_0/input_1.pb +0 -0
  251. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes/test_data_set_0/input_2.pb +0 -0
  252. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes/test_data_set_0/output_0.pb +0 -0
  253. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask/model.onnx +0 -0
  254. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask/test_data_set_0/input_0.pb +0 -0
  255. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask/test_data_set_0/input_1.pb +0 -0
  256. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask/test_data_set_0/input_2.pb +0 -0
  257. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask/test_data_set_0/input_3.pb +0 -0
  258. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask/test_data_set_0/output_0.pb +0 -0
  259. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask_expanded/model.onnx +0 -0
  260. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_0.pb +0 -0
  261. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_1.pb +0 -0
  262. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_2.pb +0 -0
  263. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_3.pb +0 -0
  264. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/output_0.pb +0 -0
  265. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal/model.onnx +0 -0
  266. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal/test_data_set_0/input_0.pb +0 -0
  267. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal/test_data_set_0/input_1.pb +0 -0
  268. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal/test_data_set_0/input_2.pb +0 -0
  269. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal/test_data_set_0/output_0.pb +0 -0
  270. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal_expanded/model.onnx +0 -0
  271. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal_expanded/test_data_set_0/input_0.pb +0 -0
  272. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal_expanded/test_data_set_0/input_1.pb +0 -0
  273. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal_expanded/test_data_set_0/input_2.pb +0 -0
  274. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal_expanded/test_data_set_0/output_0.pb +0 -0
  275. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_expanded/model.onnx +0 -0
  276. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_expanded/test_data_set_0/input_0.pb +0 -0
  277. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_expanded/test_data_set_0/input_1.pb +0 -0
  278. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_expanded/test_data_set_0/input_2.pb +0 -0
  279. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_expanded/test_data_set_0/output_0.pb +0 -0
  280. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled/model.onnx +0 -0
  281. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled/test_data_set_0/input_0.pb +0 -0
  282. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled/test_data_set_0/input_1.pb +0 -0
  283. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled/test_data_set_0/input_2.pb +0 -0
  284. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled/test_data_set_0/output_0.pb +0 -0
  285. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled_expanded/model.onnx +0 -0
  286. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled_expanded/test_data_set_0/input_0.pb +0 -0
  287. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled_expanded/test_data_set_0/input_1.pb +0 -0
  288. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled_expanded/test_data_set_0/input_2.pb +0 -0
  289. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled_expanded/test_data_set_0/output_0.pb +0 -0
  290. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap/model.onnx +0 -0
  291. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap/test_data_set_0/input_0.pb +0 -0
  292. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap/test_data_set_0/input_1.pb +0 -0
  293. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap/test_data_set_0/input_2.pb +0 -0
  294. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap/test_data_set_0/output_0.pb +0 -0
  295. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap_expanded/model.onnx +0 -0
  296. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap_expanded/test_data_set_0/input_0.pb +0 -0
  297. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap_expanded/test_data_set_0/input_1.pb +0 -0
  298. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap_expanded/test_data_set_0/input_2.pb +0 -0
  299. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap_expanded/test_data_set_0/output_0.pb +0 -0
  300. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/model.onnx +0 -0
  301. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/input_0.pb +0 -0
  302. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/input_1.pb +0 -0
  303. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/input_2.pb +0 -0
  304. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/input_3.pb +0 -0
  305. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/input_4.pb +0 -0
  306. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/input_5.pb +0 -0
  307. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/output_0.pb +0 -0
  308. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/output_1.pb +0 -0
  309. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/output_2.pb +0 -0
  310. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/model.onnx +0 -0
  311. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_0.pb +0 -0
  312. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_1.pb +0 -0
  313. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_2.pb +0 -0
  314. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_3.pb +0 -0
  315. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_4.pb +0 -0
  316. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_5.pb +0 -0
  317. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/output_0.pb +0 -0
  318. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/output_1.pb +0 -0
  319. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/output_2.pb +0 -0
  320. onnx/backend/test/data/node/test_attention_3d_expanded/model.onnx +0 -0
  321. onnx/backend/test/data/node/test_attention_3d_expanded/test_data_set_0/input_0.pb +0 -0
  322. onnx/backend/test/data/node/test_attention_3d_expanded/test_data_set_0/input_1.pb +0 -0
  323. onnx/backend/test/data/node/test_attention_3d_expanded/test_data_set_0/input_2.pb +0 -0
  324. onnx/backend/test/data/node/test_attention_3d_expanded/test_data_set_0/output_0.pb +0 -0
  325. onnx/backend/test/data/node/test_attention_3d_gqa/model.onnx +0 -0
  326. onnx/backend/test/data/node/test_attention_3d_gqa/test_data_set_0/input_0.pb +0 -0
  327. onnx/backend/test/data/node/test_attention_3d_gqa/test_data_set_0/input_1.pb +0 -0
  328. onnx/backend/test/data/node/test_attention_3d_gqa/test_data_set_0/input_2.pb +0 -0
  329. onnx/backend/test/data/node/test_attention_3d_gqa/test_data_set_0/output_0.pb +0 -0
  330. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask/model.onnx +0 -0
  331. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask/test_data_set_0/input_0.pb +0 -0
  332. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask/test_data_set_0/input_1.pb +0 -0
  333. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask/test_data_set_0/input_2.pb +0 -0
  334. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask/test_data_set_0/input_3.pb +1 -0
  335. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask/test_data_set_0/output_0.pb +0 -0
  336. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask_expanded/model.onnx +0 -0
  337. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask_expanded/test_data_set_0/input_0.pb +0 -0
  338. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask_expanded/test_data_set_0/input_1.pb +0 -0
  339. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask_expanded/test_data_set_0/input_2.pb +0 -0
  340. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask_expanded/test_data_set_0/input_3.pb +1 -0
  341. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask_expanded/test_data_set_0/output_0.pb +0 -0
  342. onnx/backend/test/data/node/test_attention_3d_gqa_causal/model.onnx +0 -0
  343. onnx/backend/test/data/node/test_attention_3d_gqa_causal/test_data_set_0/input_0.pb +0 -0
  344. onnx/backend/test/data/node/test_attention_3d_gqa_causal/test_data_set_0/input_1.pb +0 -0
  345. onnx/backend/test/data/node/test_attention_3d_gqa_causal/test_data_set_0/input_2.pb +0 -0
  346. onnx/backend/test/data/node/test_attention_3d_gqa_causal/test_data_set_0/output_0.pb +0 -0
  347. onnx/backend/test/data/node/test_attention_3d_gqa_causal_expanded/model.onnx +0 -0
  348. onnx/backend/test/data/node/test_attention_3d_gqa_causal_expanded/test_data_set_0/input_0.pb +0 -0
  349. onnx/backend/test/data/node/test_attention_3d_gqa_causal_expanded/test_data_set_0/input_1.pb +0 -0
  350. onnx/backend/test/data/node/test_attention_3d_gqa_causal_expanded/test_data_set_0/input_2.pb +0 -0
  351. onnx/backend/test/data/node/test_attention_3d_gqa_causal_expanded/test_data_set_0/output_0.pb +0 -0
  352. onnx/backend/test/data/node/test_attention_3d_gqa_expanded/model.onnx +0 -0
  353. onnx/backend/test/data/node/test_attention_3d_gqa_expanded/test_data_set_0/input_0.pb +0 -0
  354. onnx/backend/test/data/node/test_attention_3d_gqa_expanded/test_data_set_0/input_1.pb +0 -0
  355. onnx/backend/test/data/node/test_attention_3d_gqa_expanded/test_data_set_0/input_2.pb +0 -0
  356. onnx/backend/test/data/node/test_attention_3d_gqa_expanded/test_data_set_0/output_0.pb +0 -0
  357. onnx/backend/test/data/node/test_attention_3d_gqa_scaled/model.onnx +0 -0
  358. onnx/backend/test/data/node/test_attention_3d_gqa_scaled/test_data_set_0/input_0.pb +0 -0
  359. onnx/backend/test/data/node/test_attention_3d_gqa_scaled/test_data_set_0/input_1.pb +0 -0
  360. onnx/backend/test/data/node/test_attention_3d_gqa_scaled/test_data_set_0/input_2.pb +0 -0
  361. onnx/backend/test/data/node/test_attention_3d_gqa_scaled/test_data_set_0/output_0.pb +0 -0
  362. onnx/backend/test/data/node/test_attention_3d_gqa_scaled_expanded/model.onnx +0 -0
  363. onnx/backend/test/data/node/test_attention_3d_gqa_scaled_expanded/test_data_set_0/input_0.pb +0 -0
  364. onnx/backend/test/data/node/test_attention_3d_gqa_scaled_expanded/test_data_set_0/input_1.pb +0 -0
  365. onnx/backend/test/data/node/test_attention_3d_gqa_scaled_expanded/test_data_set_0/input_2.pb +0 -0
  366. onnx/backend/test/data/node/test_attention_3d_gqa_scaled_expanded/test_data_set_0/output_0.pb +0 -0
  367. onnx/backend/test/data/node/test_attention_3d_gqa_softcap/model.onnx +0 -0
  368. onnx/backend/test/data/node/test_attention_3d_gqa_softcap/test_data_set_0/input_0.pb +0 -0
  369. onnx/backend/test/data/node/test_attention_3d_gqa_softcap/test_data_set_0/input_1.pb +0 -0
  370. onnx/backend/test/data/node/test_attention_3d_gqa_softcap/test_data_set_0/input_2.pb +0 -0
  371. onnx/backend/test/data/node/test_attention_3d_gqa_softcap/test_data_set_0/output_0.pb +0 -0
  372. onnx/backend/test/data/node/test_attention_3d_gqa_softcap_expanded/model.onnx +0 -0
  373. onnx/backend/test/data/node/test_attention_3d_gqa_softcap_expanded/test_data_set_0/input_0.pb +0 -0
  374. onnx/backend/test/data/node/test_attention_3d_gqa_softcap_expanded/test_data_set_0/input_1.pb +0 -0
  375. onnx/backend/test/data/node/test_attention_3d_gqa_softcap_expanded/test_data_set_0/input_2.pb +0 -0
  376. onnx/backend/test/data/node/test_attention_3d_gqa_softcap_expanded/test_data_set_0/output_0.pb +0 -0
  377. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/model.onnx +0 -0
  378. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/input_0.pb +0 -0
  379. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/input_1.pb +0 -0
  380. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/input_2.pb +0 -0
  381. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/input_3.pb +0 -0
  382. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/input_4.pb +0 -0
  383. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/input_5.pb +0 -0
  384. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/output_0.pb +0 -0
  385. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/output_1.pb +0 -0
  386. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/output_2.pb +0 -0
  387. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/model.onnx +0 -0
  388. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/input_0.pb +0 -0
  389. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/input_1.pb +0 -0
  390. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/input_2.pb +0 -0
  391. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/input_3.pb +0 -0
  392. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/input_4.pb +0 -0
  393. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/input_5.pb +0 -0
  394. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/output_0.pb +0 -0
  395. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/output_1.pb +0 -0
  396. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/output_2.pb +0 -0
  397. onnx/backend/test/data/node/test_attention_3d_scaled/model.onnx +0 -0
  398. onnx/backend/test/data/node/test_attention_3d_scaled/test_data_set_0/input_0.pb +0 -0
  399. onnx/backend/test/data/node/test_attention_3d_scaled/test_data_set_0/input_1.pb +0 -0
  400. onnx/backend/test/data/node/test_attention_3d_scaled/test_data_set_0/input_2.pb +0 -0
  401. onnx/backend/test/data/node/test_attention_3d_scaled/test_data_set_0/output_0.pb +0 -0
  402. onnx/backend/test/data/node/test_attention_3d_scaled_expanded/model.onnx +0 -0
  403. onnx/backend/test/data/node/test_attention_3d_scaled_expanded/test_data_set_0/input_0.pb +0 -0
  404. onnx/backend/test/data/node/test_attention_3d_scaled_expanded/test_data_set_0/input_1.pb +0 -0
  405. onnx/backend/test/data/node/test_attention_3d_scaled_expanded/test_data_set_0/input_2.pb +0 -0
  406. onnx/backend/test/data/node/test_attention_3d_scaled_expanded/test_data_set_0/output_0.pb +0 -0
  407. onnx/backend/test/data/node/test_attention_3d_softcap/model.onnx +0 -0
  408. onnx/backend/test/data/node/test_attention_3d_softcap/test_data_set_0/input_0.pb +0 -0
  409. onnx/backend/test/data/node/test_attention_3d_softcap/test_data_set_0/input_1.pb +0 -0
  410. onnx/backend/test/data/node/test_attention_3d_softcap/test_data_set_0/input_2.pb +0 -0
  411. onnx/backend/test/data/node/test_attention_3d_softcap/test_data_set_0/output_0.pb +0 -0
  412. onnx/backend/test/data/node/test_attention_3d_softcap_expanded/model.onnx +0 -0
  413. onnx/backend/test/data/node/test_attention_3d_softcap_expanded/test_data_set_0/input_0.pb +0 -0
  414. onnx/backend/test/data/node/test_attention_3d_softcap_expanded/test_data_set_0/input_1.pb +0 -0
  415. onnx/backend/test/data/node/test_attention_3d_softcap_expanded/test_data_set_0/input_2.pb +0 -0
  416. onnx/backend/test/data/node/test_attention_3d_softcap_expanded/test_data_set_0/output_0.pb +0 -0
  417. onnx/backend/test/data/node/test_attention_3d_with_past_and_present/model.onnx +0 -0
  418. onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/input_0.pb +0 -0
  419. onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/input_1.pb +0 -0
  420. onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/input_2.pb +0 -0
  421. onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/input_3.pb +0 -0
  422. onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/input_4.pb +0 -0
  423. onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/input_5.pb +0 -0
  424. onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/output_0.pb +0 -0
  425. onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/output_1.pb +0 -0
  426. onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/output_2.pb +0 -0
  427. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/model.onnx +0 -0
  428. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/input_0.pb +0 -0
  429. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/input_1.pb +0 -0
  430. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/input_2.pb +0 -0
  431. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/input_3.pb +0 -0
  432. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/input_4.pb +0 -0
  433. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/input_5.pb +0 -0
  434. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/output_0.pb +0 -0
  435. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/output_1.pb +0 -0
  436. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/output_2.pb +0 -0
  437. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/model.onnx +0 -0
  438. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/input_0.pb +0 -0
  439. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/input_1.pb +0 -0
  440. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/input_2.pb +0 -0
  441. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/input_3.pb +0 -0
  442. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/input_4.pb +0 -0
  443. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/input_5.pb +0 -0
  444. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/output_0.pb +0 -0
  445. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/output_1.pb +0 -0
  446. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/output_2.pb +0 -0
  447. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/output_3.pb +0 -0
  448. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/model.onnx +0 -0
  449. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_0.pb +0 -0
  450. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_1.pb +0 -0
  451. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_2.pb +0 -0
  452. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_3.pb +0 -0
  453. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_4.pb +0 -0
  454. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_5.pb +0 -0
  455. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_0.pb +0 -0
  456. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_1.pb +0 -0
  457. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_2.pb +0 -0
  458. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_3.pb +0 -0
  459. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/model.onnx +0 -0
  460. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_0.pb +0 -0
  461. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_1.pb +0 -0
  462. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_2.pb +0 -0
  463. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_3.pb +0 -0
  464. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_4.pb +0 -0
  465. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_5.pb +0 -0
  466. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_0.pb +0 -0
  467. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_1.pb +0 -0
  468. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_2.pb +0 -0
  469. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_3.pb +0 -0
  470. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/model.onnx +0 -0
  471. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_0.pb +0 -0
  472. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_1.pb +0 -0
  473. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_2.pb +0 -0
  474. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_3.pb +0 -0
  475. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_4.pb +0 -0
  476. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_5.pb +0 -0
  477. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_0.pb +0 -0
  478. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_1.pb +0 -0
  479. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_2.pb +0 -0
  480. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_3.pb +0 -0
  481. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/model.onnx +0 -0
  482. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/input_0.pb +0 -0
  483. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/input_1.pb +0 -0
  484. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/input_2.pb +0 -0
  485. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/input_3.pb +0 -0
  486. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/input_4.pb +0 -0
  487. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/input_5.pb +0 -0
  488. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/output_0.pb +0 -0
  489. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/output_1.pb +0 -0
  490. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/output_2.pb +0 -0
  491. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/output_3.pb +0 -0
  492. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/model.onnx +0 -0
  493. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/input_0.pb +0 -0
  494. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/input_1.pb +0 -0
  495. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/input_2.pb +0 -0
  496. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/input_3.pb +0 -0
  497. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/input_4.pb +0 -0
  498. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/input_5.pb +0 -0
  499. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/output_0.pb +0 -0
  500. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/output_1.pb +0 -0
  501. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/output_2.pb +0 -0
  502. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/output_3.pb +0 -0
  503. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/model.onnx +0 -0
  504. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/input_0.pb +0 -0
  505. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/input_1.pb +0 -0
  506. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/input_2.pb +0 -0
  507. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/input_3.pb +0 -0
  508. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/input_4.pb +0 -0
  509. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/input_5.pb +0 -0
  510. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/output_0.pb +0 -0
  511. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/output_1.pb +0 -0
  512. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/output_2.pb +0 -0
  513. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/output_3.pb +0 -0
  514. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/model.onnx +0 -0
  515. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/input_0.pb +0 -0
  516. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/input_1.pb +0 -0
  517. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/input_2.pb +0 -0
  518. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/input_3.pb +0 -0
  519. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/input_4.pb +0 -0
  520. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/input_5.pb +0 -0
  521. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/output_0.pb +0 -0
  522. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/output_1.pb +0 -0
  523. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/output_2.pb +0 -0
  524. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/output_3.pb +0 -0
  525. onnx/backend/test/data/node/test_attention_4d/model.onnx +0 -0
  526. onnx/backend/test/data/node/test_attention_4d/test_data_set_0/input_0.pb +0 -0
  527. onnx/backend/test/data/node/test_attention_4d/test_data_set_0/input_1.pb +0 -0
  528. onnx/backend/test/data/node/test_attention_4d/test_data_set_0/input_2.pb +0 -0
  529. onnx/backend/test/data/node/test_attention_4d/test_data_set_0/output_0.pb +0 -0
  530. onnx/backend/test/data/node/test_attention_4d_attn_mask/model.onnx +0 -0
  531. onnx/backend/test/data/node/test_attention_4d_attn_mask/test_data_set_0/input_0.pb +0 -0
  532. onnx/backend/test/data/node/test_attention_4d_attn_mask/test_data_set_0/input_1.pb +0 -0
  533. onnx/backend/test/data/node/test_attention_4d_attn_mask/test_data_set_0/input_2.pb +0 -0
  534. onnx/backend/test/data/node/test_attention_4d_attn_mask/test_data_set_0/input_3.pb +1 -0
  535. onnx/backend/test/data/node/test_attention_4d_attn_mask/test_data_set_0/output_0.pb +0 -0
  536. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool/model.onnx +0 -0
  537. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool/test_data_set_0/input_0.pb +0 -0
  538. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool/test_data_set_0/input_1.pb +0 -0
  539. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool/test_data_set_0/input_2.pb +0 -0
  540. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool/test_data_set_0/input_3.pb +1 -0
  541. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool/test_data_set_0/output_0.pb +0 -0
  542. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool_expanded/model.onnx +0 -0
  543. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool_expanded/test_data_set_0/input_0.pb +0 -0
  544. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool_expanded/test_data_set_0/input_1.pb +0 -0
  545. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool_expanded/test_data_set_0/input_2.pb +0 -0
  546. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool_expanded/test_data_set_0/input_3.pb +1 -0
  547. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool_expanded/test_data_set_0/output_0.pb +0 -0
  548. onnx/backend/test/data/node/test_attention_4d_attn_mask_expanded/model.onnx +0 -0
  549. onnx/backend/test/data/node/test_attention_4d_attn_mask_expanded/test_data_set_0/input_0.pb +0 -0
  550. onnx/backend/test/data/node/test_attention_4d_attn_mask_expanded/test_data_set_0/input_1.pb +0 -0
  551. onnx/backend/test/data/node/test_attention_4d_attn_mask_expanded/test_data_set_0/input_2.pb +0 -0
  552. onnx/backend/test/data/node/test_attention_4d_attn_mask_expanded/test_data_set_0/input_3.pb +1 -0
  553. onnx/backend/test/data/node/test_attention_4d_attn_mask_expanded/test_data_set_0/output_0.pb +0 -0
  554. onnx/backend/test/data/node/test_attention_4d_causal/model.onnx +0 -0
  555. onnx/backend/test/data/node/test_attention_4d_causal/test_data_set_0/input_0.pb +0 -0
  556. onnx/backend/test/data/node/test_attention_4d_causal/test_data_set_0/input_1.pb +0 -0
  557. onnx/backend/test/data/node/test_attention_4d_causal/test_data_set_0/input_2.pb +0 -0
  558. onnx/backend/test/data/node/test_attention_4d_causal/test_data_set_0/output_0.pb +0 -0
  559. onnx/backend/test/data/node/test_attention_4d_causal_expanded/model.onnx +0 -0
  560. onnx/backend/test/data/node/test_attention_4d_causal_expanded/test_data_set_0/input_0.pb +0 -0
  561. onnx/backend/test/data/node/test_attention_4d_causal_expanded/test_data_set_0/input_1.pb +0 -0
  562. onnx/backend/test/data/node/test_attention_4d_causal_expanded/test_data_set_0/input_2.pb +0 -0
  563. onnx/backend/test/data/node/test_attention_4d_causal_expanded/test_data_set_0/output_0.pb +0 -0
  564. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes/model.onnx +0 -0
  565. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes/test_data_set_0/input_0.pb +0 -0
  566. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes/test_data_set_0/input_1.pb +0 -0
  567. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes/test_data_set_0/input_2.pb +0 -0
  568. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes/test_data_set_0/output_0.pb +0 -0
  569. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask/model.onnx +0 -0
  570. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask/test_data_set_0/input_0.pb +0 -0
