onnx 1.13.0__cp310-cp310-win32.whl → 1.14.0__cp310-cp310-win32.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of onnx might be problematic. Click here for more details.
- onnx/__init__.py +116 -70
- onnx/backend/__init__.py +2 -0
- onnx/backend/base.py +3 -0
- onnx/backend/sample/__init__.py +2 -0
- onnx/backend/sample/ops/__init__.py +8 -6
- onnx/backend/sample/ops/abs.py +1 -1
- onnx/backend/test/__init__.py +4 -1
- onnx/backend/test/case/__init__.py +4 -2
- onnx/backend/test/case/base.py +2 -0
- onnx/backend/test/case/model/__init__.py +8 -9
- onnx/backend/test/case/model/expand.py +4 -3
- onnx/backend/test/case/model/gradient.py +4 -3
- onnx/backend/test/case/model/sequence.py +4 -3
- onnx/backend/test/case/model/shrink.py +4 -4
- onnx/backend/test/case/model/sign.py +4 -3
- onnx/backend/test/case/model/single-relu.py +4 -4
- onnx/backend/test/case/model/stringnormalizer.py +4 -3
- onnx/backend/test/case/node/__init__.py +18 -12
- onnx/backend/test/case/node/abs.py +4 -3
- onnx/backend/test/case/node/acos.py +4 -3
- onnx/backend/test/case/node/acosh.py +4 -3
- onnx/backend/test/case/node/adagrad.py +4 -3
- onnx/backend/test/case/node/adam.py +4 -3
- onnx/backend/test/case/node/add.py +4 -3
- onnx/backend/test/case/node/ai_onnx_ml/__init__.py +0 -0
- onnx/backend/test/case/node/ai_onnx_ml/array_feature_extractor.py +30 -0
- onnx/backend/test/case/node/ai_onnx_ml/binarizer.py +27 -0
- onnx/backend/test/case/node/and.py +4 -3
- onnx/backend/test/case/node/argmax.py +6 -7
- onnx/backend/test/case/node/argmin.py +6 -7
- onnx/backend/test/case/node/asin.py +4 -3
- onnx/backend/test/case/node/asinh.py +4 -3
- onnx/backend/test/case/node/atan.py +4 -3
- onnx/backend/test/case/node/atanh.py +4 -3
- onnx/backend/test/case/node/averagepool.py +43 -4
- onnx/backend/test/case/node/batchnorm.py +4 -3
- onnx/backend/test/case/node/bernoulli.py +8 -7
- onnx/backend/test/case/node/bitshift.py +4 -3
- onnx/backend/test/case/node/bitwiseand.py +13 -11
- onnx/backend/test/case/node/bitwisenot.py +8 -6
- onnx/backend/test/case/node/bitwiseor.py +13 -11
- onnx/backend/test/case/node/bitwisexor.py +13 -11
- onnx/backend/test/case/node/blackmanwindow.py +4 -4
- onnx/backend/test/case/node/cast.py +218 -8
- onnx/backend/test/case/node/castlike.py +106 -12
- onnx/backend/test/case/node/ceil.py +4 -3
- onnx/backend/test/case/node/celu.py +4 -3
- onnx/backend/test/case/node/center_crop_pad.py +26 -3
- onnx/backend/test/case/node/clip.py +4 -3
- onnx/backend/test/case/node/col2im.py +5 -4
- onnx/backend/test/case/node/compress.py +4 -3
- onnx/backend/test/case/node/concat.py +4 -3
- onnx/backend/test/case/node/constant.py +4 -3
- onnx/backend/test/case/node/constantofshape.py +4 -3
- onnx/backend/test/case/node/conv.py +4 -6
- onnx/backend/test/case/node/convinteger.py +4 -5
- onnx/backend/test/case/node/convtranspose.py +4 -3
- onnx/backend/test/case/node/cos.py +4 -3
- onnx/backend/test/case/node/cosh.py +4 -3
- onnx/backend/test/case/node/cumsum.py +4 -3
- onnx/backend/test/case/node/deformconv.py +170 -0
- onnx/backend/test/case/node/depthtospace.py +4 -3
- onnx/backend/test/case/node/dequantizelinear.py +46 -3
- onnx/backend/test/case/node/det.py +4 -3
- onnx/backend/test/case/node/dft.py +4 -4
- onnx/backend/test/case/node/div.py +4 -3
- onnx/backend/test/case/node/dropout.py +4 -4
- onnx/backend/test/case/node/dynamicquantizelinear.py +4 -3
- onnx/backend/test/case/node/einsum.py +4 -4
- onnx/backend/test/case/node/elu.py +4 -3
- onnx/backend/test/case/node/equal.py +28 -3
- onnx/backend/test/case/node/erf.py +4 -3
- onnx/backend/test/case/node/exp.py +4 -3
- onnx/backend/test/case/node/expand.py +4 -3
- onnx/backend/test/case/node/eyelike.py +4 -3
- onnx/backend/test/case/node/flatten.py +4 -3
- onnx/backend/test/case/node/floor.py +4 -3
- onnx/backend/test/case/node/gather.py +4 -3
- onnx/backend/test/case/node/gatherelements.py +4 -3
- onnx/backend/test/case/node/gathernd.py +5 -4
- onnx/backend/test/case/node/gemm.py +4 -3
- onnx/backend/test/case/node/globalaveragepool.py +4 -4
- onnx/backend/test/case/node/globalmaxpool.py +4 -5
- onnx/backend/test/case/node/greater.py +4 -3
- onnx/backend/test/case/node/greater_equal.py +4 -3
- onnx/backend/test/case/node/gridsample.py +4 -3
- onnx/backend/test/case/node/groupnormalization.py +5 -4
- onnx/backend/test/case/node/gru.py +10 -9
- onnx/backend/test/case/node/hammingwindow.py +4 -4
- onnx/backend/test/case/node/hannwindow.py +4 -4
- onnx/backend/test/case/node/hardmax.py +4 -3
- onnx/backend/test/case/node/hardsigmoid.py +4 -3
- onnx/backend/test/case/node/hardswish.py +4 -3
- onnx/backend/test/case/node/identity.py +4 -3
- onnx/backend/test/case/node/if.py +4 -3
- onnx/backend/test/case/node/instancenorm.py +4 -3
- onnx/backend/test/case/node/isinf.py +4 -3
- onnx/backend/test/case/node/isnan.py +4 -3
- onnx/backend/test/case/node/layernormalization.py +4 -3
- onnx/backend/test/case/node/leakyrelu.py +4 -3
- onnx/backend/test/case/node/less.py +4 -3
- onnx/backend/test/case/node/less_equal.py +4 -3
- onnx/backend/test/case/node/log.py +4 -3
- onnx/backend/test/case/node/logsoftmax.py +4 -3
- onnx/backend/test/case/node/loop.py +4 -3
- onnx/backend/test/case/node/lppool.py +279 -0
- onnx/backend/test/case/node/lrn.py +4 -3
- onnx/backend/test/case/node/lstm.py +10 -9
- onnx/backend/test/case/node/matmul.py +4 -3
- onnx/backend/test/case/node/matmulinteger.py +4 -3
- onnx/backend/test/case/node/max.py +5 -4
- onnx/backend/test/case/node/maxpool.py +9 -4
- onnx/backend/test/case/node/maxunpool.py +4 -3
- onnx/backend/test/case/node/mean.py +4 -3
- onnx/backend/test/case/node/meanvariancenormalization.py +4 -3
- onnx/backend/test/case/node/melweightmatrix.py +4 -4
- onnx/backend/test/case/node/min.py +5 -4
- onnx/backend/test/case/node/mish.py +4 -3
- onnx/backend/test/case/node/mod.py +4 -3
- onnx/backend/test/case/node/momentum.py +4 -3
- onnx/backend/test/case/node/mul.py +4 -3
- onnx/backend/test/case/node/neg.py +4 -3
- onnx/backend/test/case/node/negativeloglikelihoodloss.py +4 -3
- onnx/backend/test/case/node/nonmaxsuppression.py +4 -3
- onnx/backend/test/case/node/nonzero.py +4 -3
- onnx/backend/test/case/node/not.py +4 -3
- onnx/backend/test/case/node/onehot.py +5 -4
- onnx/backend/test/case/node/optionalgetelement.py +4 -3
- onnx/backend/test/case/node/optionalhaselement.py +4 -3
- onnx/backend/test/case/node/or.py +4 -3
- onnx/backend/test/case/node/pad.py +36 -5
- onnx/backend/test/case/node/pool_op_common.py +20 -2
- onnx/backend/test/case/node/pow.py +4 -3
- onnx/backend/test/case/node/prelu.py +4 -3
- onnx/backend/test/case/node/qlinearconv.py +4 -3
- onnx/backend/test/case/node/qlinearmatmul.py +4 -3
- onnx/backend/test/case/node/quantizelinear.py +50 -3
- onnx/backend/test/case/node/rangeop.py +4 -3
- onnx/backend/test/case/node/reciprocal.py +4 -3
- onnx/backend/test/case/node/reduce_log_sum.py +4 -3
- onnx/backend/test/case/node/reduce_log_sum_exp.py +4 -3
- onnx/backend/test/case/node/reducel1.py +4 -3
- onnx/backend/test/case/node/reducel2.py +4 -3
- onnx/backend/test/case/node/reducemax.py +4 -3
- onnx/backend/test/case/node/reducemean.py +4 -3
- onnx/backend/test/case/node/reducemin.py +4 -3
- onnx/backend/test/case/node/reduceprod.py +4 -3
- onnx/backend/test/case/node/reducesum.py +4 -3
- onnx/backend/test/case/node/reducesumsquare.py +4 -3
- onnx/backend/test/case/node/relu.py +4 -3
- onnx/backend/test/case/node/reshape.py +4 -3
- onnx/backend/test/case/node/resize.py +73 -321
- onnx/backend/test/case/node/reversesequence.py +4 -3
- onnx/backend/test/case/node/rnn.py +10 -9
- onnx/backend/test/case/node/roialign.py +193 -3
- onnx/backend/test/case/node/round.py +4 -3
- onnx/backend/test/case/node/scan.py +4 -3
- onnx/backend/test/case/node/scatter.py +4 -3
- onnx/backend/test/case/node/scatterelements.py +4 -3
- onnx/backend/test/case/node/scatternd.py +4 -4
- onnx/backend/test/case/node/selu.py +4 -3
- onnx/backend/test/case/node/sequence_map.py +4 -4
- onnx/backend/test/case/node/sequenceinsert.py +4 -3
- onnx/backend/test/case/node/shape.py +4 -3
- onnx/backend/test/case/node/shrink.py +4 -3
- onnx/backend/test/case/node/sigmoid.py +4 -3
- onnx/backend/test/case/node/sign.py +4 -3
- onnx/backend/test/case/node/sin.py +4 -3
- onnx/backend/test/case/node/sinh.py +4 -3
- onnx/backend/test/case/node/size.py +4 -3
- onnx/backend/test/case/node/slice.py +4 -3
- onnx/backend/test/case/node/softmax.py +4 -3
- onnx/backend/test/case/node/softmaxcrossentropy.py +4 -3
- onnx/backend/test/case/node/softplus.py +4 -3
- onnx/backend/test/case/node/softsign.py +4 -3
- onnx/backend/test/case/node/spacetodepth.py +6 -3
- onnx/backend/test/case/node/split.py +4 -3
- onnx/backend/test/case/node/splittosequence.py +79 -0
- onnx/backend/test/case/node/sqrt.py +4 -3
- onnx/backend/test/case/node/squeeze.py +2 -0
- onnx/backend/test/case/node/stft.py +4 -4
- onnx/backend/test/case/node/stringnormalizer.py +4 -4
- onnx/backend/test/case/node/sub.py +4 -3
- onnx/backend/test/case/node/sum.py +4 -3
- onnx/backend/test/case/node/tan.py +4 -3
- onnx/backend/test/case/node/tanh.py +4 -3
- onnx/backend/test/case/node/tfidfvectorizer.py +4 -3
- onnx/backend/test/case/node/thresholdedrelu.py +4 -3
- onnx/backend/test/case/node/tile.py +4 -3