  571. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask/test_data_set_0/input_1.pb +0 -0
  572. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask/test_data_set_0/input_2.pb +0 -0
  573. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask/test_data_set_0/input_3.pb +0 -0
  574. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask/test_data_set_0/output_0.pb +0 -0
  575. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask_expanded/model.onnx +0 -0
  576. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_0.pb +0 -0
  577. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_1.pb +0 -0
  578. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_2.pb +0 -0
  579. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_3.pb +0 -0
  580. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/output_0.pb +0 -0
  581. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal/model.onnx +0 -0
  582. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal/test_data_set_0/input_0.pb +0 -0
  583. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal/test_data_set_0/input_1.pb +0 -0
  584. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal/test_data_set_0/input_2.pb +0 -0
  585. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal/test_data_set_0/output_0.pb +0 -0
  586. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal_expanded/model.onnx +0 -0
  587. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal_expanded/test_data_set_0/input_0.pb +0 -0
  588. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal_expanded/test_data_set_0/input_1.pb +0 -0
  589. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal_expanded/test_data_set_0/input_2.pb +0 -0
  590. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal_expanded/test_data_set_0/output_0.pb +0 -0
  591. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_expanded/model.onnx +0 -0
  592. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_expanded/test_data_set_0/input_0.pb +0 -0
  593. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_expanded/test_data_set_0/input_1.pb +0 -0
  594. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_expanded/test_data_set_0/input_2.pb +0 -0
  595. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_expanded/test_data_set_0/output_0.pb +0 -0
  596. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled/model.onnx +0 -0
  597. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled/test_data_set_0/input_0.pb +0 -0
  598. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled/test_data_set_0/input_1.pb +0 -0
  599. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled/test_data_set_0/input_2.pb +0 -0
  600. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled/test_data_set_0/output_0.pb +0 -0
  601. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled_expanded/model.onnx +0 -0
  602. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled_expanded/test_data_set_0/input_0.pb +0 -0
  603. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled_expanded/test_data_set_0/input_1.pb +0 -0
  604. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled_expanded/test_data_set_0/input_2.pb +0 -0
  605. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled_expanded/test_data_set_0/output_0.pb +0 -0
  606. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap/model.onnx +0 -0
  607. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap/test_data_set_0/input_0.pb +0 -0
  608. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap/test_data_set_0/input_1.pb +0 -0
  609. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap/test_data_set_0/input_2.pb +0 -0
  610. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap/test_data_set_0/output_0.pb +0 -0
  611. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap_expanded/model.onnx +0 -0
  612. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap_expanded/test_data_set_0/input_0.pb +0 -0
  613. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap_expanded/test_data_set_0/input_1.pb +0 -0
  614. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap_expanded/test_data_set_0/input_2.pb +0 -0
  615. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap_expanded/test_data_set_0/output_0.pb +0 -0
  616. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/model.onnx +0 -0
  617. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/input_0.pb +0 -0
  618. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/input_1.pb +0 -0
  619. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/input_2.pb +0 -0
  620. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/input_3.pb +0 -0
  621. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/input_4.pb +0 -0
  622. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/input_5.pb +0 -0
  623. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/output_0.pb +0 -0
  624. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/output_1.pb +0 -0
  625. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/output_2.pb +0 -0
  626. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/model.onnx +0 -0
  627. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_0.pb +0 -0
  628. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_1.pb +0 -0
  629. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_2.pb +0 -0
  630. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_3.pb +0 -0
  631. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_4.pb +0 -0
  632. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_5.pb +0 -0
  633. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/output_0.pb +0 -0
  634. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/output_1.pb +0 -0
  635. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/output_2.pb +0 -0
  636. onnx/backend/test/data/node/test_attention_4d_expanded/model.onnx +0 -0
  637. onnx/backend/test/data/node/test_attention_4d_expanded/test_data_set_0/input_0.pb +0 -0
  638. onnx/backend/test/data/node/test_attention_4d_expanded/test_data_set_0/input_1.pb +0 -0
  639. onnx/backend/test/data/node/test_attention_4d_expanded/test_data_set_0/input_2.pb +0 -0
  640. onnx/backend/test/data/node/test_attention_4d_expanded/test_data_set_0/output_0.pb +0 -0
  641. onnx/backend/test/data/node/test_attention_4d_gqa/model.onnx +0 -0
  642. onnx/backend/test/data/node/test_attention_4d_gqa/test_data_set_0/input_0.pb +0 -0
  643. onnx/backend/test/data/node/test_attention_4d_gqa/test_data_set_0/input_1.pb +0 -0
  644. onnx/backend/test/data/node/test_attention_4d_gqa/test_data_set_0/input_2.pb +0 -0
  645. onnx/backend/test/data/node/test_attention_4d_gqa/test_data_set_0/output_0.pb +0 -0
  646. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask/model.onnx +0 -0
  647. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask/test_data_set_0/input_0.pb +0 -0
  648. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask/test_data_set_0/input_1.pb +0 -0
  649. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask/test_data_set_0/input_2.pb +0 -0
  650. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask/test_data_set_0/input_3.pb +1 -0
  651. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask/test_data_set_0/output_0.pb +0 -0
  652. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask_expanded/model.onnx +0 -0
  653. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask_expanded/test_data_set_0/input_0.pb +0 -0
  654. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask_expanded/test_data_set_0/input_1.pb +0 -0
  655. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask_expanded/test_data_set_0/input_2.pb +0 -0
  656. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask_expanded/test_data_set_0/input_3.pb +1 -0
  657. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask_expanded/test_data_set_0/output_0.pb +0 -0
  658. onnx/backend/test/data/node/test_attention_4d_gqa_causal/model.onnx +0 -0
  659. onnx/backend/test/data/node/test_attention_4d_gqa_causal/test_data_set_0/input_0.pb +0 -0
  660. onnx/backend/test/data/node/test_attention_4d_gqa_causal/test_data_set_0/input_1.pb +0 -0
  661. onnx/backend/test/data/node/test_attention_4d_gqa_causal/test_data_set_0/input_2.pb +0 -0
  662. onnx/backend/test/data/node/test_attention_4d_gqa_causal/test_data_set_0/output_0.pb +0 -0
  663. onnx/backend/test/data/node/test_attention_4d_gqa_causal_expanded/model.onnx +0 -0
  664. onnx/backend/test/data/node/test_attention_4d_gqa_causal_expanded/test_data_set_0/input_0.pb +0 -0
  665. onnx/backend/test/data/node/test_attention_4d_gqa_causal_expanded/test_data_set_0/input_1.pb +0 -0
  666. onnx/backend/test/data/node/test_attention_4d_gqa_causal_expanded/test_data_set_0/input_2.pb +0 -0
  667. onnx/backend/test/data/node/test_attention_4d_gqa_causal_expanded/test_data_set_0/output_0.pb +0 -0
  668. onnx/backend/test/data/node/test_attention_4d_gqa_expanded/model.onnx +0 -0
  669. onnx/backend/test/data/node/test_attention_4d_gqa_expanded/test_data_set_0/input_0.pb +0 -0
  670. onnx/backend/test/data/node/test_attention_4d_gqa_expanded/test_data_set_0/input_1.pb +0 -0
  671. onnx/backend/test/data/node/test_attention_4d_gqa_expanded/test_data_set_0/input_2.pb +0 -0
  672. onnx/backend/test/data/node/test_attention_4d_gqa_expanded/test_data_set_0/output_0.pb +0 -0
  673. onnx/backend/test/data/node/test_attention_4d_gqa_scaled/model.onnx +0 -0
  674. onnx/backend/test/data/node/test_attention_4d_gqa_scaled/test_data_set_0/input_0.pb +0 -0
  675. onnx/backend/test/data/node/test_attention_4d_gqa_scaled/test_data_set_0/input_1.pb +0 -0
  676. onnx/backend/test/data/node/test_attention_4d_gqa_scaled/test_data_set_0/input_2.pb +0 -0
  677. onnx/backend/test/data/node/test_attention_4d_gqa_scaled/test_data_set_0/output_0.pb +0 -0
  678. onnx/backend/test/data/node/test_attention_4d_gqa_scaled_expanded/model.onnx +0 -0
  679. onnx/backend/test/data/node/test_attention_4d_gqa_scaled_expanded/test_data_set_0/input_0.pb +0 -0
  680. onnx/backend/test/data/node/test_attention_4d_gqa_scaled_expanded/test_data_set_0/input_1.pb +0 -0
  681. onnx/backend/test/data/node/test_attention_4d_gqa_scaled_expanded/test_data_set_0/input_2.pb +0 -0
  682. onnx/backend/test/data/node/test_attention_4d_gqa_scaled_expanded/test_data_set_0/output_0.pb +0 -0
  683. onnx/backend/test/data/node/test_attention_4d_gqa_softcap/model.onnx +0 -0
  684. onnx/backend/test/data/node/test_attention_4d_gqa_softcap/test_data_set_0/input_0.pb +0 -0
  685. onnx/backend/test/data/node/test_attention_4d_gqa_softcap/test_data_set_0/input_1.pb +0 -0
  686. onnx/backend/test/data/node/test_attention_4d_gqa_softcap/test_data_set_0/input_2.pb +0 -0
  687. onnx/backend/test/data/node/test_attention_4d_gqa_softcap/test_data_set_0/output_0.pb +0 -0
  688. onnx/backend/test/data/node/test_attention_4d_gqa_softcap_expanded/model.onnx +0 -0
  689. onnx/backend/test/data/node/test_attention_4d_gqa_softcap_expanded/test_data_set_0/input_0.pb +0 -0
  690. onnx/backend/test/data/node/test_attention_4d_gqa_softcap_expanded/test_data_set_0/input_1.pb +0 -0
  691. onnx/backend/test/data/node/test_attention_4d_gqa_softcap_expanded/test_data_set_0/input_2.pb +0 -0
  692. onnx/backend/test/data/node/test_attention_4d_gqa_softcap_expanded/test_data_set_0/output_0.pb +0 -0
  693. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/model.onnx +0 -0
  694. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/input_0.pb +0 -0
  695. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/input_1.pb +0 -0
  696. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/input_2.pb +0 -0
  697. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/input_3.pb +0 -0
  698. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/input_4.pb +0 -0
  699. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/input_5.pb +0 -0
  700. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/output_0.pb +0 -0
  701. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/output_1.pb +0 -0
  702. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/output_2.pb +0 -0
  703. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/model.onnx +0 -0
  704. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/input_0.pb +0 -0
  705. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/input_1.pb +0 -0
  706. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/input_2.pb +0 -0
  707. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/input_3.pb +0 -0
  708. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/input_4.pb +0 -0
  709. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/input_5.pb +0 -0
  710. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/output_0.pb +0 -0
  711. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/output_1.pb +0 -0
  712. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/output_2.pb +0 -0
  713. onnx/backend/test/data/node/test_attention_4d_scaled/model.onnx +0 -0
  714. onnx/backend/test/data/node/test_attention_4d_scaled/test_data_set_0/input_0.pb +0 -0
  715. onnx/backend/test/data/node/test_attention_4d_scaled/test_data_set_0/input_1.pb +0 -0
  716. onnx/backend/test/data/node/test_attention_4d_scaled/test_data_set_0/input_2.pb +0 -0
  717. onnx/backend/test/data/node/test_attention_4d_scaled/test_data_set_0/output_0.pb +0 -0
  718. onnx/backend/test/data/node/test_attention_4d_scaled_expanded/model.onnx +0 -0
  719. onnx/backend/test/data/node/test_attention_4d_scaled_expanded/test_data_set_0/input_0.pb +0 -0
  720. onnx/backend/test/data/node/test_attention_4d_scaled_expanded/test_data_set_0/input_1.pb +0 -0
  721. onnx/backend/test/data/node/test_attention_4d_scaled_expanded/test_data_set_0/input_2.pb +0 -0
  722. onnx/backend/test/data/node/test_attention_4d_scaled_expanded/test_data_set_0/output_0.pb +0 -0
  723. onnx/backend/test/data/node/test_attention_4d_softcap/model.onnx +0 -0
  724. onnx/backend/test/data/node/test_attention_4d_softcap/test_data_set_0/input_0.pb +0 -0
  725. onnx/backend/test/data/node/test_attention_4d_softcap/test_data_set_0/input_1.pb +0 -0
  726. onnx/backend/test/data/node/test_attention_4d_softcap/test_data_set_0/input_2.pb +0 -0
  727. onnx/backend/test/data/node/test_attention_4d_softcap/test_data_set_0/output_0.pb +0 -0
  728. onnx/backend/test/data/node/test_attention_4d_softcap_expanded/model.onnx +0 -0
  729. onnx/backend/test/data/node/test_attention_4d_softcap_expanded/test_data_set_0/input_0.pb +0 -0
  730. onnx/backend/test/data/node/test_attention_4d_softcap_expanded/test_data_set_0/input_1.pb +0 -0
  731. onnx/backend/test/data/node/test_attention_4d_softcap_expanded/test_data_set_0/input_2.pb +0 -0
  732. onnx/backend/test/data/node/test_attention_4d_softcap_expanded/test_data_set_0/output_0.pb +0 -0
  733. onnx/backend/test/data/node/test_attention_4d_with_past_and_present/model.onnx +0 -0
  734. onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/input_0.pb +0 -0
  735. onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/input_1.pb +0 -0
  736. onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/input_2.pb +0 -0
  737. onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/input_3.pb +0 -0
  738. onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/input_4.pb +0 -0
  739. onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/input_5.pb +0 -0
  740. onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/output_0.pb +0 -0
  741. onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/output_1.pb +0 -0
  742. onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/output_2.pb +0 -0
  743. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/model.onnx +0 -0
  744. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/input_0.pb +0 -0
  745. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/input_1.pb +0 -0
  746. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/input_2.pb +0 -0
  747. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/input_3.pb +0 -0
  748. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/input_4.pb +0 -0
  749. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/input_5.pb +0 -0
  750. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/output_0.pb +0 -0
  751. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/output_1.pb +0 -0
  752. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/output_2.pb +0 -0
  753. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/model.onnx +0 -0
  754. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/input_0.pb +0 -0
  755. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/input_1.pb +0 -0
  756. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/input_2.pb +0 -0
  757. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/input_3.pb +0 -0
  758. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/input_4.pb +0 -0
  759. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/input_5.pb +0 -0
  760. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/output_0.pb +0 -0
  761. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/output_1.pb +0 -0
  762. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/output_2.pb +0 -0
  763. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/output_3.pb +0 -0
  764. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/model.onnx +0 -0
  765. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_0.pb +0 -0
  766. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_1.pb +0 -0
  767. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_2.pb +0 -0
  768. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_3.pb +0 -0
  769. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_4.pb +0 -0
  770. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_5.pb +0 -0
  771. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_0.pb +0 -0
  772. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_1.pb +0 -0
  773. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_2.pb +0 -0
  774. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_3.pb +0 -0
  775. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/model.onnx +0 -0
  776. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_0.pb +0 -0
  777. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_1.pb +0 -0
  778. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_2.pb +0 -0
  779. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_3.pb +0 -0
  780. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_4.pb +0 -0
  781. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_5.pb +0 -0
  782. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_0.pb +0 -0
  783. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_1.pb +0 -0
  784. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_2.pb +0 -0
  785. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_3.pb +0 -0
  786. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/model.onnx +0 -0
  787. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_0.pb +0 -0
  788. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_1.pb +0 -0
  789. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_2.pb +0 -0
  790. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_3.pb +0 -0
  791. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_4.pb +0 -0
  792. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_5.pb +0 -0
  793. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_0.pb +0 -0
  794. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_1.pb +0 -0
  795. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_2.pb +0 -0
  796. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_3.pb +0 -0
  797. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul/model.onnx +0 -0
  798. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul/test_data_set_0/input_0.pb +0 -0
  799. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul/test_data_set_0/input_1.pb +0 -0
  800. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul/test_data_set_0/input_2.pb +0 -0
  801. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul/test_data_set_0/output_0.pb +0 -0
  802. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul/test_data_set_0/output_1.pb +0 -0
  803. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias/model.onnx +0 -0
  804. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias/test_data_set_0/input_0.pb +0 -0
  805. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias/test_data_set_0/input_1.pb +0 -0
  806. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias/test_data_set_0/input_2.pb +0 -0
  807. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias/test_data_set_0/input_3.pb +1 -0
  808. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias/test_data_set_0/output_0.pb +0 -0
  809. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias/test_data_set_0/output_1.pb +0 -0
  810. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias_expanded/model.onnx +0 -0
  811. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias_expanded/test_data_set_0/input_0.pb +0 -0
  812. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias_expanded/test_data_set_0/input_1.pb +0 -0
  813. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias_expanded/test_data_set_0/input_2.pb +0 -0
  814. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias_expanded/test_data_set_0/input_3.pb +1 -0
  815. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias_expanded/test_data_set_0/output_0.pb +0 -0
  816. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias_expanded/test_data_set_0/output_1.pb +0 -0
  817. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_expanded/model.onnx +0 -0
  818. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_expanded/test_data_set_0/input_0.pb +0 -0
  819. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_expanded/test_data_set_0/input_1.pb +0 -0
  820. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_expanded/test_data_set_0/input_2.pb +0 -0
  821. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_expanded/test_data_set_0/output_0.pb +0 -0
  822. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_expanded/test_data_set_0/output_1.pb +0 -0
  823. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap/model.onnx +0 -0
  824. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap/test_data_set_0/input_0.pb +0 -0
  825. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap/test_data_set_0/input_1.pb +0 -0
  826. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap/test_data_set_0/input_2.pb +0 -0
  827. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap/test_data_set_0/input_3.pb +1 -0
  828. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap/test_data_set_0/output_0.pb +0 -0
  829. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap/test_data_set_0/output_1.pb +0 -0
  830. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap_expanded/model.onnx +0 -0
  831. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap_expanded/test_data_set_0/input_0.pb +0 -0
  832. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap_expanded/test_data_set_0/input_1.pb +0 -0
  833. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap_expanded/test_data_set_0/input_2.pb +0 -0
  834. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap_expanded/test_data_set_0/input_3.pb +1 -0
  835. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap_expanded/test_data_set_0/output_0.pb +0 -0
  836. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap_expanded/test_data_set_0/output_1.pb +0 -0
  837. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax/model.onnx +0 -0
  838. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax/test_data_set_0/input_0.pb +0 -0
  839. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax/test_data_set_0/input_1.pb +0 -0
  840. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax/test_data_set_0/input_2.pb +0 -0
  841. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax/test_data_set_0/input_3.pb +1 -0
  842. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax/test_data_set_0/output_0.pb +0 -0
  843. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax/test_data_set_0/output_1.pb +0 -0
  844. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax_expanded/model.onnx +0 -0
  845. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax_expanded/test_data_set_0/input_0.pb +0 -0
  846. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax_expanded/test_data_set_0/input_1.pb +0 -0
  847. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax_expanded/test_data_set_0/input_2.pb +0 -0
  848. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax_expanded/test_data_set_0/input_3.pb +1 -0
  849. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax_expanded/test_data_set_0/output_0.pb +0 -0
  850. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax_expanded/test_data_set_0/output_1.pb +0 -0
  851. onnx/backend/test/data/node/test_averagepool_1d_default/model.onnx +0 -0
  852. onnx/backend/test/data/node/test_averagepool_2d_ceil/model.onnx +0 -0
  853. onnx/backend/test/data/node/test_averagepool_2d_ceil_last_window_starts_on_pad/model.onnx +0 -0
  854. onnx/backend/test/data/node/test_averagepool_2d_ceil_last_window_starts_on_pad/test_data_set_0/input_0.pb +1 -0
  855. onnx/backend/test/data/node/test_averagepool_2d_ceil_last_window_starts_on_pad/test_data_set_0/output_0.pb +1 -0
  856. onnx/backend/test/data/node/test_averagepool_2d_default/model.onnx +0 -0
  857. onnx/backend/test/data/node/test_averagepool_2d_dilations/model.onnx +0 -0
  858. onnx/backend/test/data/node/test_averagepool_2d_pads/model.onnx +0 -0
  859. onnx/backend/test/data/node/test_averagepool_2d_pads_count_include_pad/model.onnx +0 -0
  860. onnx/backend/test/data/node/test_averagepool_2d_precomputed_pads/model.onnx +0 -0
  861. onnx/backend/test/data/node/test_averagepool_2d_precomputed_pads_count_include_pad/model.onnx +0 -0
  862. onnx/backend/test/data/node/test_averagepool_2d_precomputed_same_upper/model.onnx +0 -0
  863. onnx/backend/test/data/node/test_averagepool_2d_precomputed_strides/model.onnx +0 -0
  864. onnx/backend/test/data/node/test_averagepool_2d_same_lower/model.onnx +0 -0
  865. onnx/backend/test/data/node/test_averagepool_2d_same_upper/model.onnx +0 -0
  866. onnx/backend/test/data/node/test_averagepool_2d_strides/model.onnx +0 -0
  867. onnx/backend/test/data/node/test_averagepool_3d_default/model.onnx +0 -0
  868. onnx/backend/test/data/node/test_averagepool_3d_dilations_large_count_include_pad_is_0_ceil_mode_is_False/model.onnx +0 -0
  869. onnx/backend/test/data/node/test_averagepool_3d_dilations_large_count_include_pad_is_0_ceil_mode_is_True/model.onnx +0 -0
  870. onnx/backend/test/data/node/test_averagepool_3d_dilations_large_count_include_pad_is_1_ceil_mode_is_False/model.onnx +0 -0
  871. onnx/backend/test/data/node/test_averagepool_3d_dilations_large_count_include_pad_is_1_ceil_mode_is_True/model.onnx +0 -0
  872. onnx/backend/test/data/node/test_averagepool_3d_dilations_large_count_include_pad_is_1_ceil_mode_is_True/test_data_set_0/output_0.pb +0 -0
  873. onnx/backend/test/data/node/test_averagepool_3d_dilations_small/model.onnx +0 -0
  874. onnx/backend/test/data/node/test_basic_conv_with_padding/model.onnx +0 -0
  875. onnx/backend/test/data/node/test_basic_conv_without_padding/model.onnx +0 -0
  876. onnx/backend/test/data/node/test_basic_deform_conv_with_padding/model.onnx +0 -0
  877. onnx/backend/test/data/node/test_basic_deform_conv_without_padding/model.onnx +0 -0
  878. onnx/backend/test/data/node/test_bernoulli/model.onnx +0 -0
  879. onnx/backend/test/data/node/test_bernoulli_double/model.onnx +0 -0
  880. onnx/backend/test/data/node/test_bernoulli_double_expanded/model.onnx +0 -0