- onnx/backend/test/case/node/topk.py +4 -3
- onnx/backend/test/case/node/transpose.py +8 -7
- onnx/backend/test/case/node/trilu.py +4 -3
- onnx/backend/test/case/node/unique.py +4 -3
- onnx/backend/test/case/node/unsqueeze.py +4 -3
- onnx/backend/test/case/node/upsample.py +4 -3
- onnx/backend/test/case/node/where.py +4 -3
- onnx/backend/test/case/node/xor.py +4 -3
- onnx/backend/test/case/test_case.py +2 -0
- onnx/backend/test/case/utils.py +10 -1
- onnx/backend/test/cmd_tools.py +22 -13
- onnx/backend/test/data/light/README.md +16 -0
- onnx/backend/test/data/light/light_bvlc_alexnet.onnx +0 -0
- onnx/backend/test/data/light/light_bvlc_alexnet_output_0.pb +1 -0
- onnx/backend/test/data/light/light_densenet121.onnx +0 -0
- onnx/backend/test/data/light/light_densenet121_output_0.pb +1 -0
- onnx/backend/test/data/light/light_inception_v1.onnx +0 -0
- onnx/backend/test/data/light/light_inception_v1_output_0.pb +1 -0
- onnx/backend/test/data/light/light_inception_v2.onnx +0 -0
- onnx/backend/test/data/light/light_inception_v2_output_0.pb +1 -0
- onnx/backend/test/data/light/light_resnet50.onnx +0 -0
- onnx/backend/test/data/light/light_resnet50_output_0.pb +1 -0
- onnx/backend/test/data/light/light_shufflenet.onnx +0 -0
- onnx/backend/test/data/light/light_shufflenet_output_0.pb +1 -0
- onnx/backend/test/data/light/light_squeezenet.onnx +0 -0
- onnx/backend/test/data/light/light_squeezenet_output_0.pb +1 -0
- onnx/backend/test/data/light/light_vgg19.onnx +0 -0
- onnx/backend/test/data/light/light_vgg19_output_0.pb +1 -0
- onnx/backend/test/data/light/light_zfnet512.onnx +0 -0
- onnx/backend/test/data/light/light_zfnet512_output_0.pb +1 -0
- onnx/backend/test/data/node/test_acos/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_acosh/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_ai_onnx_ml_array_feature_extractor/model.onnx +19 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_array_feature_extractor/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_array_feature_extractor/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_array_feature_extractor/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_binarizer/model.onnx +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_binarizer/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_binarizer/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_asin/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_asinh/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_atan/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_atanh/test_data_set_0/output_0.pb +2 -2
- onnx/backend/test/data/node/test_averagepool_1d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_ceil/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_dilations/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_dilations/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_dilations/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_pads/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_pads_count_include_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_precomputed_pads/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_precomputed_pads_count_include_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_precomputed_same_upper/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_precomputed_strides/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_same_lower/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_same_upper/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_strides/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_3d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_with_padding/model.onnx +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_with_padding/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_with_padding/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_with_padding/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_with_padding/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_without_padding/model.onnx +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_without_padding/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_without_padding/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_without_padding/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_without_padding/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_i16_3d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_i16_3d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_i16_3d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_i32_2d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_i32_2d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_i32_2d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_ui64_bcast_3v1d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_ui64_bcast_3v1d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_ui64_bcast_3v1d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_ui8_bcast_4v3d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_ui8_bcast_4v3d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_ui8_bcast_4v3d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_not_2d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_not_2d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_not_3d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_not_3d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_not_4d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_not_4d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_i16_4d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_i16_4d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_i16_4d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_i32_2d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_i32_2d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_i32_2d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_ui64_bcast_3v1d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_ui64_bcast_3v1d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_ui64_bcast_3v1d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_ui8_bcast_4v3d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_ui8_bcast_4v3d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_ui8_bcast_4v3d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_i16_3d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_i16_3d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_i16_3d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_i32_2d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_i32_2d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_i32_2d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_ui64_bcast_3v1d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_ui64_bcast_3v1d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_ui64_bcast_3v1d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_ui8_bcast_4v3d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_ui8_bcast_4v3d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_ui8_bcast_4v3d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_BFLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_BFLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_STRING/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_STRING_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc/model.onnx +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_col2im_pads/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_constant/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/input_3.pb +1 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_cosh/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_cosh_example/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_mask_bias/model.onnx +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/model.onnx +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e5m2/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e5m2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e5m2/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e5m2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_edge_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_equal/model.onnx +0 -0
- onnx/backend/test/data/node/test_equal_bcast/model.onnx +0 -0
- onnx/backend/test/data/node/test_equal_string/model.onnx +0 -0
- onnx/backend/test/data/node/test_equal_string/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_equal_string/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_equal_string/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_equal_string_broadcast/model.onnx +0 -0
- onnx/backend/test/data/node/test_equal_string_broadcast/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_equal_string_broadcast/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_equal_string_broadcast/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_identity/model.onnx +0 -0
- onnx/backend/test/data/node/test_identity_sequence/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_1d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_1d_default/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_lppool_1d_default/test_data_set_0/output_0.pb +2 -0