  881. onnx/backend/test/data/node/test_bernoulli_expanded/model.onnx +0 -0
  882. onnx/backend/test/data/node/test_bernoulli_seed/model.onnx +0 -0
  883. onnx/backend/test/data/node/test_bernoulli_seed_expanded/model.onnx +0 -0
  884. onnx/backend/test/data/node/test_cast_BFLOAT16_to_FLOAT/model.onnx +0 -0
  885. onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT/model.onnx +0 -0
  886. onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT16/model.onnx +0 -0
  887. onnx/backend/test/data/node/test_cast_FLOAT16_to_DOUBLE/model.onnx +0 -0
  888. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT/model.onnx +0 -0
  889. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT4E2M1/model.onnx +0 -0
  890. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT4E2M1/test_data_set_0/input_0.pb +2 -0
  891. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT4E2M1/test_data_set_0/output_0.pb +2 -0
  892. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
  893. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  894. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
  895. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  896. onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/model.onnx +0 -0
  897. onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/test_data_set_0/output_0.pb +1 -1
  898. onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/model.onnx +0 -0
  899. onnx/backend/test/data/node/test_cast_FLOAT4E2M1_to_FLOAT/model.onnx +0 -0
  900. onnx/backend/test/data/node/test_cast_FLOAT4E2M1_to_FLOAT/test_data_set_0/input_0.pb +2 -0
  901. onnx/backend/test/data/node/test_cast_FLOAT4E2M1_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  902. onnx/backend/test/data/node/test_cast_FLOAT4E2M1_to_FLOAT16/model.onnx +0 -0
  903. onnx/backend/test/data/node/test_cast_FLOAT4E2M1_to_FLOAT16/test_data_set_0/input_0.pb +2 -0
  904. onnx/backend/test/data/node/test_cast_FLOAT4E2M1_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
  905. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
  906. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/model.onnx +0 -0
  907. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
  908. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/model.onnx +0 -0
  909. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
  910. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/model.onnx +0 -0
  911. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
  912. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/model.onnx +0 -0
  913. onnx/backend/test/data/node/test_cast_FLOAT_to_BFLOAT16/model.onnx +0 -0
  914. onnx/backend/test/data/node/test_cast_FLOAT_to_DOUBLE/model.onnx +0 -0
  915. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT16/model.onnx +0 -0
  916. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT4E2M1/model.onnx +0 -0
  917. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT4E2M1/test_data_set_0/input_0.pb +0 -0
  918. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT4E2M1/test_data_set_0/output_0.pb +2 -0
  919. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
  920. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  921. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
  922. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  923. onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/model.onnx +0 -0
  924. onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/test_data_set_0/output_0.pb +1 -1
  925. onnx/backend/test/data/node/test_cast_FLOAT_to_STRING/model.onnx +0 -0
  926. onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/model.onnx +0 -0
  927. onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/model.onnx +0 -0
  928. onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/test_data_set_0/input_0.pb +1 -1
  929. onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/model.onnx +0 -0
  930. onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/test_data_set_0/input_0.pb +1 -1
  931. onnx/backend/test/data/node/test_cast_INT4_to_INT8/model.onnx +0 -0
  932. onnx/backend/test/data/node/test_cast_INT4_to_INT8/test_data_set_0/input_0.pb +1 -1
  933. onnx/backend/test/data/node/test_cast_STRING_to_FLOAT/model.onnx +0 -0
  934. onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/model.onnx +0 -0
  935. onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/model.onnx +0 -0
  936. onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/model.onnx +0 -0
  937. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
  938. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  939. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
  940. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  941. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
  942. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  943. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
  944. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  945. onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT/model.onnx +0 -0
  946. onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT_expanded/model.onnx +0 -0
  947. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT/model.onnx +0 -0
  948. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16/model.onnx +0 -0
  949. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16_expanded/model.onnx +0 -0
  950. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT_expanded/model.onnx +0 -0
  951. onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE/model.onnx +0 -0
  952. onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE_expanded/model.onnx +0 -0
  953. onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT/model.onnx +0 -0
  954. onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT_expanded/model.onnx +0 -0
  955. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
  956. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/model.onnx +0 -0
  957. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
  958. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/model.onnx +0 -0
  959. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
  960. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/model.onnx +0 -0
  961. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
  962. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/model.onnx +0 -0
  963. onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16/model.onnx +0 -0
  964. onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16_expanded/model.onnx +0 -0
  965. onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE/model.onnx +0 -0
  966. onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE_expanded/model.onnx +0 -0
  967. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16/model.onnx +0 -0
  968. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16_expanded/model.onnx +0 -0
  969. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
  970. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  971. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/model.onnx +0 -0
  972. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/model.onnx +0 -0
  973. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
  974. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  975. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/model.onnx +0 -0
  976. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/model.onnx +0 -0
  977. onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING/model.onnx +0 -0
  978. onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING_expanded/model.onnx +0 -0
  979. onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT/model.onnx +0 -0
  980. onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT_expanded/model.onnx +0 -0
  981. onnx/backend/test/data/node/test_clip_min_greater_than_max/model.onnx +0 -0
  982. onnx/backend/test/data/node/test_clip_min_greater_than_max/test_data_set_0/input_0.pb +0 -0
  983. onnx/backend/test/data/node/test_clip_min_greater_than_max/test_data_set_0/input_1.pb +0 -0
  984. onnx/backend/test/data/node/test_clip_min_greater_than_max/test_data_set_0/input_2.pb +0 -0
  985. onnx/backend/test/data/node/test_clip_min_greater_than_max/test_data_set_0/output_0.pb +0 -0
  986. onnx/backend/test/data/node/test_clip_min_greater_than_max_expanded/model.onnx +0 -0
  987. onnx/backend/test/data/node/test_clip_min_greater_than_max_expanded/test_data_set_0/input_0.pb +0 -0
  988. onnx/backend/test/data/node/test_clip_min_greater_than_max_expanded/test_data_set_0/input_1.pb +0 -0
  989. onnx/backend/test/data/node/test_clip_min_greater_than_max_expanded/test_data_set_0/input_2.pb +0 -0
  990. onnx/backend/test/data/node/test_clip_min_greater_than_max_expanded/test_data_set_0/output_0.pb +0 -0
  991. onnx/backend/test/data/node/test_constant/model.onnx +0 -0
  992. onnx/backend/test/data/node/test_constant_pad/model.onnx +0 -0
  993. onnx/backend/test/data/node/test_constant_pad_axes/model.onnx +0 -0
  994. onnx/backend/test/data/node/test_constant_pad_negative_axes/model.onnx +0 -0
  995. onnx/backend/test/data/node/test_constantofshape_float_ones/model.onnx +0 -0
  996. onnx/backend/test/data/node/test_constantofshape_int_shape_zero/model.onnx +0 -0
  997. onnx/backend/test/data/node/test_constantofshape_int_zeros/model.onnx +0 -0
  998. onnx/backend/test/data/node/test_conv_with_autopad_same/model.onnx +0 -0
  999. onnx/backend/test/data/node/test_conv_with_strides_and_asymmetric_padding/model.onnx +0 -0
  1000. onnx/backend/test/data/node/test_conv_with_strides_no_padding/model.onnx +0 -0
  1001. onnx/backend/test/data/node/test_conv_with_strides_padding/model.onnx +0 -0
  1002. onnx/backend/test/data/node/test_convtranspose/model.onnx +0 -0
  1003. onnx/backend/test/data/node/test_convtranspose_1d/model.onnx +0 -0
  1004. onnx/backend/test/data/node/test_convtranspose_3d/model.onnx +0 -0
  1005. onnx/backend/test/data/node/test_convtranspose_autopad_same/model.onnx +0 -0
  1006. onnx/backend/test/data/node/test_convtranspose_dilations/model.onnx +0 -0
  1007. onnx/backend/test/data/node/test_convtranspose_group_2/model.onnx +0 -0
  1008. onnx/backend/test/data/node/test_convtranspose_group_2/test_data_set_0/input_0.pb +0 -0
  1009. onnx/backend/test/data/node/test_convtranspose_group_2/test_data_set_0/input_1.pb +0 -0
  1010. onnx/backend/test/data/node/test_convtranspose_group_2/test_data_set_0/output_0.pb +0 -0
  1011. onnx/backend/test/data/node/test_convtranspose_group_2_image_3/model.onnx +0 -0
  1012. onnx/backend/test/data/node/test_convtranspose_group_2_image_3/test_data_set_0/input_0.pb +0 -0
  1013. onnx/backend/test/data/node/test_convtranspose_group_2_image_3/test_data_set_0/input_1.pb +0 -0
  1014. onnx/backend/test/data/node/test_convtranspose_group_2_image_3/test_data_set_0/output_0.pb +0 -0
  1015. onnx/backend/test/data/node/test_convtranspose_kernel_shape/model.onnx +0 -0
  1016. onnx/backend/test/data/node/test_convtranspose_output_shape/model.onnx +0 -0
  1017. onnx/backend/test/data/node/test_convtranspose_pad/model.onnx +0 -0
  1018. onnx/backend/test/data/node/test_convtranspose_pads/model.onnx +0 -0
  1019. onnx/backend/test/data/node/test_cos/model.onnx +0 -0
  1020. onnx/backend/test/data/node/test_cos_example/model.onnx +0 -0
  1021. onnx/backend/test/data/node/test_cosh/model.onnx +0 -0
  1022. onnx/backend/test/data/node/test_cosh_example/model.onnx +0 -0
  1023. onnx/backend/test/data/node/test_deform_conv_with_mask_bias/model.onnx +0 -0
  1024. onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/model.onnx +0 -0
  1025. onnx/backend/test/data/node/test_dequantizelinear/model.onnx +0 -0
  1026. onnx/backend/test/data/node/test_dequantizelinear_axis/model.onnx +0 -0
  1027. onnx/backend/test/data/node/test_dequantizelinear_blocked/model.onnx +0 -0
  1028. onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/model.onnx +0 -0
  1029. onnx/backend/test/data/node/test_dequantizelinear_e4m3fn_float16/model.onnx +0 -0
  1030. onnx/backend/test/data/node/test_dequantizelinear_e4m3fn_zero_point/model.onnx +0 -0
  1031. onnx/backend/test/data/node/test_dequantizelinear_e5m2/model.onnx +0 -0
  1032. onnx/backend/test/data/node/test_dequantizelinear_float4e2m1/model.onnx +0 -0
  1033. onnx/backend/test/data/node/test_dequantizelinear_float4e2m1/test_data_set_0/input_0.pb +1 -0
  1034. onnx/backend/test/data/node/test_dequantizelinear_float4e2m1/test_data_set_0/input_1.pb +0 -0
  1035. onnx/backend/test/data/node/test_dequantizelinear_float4e2m1/test_data_set_0/input_2.pb +0 -0
  1036. onnx/backend/test/data/node/test_dequantizelinear_float4e2m1/test_data_set_0/output_0.pb +0 -0
  1037. onnx/backend/test/data/node/test_dequantizelinear_int16/model.onnx +0 -0
  1038. onnx/backend/test/data/node/test_dequantizelinear_int4/model.onnx +0 -0
  1039. onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_0.pb +1 -1
  1040. onnx/backend/test/data/node/test_dequantizelinear_uint16/model.onnx +0 -0
  1041. onnx/backend/test/data/node/test_dequantizelinear_uint4/model.onnx +0 -0
  1042. onnx/backend/test/data/node/test_det_2d/model.onnx +0 -0
  1043. onnx/backend/test/data/node/test_det_nd/model.onnx +0 -0
  1044. onnx/backend/test/data/node/test_dropout_default/model.onnx +0 -0
  1045. onnx/backend/test/data/node/test_dropout_default_mask/model.onnx +0 -0
  1046. onnx/backend/test/data/node/test_dropout_default_mask_ratio/model.onnx +0 -0
  1047. onnx/backend/test/data/node/test_dropout_default_ratio/model.onnx +0 -0
  1048. onnx/backend/test/data/node/test_edge_pad/model.onnx +0 -0
  1049. onnx/backend/test/data/node/test_elu/model.onnx +0 -0
  1050. onnx/backend/test/data/node/test_elu_default/model.onnx +0 -0
  1051. onnx/backend/test/data/node/test_elu_example/model.onnx +0 -0
  1052. onnx/backend/test/data/node/test_eyelike_populate_off_main_diagonal/model.onnx +0 -0
  1053. onnx/backend/test/data/node/test_eyelike_with_dtype/model.onnx +0 -0
  1054. onnx/backend/test/data/node/test_eyelike_without_dtype/model.onnx +0 -0
  1055. onnx/backend/test/data/node/test_flatten_axis0/model.onnx +0 -0
  1056. onnx/backend/test/data/node/test_flatten_axis1/model.onnx +0 -0
  1057. onnx/backend/test/data/node/test_flatten_axis2/model.onnx +0 -0
  1058. onnx/backend/test/data/node/test_flatten_axis3/model.onnx +0 -0
  1059. onnx/backend/test/data/node/test_flatten_default_axis/model.onnx +0 -0
  1060. onnx/backend/test/data/node/test_flatten_negative_axis1/model.onnx +0 -0
  1061. onnx/backend/test/data/node/test_flatten_negative_axis2/model.onnx +0 -0
  1062. onnx/backend/test/data/node/test_flatten_negative_axis3/model.onnx +0 -0
  1063. onnx/backend/test/data/node/test_flatten_negative_axis4/model.onnx +0 -0
  1064. onnx/backend/test/data/node/test_globalaveragepool/model.onnx +0 -0
  1065. onnx/backend/test/data/node/test_globalaveragepool_precomputed/model.onnx +0 -0
  1066. onnx/backend/test/data/node/test_globalmaxpool/model.onnx +0 -0
  1067. onnx/backend/test/data/node/test_globalmaxpool_precomputed/model.onnx +0 -0
  1068. onnx/backend/test/data/node/test_gridsample/model.onnx +0 -0
  1069. onnx/backend/test/data/node/test_gridsample_aligncorners_true/model.onnx +0 -0
  1070. onnx/backend/test/data/node/test_gridsample_bicubic/model.onnx +0 -0
  1071. onnx/backend/test/data/node/test_gridsample_bicubic_align_corners_0_additional_1/model.onnx +0 -0
  1072. onnx/backend/test/data/node/test_gridsample_bicubic_align_corners_1_additional_1/model.onnx +0 -0
  1073. onnx/backend/test/data/node/test_gridsample_bilinear/model.onnx +0 -0
  1074. onnx/backend/test/data/node/test_gridsample_bilinear_align_corners_0_additional_1/model.onnx +0 -0
  1075. onnx/backend/test/data/node/test_gridsample_bilinear_align_corners_1_additional_1/model.onnx +0 -0
  1076. onnx/backend/test/data/node/test_gridsample_border_padding/model.onnx +0 -0
  1077. onnx/backend/test/data/node/test_gridsample_nearest/model.onnx +0 -0
  1078. onnx/backend/test/data/node/test_gridsample_nearest_align_corners_0_additional_1/model.onnx +0 -0
  1079. onnx/backend/test/data/node/test_gridsample_nearest_align_corners_1_additional_1/model.onnx +0 -0
  1080. onnx/backend/test/data/node/test_gridsample_reflection_padding/model.onnx +0 -0
  1081. onnx/backend/test/data/node/test_gridsample_volumetric_bilinear_align_corners_0/model.onnx +0 -0
  1082. onnx/backend/test/data/node/test_gridsample_volumetric_bilinear_align_corners_1/model.onnx +0 -0
  1083. onnx/backend/test/data/node/test_gridsample_volumetric_nearest_align_corners_0/model.onnx +0 -0
  1084. onnx/backend/test/data/node/test_gridsample_volumetric_nearest_align_corners_1/model.onnx +0 -0
  1085. onnx/backend/test/data/node/test_gridsample_zeros_padding/model.onnx +0 -0
  1086. onnx/backend/test/data/node/test_gru_batchwise/model.onnx +0 -0
  1087. onnx/backend/test/data/node/test_gru_defaults/model.onnx +0 -0
  1088. onnx/backend/test/data/node/test_gru_seq_length/model.onnx +0 -0
  1089. onnx/backend/test/data/node/test_gru_with_initial_bias/model.onnx +0 -0
  1090. onnx/backend/test/data/node/test_hardsigmoid/model.onnx +0 -0
  1091. onnx/backend/test/data/node/test_hardsigmoid_default/model.onnx +0 -0
  1092. onnx/backend/test/data/node/test_hardsigmoid_example/model.onnx +0 -0
  1093. onnx/backend/test/data/node/test_hardswish/model.onnx +0 -0
  1094. onnx/backend/test/data/node/test_hardswish_expanded/model.onnx +0 -0
  1095. onnx/backend/test/data/node/test_identity/model.onnx +0 -0
  1096. onnx/backend/test/data/node/test_identity_sequence/model.onnx +0 -0
  1097. onnx/backend/test/data/node/test_instancenorm_epsilon/model.onnx +0 -0
  1098. onnx/backend/test/data/node/test_instancenorm_example/model.onnx +0 -0
  1099. onnx/backend/test/data/node/test_lppool_1d_default/model.onnx +0 -0
  1100. onnx/backend/test/data/node/test_lppool_1d_default/test_data_set_0/output_0.pb +2 -2
  1101. onnx/backend/test/data/node/test_lppool_2d_default/model.onnx +0 -0
  1102. onnx/backend/test/data/node/test_lppool_2d_default/test_data_set_0/output_0.pb +0 -0
  1103. onnx/backend/test/data/node/test_lppool_2d_dilations/model.onnx +0 -0
  1104. onnx/backend/test/data/node/test_lppool_2d_pads/model.onnx +0 -0
  1105. onnx/backend/test/data/node/test_lppool_2d_pads/test_data_set_0/output_0.pb +0 -0
  1106. onnx/backend/test/data/node/test_lppool_2d_same_lower/model.onnx +0 -0
  1107. onnx/backend/test/data/node/test_lppool_2d_same_lower/test_data_set_0/output_0.pb +0 -0
  1108. onnx/backend/test/data/node/test_lppool_2d_same_upper/model.onnx +0 -0
  1109. onnx/backend/test/data/node/test_lppool_2d_same_upper/test_data_set_0/output_0.pb +0 -0
  1110. onnx/backend/test/data/node/test_lppool_2d_strides/model.onnx +0 -0
  1111. onnx/backend/test/data/node/test_lppool_2d_strides/test_data_set_0/output_0.pb +0 -0
  1112. onnx/backend/test/data/node/test_lppool_3d_default/model.onnx +0 -0
  1113. onnx/backend/test/data/node/test_lppool_3d_default/test_data_set_0/output_0.pb +0 -0
  1114. onnx/backend/test/data/node/test_lrn_default/test_data_set_0/output_0.pb +0 -0
  1115. onnx/backend/test/data/node/test_lstm_batchwise/model.onnx +0 -0
  1116. onnx/backend/test/data/node/test_lstm_defaults/model.onnx +0 -0
  1117. onnx/backend/test/data/node/test_lstm_with_initial_bias/model.onnx +0 -0
  1118. onnx/backend/test/data/node/test_lstm_with_peepholes/model.onnx +0 -0
  1119. onnx/backend/test/data/node/test_maxpool_1d_default/model.onnx +0 -0
  1120. onnx/backend/test/data/node/test_maxpool_2d_ceil/model.onnx +0 -0
  1121. onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/model.onnx +0 -0
  1122. onnx/backend/test/data/node/test_maxpool_2d_default/model.onnx +0 -0
  1123. onnx/backend/test/data/node/test_maxpool_2d_dilations/model.onnx +0 -0
  1124. onnx/backend/test/data/node/test_maxpool_2d_pads/model.onnx +0 -0
  1125. onnx/backend/test/data/node/test_maxpool_2d_precomputed_pads/model.onnx +0 -0
  1126. onnx/backend/test/data/node/test_maxpool_2d_precomputed_same_upper/model.onnx +0 -0
  1127. onnx/backend/test/data/node/test_maxpool_2d_precomputed_strides/model.onnx +0 -0
  1128. onnx/backend/test/data/node/test_maxpool_2d_same_lower/model.onnx +0 -0
  1129. onnx/backend/test/data/node/test_maxpool_2d_same_upper/model.onnx +0 -0
  1130. onnx/backend/test/data/node/test_maxpool_2d_strides/model.onnx +0 -0
  1131. onnx/backend/test/data/node/test_maxpool_2d_uint8/model.onnx +0 -0
  1132. onnx/backend/test/data/node/test_maxpool_3d_default/model.onnx +0 -0
  1133. onnx/backend/test/data/node/test_maxpool_3d_dilations/model.onnx +0 -0
  1134. onnx/backend/test/data/node/test_maxpool_3d_dilations_use_ref_impl/model.onnx +0 -0
  1135. onnx/backend/test/data/node/test_maxpool_3d_dilations_use_ref_impl_large/model.onnx +0 -0
  1136. onnx/backend/test/data/node/test_maxpool_with_argmax_2d_precomputed_pads/model.onnx +0 -0
  1137. onnx/backend/test/data/node/test_maxpool_with_argmax_2d_precomputed_strides/model.onnx +0 -0
  1138. onnx/backend/test/data/node/test_maxunpool_export_with_output_shape/model.onnx +0 -0
  1139. onnx/backend/test/data/node/test_maxunpool_export_without_output_shape/model.onnx +0 -0
  1140. onnx/backend/test/data/node/test_mish/model.onnx +0 -0
  1141. onnx/backend/test/data/node/test_mish_expanded/model.onnx +0 -0
  1142. onnx/backend/test/data/node/test_mvn/test_data_set_0/output_0.pb +1 -1
  1143. onnx/backend/test/data/node/test_mvn_expanded/test_data_set_0/output_0.pb +1 -1
  1144. onnx/backend/test/data/node/test_mvn_expanded_ver18/test_data_set_0/output_0.pb +1 -1
  1145. onnx/backend/test/data/node/test_nllloss_NC/model.onnx +0 -0
  1146. onnx/backend/test/data/node/test_nllloss_NC_expanded/model.onnx +0 -0
  1147. onnx/backend/test/data/node/test_nllloss_NCd1/model.onnx +0 -0
  1148. onnx/backend/test/data/node/test_nllloss_NCd1_expanded/model.onnx +0 -0
  1149. onnx/backend/test/data/node/test_nllloss_NCd1_ii/model.onnx +0 -0
  1150. onnx/backend/test/data/node/test_nllloss_NCd1_ii_expanded/model.onnx +0 -0
  1151. onnx/backend/test/data/node/test_nllloss_NCd1_mean_weight_negative_ii/model.onnx +0 -0
  1152. onnx/backend/test/data/node/test_nllloss_NCd1_mean_weight_negative_ii_expanded/model.onnx +0 -0
  1153. onnx/backend/test/data/node/test_nllloss_NCd1_weight/model.onnx +0 -0
  1154. onnx/backend/test/data/node/test_nllloss_NCd1_weight_expanded/model.onnx +0 -0
  1155. onnx/backend/test/data/node/test_nllloss_NCd1_weight_ii/model.onnx +0 -0
  1156. onnx/backend/test/data/node/test_nllloss_NCd1_weight_ii_expanded/model.onnx +0 -0
  1157. onnx/backend/test/data/node/test_nllloss_NCd1d2/model.onnx +0 -0
  1158. onnx/backend/test/data/node/test_nllloss_NCd1d2_expanded/model.onnx +0 -0
  1159. onnx/backend/test/data/node/test_nllloss_NCd1d2_no_weight_reduction_mean_ii/model.onnx +0 -0
  1160. onnx/backend/test/data/node/test_nllloss_NCd1d2_no_weight_reduction_mean_ii_expanded/model.onnx +0 -0
  1161. onnx/backend/test/data/node/test_nllloss_NCd1d2_reduction_mean/model.onnx +0 -0
  1162. onnx/backend/test/data/node/test_nllloss_NCd1d2_reduction_mean_expanded/model.onnx +0 -0
  1163. onnx/backend/test/data/node/test_nllloss_NCd1d2_reduction_sum/model.onnx +0 -0
  1164. onnx/backend/test/data/node/test_nllloss_NCd1d2_reduction_sum_expanded/model.onnx +0 -0
  1165. onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight/model.onnx +0 -0
  1166. onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight_expanded/model.onnx +0 -0
  1167. onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight_reduction_mean/model.onnx +0 -0
  1168. onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight_reduction_mean_expanded/model.onnx +0 -0
  1169. onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight_reduction_sum/model.onnx +0 -0
  1170. onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight_reduction_sum_expanded/model.onnx +0 -0
  1171. onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight_reduction_sum_ii/model.onnx +0 -0
  1172. onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight_reduction_sum_ii_expanded/model.onnx +0 -0
  1173. onnx/backend/test/data/node/test_nllloss_NCd1d2d3_none_no_weight_negative_ii/model.onnx +0 -0
  1174. onnx/backend/test/data/node/test_nllloss_NCd1d2d3_none_no_weight_negative_ii_expanded/model.onnx +0 -0
  1175. onnx/backend/test/data/node/test_nllloss_NCd1d2d3_sum_weight_high_ii/model.onnx +0 -0
  1176. onnx/backend/test/data/node/test_nllloss_NCd1d2d3_sum_weight_high_ii_expanded/model.onnx +0 -0
  1177. onnx/backend/test/data/node/test_nllloss_NCd1d2d3d4d5_mean_weight/model.onnx +0 -0
  1178. onnx/backend/test/data/node/test_nllloss_NCd1d2d3d4d5_mean_weight_expanded/model.onnx +0 -0
  1179. onnx/backend/test/data/node/test_nllloss_NCd1d2d3d4d5_none_no_weight/model.onnx +0 -0
  1180. onnx/backend/test/data/node/test_nllloss_NCd1d2d3d4d5_none_no_weight_expanded/model.onnx +0 -0
  1181. onnx/backend/test/data/node/test_pow/test_data_set_0/output_0.pb +0 -0
  1182. onnx/backend/test/data/node/test_quantizelinear/model.onnx +0 -0
  1183. onnx/backend/test/data/node/test_quantizelinear_axis/model.onnx +0 -0
  1184. onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/model.onnx +0 -0
  1185. onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/model.onnx +0 -0
  1186. onnx/backend/test/data/node/test_quantizelinear_e4m3fn/model.onnx +0 -0
  1187. onnx/backend/test/data/node/test_quantizelinear_e5m2/model.onnx +0 -0
  1188. onnx/backend/test/data/node/test_quantizelinear_float4e2m1/model.onnx +0 -0
  1189. onnx/backend/test/data/node/test_quantizelinear_float4e2m1/test_data_set_0/input_0.pb +0 -0
  1190. onnx/backend/test/data/node/test_quantizelinear_float4e2m1/test_data_set_0/input_1.pb +0 -0
  1191. onnx/backend/test/data/node/test_quantizelinear_float4e2m1/test_data_set_0/input_2.pb +0 -0
  1192. onnx/backend/test/data/node/test_quantizelinear_float4e2m1/test_data_set_0/output_0.pb +1 -0
  1193. onnx/backend/test/data/node/test_quantizelinear_int16/model.onnx +0 -0
  1194. onnx/backend/test/data/node/test_quantizelinear_int4/model.onnx +0 -0
  1195. onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/output_0.pb +1 -1
  1196. onnx/backend/test/data/node/test_quantizelinear_uint16/model.onnx +0 -0
  1197. onnx/backend/test/data/node/test_quantizelinear_uint4/model.onnx +0 -0
  1198. onnx/backend/test/data/node/test_reduce_max_empty_set/model.onnx +0 -0
  1199. onnx/backend/test/data/node/test_reduce_max_empty_set/test_data_set_0/input_0.pb +0 -0
  1200. onnx/backend/test/data/node/test_reduce_max_empty_set/test_data_set_0/input_1.pb +0 -0
  1201. onnx/backend/test/data/node/test_reduce_max_empty_set/test_data_set_0/output_0.pb +0 -0
  1202. onnx/backend/test/data/node/test_reduce_sum_empty_axes_input_noop/model.onnx +0 -0
  1203. onnx/backend/test/data/node/test_reduce_sum_empty_axes_input_noop/test_data_set_0/input_0.pb +1 -0
  1204. onnx/backend/test/data/node/test_reduce_sum_empty_axes_input_noop/test_data_set_0/input_1.pb +0 -0
  1205. onnx/backend/test/data/node/test_reduce_sum_empty_axes_input_noop/test_data_set_0/output_0.pb +1 -0
  1206. onnx/backend/test/data/node/test_reduce_sum_negative_axes_keepdims_random/model.onnx +0 -0
  1207. onnx/backend/test/data/node/test_reduce_sum_negative_axes_keepdims_random/test_data_set_0/input_1.pb +0 -0
  1208. onnx/backend/test/data/node/test_reduce_sum_negative_axes_keepdims_random/test_data_set_0/output_0.pb +1 -1
  1209. onnx/backend/test/data/node/test_reflect_pad/model.onnx +0 -0
  1210. onnx/backend/test/data/node/test_reshape_allowzero_reordered/model.onnx +0 -0
  1211. onnx/backend/test/data/node/test_reshape_extended_dims/model.onnx +0 -0