- onnx/backend/test/data/node/test_lppool_2d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_default/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_default/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_dilations/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_dilations/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_dilations/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_lppool_2d_pads/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_pads/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_pads/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_same_lower/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_same_lower/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_same_lower/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_same_upper/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_same_upper/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_same_upper/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_strides/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_strides/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_strides/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_3d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_3d_default/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_3d_default/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_mish/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_mish_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_reflect_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_allowzero_reordered/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_extended_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_negative_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_negative_extended_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_one_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reduced_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reordered_all_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reordered_last_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_zero_and_negative_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_zero_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_cubic/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_cubic_A_n0p5_exclude_outside/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_cubic_align_corners/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_cubic_antialias/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_linear/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_linear_align_corners/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_linear_antialias/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_linear_half_pixel_symmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_linear_half_pixel_symmetric/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_linear_half_pixel_symmetric/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_linear_half_pixel_symmetric/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_nearest/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_sizes_cubic/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_sizes_cubic_antialias/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_sizes_linear_antialias/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_sizes_linear_pytorch_half_pixel/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_sizes_nearest/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_sizes_nearest_not_larger/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_sizes_nearest_not_smaller/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_tf_crop_and_resize/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_tf_crop_and_resize_axes_2_3/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_tf_crop_and_resize_axes_3_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_cubic/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_cubic_A_n0p5_exclude_outside/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_cubic_align_corners/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_cubic_asymmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_linear/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_linear_align_corners/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_linear_half_pixel_symmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_linear_half_pixel_symmetric/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_linear_half_pixel_symmetric/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_linear_half_pixel_symmetric/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_nearest/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_nearest_axes_2_3/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_nearest_axes_3_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_cubic/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_axes_2_3/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_axes_3_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_ceil_half_pixel/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_floor_align_corners/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_larger/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_round_prefer_ceil_asymmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_roialign_mode_max/model.onnx +0 -0
- onnx/backend/test/data/node/test_roialign_mode_max/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_roialign_mode_max/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_roialign_mode_max/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_roialign_mode_max/test_data_set_0/output_0.pb +2 -0
- onnx/backend/test/data/node/test_shape/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_clip_end/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_clip_start/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_end_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_end_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1_end_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1_end_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_sinh/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_size/model.onnx +0 -0
- onnx/backend/test/data/node/test_size_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_softplus_example_expanded_ver18/model.onnx +0 -0
- onnx/backend/test/data/node/{test_softplus_expanded → test_softplus_expanded_ver18}/model.onnx +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_1/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_1/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_1/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_2/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_nokeepdims/model.onnx +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_nokeepdims/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_nokeepdims/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_tan/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_wrap_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_wrap_pad/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_wrap_pad/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_wrap_pad/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/real/test_bvlc_alexnet/data.json +1 -1
- onnx/backend/test/data/real/test_densenet121/data.json +1 -1
- onnx/backend/test/data/real/test_inception_v1/data.json +1 -1
- onnx/backend/test/data/real/test_inception_v2/data.json +1 -1
- onnx/backend/test/data/real/test_resnet50/data.json +1 -1
- onnx/backend/test/data/real/test_shufflenet/data.json +1 -1
- onnx/backend/test/data/real/test_squeezenet/data.json +1 -1
- onnx/backend/test/data/real/test_vgg19/data.json +1 -1
- onnx/backend/test/data/real/test_zfnet512/data.json +1 -1
- onnx/backend/test/loader/__init__.py +3 -1
- onnx/backend/test/report/__init__.py +3 -1
- onnx/backend/test/report/base.py +2 -0
- onnx/backend/test/report/coverage.py +8 -14
- onnx/backend/test/runner/__init__.py +145 -38
- onnx/backend/test/runner/item.py +2 -0
- onnx/backend/test/stat_coverage.py +23 -26
- onnx/bin/__init__.py +2 -0
- onnx/bin/checker.py +2 -0
- onnx/checker.cc +17 -5
- onnx/checker.h +3 -3
- onnx/checker.py +22 -5
- onnx/common/array_ref.h +2 -0
- onnx/common/assertions.cc +2 -0
- onnx/common/assertions.h +2 -0
- onnx/common/common.h +2 -0
- onnx/common/constants.h +3 -3
- onnx/common/file_utils.h +3 -1
- onnx/common/graph_node_list.h +2 -0
- onnx/common/interned_strings.cc +2 -0
- onnx/common/interned_strings.h +2 -0
- onnx/common/ir.h +2 -0
- onnx/common/ir_pb_converter.cc +7 -1
- onnx/common/ir_pb_converter.h +2 -0
- onnx/common/model_helpers.cc +3 -3
- onnx/common/model_helpers.h +3 -3
- onnx/common/path.cc +0 -1
- onnx/common/path.h +0 -1
- onnx/common/platform_helpers.h +2 -0
- onnx/common/status.cc +2 -0
- onnx/common/status.h +2 -0
- onnx/common/stl_backports.h +3 -3
- onnx/common/tensor.h +24 -171
- onnx/common/version.h +3 -1
- onnx/compose.py +40 -32
- onnx/cpp2py_export.cc +268 -89
- onnx/defs/__init__.py +9 -7
- onnx/defs/attr_proto_util.cc +2 -0
- onnx/defs/attr_proto_util.h +2 -0
- onnx/defs/controlflow/defs.cc +25 -369
- onnx/defs/controlflow/old.cc +444 -0
- onnx/defs/controlflow/utils.cc +357 -0
- onnx/defs/controlflow/utils.h +21 -0
- onnx/defs/data_propagators.h +2 -0
- onnx/defs/data_type_utils.cc +6 -2
- onnx/defs/gen_doc.py +31 -45
- onnx/defs/gen_shape_inference_information.py +2 -0
- onnx/defs/generator/defs.cc +21 -19
- onnx/defs/generator/old.cc +157 -0
- onnx/defs/logical/defs.cc +17 -16