  1212. onnx/backend/test/data/node/test_reshape_negative_dim/model.onnx +0 -0
  1213. onnx/backend/test/data/node/test_reshape_negative_extended_dims/model.onnx +0 -0
  1214. onnx/backend/test/data/node/test_reshape_one_dim/model.onnx +0 -0
  1215. onnx/backend/test/data/node/test_reshape_reduced_dims/model.onnx +0 -0
  1216. onnx/backend/test/data/node/test_reshape_reordered_all_dims/model.onnx +0 -0
  1217. onnx/backend/test/data/node/test_reshape_reordered_last_dims/model.onnx +0 -0
  1218. onnx/backend/test/data/node/test_reshape_zero_and_negative_dim/model.onnx +0 -0
  1219. onnx/backend/test/data/node/test_reshape_zero_dim/model.onnx +0 -0
  1220. onnx/backend/test/data/node/test_resize_tf_crop_and_resize/model.onnx +0 -0
  1221. onnx/backend/test/data/node/test_resize_tf_crop_and_resize/test_data_set_0/input_1.pb +0 -0
  1222. onnx/backend/test/data/node/test_resize_tf_crop_and_resize/test_data_set_0/output_0.pb +0 -0
  1223. onnx/backend/test/data/node/test_resize_tf_crop_and_resize_extrapolation_value/model.onnx +0 -0
  1224. onnx/backend/test/data/node/test_resize_tf_crop_and_resize_extrapolation_value/test_data_set_0/input_0.pb +0 -0
  1225. onnx/backend/test/data/node/test_resize_tf_crop_and_resize_extrapolation_value/test_data_set_0/input_1.pb +0 -0
  1226. onnx/backend/test/data/node/test_resize_tf_crop_and_resize_extrapolation_value/test_data_set_0/input_2.pb +0 -0
  1227. onnx/backend/test/data/node/test_resize_tf_crop_and_resize_extrapolation_value/test_data_set_0/output_0.pb +0 -0
  1228. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_larger/model.onnx +0 -0
  1229. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_larger/test_data_set_0/output_0.pb +0 -0
  1230. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_smaller/model.onnx +0 -0
  1231. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_smaller/test_data_set_0/input_0.pb +0 -0
  1232. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_smaller/test_data_set_0/input_1.pb +0 -0
  1233. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_smaller/test_data_set_0/output_0.pb +0 -0
  1234. onnx/backend/test/data/node/test_rms_normalization_2d_axis0/model.onnx +0 -0
  1235. onnx/backend/test/data/node/test_rms_normalization_2d_axis0/test_data_set_0/input_0.pb +1 -0
  1236. onnx/backend/test/data/node/test_rms_normalization_2d_axis0/test_data_set_0/input_1.pb +1 -0
  1237. onnx/backend/test/data/node/test_rms_normalization_2d_axis0/test_data_set_0/output_0.pb +1 -0
  1238. onnx/backend/test/data/node/test_rms_normalization_2d_axis0_expanded/model.onnx +0 -0
  1239. onnx/backend/test/data/node/test_rms_normalization_2d_axis0_expanded/test_data_set_0/input_0.pb +1 -0
  1240. onnx/backend/test/data/node/test_rms_normalization_2d_axis0_expanded/test_data_set_0/input_1.pb +1 -0
  1241. onnx/backend/test/data/node/test_rms_normalization_2d_axis0_expanded/test_data_set_0/output_0.pb +1 -0
  1242. onnx/backend/test/data/node/test_rms_normalization_2d_axis1/model.onnx +0 -0
  1243. onnx/backend/test/data/node/test_rms_normalization_2d_axis1/test_data_set_0/input_0.pb +1 -0
  1244. onnx/backend/test/data/node/test_rms_normalization_2d_axis1/test_data_set_0/input_1.pb +1 -0
  1245. onnx/backend/test/data/node/test_rms_normalization_2d_axis1/test_data_set_0/output_0.pb +1 -0
  1246. onnx/backend/test/data/node/test_rms_normalization_2d_axis1_expanded/model.onnx +0 -0
  1247. onnx/backend/test/data/node/test_rms_normalization_2d_axis1_expanded/test_data_set_0/input_0.pb +1 -0
  1248. onnx/backend/test/data/node/test_rms_normalization_2d_axis1_expanded/test_data_set_0/input_1.pb +1 -0
  1249. onnx/backend/test/data/node/test_rms_normalization_2d_axis1_expanded/test_data_set_0/output_0.pb +1 -0
  1250. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1/model.onnx +0 -0
  1251. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1/test_data_set_0/input_0.pb +1 -0
  1252. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1/test_data_set_0/input_1.pb +1 -0
  1253. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1/test_data_set_0/output_0.pb +1 -0
  1254. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1_expanded/model.onnx +0 -0
  1255. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1_expanded/test_data_set_0/input_0.pb +1 -0
  1256. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1_expanded/test_data_set_0/input_1.pb +1 -0
  1257. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1_expanded/test_data_set_0/output_0.pb +1 -0
  1258. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2/model.onnx +0 -0
  1259. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2/test_data_set_0/input_0.pb +1 -0
  1260. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2/test_data_set_0/input_1.pb +1 -0
  1261. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2/test_data_set_0/output_0.pb +1 -0
  1262. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2_expanded/model.onnx +0 -0
  1263. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2_expanded/test_data_set_0/input_0.pb +1 -0
  1264. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2_expanded/test_data_set_0/input_1.pb +1 -0
  1265. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2_expanded/test_data_set_0/output_0.pb +1 -0
  1266. onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon/model.onnx +0 -0
  1267. onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon/test_data_set_0/input_0.pb +1 -0
  1268. onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon/test_data_set_0/input_1.pb +1 -0
  1269. onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon/test_data_set_0/output_0.pb +1 -0
  1270. onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon_expanded/model.onnx +0 -0
  1271. onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon_expanded/test_data_set_0/input_0.pb +1 -0
  1272. onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon_expanded/test_data_set_0/input_1.pb +1 -0
  1273. onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon_expanded/test_data_set_0/output_0.pb +1 -0
  1274. onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon/model.onnx +0 -0
  1275. onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon/test_data_set_0/input_0.pb +1 -0
  1276. onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon/test_data_set_0/input_1.pb +1 -0
  1277. onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon/test_data_set_0/output_0.pb +1 -0
  1278. onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon_expanded/model.onnx +0 -0
  1279. onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon_expanded/test_data_set_0/input_0.pb +1 -0
  1280. onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon_expanded/test_data_set_0/input_1.pb +1 -0
  1281. onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon_expanded/test_data_set_0/output_0.pb +1 -0
  1282. onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon/model.onnx +0 -0
  1283. onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon/test_data_set_0/input_0.pb +1 -0
  1284. onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon/test_data_set_0/input_1.pb +1 -0
  1285. onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon/test_data_set_0/output_0.pb +1 -0
  1286. onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon_expanded/model.onnx +0 -0
  1287. onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon_expanded/test_data_set_0/input_0.pb +1 -0
  1288. onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon_expanded/test_data_set_0/input_1.pb +1 -0
  1289. onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon_expanded/test_data_set_0/output_0.pb +1 -0
  1290. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon/model.onnx +0 -0
  1291. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon/test_data_set_0/input_0.pb +1 -0
  1292. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon/test_data_set_0/input_1.pb +1 -0
  1293. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon/test_data_set_0/output_0.pb +0 -0
  1294. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon_expanded/model.onnx +0 -0
  1295. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon_expanded/test_data_set_0/input_0.pb +1 -0
  1296. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon_expanded/test_data_set_0/input_1.pb +1 -0
  1297. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon_expanded/test_data_set_0/output_0.pb +0 -0
  1298. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon/model.onnx +0 -0
  1299. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon/test_data_set_0/input_0.pb +1 -0
  1300. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon/test_data_set_0/input_1.pb +1 -0
  1301. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon/test_data_set_0/output_0.pb +3 -0
  1302. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon_expanded/model.onnx +0 -0
  1303. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon_expanded/test_data_set_0/input_0.pb +1 -0
  1304. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon_expanded/test_data_set_0/input_1.pb +1 -0
  1305. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon_expanded/test_data_set_0/output_0.pb +3 -0
  1306. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon/model.onnx +0 -0
  1307. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon/test_data_set_0/input_0.pb +1 -0
  1308. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon/test_data_set_0/input_1.pb +1 -0
  1309. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon/test_data_set_0/output_0.pb +1 -0
  1310. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon_expanded/model.onnx +0 -0
  1311. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon_expanded/test_data_set_0/input_0.pb +1 -0
  1312. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon_expanded/test_data_set_0/input_1.pb +1 -0
  1313. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon_expanded/test_data_set_0/output_0.pb +1 -0
  1314. onnx/backend/test/data/node/test_rms_normalization_4d_axis0/model.onnx +0 -0
  1315. onnx/backend/test/data/node/test_rms_normalization_4d_axis0/test_data_set_0/input_0.pb +1 -0
  1316. onnx/backend/test/data/node/test_rms_normalization_4d_axis0/test_data_set_0/input_1.pb +0 -0
  1317. onnx/backend/test/data/node/test_rms_normalization_4d_axis0/test_data_set_0/output_0.pb +0 -0
  1318. onnx/backend/test/data/node/test_rms_normalization_4d_axis0_expanded/model.onnx +0 -0
  1319. onnx/backend/test/data/node/test_rms_normalization_4d_axis0_expanded/test_data_set_0/input_0.pb +1 -0
  1320. onnx/backend/test/data/node/test_rms_normalization_4d_axis0_expanded/test_data_set_0/input_1.pb +0 -0
  1321. onnx/backend/test/data/node/test_rms_normalization_4d_axis0_expanded/test_data_set_0/output_0.pb +0 -0
  1322. onnx/backend/test/data/node/test_rms_normalization_4d_axis1/model.onnx +0 -0
  1323. onnx/backend/test/data/node/test_rms_normalization_4d_axis1/test_data_set_0/input_0.pb +1 -0
  1324. onnx/backend/test/data/node/test_rms_normalization_4d_axis1/test_data_set_0/input_1.pb +3 -0
  1325. onnx/backend/test/data/node/test_rms_normalization_4d_axis1/test_data_set_0/output_0.pb +1 -0
  1326. onnx/backend/test/data/node/test_rms_normalization_4d_axis1_expanded/model.onnx +0 -0
  1327. onnx/backend/test/data/node/test_rms_normalization_4d_axis1_expanded/test_data_set_0/input_0.pb +1 -0
  1328. onnx/backend/test/data/node/test_rms_normalization_4d_axis1_expanded/test_data_set_0/input_1.pb +3 -0
  1329. onnx/backend/test/data/node/test_rms_normalization_4d_axis1_expanded/test_data_set_0/output_0.pb +1 -0
  1330. onnx/backend/test/data/node/test_rms_normalization_4d_axis2/model.onnx +0 -0
  1331. onnx/backend/test/data/node/test_rms_normalization_4d_axis2/test_data_set_0/input_0.pb +1 -0
  1332. onnx/backend/test/data/node/test_rms_normalization_4d_axis2/test_data_set_0/input_1.pb +1 -0
  1333. onnx/backend/test/data/node/test_rms_normalization_4d_axis2/test_data_set_0/output_0.pb +0 -0
  1334. onnx/backend/test/data/node/test_rms_normalization_4d_axis2_expanded/model.onnx +0 -0
  1335. onnx/backend/test/data/node/test_rms_normalization_4d_axis2_expanded/test_data_set_0/input_0.pb +1 -0
  1336. onnx/backend/test/data/node/test_rms_normalization_4d_axis2_expanded/test_data_set_0/input_1.pb +1 -0
  1337. onnx/backend/test/data/node/test_rms_normalization_4d_axis2_expanded/test_data_set_0/output_0.pb +0 -0
  1338. onnx/backend/test/data/node/test_rms_normalization_4d_axis3/model.onnx +0 -0
  1339. onnx/backend/test/data/node/test_rms_normalization_4d_axis3/test_data_set_0/input_0.pb +1 -0
  1340. onnx/backend/test/data/node/test_rms_normalization_4d_axis3/test_data_set_0/input_1.pb +1 -0
  1341. onnx/backend/test/data/node/test_rms_normalization_4d_axis3/test_data_set_0/output_0.pb +2 -0
  1342. onnx/backend/test/data/node/test_rms_normalization_4d_axis3_expanded/model.onnx +0 -0
  1343. onnx/backend/test/data/node/test_rms_normalization_4d_axis3_expanded/test_data_set_0/input_0.pb +1 -0
  1344. onnx/backend/test/data/node/test_rms_normalization_4d_axis3_expanded/test_data_set_0/input_1.pb +1 -0
  1345. onnx/backend/test/data/node/test_rms_normalization_4d_axis3_expanded/test_data_set_0/output_0.pb +2 -0
  1346. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1/model.onnx +0 -0
  1347. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1/test_data_set_0/input_0.pb +1 -0
  1348. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1/test_data_set_0/input_1.pb +1 -0
  1349. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1/test_data_set_0/output_0.pb +0 -0
  1350. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1_expanded/model.onnx +0 -0
  1351. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1_expanded/test_data_set_0/input_0.pb +1 -0
  1352. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1_expanded/test_data_set_0/input_1.pb +1 -0
  1353. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1_expanded/test_data_set_0/output_0.pb +0 -0
  1354. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2/model.onnx +0 -0
  1355. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2/test_data_set_0/input_0.pb +1 -0
  1356. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2/test_data_set_0/input_1.pb +1 -0
  1357. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2/test_data_set_0/output_0.pb +0 -0
  1358. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2_expanded/model.onnx +0 -0
  1359. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2_expanded/test_data_set_0/input_0.pb +1 -0
  1360. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2_expanded/test_data_set_0/input_1.pb +1 -0
  1361. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2_expanded/test_data_set_0/output_0.pb +0 -0
  1362. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3/model.onnx +0 -0
  1363. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3/test_data_set_0/input_0.pb +1 -0
  1364. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3/test_data_set_0/input_1.pb +0 -0
  1365. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3/test_data_set_0/output_0.pb +4 -0
  1366. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3_expanded/model.onnx +0 -0
  1367. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3_expanded/test_data_set_0/input_0.pb +1 -0
  1368. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3_expanded/test_data_set_0/input_1.pb +0 -0
  1369. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3_expanded/test_data_set_0/output_0.pb +4 -0
  1370. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4/model.onnx +0 -0
  1371. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4/test_data_set_0/input_0.pb +1 -0
  1372. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4/test_data_set_0/input_1.pb +2 -0
  1373. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4/test_data_set_0/output_0.pb +0 -0
  1374. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4_expanded/model.onnx +0 -0
  1375. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4_expanded/test_data_set_0/input_0.pb +1 -0
  1376. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4_expanded/test_data_set_0/input_1.pb +2 -0
  1377. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4_expanded/test_data_set_0/output_0.pb +0 -0
  1378. onnx/backend/test/data/node/test_rms_normalization_default_axis/model.onnx +0 -0
  1379. onnx/backend/test/data/node/test_rms_normalization_default_axis/test_data_set_0/input_0.pb +1 -0
  1380. onnx/backend/test/data/node/test_rms_normalization_default_axis/test_data_set_0/input_1.pb +1 -0
  1381. onnx/backend/test/data/node/test_rms_normalization_default_axis/test_data_set_0/output_0.pb +0 -0
  1382. onnx/backend/test/data/node/test_rms_normalization_default_axis_expanded/model.onnx +0 -0
  1383. onnx/backend/test/data/node/test_rms_normalization_default_axis_expanded/test_data_set_0/input_0.pb +1 -0
  1384. onnx/backend/test/data/node/test_rms_normalization_default_axis_expanded/test_data_set_0/input_1.pb +1 -0
  1385. onnx/backend/test/data/node/test_rms_normalization_default_axis_expanded/test_data_set_0/output_0.pb +0 -0
  1386. onnx/backend/test/data/node/test_rnn_seq_length/model.onnx +0 -0
  1387. onnx/backend/test/data/node/test_roialign_aligned_false/model.onnx +0 -0
  1388. onnx/backend/test/data/node/test_roialign_aligned_true/model.onnx +0 -0
  1389. onnx/backend/test/data/node/test_roialign_mode_max/model.onnx +0 -0
  1390. onnx/backend/test/data/node/test_rotary_embedding/model.onnx +0 -0
  1391. onnx/backend/test/data/node/test_rotary_embedding/test_data_set_0/input_0.pb +0 -0
  1392. onnx/backend/test/data/node/test_rotary_embedding/test_data_set_0/input_1.pb +0 -0
  1393. onnx/backend/test/data/node/test_rotary_embedding/test_data_set_0/input_2.pb +0 -0
  1394. onnx/backend/test/data/node/test_rotary_embedding/test_data_set_0/input_3.pb +0 -0
  1395. onnx/backend/test/data/node/test_rotary_embedding/test_data_set_0/output_0.pb +0 -0
  1396. onnx/backend/test/data/node/test_rotary_embedding_3d_input/model.onnx +0 -0
  1397. onnx/backend/test/data/node/test_rotary_embedding_3d_input/test_data_set_0/input_0.pb +0 -0
  1398. onnx/backend/test/data/node/test_rotary_embedding_3d_input/test_data_set_0/input_1.pb +0 -0
  1399. onnx/backend/test/data/node/test_rotary_embedding_3d_input/test_data_set_0/input_2.pb +0 -0
  1400. onnx/backend/test/data/node/test_rotary_embedding_3d_input/test_data_set_0/input_3.pb +0 -0
  1401. onnx/backend/test/data/node/test_rotary_embedding_3d_input/test_data_set_0/output_0.pb +0 -0
  1402. onnx/backend/test/data/node/test_rotary_embedding_3d_input_expanded/model.onnx +0 -0
  1403. onnx/backend/test/data/node/test_rotary_embedding_3d_input_expanded/test_data_set_0/input_0.pb +0 -0
  1404. onnx/backend/test/data/node/test_rotary_embedding_3d_input_expanded/test_data_set_0/input_1.pb +0 -0
  1405. onnx/backend/test/data/node/test_rotary_embedding_3d_input_expanded/test_data_set_0/input_2.pb +0 -0
  1406. onnx/backend/test/data/node/test_rotary_embedding_3d_input_expanded/test_data_set_0/input_3.pb +0 -0
  1407. onnx/backend/test/data/node/test_rotary_embedding_3d_input_expanded/test_data_set_0/output_0.pb +0 -0
  1408. onnx/backend/test/data/node/test_rotary_embedding_expanded/model.onnx +0 -0
  1409. onnx/backend/test/data/node/test_rotary_embedding_expanded/test_data_set_0/input_0.pb +0 -0
  1410. onnx/backend/test/data/node/test_rotary_embedding_expanded/test_data_set_0/input_1.pb +0 -0
  1411. onnx/backend/test/data/node/test_rotary_embedding_expanded/test_data_set_0/input_2.pb +0 -0
  1412. onnx/backend/test/data/node/test_rotary_embedding_expanded/test_data_set_0/input_3.pb +0 -0
  1413. onnx/backend/test/data/node/test_rotary_embedding_expanded/test_data_set_0/output_0.pb +0 -0
  1414. onnx/backend/test/data/node/test_rotary_embedding_interleaved/model.onnx +0 -0
  1415. onnx/backend/test/data/node/test_rotary_embedding_interleaved/test_data_set_0/input_0.pb +0 -0
  1416. onnx/backend/test/data/node/test_rotary_embedding_interleaved/test_data_set_0/input_1.pb +0 -0
  1417. onnx/backend/test/data/node/test_rotary_embedding_interleaved/test_data_set_0/input_2.pb +0 -0
  1418. onnx/backend/test/data/node/test_rotary_embedding_interleaved/test_data_set_0/input_3.pb +0 -0
  1419. onnx/backend/test/data/node/test_rotary_embedding_interleaved/test_data_set_0/output_0.pb +0 -0
  1420. onnx/backend/test/data/node/test_rotary_embedding_interleaved_expanded/model.onnx +0 -0
  1421. onnx/backend/test/data/node/test_rotary_embedding_interleaved_expanded/test_data_set_0/input_0.pb +0 -0
  1422. onnx/backend/test/data/node/test_rotary_embedding_interleaved_expanded/test_data_set_0/input_1.pb +0 -0
  1423. onnx/backend/test/data/node/test_rotary_embedding_interleaved_expanded/test_data_set_0/input_2.pb +0 -0
  1424. onnx/backend/test/data/node/test_rotary_embedding_interleaved_expanded/test_data_set_0/input_3.pb +0 -0
  1425. onnx/backend/test/data/node/test_rotary_embedding_interleaved_expanded/test_data_set_0/output_0.pb +0 -0
  1426. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids/model.onnx +0 -0
  1427. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids/test_data_set_0/input_0.pb +0 -0
  1428. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids/test_data_set_0/input_1.pb +1 -0
  1429. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids/test_data_set_0/input_2.pb +1 -0
  1430. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids/test_data_set_0/output_0.pb +0 -0
  1431. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_expanded/model.onnx +0 -0
  1432. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_expanded/test_data_set_0/input_0.pb +0 -0
  1433. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_expanded/test_data_set_0/input_1.pb +1 -0
  1434. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_expanded/test_data_set_0/input_2.pb +1 -0
  1435. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_expanded/test_data_set_0/output_0.pb +0 -0
  1436. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved/model.onnx +0 -0
  1437. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved/test_data_set_0/input_0.pb +0 -0
  1438. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved/test_data_set_0/input_1.pb +1 -0
  1439. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved/test_data_set_0/input_2.pb +1 -0
  1440. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved/test_data_set_0/output_0.pb +0 -0
  1441. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved_expanded/model.onnx +0 -0
  1442. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved_expanded/test_data_set_0/input_0.pb +0 -0
  1443. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved_expanded/test_data_set_0/input_1.pb +1 -0
  1444. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved_expanded/test_data_set_0/input_2.pb +1 -0
  1445. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved_expanded/test_data_set_0/output_0.pb +0 -0
  1446. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim/model.onnx +0 -0
  1447. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim/test_data_set_0/input_0.pb +0 -0
  1448. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim/test_data_set_0/input_1.pb +1 -0
  1449. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim/test_data_set_0/input_2.pb +1 -0
  1450. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim/test_data_set_0/output_0.pb +0 -0
  1451. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim_expanded/model.onnx +0 -0
  1452. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim_expanded/test_data_set_0/input_0.pb +0 -0
  1453. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim_expanded/test_data_set_0/input_1.pb +1 -0
  1454. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim_expanded/test_data_set_0/input_2.pb +1 -0
  1455. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim_expanded/test_data_set_0/output_0.pb +0 -0
  1456. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim/model.onnx +0 -0
  1457. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim/test_data_set_0/input_0.pb +0 -0
  1458. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim/test_data_set_0/input_1.pb +0 -0
  1459. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim/test_data_set_0/input_2.pb +0 -0
  1460. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim/test_data_set_0/input_3.pb +0 -0
  1461. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim/test_data_set_0/output_0.pb +0 -0
  1462. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim_expanded/model.onnx +0 -0
  1463. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim_expanded/test_data_set_0/input_0.pb +0 -0
  1464. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim_expanded/test_data_set_0/input_1.pb +0 -0
  1465. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim_expanded/test_data_set_0/input_2.pb +0 -0
  1466. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim_expanded/test_data_set_0/input_3.pb +0 -0
  1467. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim_expanded/test_data_set_0/output_0.pb +0 -0
  1468. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim/model.onnx +0 -0
  1469. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim/test_data_set_0/input_0.pb +0 -0
  1470. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim/test_data_set_0/input_1.pb +0 -0
  1471. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim/test_data_set_0/input_2.pb +0 -0
  1472. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim/test_data_set_0/input_3.pb +0 -0
  1473. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim/test_data_set_0/output_0.pb +0 -0
  1474. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim_expanded/model.onnx +0 -0
  1475. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim_expanded/test_data_set_0/input_0.pb +0 -0
  1476. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim_expanded/test_data_set_0/input_1.pb +0 -0
  1477. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim_expanded/test_data_set_0/input_2.pb +0 -0
  1478. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim_expanded/test_data_set_0/input_3.pb +0 -0
  1479. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim_expanded/test_data_set_0/output_0.pb +0 -0
  1480. onnx/backend/test/data/node/test_round/model.onnx +0 -0
  1481. onnx/backend/test/data/node/test_selu/model.onnx +0 -0
  1482. onnx/backend/test/data/node/test_selu_default/model.onnx +0 -0
  1483. onnx/backend/test/data/node/test_selu_example/model.onnx +0 -0
  1484. onnx/backend/test/data/node/test_shape/model.onnx +0 -0
  1485. onnx/backend/test/data/node/test_shape_clip_end/model.onnx +0 -0
  1486. onnx/backend/test/data/node/test_shape_clip_start/model.onnx +0 -0
  1487. onnx/backend/test/data/node/test_shape_end_1/model.onnx +0 -0
  1488. onnx/backend/test/data/node/test_shape_end_negative_1/model.onnx +0 -0
  1489. onnx/backend/test/data/node/test_shape_example/model.onnx +0 -0
  1490. onnx/backend/test/data/node/test_shape_start_1/model.onnx +0 -0
  1491. onnx/backend/test/data/node/test_shape_start_1_end_2/model.onnx +0 -0
  1492. onnx/backend/test/data/node/test_shape_start_1_end_negative_1/model.onnx +0 -0
  1493. onnx/backend/test/data/node/test_shape_start_negative_1/model.onnx +0 -0
  1494. onnx/backend/test/data/node/test_simple_rnn_batchwise/model.onnx +0 -0
  1495. onnx/backend/test/data/node/test_simple_rnn_defaults/model.onnx +0 -0
  1496. onnx/backend/test/data/node/test_simple_rnn_with_initial_bias/model.onnx +0 -0