- onnx/defs/logical/old.cc +23 -0
- onnx/defs/math/defs.cc +155 -131
- onnx/defs/math/old.cc +1 -1
- onnx/defs/nn/defs.cc +135 -45
- onnx/defs/nn/old.cc +142 -9
- onnx/defs/operator_sets.h +45 -0
- onnx/defs/optional/defs.cc +8 -4
- onnx/defs/parser.cc +61 -4
- onnx/defs/parser.h +43 -31
- onnx/defs/printer.cc +7 -1
- onnx/defs/printer.h +1 -1
- onnx/defs/quantization/defs.cc +63 -26
- onnx/defs/quantization/old.cc +102 -1
- onnx/defs/reduction/defs.cc +1 -1
- onnx/defs/reduction/utils.cc +5 -4
- onnx/defs/rnn/defs.cc +95 -173
- onnx/defs/schema.cc +45 -29
- onnx/defs/schema.h +125 -15
- onnx/defs/sequence/defs.cc +11 -8
- onnx/defs/shape_inference.cc +25 -4
- onnx/defs/shape_inference.h +29 -1
- onnx/defs/tensor/defs.cc +499 -565
- onnx/defs/tensor/old.cc +777 -47
- onnx/defs/tensor/utils.cc +130 -8
- onnx/defs/tensor/utils.h +2 -0
- onnx/defs/tensor_proto_util.cc +3 -0
- onnx/defs/traditionalml/defs.cc +19 -2
- onnx/examples/Protobufs.ipynb +129 -31
- onnx/examples/check_model.ipynb +29 -21
- onnx/examples/load_model.ipynb +25 -3
- onnx/examples/make_model.ipynb +32 -23
- onnx/external_data_helper.py +8 -9
- onnx/frontend/__init__.py +2 -0
- onnx/gen_proto.py +18 -24
- onnx/helper.py +394 -107
- onnx/hub.py +189 -20
- onnx/mapping.py +33 -7
- onnx/numpy_helper.py +263 -52
- onnx/onnx-ml.proto +28 -6
- onnx/onnx-operators-ml.proto +1 -1
- onnx/onnx-operators.in.proto +1 -1
- onnx/onnx-operators.proto +1 -1
- onnx/onnx.in.proto +28 -6
- onnx/onnx.proto +28 -6
- onnx/onnx_cpp2py_export.cp310-win32.pyd +0 -0
- onnx/onnx_data_pb2.pyi +2 -1
- onnx/onnx_ml_pb2.py +33 -33
- onnx/onnx_ml_pb2.pyi +12 -2
- onnx/onnx_operators_ml_pb2.pyi +2 -1
- onnx/parser.py +29 -13
- onnx/printer.py +6 -4
- onnx/proto_utils.h +3 -3
- onnx/py_utils.h +3 -3
- onnx/reference/__init__.py +2 -0
- onnx/reference/custom_element_types.py +11 -0
- onnx/reference/op_run.py +84 -8
- onnx/reference/ops/__init__.py +5 -1
- onnx/reference/ops/_helpers.py +55 -0
- onnx/reference/ops/_op.py +18 -11
- onnx/reference/ops/_op_common_indices.py +2 -0
- onnx/reference/ops/_op_common_pool.py +4 -10
- onnx/reference/ops/_op_common_random.py +2 -0
- onnx/reference/ops/_op_common_window.py +2 -0
- onnx/reference/ops/_op_list.py +208 -214
- onnx/reference/ops/aionnx_preview_training/__init__.py +4 -2
- onnx/reference/ops/aionnx_preview_training/_op_list.py +15 -38
- onnx/reference/ops/aionnx_preview_training/_op_run_training.py +2 -0
- onnx/reference/ops/aionnx_preview_training/op_adagrad.py +3 -1
- onnx/reference/ops/aionnx_preview_training/op_adam.py +3 -1
- onnx/reference/ops/aionnx_preview_training/op_momentum.py +3 -1
- onnx/reference/ops/aionnxml/__init__.py +3 -0
- onnx/reference/ops/aionnxml/_common_classifier.py +81 -0
- onnx/reference/ops/aionnxml/_op_list.py +97 -0
- onnx/reference/ops/aionnxml/_op_run_aionnxml.py +8 -0
- onnx/reference/ops/aionnxml/op_array_feature_extractor.py +50 -0
- onnx/reference/ops/aionnxml/op_binarizer.py +15 -0
- onnx/reference/ops/aionnxml/op_dict_vectorizer.py +56 -0
- onnx/reference/ops/aionnxml/op_feature_vectorizer.py +30 -0
- onnx/reference/ops/aionnxml/op_imputer.py +47 -0
- onnx/reference/ops/aionnxml/op_label_encoder.py +52 -0
- onnx/reference/ops/aionnxml/op_linear_classifier.py +99 -0
- onnx/reference/ops/aionnxml/op_linear_regressor.py +26 -0
- onnx/reference/ops/aionnxml/op_normalizer.py +41 -0
- onnx/reference/ops/aionnxml/op_one_hot_encoder.py +55 -0
- onnx/reference/ops/aionnxml/op_scaler.py +12 -0
- onnx/reference/ops/aionnxml/op_svm_classifier.py +334 -0
- onnx/reference/ops/aionnxml/op_svm_helper.py +99 -0
- onnx/reference/ops/aionnxml/op_svm_regressor.py +45 -0
- onnx/reference/ops/aionnxml/op_tree_ensemble_classifier.py +132 -0
- onnx/reference/ops/aionnxml/op_tree_ensemble_helper.py +109 -0
- onnx/reference/ops/aionnxml/op_tree_ensemble_regressor.py +105 -0
- onnx/reference/ops/experimental/__init__.py +3 -1
- onnx/reference/ops/experimental/_op_list.py +15 -36
- onnx/reference/ops/experimental/_op_run_experimental.py +2 -0
- onnx/reference/ops/experimental/op_im2col.py +3 -2
- onnx/reference/ops/op_abs.py +3 -1
- onnx/reference/ops/op_acos.py +3 -1
- onnx/reference/ops/op_acosh.py +3 -1
- onnx/reference/ops/op_add.py +3 -1
- onnx/reference/ops/op_and.py +3 -1
- onnx/reference/ops/op_argmax.py +4 -9
- onnx/reference/ops/op_argmin.py +4 -9
- onnx/reference/ops/op_asin.py +3 -1
- onnx/reference/ops/op_asinh.py +3 -1
- onnx/reference/ops/op_atan.py +3 -1
- onnx/reference/ops/op_atanh.py +3 -1
- onnx/reference/ops/op_attribute_has_value.py +2 -0
- onnx/reference/ops/op_average_pool.py +80 -2
- onnx/reference/ops/op_batch_normalization.py +14 -11