  1497. onnx/backend/test/data/node/test_sin/model.onnx +0 -0
  1498. onnx/backend/test/data/node/test_sin_example/model.onnx +0 -0
  1499. onnx/backend/test/data/node/test_sinh/model.onnx +0 -0
  1500. onnx/backend/test/data/node/test_sinh_example/model.onnx +0 -0
  1501. onnx/backend/test/data/node/test_size/model.onnx +0 -0
  1502. onnx/backend/test/data/node/test_size_example/model.onnx +0 -0
  1503. onnx/backend/test/data/node/test_softplus/model.onnx +0 -0
  1504. onnx/backend/test/data/node/test_softplus_example/model.onnx +0 -0
  1505. onnx/backend/test/data/node/test_softsign/model.onnx +0 -0
  1506. onnx/backend/test/data/node/test_softsign_example/model.onnx +0 -0
  1507. onnx/backend/test/data/node/test_squeeze/model.onnx +0 -0
  1508. onnx/backend/test/data/node/test_squeeze_negative_axes/model.onnx +0 -0
  1509. onnx/backend/test/data/node/test_tan/model.onnx +0 -0
  1510. onnx/backend/test/data/node/test_tan_example/model.onnx +0 -0
  1511. onnx/backend/test/data/node/test_thresholdedrelu/model.onnx +0 -0
  1512. onnx/backend/test/data/node/test_thresholdedrelu_default/model.onnx +0 -0
  1513. onnx/backend/test/data/node/test_thresholdedrelu_example/model.onnx +0 -0
  1514. onnx/backend/test/data/node/test_top_k_same_values/model.onnx +0 -0
  1515. onnx/backend/test/data/node/test_top_k_same_values/test_data_set_0/input_0.pb +0 -0
  1516. onnx/backend/test/data/node/test_top_k_same_values/test_data_set_0/input_1.pb +0 -0
  1517. onnx/backend/test/data/node/test_top_k_same_values/test_data_set_0/output_0.pb +0 -0
  1518. onnx/backend/test/data/node/test_top_k_same_values/test_data_set_0/output_1.pb +0 -0
  1519. onnx/backend/test/data/node/test_top_k_same_values_2d/model.onnx +0 -0
  1520. onnx/backend/test/data/node/test_top_k_same_values_2d/test_data_set_0/input_0.pb +0 -0
  1521. onnx/backend/test/data/node/test_top_k_same_values_2d/test_data_set_0/input_1.pb +0 -0
  1522. onnx/backend/test/data/node/test_top_k_same_values_2d/test_data_set_0/output_0.pb +0 -0
  1523. onnx/backend/test/data/node/test_top_k_same_values_2d/test_data_set_0/output_1.pb +0 -0
  1524. onnx/backend/test/data/node/test_top_k_same_values_largest/model.onnx +0 -0
  1525. onnx/backend/test/data/node/test_top_k_same_values_largest/test_data_set_0/input_0.pb +0 -0
  1526. onnx/backend/test/data/node/test_top_k_same_values_largest/test_data_set_0/input_1.pb +0 -0
  1527. onnx/backend/test/data/node/test_top_k_same_values_largest/test_data_set_0/output_0.pb +0 -0
  1528. onnx/backend/test/data/node/test_top_k_same_values_largest/test_data_set_0/output_1.pb +0 -0
  1529. onnx/backend/test/data/node/test_top_k_uint64/model.onnx +0 -0
  1530. onnx/backend/test/data/node/test_top_k_uint64/test_data_set_0/input_0.pb +0 -0
  1531. onnx/backend/test/data/node/test_top_k_uint64/test_data_set_0/input_1.pb +0 -0
  1532. onnx/backend/test/data/node/test_top_k_uint64/test_data_set_0/output_0.pb +0 -0
  1533. onnx/backend/test/data/node/test_top_k_uint64/test_data_set_0/output_1.pb +0 -0
  1534. onnx/backend/test/data/node/test_training_dropout/model.onnx +0 -0
  1535. onnx/backend/test/data/node/test_training_dropout_default/model.onnx +0 -0
  1536. onnx/backend/test/data/node/test_training_dropout_default_mask/model.onnx +0 -0
  1537. onnx/backend/test/data/node/test_training_dropout_mask/model.onnx +0 -0
  1538. onnx/backend/test/data/node/test_training_dropout_zero_ratio/model.onnx +0 -0
  1539. onnx/backend/test/data/node/test_training_dropout_zero_ratio_mask/model.onnx +0 -0
  1540. onnx/backend/test/data/node/test_transpose_all_permutations_0/model.onnx +0 -0
  1541. onnx/backend/test/data/node/test_transpose_all_permutations_1/model.onnx +0 -0
  1542. onnx/backend/test/data/node/test_transpose_all_permutations_2/model.onnx +0 -0
  1543. onnx/backend/test/data/node/test_transpose_all_permutations_3/model.onnx +0 -0
  1544. onnx/backend/test/data/node/test_transpose_all_permutations_4/model.onnx +0 -0
  1545. onnx/backend/test/data/node/test_transpose_all_permutations_5/model.onnx +0 -0
  1546. onnx/backend/test/data/node/test_transpose_default/model.onnx +0 -0
  1547. onnx/backend/test/data/node/test_unique_length_1/model.onnx +0 -0
  1548. onnx/backend/test/data/node/test_unique_length_1/test_data_set_0/input_0.pb +0 -0
  1549. onnx/backend/test/data/node/test_unique_length_1/test_data_set_0/output_0.pb +0 -0
  1550. onnx/backend/test/data/node/test_unique_length_1/test_data_set_0/output_1.pb +0 -0
  1551. onnx/backend/test/data/node/test_unique_length_1/test_data_set_0/output_2.pb +0 -0
  1552. onnx/backend/test/data/node/test_unique_length_1/test_data_set_0/output_3.pb +0 -0
  1553. onnx/backend/test/data/node/test_unsqueeze_axis_0/model.onnx +0 -0
  1554. onnx/backend/test/data/node/test_unsqueeze_axis_1/model.onnx +0 -0
  1555. onnx/backend/test/data/node/test_unsqueeze_axis_2/model.onnx +0 -0
  1556. onnx/backend/test/data/node/test_unsqueeze_negative_axes/model.onnx +0 -0
  1557. onnx/backend/test/data/node/test_unsqueeze_three_axes/model.onnx +0 -0
  1558. onnx/backend/test/data/node/test_unsqueeze_two_axes/model.onnx +0 -0
  1559. onnx/backend/test/data/node/test_unsqueeze_unsorted_axes/model.onnx +0 -0
  1560. onnx/backend/test/data/node/test_wrap_pad/model.onnx +0 -0
  1561. onnx/backend/test/loader/__init__.py +11 -6
  1562. onnx/backend/test/report/__init__.py +11 -5
  1563. onnx/backend/test/report/base.py +1 -0
  1564. onnx/backend/test/report/coverage.py +27 -30
  1565. onnx/backend/test/runner/__init__.py +39 -33
  1566. onnx/backend/test/runner/item.py +5 -3
  1567. onnx/backend/test/stat_coverage.py +11 -7
  1568. onnx/bin/checker.py +1 -0
  1569. onnx/checker.cc +30 -30
  1570. onnx/checker.h +9 -6
  1571. onnx/checker.py +8 -7
  1572. onnx/common/array_ref.h +12 -8
  1573. onnx/common/assertions.h +1 -0
  1574. onnx/common/file_utils.h +9 -3
  1575. onnx/common/interned_strings.cc +3 -5
  1576. onnx/common/interned_strings.h +12 -7
  1577. onnx/common/ir.h +37 -60
  1578. onnx/common/ir_pb_converter.cc +18 -17
  1579. onnx/common/ir_pb_converter.h +0 -1
  1580. onnx/common/model_helpers.cc +3 -6
  1581. onnx/common/model_helpers.h +1 -1
  1582. onnx/common/path.h +40 -11
  1583. onnx/common/proto_util.h +3 -3
  1584. onnx/common/status.cc +14 -13
  1585. onnx/common/status.h +12 -10
  1586. onnx/common/tensor.h +30 -87
  1587. onnx/common/version.h +1 -1
  1588. onnx/common/visitor.h +2 -2
  1589. onnx/compose.py +88 -69
  1590. onnx/cpp2py_export.cc +29 -20
  1591. onnx/defs/__init__.py +10 -6
  1592. onnx/defs/controlflow/defs.cc +13 -13
  1593. onnx/defs/controlflow/old.cc +220 -39
  1594. onnx/defs/controlflow/utils.cc +3 -3
  1595. onnx/defs/data_propagators.h +10 -7
  1596. onnx/defs/data_type_utils.cc +14 -16
  1597. onnx/defs/data_type_utils.h +1 -2
  1598. onnx/defs/function.cc +5 -9
  1599. onnx/defs/function.h +36 -11
  1600. onnx/defs/gen_doc.py +12 -8
  1601. onnx/defs/gen_shape_inference_information.py +1 -0
  1602. onnx/defs/generator/defs.cc +46 -113
  1603. onnx/defs/generator/old.cc +498 -5
  1604. onnx/defs/generator/utils.cc +1 -1
  1605. onnx/defs/logical/defs.cc +3 -3
  1606. onnx/defs/logical/old.cc +4 -4
  1607. onnx/defs/math/defs.cc +328 -354
  1608. onnx/defs/math/old.cc +1041 -50
  1609. onnx/defs/math/utils.cc +14 -3
  1610. onnx/defs/math/utils.h +4 -0
  1611. onnx/defs/nn/defs.cc +1097 -105
  1612. onnx/defs/nn/old.cc +1608 -21
  1613. onnx/defs/object_detection/defs.cc +4 -7
  1614. onnx/defs/object_detection/old.cc +117 -0
  1615. onnx/defs/operator_sets.h +182 -22
  1616. onnx/defs/operator_sets_ml.h +5 -5
  1617. onnx/defs/operator_sets_preview.h +1 -1
  1618. onnx/defs/operator_sets_training.h +1 -1
  1619. onnx/defs/optional/defs.cc +0 -4
  1620. onnx/defs/optional/old.cc +0 -4
  1621. onnx/defs/parser.cc +70 -36
  1622. onnx/defs/parser.h +57 -31
  1623. onnx/defs/printer.cc +62 -21
  1624. onnx/defs/quantization/defs.cc +55 -21
  1625. onnx/defs/quantization/old.cc +200 -1
  1626. onnx/defs/reduction/defs.cc +6 -6
  1627. onnx/defs/reduction/old.cc +18 -15
  1628. onnx/defs/reduction/utils.cc +10 -10
  1629. onnx/defs/reduction/utils.h +1 -1
  1630. onnx/defs/rnn/defs.cc +12 -15
  1631. onnx/defs/rnn/old.cc +522 -7
  1632. onnx/defs/schema.cc +550 -100
  1633. onnx/defs/schema.h +106 -373
  1634. onnx/defs/sequence/defs.cc +16 -18
  1635. onnx/defs/shape_inference.cc +39 -32
  1636. onnx/defs/shape_inference.h +113 -46
  1637. onnx/defs/tensor/defs.cc +81 -66
  1638. onnx/defs/tensor/old.cc +802 -22
  1639. onnx/defs/tensor/utils.cc +10 -8
  1640. onnx/defs/tensor/utils.h +2 -3
  1641. onnx/defs/tensor_proto_util.cc +2 -2
  1642. onnx/defs/tensor_proto_util.h +2 -2
  1643. onnx/defs/tensor_util.cc +2 -2
  1644. onnx/defs/tensor_util.h +2 -2
  1645. onnx/defs/traditionalml/defs.cc +16 -4
  1646. onnx/defs/traditionalml/utils.h +1 -2
  1647. onnx/external_data_helper.py +38 -16
  1648. onnx/gen_proto.py +8 -4
  1649. onnx/helper.py +210 -116
  1650. onnx/hub.py +33 -32
  1651. onnx/inliner/inliner.cc +8 -10
  1652. onnx/mapping.py +11 -6
  1653. onnx/model_container.py +12 -8
  1654. onnx/numpy_helper.py +261 -66
  1655. onnx/onnx-ml.proto +116 -10
  1656. onnx/onnx.in.proto +116 -10
  1657. onnx/onnx.proto +116 -10
  1658. onnx/onnx_cpp2py_export/defs.pyi +3 -4
  1659. onnx/onnx_cpp2py_export/inliner.pyi +0 -4
  1660. onnx/onnx_cpp2py_export/parser.pyi +0 -4
  1661. onnx/onnx_cpp2py_export.cp311-win32.pyd +0 -0
  1662. onnx/onnx_data_pb2.py +17 -16
  1663. onnx/onnx_data_pb2.pyi +82 -142
  1664. onnx/onnx_ml_pb2.py +84 -71
  1665. onnx/onnx_ml_pb2.pyi +483 -645
  1666. onnx/onnx_operators_ml_pb2.py +11 -10
  1667. onnx/onnx_operators_ml_pb2.pyi +38 -64
  1668. onnx/parser.py +2 -0
  1669. onnx/printer.py +2 -3
  1670. onnx/py_utils.h +1 -1
  1671. onnx/reference/__init__.py +1 -0
  1672. onnx/reference/custom_element_types.py +80 -9
  1673. onnx/reference/op_run.py +25 -67
  1674. onnx/reference/ops/__init__.py +1 -0
  1675. onnx/reference/ops/_helpers.py +7 -4
  1676. onnx/reference/ops/_op.py +19 -6
  1677. onnx/reference/ops/_op_common_indices.py +1 -1
  1678. onnx/reference/ops/_op_common_pool.py +38 -29
  1679. onnx/reference/ops/_op_common_random.py +1 -1
  1680. onnx/reference/ops/_op_common_window.py +2 -2
  1681. onnx/reference/ops/_op_list.py +22 -18
  1682. onnx/reference/ops/aionnx_preview_training/__init__.py +1 -0
  1683. onnx/reference/ops/aionnx_preview_training/_op_list.py +10 -17
  1684. onnx/reference/ops/aionnx_preview_training/_op_run_training.py +1 -1
  1685. onnx/reference/ops/aionnx_preview_training/op_adagrad.py +14 -5
  1686. onnx/reference/ops/aionnx_preview_training/op_adam.py +2 -2
  1687. onnx/reference/ops/aionnx_preview_training/op_momentum.py +14 -2
  1688. onnx/reference/ops/aionnxml/__init__.py +1 -0
  1689. onnx/reference/ops/aionnxml/_common_classifier.py +1 -0
  1690. onnx/reference/ops/aionnxml/_op_list.py +9 -14
  1691. onnx/reference/ops/aionnxml/_op_run_aionnxml.py +1 -1
  1692. onnx/reference/ops/aionnxml/op_array_feature_extractor.py +1 -1
  1693. onnx/reference/ops/aionnxml/op_binarizer.py +1 -1
  1694. onnx/reference/ops/aionnxml/op_dict_vectorizer.py +11 -20
  1695. onnx/reference/ops/aionnxml/op_feature_vectorizer.py +1 -1
  1696. onnx/reference/ops/aionnxml/op_imputer.py +3 -3
  1697. onnx/reference/ops/aionnxml/op_label_encoder.py +1 -1
  1698. onnx/reference/ops/aionnxml/op_linear_classifier.py +2 -2
  1699. onnx/reference/ops/aionnxml/op_linear_regressor.py +1 -1
  1700. onnx/reference/ops/aionnxml/op_normalizer.py +1 -1
  1701. onnx/reference/ops/aionnxml/op_one_hot_encoder.py +1 -1
  1702. onnx/reference/ops/aionnxml/op_scaler.py +1 -1
  1703. onnx/reference/ops/aionnxml/op_svm_classifier.py +11 -9
  1704. onnx/reference/ops/aionnxml/op_svm_helper.py +2 -2
  1705. onnx/reference/ops/aionnxml/op_svm_regressor.py +1 -1
  1706. onnx/reference/ops/aionnxml/op_tree_ensemble.py +3 -3
  1707. onnx/reference/ops/aionnxml/op_tree_ensemble_classifier.py +1 -1
  1708. onnx/reference/ops/aionnxml/op_tree_ensemble_helper.py +4 -3
  1709. onnx/reference/ops/aionnxml/op_tree_ensemble_regressor.py +5 -3
  1710. onnx/reference/ops/experimental/__init__.py +1 -0
  1711. onnx/reference/ops/experimental/_op_list.py +24 -41
  1712. onnx/reference/ops/experimental/_op_run_experimental.py +1 -1
  1713. onnx/reference/ops/experimental/op_im2col.py +1 -1
  1714. onnx/reference/ops/op_abs.py +1 -1
  1715. onnx/reference/ops/op_acos.py +1 -1
  1716. onnx/reference/ops/op_acosh.py +1 -1
  1717. onnx/reference/ops/op_add.py +1 -1
  1718. onnx/reference/ops/op_affine_grid.py +4 -4
  1719. onnx/reference/ops/op_and.py +1 -1
  1720. onnx/reference/ops/op_argmax.py +1 -1
  1721. onnx/reference/ops/op_argmin.py +1 -1
  1722. onnx/reference/ops/op_asin.py +1 -1
  1723. onnx/reference/ops/op_asinh.py +1 -1
  1724. onnx/reference/ops/op_atan.py +1 -1
  1725. onnx/reference/ops/op_atanh.py +1 -1
  1726. onnx/reference/ops/op_attention.py +211 -0
  1727. onnx/reference/ops/op_attribute_has_value.py +15 -15
  1728. onnx/reference/ops/op_average_pool.py +1 -1
  1729. onnx/reference/ops/op_batch_normalization.py +13 -2
  1730. onnx/reference/ops/op_bernoulli.py +1 -1
  1731. onnx/reference/ops/op_bitshift.py +1 -1
  1732. onnx/reference/ops/op_bitwise_and.py +1 -1
  1733. onnx/reference/ops/op_bitwise_not.py +1 -1
  1734. onnx/reference/ops/op_bitwise_or.py +1 -1
  1735. onnx/reference/ops/op_bitwise_xor.py +1 -1
  1736. onnx/reference/ops/op_blackman_window.py +1 -1
  1737. onnx/reference/ops/op_cast.py +27 -10
  1738. onnx/reference/ops/op_cast_like.py +4 -1
  1739. onnx/reference/ops/op_ceil.py +1 -1
  1740. onnx/reference/ops/op_celu.py +1 -1
  1741. onnx/reference/ops/op_center_crop_pad.py +1 -1
  1742. onnx/reference/ops/op_clip.py +1 -1
  1743. onnx/reference/ops/op_col2im.py +10 -4
  1744. onnx/reference/ops/op_compress.py +1 -1
  1745. onnx/reference/ops/op_concat.py +1 -1
  1746. onnx/reference/ops/op_concat_from_sequence.py +9 -5
  1747. onnx/reference/ops/op_constant.py +5 -3
  1748. onnx/reference/ops/op_constant_of_shape.py +1 -1
  1749. onnx/reference/ops/op_conv.py +24 -23
  1750. onnx/reference/ops/op_conv_integer.py +1 -1
  1751. onnx/reference/ops/op_conv_transpose.py +35 -6
  1752. onnx/reference/ops/op_cos.py +1 -1
  1753. onnx/reference/ops/op_cosh.py +1 -1
  1754. onnx/reference/ops/op_cum_sum.py +3 -8
  1755. onnx/reference/ops/op_deform_conv.py +1 -1
  1756. onnx/reference/ops/op_depth_to_space.py +1 -1
  1757. onnx/reference/ops/op_dequantize_linear.py +37 -11
  1758. onnx/reference/ops/op_det.py +1 -1
  1759. onnx/reference/ops/op_dft.py +16 -2
  1760. onnx/reference/ops/op_div.py +1 -1
  1761. onnx/reference/ops/op_dropout.py +9 -8
  1762. onnx/reference/ops/op_dynamic_quantize_linear.py +1 -1
  1763. onnx/reference/ops/op_einsum.py +1 -1
  1764. onnx/reference/ops/op_elu.py +1 -1
  1765. onnx/reference/ops/op_equal.py +1 -1
  1766. onnx/reference/ops/op_erf.py +1 -1
  1767. onnx/reference/ops/op_exp.py +1 -1
  1768. onnx/reference/ops/op_expand.py +1 -1
  1769. onnx/reference/ops/op_eyelike.py +2 -2
  1770. onnx/reference/ops/op_flatten.py +1 -1
  1771. onnx/reference/ops/op_floor.py +1 -1
  1772. onnx/reference/ops/op_gather.py +1 -1
  1773. onnx/reference/ops/op_gather_elements.py +3 -3
  1774. onnx/reference/ops/op_gathernd.py +2 -4
  1775. onnx/reference/ops/op_gemm.py +12 -2
  1776. onnx/reference/ops/op_global_average_pool.py +1 -1
  1777. onnx/reference/ops/op_global_max_pool.py +1 -1
  1778. onnx/reference/ops/op_greater.py +1 -1
  1779. onnx/reference/ops/op_greater_or_equal.py +1 -1
  1780. onnx/reference/ops/op_grid_sample.py +2 -3
  1781. onnx/reference/ops/op_gru.py +7 -7
  1782. onnx/reference/ops/op_hamming_window.py +1 -1
  1783. onnx/reference/ops/op_hann_window.py +1 -1
  1784. onnx/reference/ops/op_hard_sigmoid.py +1 -1
  1785. onnx/reference/ops/op_hardmax.py +5 -2
  1786. onnx/reference/ops/op_identity.py +3 -3
  1787. onnx/reference/ops/op_if.py +6 -3
  1788. onnx/reference/ops/op_instance_normalization.py +1 -1
  1789. onnx/reference/ops/op_isinf.py +1 -1
  1790. onnx/reference/ops/op_isnan.py +1 -1
  1791. onnx/reference/ops/op_layer_normalization.py +2 -4
  1792. onnx/reference/ops/op_leaky_relu.py +5 -2
  1793. onnx/reference/ops/op_less.py +1 -1
  1794. onnx/reference/ops/op_less_or_equal.py +1 -1
  1795. onnx/reference/ops/op_log.py +1 -1
  1796. onnx/reference/ops/op_log_softmax.py +1 -1
  1797. onnx/reference/ops/op_loop.py +5 -3
  1798. onnx/reference/ops/op_lp_normalization.py +1 -1
  1799. onnx/reference/ops/op_lp_pool.py +4 -2
  1800. onnx/reference/ops/op_lrn.py +1 -1
  1801. onnx/reference/ops/op_lstm.py +9 -11
  1802. onnx/reference/ops/op_matmul.py +1 -1
  1803. onnx/reference/ops/op_matmul_integer.py +1 -1
  1804. onnx/reference/ops/op_max.py +1 -1
  1805. onnx/reference/ops/op_max_pool.py +8 -8
  1806. onnx/reference/ops/op_max_unpool.py +5 -3
  1807. onnx/reference/ops/op_mean.py +1 -1
  1808. onnx/reference/ops/op_mel_weight_matrix.py +1 -1
  1809. onnx/reference/ops/op_min.py +1 -1
  1810. onnx/reference/ops/op_mod.py +1 -1
  1811. onnx/reference/ops/op_mul.py +1 -1
  1812. onnx/reference/ops/op_neg.py +1 -1
  1813. onnx/reference/ops/op_negative_log_likelihood_loss.py +4 -2
  1814. onnx/reference/ops/op_non_max_suppression.py +16 -19
  1815. onnx/reference/ops/op_non_zero.py +1 -1
  1816. onnx/reference/ops/op_not.py +1 -1
  1817. onnx/reference/ops/op_one_hot.py +1 -1
  1818. onnx/reference/ops/op_optional.py +1 -1
  1819. onnx/reference/ops/op_optional_get_element.py +1 -1
  1820. onnx/reference/ops/op_optional_has_element.py +1 -1
  1821. onnx/reference/ops/op_or.py +1 -1
  1822. onnx/reference/ops/op_pad.py +1 -1
  1823. onnx/reference/ops/op_pool_common.py +52 -34
  1824. onnx/reference/ops/op_pow.py +1 -1
  1825. onnx/reference/ops/op_prelu.py +3 -3
  1826. onnx/reference/ops/op_qlinear_conv.py +14 -1
  1827. onnx/reference/ops/op_qlinear_matmul.py +1 -1
  1828. onnx/reference/ops/op_quantize_linear.py +57 -13
  1829. onnx/reference/ops/op_random_normal.py +1 -1
  1830. onnx/reference/ops/op_random_normal_like.py +1 -1
  1831. onnx/reference/ops/op_random_uniform.py +1 -1
  1832. onnx/reference/ops/op_random_uniform_like.py +1 -1
  1833. onnx/reference/ops/op_range.py +1 -1
  1834. onnx/reference/ops/op_reciprocal.py +1 -1
  1835. onnx/reference/ops/op_reduce_l1.py +1 -1
  1836. onnx/reference/ops/op_reduce_l2.py +1 -1
  1837. onnx/reference/ops/op_reduce_log_sum.py +1 -1
  1838. onnx/reference/ops/op_reduce_log_sum_exp.py +1 -1
  1839. onnx/reference/ops/op_reduce_max.py +1 -1
  1840. onnx/reference/ops/op_reduce_mean.py +2 -2
  1841. onnx/reference/ops/op_reduce_min.py +1 -1
  1842. onnx/reference/ops/op_reduce_prod.py +1 -1
  1843. onnx/reference/ops/op_reduce_sum.py +2 -2
  1844. onnx/reference/ops/op_reduce_sum_square.py +1 -1
  1845. onnx/reference/ops/op_regex_full_match.py +1 -1
  1846. onnx/reference/ops/op_relu.py +1 -1
  1847. onnx/reference/ops/op_reshape.py +1 -1
  1848. onnx/reference/ops/op_reverse_sequence.py +1 -1
  1849. onnx/reference/ops/op_rms_normalization.py +49 -0
  1850. onnx/reference/ops/op_rnn.py +10 -8
  1851. onnx/reference/ops/op_roi_align.py +5 -5
  1852. onnx/reference/ops/op_rotary_embedding.py +117 -0
  1853. onnx/reference/ops/op_round.py +1 -1
  1854. onnx/reference/ops/op_scan.py +12 -13
  1855. onnx/reference/ops/op_scatter_elements.py +19 -50
  1856. onnx/reference/ops/op_scatternd.py +1 -1
  1857. onnx/reference/ops/op_selu.py +1 -1
  1858. onnx/reference/ops/op_sequence_at.py +1 -1
  1859. onnx/reference/ops/op_sequence_construct.py +1 -1
  1860. onnx/reference/ops/op_sequence_empty.py +2 -2
  1861. onnx/reference/ops/op_sequence_erase.py +1 -1
  1862. onnx/reference/ops/op_sequence_insert.py +6 -6
  1863. onnx/reference/ops/op_sequence_length.py +1 -1
  1864. onnx/reference/ops/op_sequence_map.py +1 -1
  1865. onnx/reference/ops/op_shape.py +2 -6
  1866. onnx/reference/ops/op_shrink.py +1 -1
  1867. onnx/reference/ops/op_sigmoid.py +1 -1
  1868. onnx/reference/ops/op_sign.py +1 -1
  1869. onnx/reference/ops/op_sin.py +1 -1
  1870. onnx/reference/ops/op_sinh.py +1 -1
  1871. onnx/reference/ops/op_size.py +1 -1
  1872. onnx/reference/ops/op_slice.py +3 -5
  1873. onnx/reference/ops/op_softmax.py +1 -1
  1874. onnx/reference/ops/op_softmax_cross_entropy_loss.py +1 -1
  1875. onnx/reference/ops/op_softplus.py +1 -1
  1876. onnx/reference/ops/op_softsign.py +1 -1
  1877. onnx/reference/ops/op_space_to_depth.py +1 -1
  1878. onnx/reference/ops/op_split.py +1 -1
  1879. onnx/reference/ops/op_split_to_sequence.py +12 -11
  1880. onnx/reference/ops/op_sqrt.py +1 -1
  1881. onnx/reference/ops/op_squeeze.py +1 -1
  1882. onnx/reference/ops/op_stft.py +3 -2
  1883. onnx/reference/ops/op_string_concat.py +1 -1
  1884. onnx/reference/ops/op_string_normalizer.py +8 -8
  1885. onnx/reference/ops/op_string_split.py +4 -4
  1886. onnx/reference/ops/op_sub.py +1 -1
  1887. onnx/reference/ops/op_sum.py +1 -1
  1888. onnx/reference/ops/op_tan.py +1 -1
  1889. onnx/reference/ops/op_tanh.py +1 -1
  1890. onnx/reference/ops/op_tfidf_vectorizer.py +11 -12
  1891. onnx/reference/ops/op_thresholded_relu.py +1 -1
  1892. onnx/reference/ops/op_tile.py +1 -1
  1893. onnx/reference/ops/op_topk.py +13 -23
  1894. onnx/reference/ops/op_transpose.py +1 -1
  1895. onnx/reference/ops/op_trilu.py +1 -1
  1896. onnx/reference/ops/op_unique.py +3 -1
  1897. onnx/reference/ops/op_unsqueeze.py +2 -2
  1898. onnx/reference/ops/op_upsample.py +1 -1
  1899. onnx/reference/ops/op_where.py +1 -1
  1900. onnx/reference/ops/op_xor.py +1 -1
  1901. onnx/reference/ops_optimized/__init__.py +1 -0
  1902. onnx/reference/ops_optimized/op_conv_optimized.py +1 -1
  1903. onnx/reference/reference_evaluator.py +35 -27
  1904. onnx/serialization.py +5 -2
  1905. onnx/shape_inference/attribute_binder.h +1 -1
  1906. onnx/shape_inference/implementation.cc +25 -12
  1907. onnx/shape_inference/implementation.h +51 -19
  1908. onnx/shape_inference.py +8 -5
  1909. onnx/subbyte.py +134 -12
  1910. onnx/test/basic_test.py +1 -0
  1911. onnx/test/checker_test.py +41 -3
  1912. onnx/test/compose_test.py +15 -11
  1913. onnx/test/cpp/data_propagation_test.cc +19 -7
  1914. onnx/test/cpp/function_context_test.cc +18 -19
  1915. onnx/test/cpp/function_verify_test.cc +33 -29
  1916. onnx/test/cpp/parser_test.cc +97 -0
  1917. onnx/test/cpp/schema_registration_test.cc +3 -3
  1918. onnx/test/cpp/shape_inference_test.cc +48 -11
  1919. onnx/test/cpp/test_main.cc +1 -1
  1920. onnx/test/cpp/utf8_conversion_test.cc +27 -0
  1921. onnx/test/data_propagation_test.py +116 -2
  1922. onnx/test/function_inference_test.py +6 -1
  1923. onnx/test/function_test.py +2 -1
  1924. onnx/test/helper_test.py +140 -112
  1925. onnx/test/hub_test.py +1 -1
  1926. onnx/test/inference_function_test.py +31 -9
  1927. onnx/test/inliner_test.py +2 -0
  1928. onnx/test/model_container_refeval_test.py +2 -1
  1929. onnx/test/model_container_test.py +2 -1
  1930. onnx/test/model_inference_test.py +2 -0
  1931. onnx/test/numpy_helper_test.py +64 -12
  1932. onnx/test/parser_test.py +71 -2
  1933. onnx/test/printer_test.py +2 -0
  1934. onnx/test/reference_evaluator_ml_test.py +2 -3
  1935. onnx/test/reference_evaluator_model_test.py +2 -0
  1936. onnx/test/reference_evaluator_test.py +417 -56
  1937. onnx/test/schema_test.py +7 -2
  1938. onnx/test/serialization_test.py +2 -0
  1939. onnx/test/shape_inference_test.py +920 -160
  1940. onnx/test/symbolic_shape_test.py +3 -3
  1941. onnx/test/test_backend_reference.py +33 -3
  1942. onnx/test/test_backend_test.py +12 -10
  1943. onnx/test/test_external_data.py +99 -4
  1944. onnx/test/tools_test.py +15 -14
  1945. onnx/test/training_tool_test.py +1 -0
  1946. onnx/test/utils_test.py +2 -1
  1947. onnx/test/version_converter/automatic_conversion_test_base.py +6 -3
  1948. onnx/test/version_converter/automatic_downgrade_test.py +2 -0
  1949. onnx/test/version_converter/automatic_upgrade_test.py +176 -2
  1950. onnx/test/version_converter_test.py +43 -9
  1951. onnx/test/version_utils.py +8 -0
  1952. onnx/tools/net_drawer.py +6 -5
  1953. onnx/tools/replace_constants.py +11 -11
  1954. onnx/tools/update_model_dims.py +8 -7
  1955. onnx/utils.py +109 -72
  1956. onnx/version.py +2 -2
  1957. onnx/version_converter/BaseConverter.h +2 -7
  1958. onnx/version_converter/adapters/adapter.h +6 -3
  1959. onnx/version_converter/adapters/axes_attribute_to_input.h +1 -1
  1960. onnx/version_converter/adapters/axes_input_to_attribute.h +4 -4
  1961. onnx/version_converter/adapters/axis_attribute_to_input.h +2 -2
  1962. onnx/version_converter/adapters/axis_input_to_attribute.h +4 -6
  1963. onnx/version_converter/adapters/broadcast_backward_compatibility.h +1 -1
  1964. onnx/version_converter/adapters/broadcast_forward_compatibility.h +2 -2
  1965. onnx/version_converter/adapters/cast_9_8.h +1 -1
  1966. onnx/version_converter/adapters/clip_10_11.h +4 -2
  1967. onnx/version_converter/adapters/dropout_11_12.h +5 -2
  1968. onnx/version_converter/adapters/extend_supported_types.h +3 -3
  1969. onnx/version_converter/adapters/gemm_6_7.h +1 -1
  1970. onnx/version_converter/adapters/gemm_7_6.h +1 -1
  1971. onnx/version_converter/adapters/gridsample_19_20.h +3 -1
  1972. onnx/version_converter/adapters/group_normalization_20_21.h +2 -2
  1973. onnx/version_converter/adapters/maxpool_8_7.h +1 -1
  1974. onnx/version_converter/adapters/pad_10_11.h +3 -1
  1975. onnx/version_converter/adapters/q_dq_21_20.h +2 -2
  1976. onnx/version_converter/adapters/reshape_4_5.h +1 -1
  1977. onnx/version_converter/adapters/reshape_5_4.h +5 -5
  1978. onnx/version_converter/adapters/resize_10_11.h +3 -1
  1979. onnx/version_converter/adapters/scan_8_9.h +3 -3
  1980. onnx/version_converter/adapters/scan_9_8.h +2 -2
  1981. onnx/version_converter/adapters/scatter_10_11.h +3 -1
  1982. onnx/version_converter/adapters/slice_9_10.h +4 -2
  1983. onnx/version_converter/adapters/softmax_12_13.h +2 -2
  1984. onnx/version_converter/adapters/softmax_13_12.h +66 -0
  1985. onnx/version_converter/adapters/split_12_13.h +1 -1
  1986. onnx/version_converter/adapters/split_13_12.h +4 -4
  1987. onnx/version_converter/adapters/split_17_18.h +2 -2
  1988. onnx/version_converter/adapters/sum_8_7.h +1 -1
  1989. onnx/version_converter/adapters/topk_9_10.h +3 -1
  1990. onnx/version_converter/adapters/transformers.h +6 -5
  1991. onnx/version_converter/adapters/type_restriction.h +4 -4
  1992. onnx/version_converter/adapters/upsample_6_7.h +1 -1
  1993. onnx/version_converter/adapters/upsample_8_9.h +1 -1
  1994. onnx/version_converter/adapters/upsample_9_10.h +4 -1
  1995. onnx/version_converter/adapters/upsample_9_8.h +11 -11
  1996. onnx/version_converter/convert.cc +14 -11
  1997. onnx/version_converter/convert.h +160 -5
  1998. onnx/version_converter/helper.cc +4 -9
  1999. onnx/version_converter.py +4 -2
  2000. onnx-1.18.0.dist-info/METADATA +134 -0
  2001. {onnx-1.16.2.dist-info → onnx-1.18.0.dist-info}/RECORD +2005 -1042
  2002. {onnx-1.16.2.dist-info → onnx-1.18.0.dist-info}/WHEEL +1 -1
  2003. onnx/test/elu_test.py +0 -17
  2004. onnx/test/relu_test.py +0 -16
  2005. onnx/test/test_backend_onnxruntime.py +0 -328
  2006. onnx/test/test_with_ort.py +0 -50
  2007. onnx-1.16.2.dist-info/METADATA +0 -353
  2008. {onnx-1.16.2.dist-info → onnx-1.18.0.dist-info}/entry_points.txt +0 -0
  2009. {onnx-1.16.2.dist-info → onnx-1.18.0.dist-info/licenses}/LICENSE +0 -0
  2010. {onnx-1.16.2.dist-info → onnx-1.18.0.dist-info}/top_level.txt +0 -0
onnx/defs/math/defs.cc CHANGED
@@ -3,10 +3,9 @@
3
3
  */
4
4
 
5
5
  #include <algorithm>
6
- #include <functional>
6
+ #include <map>
7
7
 
8
8
  #include "onnx/common/assertions.h"
9
- #include "onnx/defs/data_type_utils.h"
10
9
  #include "onnx/defs/function.h"
11
10
  #include "onnx/defs/math/utils.h"
12
11
  #include "onnx/defs/schema.h"
@@ -14,18 +13,7 @@
14
13
 
15
14
  namespace ONNX_NAMESPACE {
16
15
 
17
- inline int MathOpTwoIntegers(std::string op_type, int a, int b) {
18
- if (op_type == "Add") {
19
- return a + b;
20
- } else if (op_type == "Sub") {
21
- return a - b;
22
- } else if (op_type == "Mul") {
23
- return a * b;
24
- }
25
- fail_shape_inference("Wrong op_type name for running propagation: ", op_type);
26
- }
27
-
28
- inline void MathOpDataPropagator(DataPropagationContext& ctx, std::string op_type) {
16
+ static void MathOpDataPropagator(DataPropagationContext& ctx, const std::string& op_type) {
29
17
  const auto input_0 = ctx.getInputData(0);
30
18
  const auto input_1 = ctx.getInputData(1);
31
19
  if (input_0 == nullptr || input_1 == nullptr) {
@@ -38,12 +26,13 @@ inline void MathOpDataPropagator(DataPropagationContext& ctx, std::string op_typ
38
26
  fail_shape_inference("Invalid rank for ", op_type, " broadcasting: (", size_0, ") vs (", size_1, ").");
39
27
  }
40
28
  TensorShapeProto tsp;
41
- for (int i = 0; i < std::max(size_0, size_1); ++i) {
29
+ int size_out = size_0 == 1 ? size_1 : size_0;
30
+ for (int i = 0; i < size_out; ++i) {
42
31
  auto& input_dim_0 = input_0->dim(size_0 == 1 ? 0 : i);
43
32
  auto& input_dim_1 = input_1->dim(size_1 == 1 ? 0 : i);
44
33
  if (input_dim_0.has_dim_value() && input_dim_1.has_dim_value()) {
45
34
  tsp.mutable_dim()->Add()->set_dim_value(
46
- MathOpTwoIntegers(op_type, input_dim_0.dim_value(), input_dim_1.dim_value()));
35
+ defs::math::utils::MathOpTwoIntegers(op_type, input_dim_0.dim_value(), input_dim_1.dim_value()));
47
36
  } else {
48
37
  // Cannot compute the value; simply add an empty dim without value and param
49
38
  tsp.mutable_dim()->Add();
@@ -52,7 +41,7 @@ inline void MathOpDataPropagator(DataPropagationContext& ctx, std::string op_typ
52
41
  ctx.addOutputData(0, std::move(tsp));
53
42
  }
54
43
 
55
- std::function<void(OpSchema&)> MathDocGenerator(const char* name) {
44
+ static std::function<void(OpSchema&)> MathDocGenerator(const char* name) {
56
45
  return [=](OpSchema& schema) {
57
46
  std::string doc;
58
47
  POPULATE_OP_DOC_STR(doc = R"DOC(
@@ -341,7 +330,7 @@ ONNX_OPERATOR_SET_SCHEMA(
341
330
  }
342
331
  )ONNX"));
343
332
 
344
- static const char* ThresholdedRelu_ver10_doc = R"DOC(
333
+ static const char* ThresholdedRelu_ver22_doc = R"DOC(
345
334
  ThresholdedRelu takes one input data (Tensor<T>) and produces one output data
346
335
  (Tensor<T>) where the rectified linear function, y = x for x > alpha, y = 0 otherwise,
347
336
  is applied to the tensor elementwise.
@@ -349,16 +338,13 @@ is applied to the tensor elementwise.
349
338
 
350
339
  ONNX_OPERATOR_SET_SCHEMA(
351
340
  ThresholdedRelu,
352
- 10,
341
+ 22,
353
342
  OpSchema()
354
- .SetDoc(ThresholdedRelu_ver10_doc)
343
+ .SetDoc(ThresholdedRelu_ver22_doc)
355
344
  .Attr("alpha", "Threshold value", AttributeProto::FLOAT, 1.0f)
356
345
  .Input(0, "X", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
357
346
  .Output(0, "Y", "Output tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
358
- .TypeConstraint(
359
- "T",
360
- {"tensor(float16)", "tensor(float)", "tensor(double)"},
361
- "Constrain input and output types to float tensors.")
347
+ .TypeConstraint("T", OpSchema::all_float_types_ir4(), "Constrain input and output types to float tensors.")
362
348
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput)
363
349
  .FunctionBody(
364
350
  R"ONNX(
@@ -373,7 +359,7 @@ ONNX_OPERATOR_SET_SCHEMA(
373
359
  )ONNX",
374
360
  18));
375
361
 
376
- static const char* Selu_ver6_doc = R"DOC(
362
+ static const char* Selu_ver22_doc = R"DOC(
377
363
  Selu takes one input data (Tensor<T>) and produces one output data
378
364
  (Tensor<T>) where the scaled exponential linear unit function,
379
365
  `y = gamma * (alpha * e^x - alpha) for x <= 0`, `y = gamma * x for x > 0`,
@@ -382,7 +368,7 @@ is applied to the tensor elementwise.
382
368
 
383
369
  ONNX_OPERATOR_SET_SCHEMA(
384
370
  Selu,
385
- 6,
371
+ 22,
386
372
  OpSchema()
387
373
  .Attr(
388
374
  "alpha",
@@ -396,13 +382,10 @@ ONNX_OPERATOR_SET_SCHEMA(
396
382
  "(i.e., float32 approximation of 1.0507009873554804934193349852946).",
397
383
  AttributeProto::FLOAT,
398
384
  1.05070102214813232421875f)
399
- .SetDoc(Selu_ver6_doc)
385
+ .SetDoc(Selu_ver22_doc)
400
386
  .Input(0, "X", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
401
387
  .Output(0, "Y", "Output tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
402
- .TypeConstraint(
403
- "T",
404
- {"tensor(float16)", "tensor(float)", "tensor(double)"},
405
- "Constrain input and output types to float tensors.")
388
+ .TypeConstraint("T", OpSchema::all_float_types_ir4(), "Constrain input and output types to float tensors.")
406
389
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput)
407
390
  .FunctionBody(
408
391
  R"ONNX(
@@ -424,7 +407,7 @@ ONNX_OPERATOR_SET_SCHEMA(
424
407
  )ONNX",
425
408
  18));
426
409
 
427
- static const char* Elu_ver6_doc = R"DOC(
410
+ static const char* Elu_ver22_doc = R"DOC(
428
411
  Elu takes one input data (Tensor<T>) and produces one output data
429
412
  (Tensor<T>) where the function `f(x) = alpha * (exp(x) - 1.) for x <
430
413
  0`, `f(x) = x for x >= 0`., is applied to the tensor elementwise.
@@ -433,16 +416,13 @@ Elu takes one input data (Tensor<T>) and produces one output data
433
416
 
434
417
  ONNX_OPERATOR_SET_SCHEMA(
435
418
  Elu,
436
- 6,
419
+ 22,
437
420
  OpSchema()
438
421
  .Attr("alpha", "Coefficient of ELU.", AttributeProto::FLOAT, 1.0f)
439
- .SetDoc(Elu_ver6_doc)
422
+ .SetDoc(Elu_ver22_doc)
440
423
  .Input(0, "X", "1D input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
441
424
  .Output(0, "Y", "1D output tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
442
- .TypeConstraint(
443
- "T",
444
- {"tensor(float16)", "tensor(float)", "tensor(double)"},
445
- "Constrain input and output types to float tensors.")
425
+ .TypeConstraint("T", OpSchema::all_float_types_ir4(), "Constrain input and output types to float tensors.")
446
426
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput)
447
427
  .FunctionBody(
448
428
  R"ONNX(
@@ -462,7 +442,7 @@ ONNX_OPERATOR_SET_SCHEMA(
462
442
  )ONNX",
463
443
  18));
464
444
 
465
- static const char* mish_ver18_doc = R"DOC(
445
+ static const char* mish_ver22_doc = R"DOC(
466
446
  Mish: A Self Regularized Non-Monotonic Neural Activation Function.
467
447
 
468
448
  Perform the linear unit element-wise on the input tensor X using formula:
@@ -474,15 +454,12 @@ mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + e^{x}))
474
454
 
475
455
  ONNX_OPERATOR_SET_SCHEMA(
476
456
  Mish,
477
- 18,
457
+ 22,
478
458
  OpSchema()
479
- .SetDoc(mish_ver18_doc)
459
+ .SetDoc(mish_ver22_doc)
480
460
  .Input(0, "X", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
481
461
  .Output(0, "Y", "Output tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
482
- .TypeConstraint(
483
- "T",
484
- {"tensor(float16)", "tensor(float)", "tensor(double)"},
485
- "Constrain input X and output types to float tensors.")
462
+ .TypeConstraint("T", OpSchema::all_float_types_ir4(), "Constrain input X and output types to float tensors.")
486
463
  .FunctionBody(R"ONNX(
487
464
  {
488
465
  Softplus_X = Softplus (X)
@@ -504,31 +481,7 @@ max(0,x) + min(0,alpha*(exp(x/alpha)-1))
504
481
 
505
482
  static float celu_default_alpha = 1.0;
506
483
 
507
- TensorProto ToDimensionOneFloatTensor(float value) {
508
- auto t = ToTensor(std::vector<float>({value}));
509
- t.add_dims(1);
510
- return t;
511
- }
512
-
513
- TensorProto ToDimensionOneTensor(int32_t value) {
514
- auto t = ToTensor(std::vector<int32_t>({value}));
515
- t.add_dims(1);
516
- return t;
517
- }
518
-
519
- TensorProto ToDimensionOneInt64Tensor(int64_t value) {
520
- auto t = ToTensor(std::vector<int64_t>({value}));
521
- t.add_dims(1);
522
- return t;
523
- }
524
-
525
- TensorProto ToDimensionOneInt64Tensor(std::vector<int64_t> value) {
526
- auto t = ToTensor(value);
527
- t.add_dims(value.size());
528
- return t;
529
- }
530
-
531
- bool BuildContextDependentFunctionBodyCelu(
484
+ static bool BuildContextDependentFunctionBodyCelu(
532
485
  const FunctionBodyBuildContext& ctx,
533
486
  const OpSchema& schema,
534
487
  FunctionProto& functionProto) {
@@ -572,7 +525,7 @@ to the tensor elementwise.
572
525
 
573
526
  static std::string gelu_default_approx = "none";
574
527
 
575
- bool BuildContextDependentFunctionBodyGelu(
528
+ static bool BuildContextDependentFunctionBodyGelu(
576
529
  const FunctionBodyBuildContext& ctx,
577
530
  const OpSchema& schema,
578
531
  FunctionProto& functionProto) {
@@ -664,10 +617,7 @@ ONNX_OPERATOR_SET_SCHEMA(
664
617
  true,
665
618
  1,
666
619
  OpSchema::Differentiable)
667
- .TypeConstraint(
668
- "T",
669
- {"tensor(float16)", "tensor(float)", "tensor(double)", "tensor(bfloat16)"},
670
- "Constrain input and output types to float tensors.")
620
+ .TypeConstraint("T", OpSchema::all_float_types_ir4(), "Constrain input and output types to float tensors.")
671
621
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
672
622
 
673
623
  static const char* Log_ver13_doc = R"DOC(
@@ -716,10 +666,7 @@ ONNX_OPERATOR_SET_SCHEMA(
716
666
  true,
717
667
  1,
718
668
  OpSchema::Differentiable)
719
- .TypeConstraint(
720
- "T",
721
- {"tensor(float16)", "tensor(float)", "tensor(double)", "tensor(bfloat16)"},
722
- "Constrain input and output types to float tensors.")
669
+ .TypeConstraint("T", OpSchema::all_float_types_ir4(), "Constrain input and output types to float tensors.")
723
670
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
724
671
 
725
672
  static const char* Pow_ver15_doc = R"DOC(
@@ -842,7 +789,7 @@ ONNX_OPERATOR_SET_SCHEMA(
842
789
  "Constrain input and output types to float tensors.")
843
790
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
844
791
 
845
- static const char* HardSigmoid_ver6_doc = R"DOC(
792
+ static const char* HardSigmoid_ver22_doc = R"DOC(
846
793
  HardSigmoid takes one input data (Tensor<T>) and produces one output data
847
794
  (Tensor<T>) where the HardSigmoid function, y = max(0, min(1, alpha * x + beta)),
848
795
  is applied to the tensor elementwise.
@@ -850,17 +797,14 @@ is applied to the tensor elementwise.
850
797
 
851
798
  ONNX_OPERATOR_SET_SCHEMA(
852
799
  HardSigmoid,
853
- 6,
800
+ 22,
854
801
  OpSchema()
855
802
  .Attr("alpha", "Value of alpha.", AttributeProto::FLOAT, 0.2f)
856
803
  .Attr("beta", "Value of beta.", AttributeProto::FLOAT, 0.5f)
857
- .SetDoc(HardSigmoid_ver6_doc)
804
+ .SetDoc(HardSigmoid_ver22_doc)
858
805
  .Input(0, "X", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
859
806
  .Output(0, "Y", "Output tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
860
- .TypeConstraint(
861
- "T",
862
- {"tensor(float16)", "tensor(float)", "tensor(double)"},
863
- "Constrain input and output types to float tensors.")
807
+ .TypeConstraint("T", OpSchema::all_float_types_ir4(), "Constrain input and output types to float tensors.")
864
808
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput)
865
809
  .FunctionBody(
866
810
  R"ONNX(
@@ -881,7 +825,7 @@ ONNX_OPERATOR_SET_SCHEMA(
881
825
  )ONNX",
882
826
  18));
883
827
 
884
- static const char* HardSwish_ver14_doc = R"DOC(
828
+ static const char* HardSwish_ver22_doc = R"DOC(
885
829
  HardSwish takes one input data (Tensor<T>) and produces one output data (Tensor<T>) where
886
830
  the HardSwish function, y = x * max(0, min(1, alpha * x + beta)) = x * HardSigmoid<alpha, beta>(x),
887
831
  where alpha = 1/6 and beta = 0.5, is applied to the tensor elementwise.
@@ -889,15 +833,12 @@ where alpha = 1/6 and beta = 0.5, is applied to the tensor elementwise.
889
833
 
890
834
  ONNX_OPERATOR_SET_SCHEMA(
891
835
  HardSwish,
892
- 14,
836
+ 22,
893
837
  OpSchema()
894
- .SetDoc(HardSwish_ver14_doc)
838
+ .SetDoc(HardSwish_ver22_doc)
895
839
  .Input(0, "X", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
896
840
  .Output(0, "Y", "Output tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
897
- .TypeConstraint(
898
- "T",
899
- {"tensor(float16)", "tensor(float)", "tensor(double)"},
900
- "Constrain input and output types to float tensors.")
841
+ .TypeConstraint("T", OpSchema::all_float_types_ir4(), "Constrain input and output types to float tensors.")
901
842
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput)
902
843
  .FunctionBody(R"ONNX(
903
844
  {
@@ -908,7 +849,7 @@ ONNX_OPERATOR_SET_SCHEMA(
908
849
 
909
850
  // Generate opschema for element-wise ops. Leaves type constraint "T"
910
851
  // unspecified.
911
- std::function<void(OpSchema&)> ElementwiseMultiOpDocGenerator(const char* name) {
852
+ static std::function<void(OpSchema&)> ElementwiseMultiOpDocGenerator(const char* name) {
912
853
  return [=](OpSchema& schema) {
913
854
  std::string doc;
914
855
  POPULATE_OP_DOC_STR(doc = R"DOC(
@@ -991,9 +932,11 @@ static const char* Clip_ver13_doc = R"DOC(
991
932
  Clip operator limits the given input within an interval. The interval is
992
933
  specified by the inputs 'min' and 'max'. They default to
993
934
  numeric_limits::lowest() and numeric_limits::max(), respectively.
935
+ When 'min' is greater than 'max', the clip operator sets all the 'input' values to
936
+ the value of 'max'. Thus, this is equivalent to 'Min(max, Max(input, min))'.
994
937
  )DOC";
995
938
 
996
- bool BuildContextDependentFunctionBodyClip(
939
+ static bool BuildContextDependentFunctionBodyClip(
997
940
  const FunctionBodyBuildContext& ctx,
998
941
  const OpSchema& schema,
999
942
  FunctionProto& functionProto) {
@@ -1070,7 +1013,7 @@ ONNX_OPERATOR_SET_SCHEMA(
1070
1013
  .SetContextDependentFunctionBodyBuilder(BuildContextDependentFunctionBodyClip)
1071
1014
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
1072
1015
 
1073
- std::function<void(OpSchema&)>
1016
+ static std::function<void(OpSchema&)>
1074
1017
  SoftmaxFamilyDocGenerator(const char* name, const char* description, const char* equation) {
1075
1018
  return [=](OpSchema& schema) {
1076
1019
  std::string doc;
@@ -1232,15 +1175,15 @@ ONNX_OPERATOR_SET_SCHEMA(
1232
1175
  "hardmax",
1233
1176
  "Hardmax(element in input, axis) = 1 if the element is the first maximum value along the specified axis, 0 otherwise")));
1234
1177
 
1235
- static const char* Softsign_ver1_doc = R"DOC(
1178
+ static const char* Softsign_ver22_doc = R"DOC(
1236
1179
  Calculates the softsign (x/(1+|x|)) of the given input tensor element-wise.
1237
1180
  )DOC";
1238
1181
 
1239
1182
  ONNX_OPERATOR_SET_SCHEMA(
1240
1183
  Softsign,
1241
- 1,
1184
+ 22,
1242
1185
  OpSchema()
1243
- .SetDoc(Softsign_ver1_doc)
1186
+ .SetDoc(Softsign_ver22_doc)
1244
1187
  .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
1245
1188
  .Output(
1246
1189
  0,
@@ -1251,10 +1194,7 @@ ONNX_OPERATOR_SET_SCHEMA(
1251
1194
  true,
1252
1195
  1,
1253
1196
  OpSchema::Differentiable)
1254
- .TypeConstraint(
1255
- "T",
1256
- {"tensor(float16)", "tensor(float)", "tensor(double)"},
1257
- "Constrain input and output types to float tensors.")
1197
+ .TypeConstraint("T", OpSchema::all_float_types_ir4(), "Constrain input and output types to float tensors.")
1258
1198
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput)
1259
1199
  .FunctionBody(
1260
1200
  R"ONNX(
@@ -1268,7 +1208,7 @@ ONNX_OPERATOR_SET_SCHEMA(
1268
1208
  )ONNX",
1269
1209
  18));
1270
1210
 
1271
- static const char* Softplus_ver1_doc = R"DOC(
1211
+ static const char* Softplus_ver22_doc = R"DOC(
1272
1212
  Softplus takes one input data (Tensor<T>) and produces one output data
1273
1213
  (Tensor<T>) where the softplus function, y = ln(exp(x) + 1), is applied to
1274
1214
  the tensor elementwise.
@@ -1276,15 +1216,12 @@ the tensor elementwise.
1276
1216
 
1277
1217
  ONNX_OPERATOR_SET_SCHEMA(
1278
1218
  Softplus,
1279
- 1,
1219
+ 22,
1280
1220
  OpSchema()
1281
- .SetDoc(Softplus_ver1_doc)
1221
+ .SetDoc(Softplus_ver22_doc)
1282
1222
  .Input(0, "X", "1D input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
1283
1223
  .Output(0, "Y", "1D input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
1284
- .TypeConstraint(
1285
- "T",
1286
- {"tensor(float16)", "tensor(float)", "tensor(double)"},
1287
- "Constrain input and output types to float tensors.")
1224
+ .TypeConstraint("T", OpSchema::all_float_types_ir4(), "Constrain input and output types to float tensors.")
1288
1225
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput)
1289
1226
  .FunctionBody(
1290
1227
  R"ONNX(
@@ -1386,7 +1323,7 @@ ONNX_OPERATOR_SET_SCHEMA(
1386
1323
  }));
1387
1324
 
1388
1325
  static const char* MatMul_ver13_doc = R"DOC(
1389
- Matrix product that behaves like numpy.matmul: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html
1326
+ Matrix product that behaves like [numpy.matmul](https://numpy.org/doc/stable/reference/generated/numpy.matmul.html).
1390
1327
  )DOC";
1391
1328
 
1392
1329
  ONNX_OPERATOR_SET_SCHEMA(
@@ -1520,7 +1457,7 @@ ONNX_OPERATOR_SET_SCHEMA(
1520
1457
  fail_shape_inference("K input must be a one-dimensional tensor of size 1.");
1521
1458
  }
1522
1459
  if (k->data_type() == TensorProto::INT64) {
1523
- const auto& data = ParseData<int64_t>(k);
1460
+ const auto data = ParseData<int64_t>(k);
1524
1461
  k_value = data[0];
1525
1462
  } else {
1526
1463
  fail_shape_inference("K input must be of type int64.");
@@ -1549,15 +1486,15 @@ ONNX_OPERATOR_SET_SCHEMA(
1549
1486
  return;
1550
1487
  }));
1551
1488
 
1552
- static const char* Sin_ver7_doc = R"DOC(
1489
+ static const char* Sin_ver22_doc = R"DOC(
1553
1490
  Calculates the sine of the given input tensor, element-wise.
1554
1491
  )DOC";
1555
1492
 
1556
1493
  ONNX_OPERATOR_SET_SCHEMA(
1557
1494
  Sin,
1558
- 7,
1495
+ 22,
1559
1496
  OpSchema()
1560
- .SetDoc(Sin_ver7_doc)
1497
+ .SetDoc(Sin_ver22_doc)
1561
1498
  .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
1562
1499
  .Output(
1563
1500
  0,
@@ -1569,21 +1506,18 @@ ONNX_OPERATOR_SET_SCHEMA(
1569
1506
  true,
1570
1507
  1,
1571
1508
  OpSchema::Differentiable)
1572
- .TypeConstraint(
1573
- "T",
1574
- {"tensor(float16)", "tensor(float)", "tensor(double)"},
1575
- "Constrain input and output types to float tensors.")
1509
+ .TypeConstraint("T", OpSchema::all_float_types_ir4(), "Constrain input and output types to float tensors.")
1576
1510
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
1577
1511
 
1578
- static const char* Cos_ver7_doc = R"DOC(
1512
+ static const char* Cos_ver22_doc = R"DOC(
1579
1513
  Calculates the cosine of the given input tensor, element-wise.
1580
1514
  )DOC";
1581
1515
 
1582
1516
  ONNX_OPERATOR_SET_SCHEMA(
1583
1517
  Cos,
1584
- 7,
1518
+ 22,
1585
1519
  OpSchema()
1586
- .SetDoc(Cos_ver7_doc)
1520
+ .SetDoc(Cos_ver22_doc)
1587
1521
  .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
1588
1522
  .Output(
1589
1523
  0,
@@ -1595,21 +1529,18 @@ ONNX_OPERATOR_SET_SCHEMA(
1595
1529
  true,
1596
1530
  1,
1597
1531
  OpSchema::Differentiable)
1598
- .TypeConstraint(
1599
- "T",
1600
- {"tensor(float16)", "tensor(float)", "tensor(double)"},
1601
- "Constrain input and output types to float tensors.")
1532
+ .TypeConstraint("T", OpSchema::all_float_types_ir4(), "Constrain input and output types to float tensors.")
1602
1533
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
1603
1534
 
1604
- static const char* Tan_ver7_doc = R"DOC(
1535
+ static const char* Tan_ver22_doc = R"DOC(
1605
1536
  Calculates the tangent of the given input tensor, element-wise.
1606
1537
  )DOC";
1607
1538
 
1608
1539
  ONNX_OPERATOR_SET_SCHEMA(
1609
1540
  Tan,
1610
- 7,
1541
+ 22,
1611
1542
  OpSchema()
1612
- .SetDoc(Tan_ver7_doc)
1543
+ .SetDoc(Tan_ver22_doc)
1613
1544
  .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
1614
1545
  .Output(
1615
1546
  0,
@@ -1621,21 +1552,18 @@ ONNX_OPERATOR_SET_SCHEMA(
1621
1552
  true,
1622
1553
  1,
1623
1554
  OpSchema::Differentiable)
1624
- .TypeConstraint(
1625
- "T",
1626
- {"tensor(float16)", "tensor(float)", "tensor(double)"},
1627
- "Constrain input and output types to float tensors.")
1555
+ .TypeConstraint("T", OpSchema::all_float_types_ir4(), "Constrain input and output types to float tensors.")
1628
1556
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
1629
1557
 
1630
- static const char* Asin_ver7_doc = R"DOC(
1558
+ static const char* Asin_ver22_doc = R"DOC(
1631
1559
  Calculates the arcsine (inverse of sine) of the given input tensor, element-wise.
1632
1560
  )DOC";
1633
1561
 
1634
1562
  ONNX_OPERATOR_SET_SCHEMA(
1635
1563
  Asin,
1636
- 7,
1564
+ 22,
1637
1565
  OpSchema()
1638
- .SetDoc(Asin_ver7_doc)
1566
+ .SetDoc(Asin_ver22_doc)
1639
1567
  .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
1640
1568
  .Output(
1641
1569
  0,
@@ -1647,21 +1575,18 @@ ONNX_OPERATOR_SET_SCHEMA(
1647
1575
  true,
1648
1576
  1,
1649
1577
  OpSchema::Differentiable)
1650
- .TypeConstraint(
1651
- "T",
1652
- {"tensor(float16)", "tensor(float)", "tensor(double)"},
1653
- "Constrain input and output types to float tensors.")
1578
+ .TypeConstraint("T", OpSchema::all_float_types_ir4(), "Constrain input and output types to float tensors.")
1654
1579
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
1655
1580
 
1656
- static const char* Acos_ver7_doc = R"DOC(
1581
+ static const char* Acos_ver22_doc = R"DOC(
1657
1582
  Calculates the arccosine (inverse of cosine) of the given input tensor, element-wise.
1658
1583
  )DOC";
1659
1584
 
1660
1585
  ONNX_OPERATOR_SET_SCHEMA(
1661
1586
  Acos,
1662
- 7,
1587
+ 22,
1663
1588
  OpSchema()
1664
- .SetDoc(Acos_ver7_doc)
1589
+ .SetDoc(Acos_ver22_doc)
1665
1590
  .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
1666
1591
  .Output(
1667
1592
  0,
@@ -1673,21 +1598,18 @@ ONNX_OPERATOR_SET_SCHEMA(
1673
1598
  true,
1674
1599
  1,
1675
1600
  OpSchema::Differentiable)
1676
- .TypeConstraint(
1677
- "T",
1678
- {"tensor(float16)", "tensor(float)", "tensor(double)"},
1679
- "Constrain input and output types to float tensors.")
1601
+ .TypeConstraint("T", OpSchema::all_float_types_ir4(), "Constrain input and output types to float tensors.")
1680
1602
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
1681
1603
 
1682
- static const char* Atan_ver7_doc = R"DOC(
1604
+ static const char* Atan_ver22_doc = R"DOC(
1683
1605
  Calculates the arctangent (inverse of tangent) of the given input tensor, element-wise.
1684
1606
  )DOC";
1685
1607
 
1686
1608
  ONNX_OPERATOR_SET_SCHEMA(
1687
1609
  Atan,
1688
- 7,
1610
+ 22,
1689
1611
  OpSchema()
1690
- .SetDoc(Atan_ver7_doc)
1612
+ .SetDoc(Atan_ver22_doc)
1691
1613
  .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
1692
1614
  .Output(
1693
1615
  0,
@@ -1699,10 +1621,7 @@ ONNX_OPERATOR_SET_SCHEMA(
1699
1621
  true,
1700
1622
  1,
1701
1623
  OpSchema::Differentiable)
1702
- .TypeConstraint(
1703
- "T",
1704
- {"tensor(float16)", "tensor(float)", "tensor(double)"},
1705
- "Constrain input and output types to float tensors.")
1624
+ .TypeConstraint("T", OpSchema::all_float_types_ir4(), "Constrain input and output types to float tensors.")
1706
1625
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
1707
1626
 
1708
1627
  static const char* Expand_ver13_doc = R"DOC(
@@ -1749,15 +1668,15 @@ ONNX_OPERATOR_SET_SCHEMA(
1749
1668
  }
1750
1669
  }));
1751
1670
 
1752
- static const char* Sinh_ver9_doc = R"DOC(
1671
+ static const char* Sinh_ver22_doc = R"DOC(
1753
1672
  Calculates the hyperbolic sine of the given input tensor element-wise.
1754
1673
  )DOC";
1755
1674
 
1756
1675
  ONNX_OPERATOR_SET_SCHEMA(
1757
1676
  Sinh,
1758
- 9,
1677
+ 22,
1759
1678
  OpSchema()
1760
- .SetDoc(Sinh_ver9_doc)
1679
+ .SetDoc(Sinh_ver22_doc)
1761
1680
  .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
1762
1681
  .Output(
1763
1682
  0,
@@ -1769,21 +1688,18 @@ ONNX_OPERATOR_SET_SCHEMA(
1769
1688
  true,
1770
1689
  1,
1771
1690
  OpSchema::Differentiable)
1772
- .TypeConstraint(
1773
- "T",
1774
- {"tensor(float16)", "tensor(float)", "tensor(double)"},
1775
- "Constrain input and output types to float tensors.")
1691
+ .TypeConstraint("T", OpSchema::all_float_types_ir4(), "Constrain input and output types to float tensors.")
1776
1692
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
1777
1693
 
1778
- static const char* Cosh_ver9_doc = R"DOC(
1694
+ static const char* Cosh_ver22_doc = R"DOC(
1779
1695
  Calculates the hyperbolic cosine of the given input tensor element-wise.
1780
1696
  )DOC";
1781
1697
 
1782
1698
  ONNX_OPERATOR_SET_SCHEMA(
1783
1699
  Cosh,
1784
- 9,
1700
+ 22,
1785
1701
  OpSchema()
1786
- .SetDoc(Cosh_ver9_doc)
1702
+ .SetDoc(Cosh_ver22_doc)
1787
1703
  .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
1788
1704
  .Output(
1789
1705
  0,
@@ -1795,21 +1711,18 @@ ONNX_OPERATOR_SET_SCHEMA(
1795
1711
  true,
1796
1712
  1,
1797
1713
  OpSchema::Differentiable)
1798
- .TypeConstraint(
1799
- "T",
1800
- {"tensor(float16)", "tensor(float)", "tensor(double)"},
1801
- "Constrain input and output types to float tensors.")
1714
+ .TypeConstraint("T", OpSchema::all_float_types_ir4(), "Constrain input and output types to float tensors.")
1802
1715
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
1803
1716
 
1804
- static const char* Asinh_ver9_doc = R"DOC(
1717
+ static const char* Asinh_ver22_doc = R"DOC(
1805
1718
  Calculates the hyperbolic arcsine of the given input tensor element-wise.
1806
1719
  )DOC";
1807
1720
 
1808
1721
  ONNX_OPERATOR_SET_SCHEMA(
1809
1722
  Asinh,
1810
- 9,
1723
+ 22,
1811
1724
  OpSchema()
1812
- .SetDoc(Asinh_ver9_doc)
1725
+ .SetDoc(Asinh_ver22_doc)
1813
1726
  .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
1814
1727
  .Output(
1815
1728
  0,
@@ -1821,21 +1734,18 @@ ONNX_OPERATOR_SET_SCHEMA(
1821
1734
  true,
1822
1735
  1,
1823
1736
  OpSchema::Differentiable)
1824
- .TypeConstraint(
1825
- "T",
1826
- {"tensor(float16)", "tensor(float)", "tensor(double)"},
1827
- "Constrain input and output types to float tensors.")
1737
+ .TypeConstraint("T", OpSchema::all_float_types_ir4(), "Constrain input and output types to float tensors.")
1828
1738
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
1829
1739
 
1830
- static const char* Acosh_ver9_doc = R"DOC(
1740
+ static const char* Acosh_ver22_doc = R"DOC(
1831
1741
  Calculates the hyperbolic arccosine of the given input tensor element-wise.
1832
1742
  )DOC";
1833
1743
 
1834
1744
  ONNX_OPERATOR_SET_SCHEMA(
1835
1745
  Acosh,
1836
- 9,
1746
+ 22,
1837
1747
  OpSchema()
1838
- .SetDoc(Acosh_ver9_doc)
1748
+ .SetDoc(Acosh_ver22_doc)
1839
1749
  .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
1840
1750
  .Output(
1841
1751
  0,
@@ -1847,21 +1757,18 @@ ONNX_OPERATOR_SET_SCHEMA(
1847
1757
  true,
1848
1758
  1,
1849
1759
  OpSchema::Differentiable)
1850
- .TypeConstraint(
1851
- "T",
1852
- {"tensor(float16)", "tensor(float)", "tensor(double)"},
1853
- "Constrain input and output types to float tensors.")
1760
+ .TypeConstraint("T", OpSchema::all_float_types_ir4(), "Constrain input and output types to float tensors.")
1854
1761
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
1855
1762
 
1856
- static const char* Atanh_ver9_doc = R"DOC(
1763
+ static const char* Atanh_ver22_doc = R"DOC(
1857
1764
  Calculates the hyperbolic arctangent of the given input tensor element-wise.
1858
1765
  )DOC";
1859
1766
 
1860
1767
  ONNX_OPERATOR_SET_SCHEMA(
1861
1768
  Atanh,
1862
- 9,
1769
+ 22,
1863
1770
  OpSchema()
1864
- .SetDoc(Atanh_ver9_doc)
1771
+ .SetDoc(Atanh_ver22_doc)
1865
1772
  .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
1866
1773
  .Output(
1867
1774
  0,
@@ -1873,10 +1780,7 @@ ONNX_OPERATOR_SET_SCHEMA(
1873
1780
  true,
1874
1781
  1,
1875
1782
  OpSchema::Differentiable)
1876
- .TypeConstraint(
1877
- "T",
1878
- {"tensor(float16)", "tensor(float)", "tensor(double)"},
1879
- "Constrain input and output types to float tensors.")
1783
+ .TypeConstraint("T", OpSchema::all_float_types_ir4(), "Constrain input and output types to float tensors.")
1880
1784
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
1881
1785
 
1882
1786
  static const char* Sign_ver13_doc = R"DOC(
@@ -2017,7 +1921,7 @@ ONNX_OPERATOR_SET_SCHEMA(
2017
1921
  .TypeAndShapeInferenceFunction(defs::math::utils::QLinearMatMulShapeInference));
2018
1922
 
2019
1923
  static const char* MatMulInteger_ver10_doc = R"DOC(
2020
- Matrix product that behaves like numpy.matmul: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html.
1924
+ Matrix product that behaves like [numpy.matmul](https://numpy.org/doc/stable/reference/generated/numpy.matmul.html).
2021
1925
  The production MUST never overflow. The accumulation may overflow if and only if in 32 bits.
2022
1926
  )DOC";
2023
1927
 
@@ -2154,7 +2058,7 @@ ONNX_OPERATOR_SET_SCHEMA(
2154
2058
  .TypeConstraint("T2", {"tensor(int32)", "tensor(int64)"}, "axis tensor can be int32 or int64 only")
2155
2059
  .TypeAndShapeInferenceFunction(ONNX_NAMESPACE::propagateShapeAndTypeFromFirstInput));
2156
2060
 
2157
- static const char* Round_ver11_doc = R"DOC(
2061
+ static const char* Round_ver22_doc = R"DOC(
2158
2062
  Round takes one input Tensor and rounds the values, element-wise, meaning
2159
2063
  it finds the nearest integer for each value.
2160
2064
  In case of halves, the rule is to round them to the nearest even integer.
@@ -2173,18 +2077,15 @@ round([-4.5]) = [-4.0]
2173
2077
 
2174
2078
  ONNX_OPERATOR_SET_SCHEMA(
2175
2079
  Round,
2176
- 11,
2080
+ 22,
2177
2081
  OpSchema()
2178
- .SetDoc(Round_ver11_doc)
2082
+ .SetDoc(Round_ver22_doc)
2179
2083
  .Input(0, "X", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::NonDifferentiable)
2180
2084
  .Output(0, "Y", "Output tensor", "T", OpSchema::Single, true, 1, OpSchema::NonDifferentiable)
2181
- .TypeConstraint(
2182
- "T",
2183
- {"tensor(float16)", "tensor(float)", "tensor(double)"},
2184
- "Constrain input and output types to float tensors.")
2085
+ .TypeConstraint("T", OpSchema::all_float_types_ir4(), "Constrain input and output types to float tensors.")
2185
2086
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
2186
2087
 
2187
- static const char* Det_ver11_doc = R"DOC(
2088
+ static const char* Det_ver22_doc = R"DOC(
2188
2089
  Det calculates determinant of a square matrix or batches of square matrices.
2189
2090
  Det takes one input tensor of shape `[*, M, M]`, where `*` is zero or more batch dimensions,
2190
2091
  and the inner-most 2 dimensions form square matrices.
@@ -2194,14 +2095,14 @@ e.g., When the input is 2-D, the output is a scalar(shape is empty: `[]`).
2194
2095
 
2195
2096
  ONNX_OPERATOR_SET_SCHEMA(
2196
2097
  Det,
2197
- 11,
2098
+ 22,
2198
2099
  OpSchema()
2199
- .SetDoc(Det_ver11_doc)
2100
+ .SetDoc(Det_ver22_doc)
2200
2101
  .Input(0, "X", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
2201
2102
  .Output(0, "Y", "Output tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
2202
2103
  .TypeConstraint(
2203
2104
  "T",
2204
- {"tensor(float16)", "tensor(float)", "tensor(double)"},
2105
+ OpSchema::all_float_types_ir4(),
2205
2106
  "Constrain input and output types to floating-point tensors.")
2206
2107
  .TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
2207
2108
  // Type inference
@@ -2235,111 +2136,7 @@ ONNX_OPERATOR_SET_SCHEMA(
2235
2136
  }
2236
2137
  }));
2237
2138
 
2238
- static const char* NegativeLogLikelihoodLoss_ver13_doc = R"DOC(
2239
- A NegativeLogLikelihoodLoss operator computes (weighted) negative log likelihood loss.
2240
- Its "input" tensor has the shape of (N, C, d1, d2, ..., dk) where k >= 0.
2241
- The "input" tensor contains log-probabilities for input[n, :, d_1, d_2,..., d_k] being in a class of [0, C).
2242
- The operator's "target" input tensor has the shape of (N, d1, d2, ..., dk). It encodes class labels (one of C classes)
2243
- or it may contain a special value (indicated by an attribute ignore_index) for N x d1 x d2 x ... x dk samples.
2244
- The loss value for input[n, :, d_1, d_2,...d_k] being classified as class c = target[n][d_1][d_2]...[d_k] is computed as:
2245
-
2246
- ```
2247
- loss[n][d_1][d_2]...[d_k] = -input[n][c][d_1][d_2]...[d_k].
2248
- ```
2249
-
2250
- When an optional "weight" is provided, the sample loss is calculated as:
2251
-
2252
- ```
2253
- loss[n][d_1][d_2]...[d_k] = -input[n][c][d_1][d_2]...[d_k] * weight[c].
2254
- ```
2255
-
2256
- loss is zero for the case when target-value equals ignore_index.
2257
-
2258
- ```
2259
- loss[n][d_1][d_2]...[d_k] = 0, when target[n][d_1][d_2]...[d_k] = ignore_index
2260
- ```
2261
-
2262
- If "reduction" attribute is set to "none", the operator's output will be the above loss with shape (N, d1, d2, ..., dk).
2263
- If "reduction" attribute is set to "mean" (the default attribute value), the output loss is (weight) averaged:
2264
-
2265
- ```
2266
- mean(loss), if "weight" is not provided,
2267
- ```
2268
-
2269
- or if weight is provided,
2270
-
2271
- ```
2272
- sum(loss) / sum(weight[target[n][d_1][d_2]...[d_k]]]), for all samples.
2273
- ```
2274
-
2275
- If "reduction" attribute is set to "sum", the output is a scalar: `sum(loss)`.
2276
-
2277
- See also https://pytorch.org/docs/stable/nn.html#torch.nn.NLLLoss.
2278
-
2279
- Example 1:
2280
-
2281
- ```
2282
- // negative log likelihood loss, "none" reduction
2283
- N, C, d1 = 2, 3, 2
2284
- input = [[[1.0, 2.0], [2.0, 2.0], [3.0, 2.0]],
2285
- [[0.0, 1.0], [2.0, 2.0], [1.0, 2]]]
2286
- target = [[2, 1], [0, 2]]
2287
-
2288
- loss = np.zeros((N, d1))
2289
- for n in range(N):
2290
- for d_1 in range(d1):
2291
- c = target[n][d_1]
2292
- loss[n][d_1] = -input[n][c][d_1]
2293
-
2294
- // print(loss)
2295
- // [[-3. -2.]
2296
- // [-0. -2.]]
2297
- ```
2298
-
2299
- Example 2:
2300
-
2301
- ```
2302
- // weighted negative log likelihood loss, sum reduction
2303
- N, C, d1 = 2, 3, 2
2304
- input = [[[1.0, 2.0], [2.0, 2.0], [3.0, 2.0]],
2305
- [[0.0, 1.0], [2.0, 2.0], [1.0, 2]]]
2306
- target = [[2, 1], [0, 2]]
2307
- weight = [0.2, 0.3, 0.1]
2308
- loss = np.zeros((N, d1))
2309
- for n in range(N):
2310
- for d_1 in range(d1):
2311
- c = target[n][d_1]
2312
- loss[n][d_1] = -input[n][c][d_1] * weight[c]
2313
-
2314
- loss = np.sum(loss)
2315
- // print(loss)
2316
- // -1.1
2317
- ```
2318
-
2319
- Example 3:
2320
-
2321
- ```
2322
- // weighted negative log likelihood loss, mean reduction
2323
- N, C, d1 = 2, 3, 2
2324
- input = [[[1.0, 2.0], [2.0, 2.0], [3.0, 2.0]],
2325
- [[0.0, 1.0], [2.0, 2.0], [1.0, 2]]]
2326
- target = [[2, 1], [0, 2]]
2327
- weight = [0.2, 0.3, 0.1]
2328
- loss = np.zeros((N, d1))
2329
- weight_total = 0
2330
- for n in range(N):
2331
- for d_1 in range(d1):
2332
- c = target[n][d_1]
2333
- loss[n][d_1] = -input[n][c][d_1] * weight[c]
2334
- weight_total = weight_total + weight[c]
2335
-
2336
- loss = np.sum(loss) / weight_total
2337
- // print(loss)
2338
- // -1.57
2339
- ```
2340
- )DOC";
2341
-
2342
- bool BuildContextDependentFunctionBody(
2139
+ static bool BuildContextDependentFunctionBody(
2343
2140
  const FunctionBodyBuildContext& ctx,
2344
2141
  const OpSchema& schema,
2345
2142
  FunctionProto& functionProto) {
@@ -2451,11 +2248,115 @@ bool BuildContextDependentFunctionBody(
2451
2248
  return true;
2452
2249
  }
2453
2250
 
2251
+ static const char* NegativeLogLikelihoodLoss_ver22_doc = R"DOC(
2252
+ A NegativeLogLikelihoodLoss operator computes (weighted) negative log likelihood loss.
2253
+ Its "input" tensor has the shape of (N, C, d1, d2, ..., dk) where k >= 0.
2254
+ The "input" tensor contains log-probabilities for input[n, :, d_1, d_2,..., d_k] being in a class of [0, C).
2255
+ The operator's "target" input tensor has the shape of (N, d1, d2, ..., dk). It encodes class labels (one of C classes)
2256
+ or it may contain a special value (indicated by an attribute ignore_index) for N x d1 x d2 x ... x dk samples.
2257
+ The loss value for input[n, :, d_1, d_2,...d_k] being classified as class c = target[n][d_1][d_2]...[d_k] is computed as:
2258
+
2259
+ ```
2260
+ loss[n][d_1][d_2]...[d_k] = -input[n][c][d_1][d_2]...[d_k].
2261
+ ```
2262
+
2263
+ When an optional "weight" is provided, the sample loss is calculated as:
2264
+
2265
+ ```
2266
+ loss[n][d_1][d_2]...[d_k] = -input[n][c][d_1][d_2]...[d_k] * weight[c].
2267
+ ```
2268
+
2269
+ loss is zero for the case when target-value equals ignore_index.
2270
+
2271
+ ```
2272
+ loss[n][d_1][d_2]...[d_k] = 0, when target[n][d_1][d_2]...[d_k] = ignore_index
2273
+ ```
2274
+
2275
+ If "reduction" attribute is set to "none", the operator's output will be the above loss with shape (N, d1, d2, ..., dk).
2276
+ If "reduction" attribute is set to "mean" (the default attribute value), the output loss is (weight) averaged:
2277
+
2278
+ ```
2279
+ mean(loss), if "weight" is not provided,
2280
+ ```
2281
+
2282
+ or if weight is provided,
2283
+
2284
+ ```
2285
+ sum(loss) / sum(weight[target[n][d_1][d_2]...[d_k]]]), for all samples.
2286
+ ```
2287
+
2288
+ If "reduction" attribute is set to "sum", the output is a scalar: `sum(loss)`.
2289
+
2290
+ See also https://pytorch.org/docs/stable/nn.html#torch.nn.NLLLoss.
2291
+
2292
+ Example 1:
2293
+
2294
+ ```
2295
+ // negative log likelihood loss, "none" reduction
2296
+ N, C, d1 = 2, 3, 2
2297
+ input = [[[1.0, 2.0], [2.0, 2.0], [3.0, 2.0]],
2298
+ [[0.0, 1.0], [2.0, 2.0], [1.0, 2]]]
2299
+ target = [[2, 1], [0, 2]]
2300
+
2301
+ loss = np.zeros((N, d1))
2302
+ for n in range(N):
2303
+ for d_1 in range(d1):
2304
+ c = target[n][d_1]
2305
+ loss[n][d_1] = -input[n][c][d_1]
2306
+
2307
+ // print(loss)
2308
+ // [[-3. -2.]
2309
+ // [-0. -2.]]
2310
+ ```
2311
+
2312
+ Example 2:
2313
+
2314
+ ```
2315
+ // weighted negative log likelihood loss, sum reduction
2316
+ N, C, d1 = 2, 3, 2
2317
+ input = [[[1.0, 2.0], [2.0, 2.0], [3.0, 2.0]],
2318
+ [[0.0, 1.0], [2.0, 2.0], [1.0, 2]]]
2319
+ target = [[2, 1], [0, 2]]
2320
+ weight = [0.2, 0.3, 0.1]
2321
+ loss = np.zeros((N, d1))
2322
+ for n in range(N):
2323
+ for d_1 in range(d1):
2324
+ c = target[n][d_1]
2325
+ loss[n][d_1] = -input[n][c][d_1] * weight[c]
2326
+
2327
+ loss = np.sum(loss)
2328
+ // print(loss)
2329
+ // -1.1
2330
+ ```
2331
+
2332
+ Example 3:
2333
+
2334
+ ```
2335
+ // weighted negative log likelihood loss, mean reduction
2336
+ N, C, d1 = 2, 3, 2
2337
+ input = [[[1.0, 2.0], [2.0, 2.0], [3.0, 2.0]],
2338
+ [[0.0, 1.0], [2.0, 2.0], [1.0, 2]]]
2339
+ target = [[2, 1], [0, 2]]
2340
+ weight = [0.2, 0.3, 0.1]
2341
+ loss = np.zeros((N, d1))
2342
+ weight_total = 0
2343
+ for n in range(N):
2344
+ for d_1 in range(d1):
2345
+ c = target[n][d_1]
2346
+ loss[n][d_1] = -input[n][c][d_1] * weight[c]
2347
+ weight_total = weight_total + weight[c]
2348
+
2349
+ loss = np.sum(loss) / weight_total
2350
+ // print(loss)
2351
+ // -1.57
2352
+ ```
2353
+ )DOC";
2354
+
2454
2355
  ONNX_OPERATOR_SET_SCHEMA(
2455
2356
  NegativeLogLikelihoodLoss,
2456
- 13,
2357
+ 22,
2457
2358
  OpSchema()
2458
- .SetDoc(NegativeLogLikelihoodLoss_ver13_doc)
2359
+ .SetDoc(NegativeLogLikelihoodLoss_ver22_doc)
2459
2360
  .Input(
2460
2361
  0,
2461
2362
  "input",
@@ -2502,7 +2403,7 @@ ONNX_OPERATOR_SET_SCHEMA(
2502
2403
  false)
2503
2404
  .TypeConstraint(
2504
2405
  "T",
2505
- {"tensor(float16)", "tensor(float)", "tensor(double)"},
2406
+ OpSchema::all_float_types_ir4(),
2506
2407
  "Constrain input, weight, and output types to floating-point tensors.")
2507
2408
  .TypeConstraint("Tind", {"tensor(int32)", "tensor(int64)"}, "Constrain target to integer types")
2508
2409
  .SetContextDependentFunctionBodyBuilder(BuildContextDependentFunctionBody)
@@ -2519,10 +2420,14 @@ ONNX_OPERATOR_SET_SCHEMA(
2519
2420
  const int target_rank = static_cast<int>(target_shape.dim_size());
2520
2421
 
2521
2422
  if (input_rank < 2) {
2522
- fail_shape_inference("Input rank must be >= 2.")
2423
+ fail_shape_inference("Input rank must be >= 2. input_rank=", input_rank);
2523
2424
  }
2524
2425
  if (target_rank != input_rank - 1) {
2525
- fail_shape_inference("Target rank must be 1 less than the input rank.");
2426
+ fail_shape_inference(
2427
+ "Target rank must be 1 less than the input rank. input_rank=",
2428
+ input_rank,
2429
+ ", target_rank=",
2430
+ target_rank);
2526
2431
  }
2527
2432
 
2528
2433
  // match input dimensions (N, C, d1, ..., dk) with target
@@ -2532,13 +2437,18 @@ ONNX_OPERATOR_SET_SCHEMA(
2532
2437
  const auto target_dim = target_shape.dim(dim);
2533
2438
  if (input_dim.has_dim_value() && target_dim.has_dim_value() &&
2534
2439
  input_dim.dim_value() != target_dim.dim_value())
2535
- fail_shape_inference("Input and target dimension value mismatch.");
2440
+ fail_shape_inference(
2441
+ "Input and target dimension value mismatch. input_dim_value=",
2442
+ input_dim.dim_value(),
2443
+ " target_dim_value=",
2444
+ target_dim.dim_value());
2536
2445
  }
2537
2446
 
2538
2447
  if (ctx.getNumInputs() == 3 && hasInputShape(ctx, 2)) {
2539
2448
  const TensorShapeProto& weight_shape = ctx.getInputType(2)->tensor_type().shape();
2540
- if (weight_shape.dim_size() != 1) {
2541
- fail_shape_inference("Weight rank must be 1.");
2449
+ const auto weight_rank = weight_shape.dim_size();
2450
+ if (weight_rank != 1) {
2451
+ fail_shape_inference("Weight rank must be 1. weight_rank=", weight_rank);
2542
2452
  }
2543
2453
  }
2544
2454
 
@@ -2559,17 +2469,17 @@ ONNX_OPERATOR_SET_SCHEMA(
2559
2469
  }
2560
2470
  }));
2561
2471
 
2562
- void einsumRankInference(ONNX_NAMESPACE::InferenceContext& ctx, std::string equation) {
2563
- const size_t numInputs = ctx.getNumInputs();
2564
- if (numInputs < 1 || !hasNInputShapes(ctx, static_cast<int>(numInputs))) {
2472
+ static void einsumShapeInference(ONNX_NAMESPACE::InferenceContext& ctx, std::string const& equation) {
2473
+ // Only accept letters for indices
2474
+ auto is_letter = [](char c) { return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'); };
2475
+
2476
+ const size_t num_inputs = ctx.getNumInputs();
2477
+ if (num_inputs < 1 || !hasNInputShapes(ctx, num_inputs)) {
2565
2478
  return;
2566
2479
  }
2567
-
2568
- auto* output_shape = getOutputShape(ctx, 0);
2480
+ ONNX_NAMESPACE::TensorShapeProto output_shape;
2569
2481
  std::string left_equation;
2570
2482
 
2571
- equation.erase(std::remove(equation.begin(), equation.end(), ' '),
2572
- equation.end()); // Remove space char
2573
2483
  auto mid_index = equation.find("->");
2574
2484
  if (mid_index != std::string::npos) {
2575
2485
  // Separate right and left hand sides of the equation
@@ -2586,73 +2496,130 @@ void einsumRankInference(ONNX_NAMESPACE::InferenceContext& ctx, std::string equa
2586
2496
 
2587
2497
  // Parse the left-hand side
2588
2498
  std::stringstream str(left_equation);
2499
+ std::map<char, size_t> label_maps;
2500
+ std::unordered_set<char> repeated_labels;
2501
+ ONNX_NAMESPACE::TensorShapeProto dims_value, ellipsis_dims_value;
2502
+ size_t num_labels = 0;
2503
+ bool ellipsis_flag = true;
2504
+
2589
2505
  while (!str.eof()) {
2590
2506
  std::getline(str, term, ',');
2591
2507
  auto ellipsis_index = term.find("...");
2592
- if (numInputs <= num_operands) {
2508
+ if (num_inputs <= num_operands) {
2593
2509
  fail_shape_inference("Number of input tensors does not match the operands in the equation.");
2594
2510
  }
2595
- size_t rank = ctx.getInputType(num_operands)->tensor_type().shape().dim_size();
2511
+ const auto& shape = ctx.getInputType(num_operands)->tensor_type().shape();
2512
+ size_t rank = shape.dim_size();
2513
+ size_t ellipsis_dims = 0;
2514
+
2515
+ size_t term_size = 0; // number of legal indices for the current term
2516
+ size_t num_illegal_char = 0; // number of illegal char before the current 'index' in the current term
2517
+
2518
+ for (char index : term) {
2519
+ if (is_letter(index)) {
2520
+ term_size += 1;
2521
+ }
2522
+ }
2523
+
2524
+ for (size_t index = 0; index < term.size(); ++index) {
2525
+ if (index == ellipsis_index) {
2526
+ // find ellipsis and record the dims represented by ellipsis
2527
+ ellipsis_dims = rank - term_size;
2528
+ if (ellipsis_flag) {
2529
+ ellipsis_flag = false;
2530
+ for (size_t i = 0; i < ellipsis_dims; i++) {
2531
+ *ellipsis_dims_value.add_dim() = shape.dim(index + i - num_illegal_char);
2532
+ }
2533
+ } else {
2534
+ for (size_t i = 0; i < ellipsis_dims; i++) {
2535
+ const auto shape_dim = shape.dim(index + i - num_illegal_char);
2536
+ const auto current_dim = ellipsis_dims_value.mutable_dim(i);
2537
+ if (shape_dim.has_dim_value() && current_dim->has_dim_value() &&
2538
+ shape_dim.dim_value() > current_dim->dim_value() && current_dim->dim_value() == 1) {
2539
+ current_dim->set_dim_value(shape_dim.dim_value());
2540
+ }
2541
+ }
2542
+ }
2543
+ index += 2; // skip the rest of dots
2544
+ num_illegal_char += 3;
2545
+ continue;
2546
+
2547
+ } else if (!is_letter(term[index])) {
2548
+ num_illegal_char += 1;
2549
+ continue;
2550
+ }
2551
+
2552
+ const auto inserted = label_maps.emplace(term[index], num_labels).second;
2553
+ if (inserted) {
2554
+ *dims_value.add_dim() = shape.dim(index + ellipsis_dims - num_illegal_char);
2555
+ ++num_labels;
2556
+ } else {
2557
+ repeated_labels.insert(term[index]);
2558
+ }
2559
+ }
2560
+
2596
2561
  if (ellipsis_index != std::string::npos) {
2597
2562
  // If there is an ellipsis, the number of dimensions it represents
2598
2563
  // must be total dim - letter dimensions
2599
2564
  if (num_ellipsis == 0) {
2600
- if (rank + 3 < term.size()) {
2565
+ if (rank < term_size) {
2601
2566
  fail_shape_inference("Ellipsis represents incompatible dimensions.");
2602
2567
  }
2603
- num_ellipsis_indices = rank - term.size() + 3;
2568
+ num_ellipsis_indices = rank - term_size;
2604
2569
  } else { // ellipsis has been seen before. Check that if dimensions
2605
2570
  // are compatible
2606
- if (num_ellipsis_indices != rank - term.size() + 3) {
2571
+ if (num_ellipsis_indices != rank - term_size) {
2607
2572
  fail_shape_inference("Ellipsis represents incompatible dimensions.");
2608
2573
  }
2609
2574
  }
2610
2575
  num_ellipsis++;
2611
2576
  } else {
2612
- if (rank != term.size()) {
2577
+ if (rank != term_size) {
2613
2578
  fail_shape_inference("Rank of input ", num_operands, " does not match the equation indices.");
2614
2579
  }
2615
2580
  }
2616
2581
  num_operands++;
2617
2582
  }
2618
2583
 
2619
- if (numInputs != num_operands) {
2584
+ if (num_inputs != num_operands) {
2620
2585
  fail_shape_inference("Number of input tensors does not match the operands in the equation.");
2621
2586
  }
2622
2587
 
2623
- const size_t number_of_letters = 26;
2624
- size_t num_letter_occurrences[number_of_letters] = {0};
2625
2588
  // Parse the provided right-hand side
2626
2589
  if (mid_index != std::string::npos) {
2627
2590
  std::string right_equation = equation.substr(mid_index + 2);
2628
2591
  auto right_ellipsis_index = right_equation.find("...");
2629
- if (right_ellipsis_index != std::string::npos) { // Right-hand side contains ellipsis
2630
- for (size_t i = 0; i < num_ellipsis_indices; ++i) {
2631
- output_shape->add_dim();
2592
+
2593
+ for (size_t index = 0; index < right_equation.size(); ++index) {
2594
+ // If there's an ellipsis, add its corresponding dimensions
2595
+ if (index == right_ellipsis_index) {
2596
+ for (size_t i = 0; i < num_ellipsis_indices; i++) {
2597
+ *output_shape.add_dim() = ellipsis_dims_value.dim(i);
2598
+ }
2599
+ index += 2; // skip the rest of dots
2600
+ continue;
2632
2601
  }
2633
- }
2634
- for (char c : right_equation) { // Add a dimension per each character
2635
- // in right hand equation
2636
- if (c != '.') {
2637
- output_shape->add_dim();
2602
+
2603
+ if (is_letter(right_equation[index])) {
2604
+ *output_shape.add_dim() = dims_value.dim(label_maps[right_equation[index]]);
2638
2605
  }
2639
2606
  }
2640
2607
  } else { // Infer the dimension for right-hand side
2641
- // If there's an ellipsis, add it's corresponding dimensions
2608
+ // If there's an ellipsis, add its corresponding dimensions
2642
2609
  for (size_t i = 0; i < num_ellipsis_indices; i++) {
2643
- output_shape->add_dim();
2610
+ *output_shape.add_dim() = ellipsis_dims_value.dim(i);
2644
2611
  }
2645
- for (size_t i = 0; i < left_equation.size(); i++) { // Count chars that appear exactly once on left hand side
2646
- if ((left_equation.at(i) != ',') && (left_equation.at(i) != '.')) {
2647
- num_letter_occurrences[left_equation.at(i) - 'a']++;
2648
- }
2649
- }
2650
- for (size_t index = 0; index < number_of_letters; index++) {
2651
- if (num_letter_occurrences[index] == 1) {
2652
- output_shape->add_dim();
2612
+ // If no explicit output was given, generate an implicit output by ordering all the
2613
+ // labels in alphabetic order (by ASCII value consistent with numpy, so Z < a).
2614
+ // Exclude any labels that occurred more than once, as these cancel out.
2615
+ for (auto i : label_maps) {
2616
+ if (repeated_labels.count(i.first) == 0) {
2617
+ *output_shape.add_dim() = dims_value.dim(i.second);
2653
2618
  }
2654
2619
  }
2655
2620
  }
2621
+
2622
+ updateOutputShape(ctx, 0, output_shape);
2656
2623
  }
2657
2624
 
2658
2625
  static const char* Einsum_ver12_doc = R"DOC(
@@ -2699,13 +2666,16 @@ ONNX_OPERATOR_SET_SCHEMA(
2699
2666
  // Type inference
2700
2667
  propagateElemTypeFromInputToOutput(ctx, 0, 0);
2701
2668
  std::string equation = getAttribute(ctx, "equation", "");
2702
- if (equation.compare("") == 0) {
2669
+ if (equation.empty()) {
2703
2670
  return;
2704
2671
  }
2705
- einsumRankInference(ctx, equation);
2672
+
2673
+ equation.erase(std::remove(equation.begin(), equation.end(), ' '),
2674
+ equation.end()); // Remove space char
2675
+ einsumShapeInference(ctx, equation);
2706
2676
  }));
2707
2677
 
2708
- const char* reduction_doc_sce =
2678
+ static const char* reduction_doc_sce =
2709
2679
  "Type of reduction to apply to loss: none, sum, mean(default). "
2710
2680
  "'none': no reduction will be applied, "
2711
2681
  "'sum': the output will be summed. "
@@ -2755,7 +2725,7 @@ Finally, L is optionally reduced:
2755
2725
  where tensor W is of shape `(N, D1, D2, ..., Dk)` and `W[n][d1][d2]...[dk] = weights[labels[i][d1][d2]...[dk]]`.
2756
2726
  )DOC";
2757
2727
 
2758
- bool BuildContextDependentFunctionBodySCE(
2728
+ static bool BuildContextDependentFunctionBodySCE(
2759
2729
  const FunctionBodyBuildContext& ctx,
2760
2730
  const OpSchema& schema,
2761
2731
  FunctionProto& functionProto) {
@@ -2866,7 +2836,7 @@ ONNX_OPERATOR_SET_SCHEMA(
2866
2836
  .TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
2867
2837
  propagateElemTypeFromInputToOutput(ctx, 0, 0);
2868
2838
  std::string reduction = getAttribute(ctx, "reduction", "mean");
2869
- if (reduction.compare("none") == 0) {
2839
+ if (reduction == "none") {
2870
2840
  if (hasInputShape(ctx, 1)) {
2871
2841
  propagateShapeFromInputToOutput(ctx, 1, 0);
2872
2842
  }
@@ -3037,6 +3007,7 @@ ONNX_OPERATOR_SET_SCHEMA(
3037
3007
  axis = defs::math::utils::GetScalarValueFromTensor<int64_t>(axis_tensor);
3038
3008
  }
3039
3009
 
3010
+ // NOLINTNEXTLINE(readability-simplify-boolean-expr)
3040
3011
  if (!(-rank <= axis && axis != -1 && axis < rank - 1)) {
3041
3012
  fail_shape_inference(
3042
3013
  "axis attribute value ",
@@ -3090,7 +3061,7 @@ ONNX_OPERATOR_SET_SCHEMA(
3090
3061
  updateOutputShape(ctx, output_index, result_shape_proto);
3091
3062
  }));
3092
3063
 
3093
- std::function<void(OpSchema&)> CosineSumWindowOpDocGenerator(const char* name) {
3064
+ static std::function<void(OpSchema&)> CosineSumWindowOpDocGenerator(const char* name) {
3094
3065
  return [=](OpSchema& schema) {
3095
3066
  std::string doc;
3096
3067
  POPULATE_OP_DOC_STR(doc = R"DOC(
@@ -3480,6 +3451,9 @@ ONNX_OPERATOR_SET_SCHEMA(
3480
3451
  }
3481
3452
 
3482
3453
  auto& input_shape = getInputShape(ctx, 0);
3454
+ if (input_shape.dim_size() < 2) {
3455
+ fail_shape_inference("First input should have at least 2 dimensions in ", ctx.getDisplayName(), ".");
3456
+ }
3483
3457
  auto signal_dim = input_shape.dim(1);
3484
3458
  if (!signal_dim.has_dim_value()) {
3485
3459
  return;