- onnx/reference/ops/op_bernoulli.py +3 -2
- onnx/reference/ops/op_bitshift.py +3 -1
- onnx/reference/ops/op_bitwise_and.py +3 -1
- onnx/reference/ops/op_bitwise_not.py +3 -1
- onnx/reference/ops/op_bitwise_or.py +3 -1
- onnx/reference/ops/op_bitwise_xor.py +3 -1
- onnx/reference/ops/op_blackman_window.py +3 -1
- onnx/reference/ops/op_cast.py +91 -10
- onnx/reference/ops/op_cast_like.py +32 -7
- onnx/reference/ops/op_ceil.py +3 -1
- onnx/reference/ops/op_celu.py +3 -1
- onnx/reference/ops/op_center_crop_pad.py +7 -3
- onnx/reference/ops/op_clip.py +2 -7
- onnx/reference/ops/op_col2im.py +3 -4
- onnx/reference/ops/op_compress.py +2 -0
- onnx/reference/ops/op_concat.py +6 -5
- onnx/reference/ops/op_concat_from_sequence.py +2 -0
- onnx/reference/ops/op_constant.py +46 -35
- onnx/reference/ops/op_constant_of_shape.py +4 -0
- onnx/reference/ops/op_conv.py +62 -39
- onnx/reference/ops/op_conv_integer.py +3 -2
- onnx/reference/ops/op_conv_transpose.py +4 -4
- onnx/reference/ops/op_cos.py +3 -1
- onnx/reference/ops/op_cosh.py +3 -1
- onnx/reference/ops/op_cum_sum.py +2 -0
- onnx/reference/ops/op_deform_conv.py +178 -0
- onnx/reference/ops/op_depth_to_space.py +2 -0
- onnx/reference/ops/op_dequantize_linear.py +72 -21
- onnx/reference/ops/op_det.py +3 -4
- onnx/reference/ops/op_dft.py +2 -0
- onnx/reference/ops/op_div.py +3 -1
- onnx/reference/ops/op_dropout.py +2 -7
- onnx/reference/ops/op_dynamic_quantize_linear.py +2 -0
- onnx/reference/ops/op_einsum.py +2 -0
- onnx/reference/ops/op_elu.py +4 -2
- onnx/reference/ops/op_equal.py +3 -1
- onnx/reference/ops/op_erf.py +3 -1
- onnx/reference/ops/op_exp.py +4 -2
- onnx/reference/ops/op_expand.py +2 -0
- onnx/reference/ops/op_eyelike.py +9 -4
- onnx/reference/ops/op_flatten.py +3 -1
- onnx/reference/ops/op_floor.py +3 -1
- onnx/reference/ops/op_gather.py +2 -0
- onnx/reference/ops/op_gather_elements.py +2 -0
- onnx/reference/ops/op_gathernd.py +3 -1
- onnx/reference/ops/op_gemm.py +5 -10
- onnx/reference/ops/op_global_average_pool.py +6 -5
- onnx/reference/ops/op_global_max_pool.py +2 -0
- onnx/reference/ops/op_greater.py +3 -1
- onnx/reference/ops/op_greater_or_equal.py +3 -1
- onnx/reference/ops/op_grid_sample.py +3 -1
- onnx/reference/ops/op_gru.py +4 -1
- onnx/reference/ops/op_hamming_window.py +3 -1
- onnx/reference/ops/op_hann_window.py +3 -1
- onnx/reference/ops/op_hard_sigmoid.py +3 -1
- onnx/reference/ops/op_hardmax.py +3 -1
- onnx/reference/ops/op_identity.py +3 -1
- onnx/reference/ops/op_if.py +16 -8
- onnx/reference/ops/op_instance_normalization.py +2 -0
- onnx/reference/ops/op_isinf.py +2 -0
- onnx/reference/ops/op_isnan.py +3 -1
- onnx/reference/ops/op_layer_normalization.py +2 -0
- onnx/reference/ops/op_leaky_relu.py +4 -2
- onnx/reference/ops/op_less.py +3 -1
- onnx/reference/ops/op_less_or_equal.py +3 -1
- onnx/reference/ops/op_log.py +4 -2
- onnx/reference/ops/op_log_softmax.py +3 -1
- onnx/reference/ops/op_loop.py +4 -2
- onnx/reference/ops/op_lp_normalization.py +4 -2
- onnx/reference/ops/op_lp_pool.py +41 -0
- onnx/reference/ops/op_lrn.py +9 -5
- onnx/reference/ops/op_lstm.py +4 -2
- onnx/reference/ops/op_matmul.py +3 -1
- onnx/reference/ops/op_matmul_integer.py +2 -0
- onnx/reference/ops/op_max.py +3 -1
- onnx/reference/ops/op_max_pool.py +3 -4
- onnx/reference/ops/op_max_unpool.py +2 -1
- onnx/reference/ops/op_mean.py +3 -1
- onnx/reference/ops/op_mel_weight_matrix.py +2 -0
- onnx/reference/ops/op_min.py +3 -1
- onnx/reference/ops/op_mod.py +2 -0
- onnx/reference/ops/op_mul.py +3 -1
- onnx/reference/ops/op_neg.py +3 -1
- onnx/reference/ops/op_negative_log_likelihood_loss.py +3 -1
- onnx/reference/ops/op_non_max_suppression.py +22 -20
- onnx/reference/ops/op_non_zero.py +4 -1
- onnx/reference/ops/op_not.py +3 -1
- onnx/reference/ops/op_one_hot.py +3 -1
- onnx/reference/ops/op_optional.py +2 -0
- onnx/reference/ops/op_optional_get_element.py +4 -8
- onnx/reference/ops/op_optional_has_element.py +3 -9
- onnx/reference/ops/op_or.py +3 -1
- onnx/reference/ops/op_pad.py +18 -29
- onnx/reference/ops/op_pow.py +2 -0
- onnx/reference/ops/op_prelu.py +4 -2
- onnx/reference/ops/op_qlinear_conv.py +3 -2
- onnx/reference/ops/op_qlinear_matmul.py +2 -0
- onnx/reference/ops/op_quantize_linear.py +100 -15
- onnx/reference/ops/op_random_normal.py +3 -1
- onnx/reference/ops/op_random_normal_like.py +3 -2
- onnx/reference/ops/op_random_uniform.py +3 -1
- onnx/reference/ops/op_random_uniform_like.py +3 -2
- onnx/reference/ops/op_range.py +2 -0
- onnx/reference/ops/op_reciprocal.py +4 -2
- onnx/reference/ops/op_reduce_l1.py +17 -31
- onnx/reference/ops/op_reduce_l2.py +17 -35
- onnx/reference/ops/op_reduce_log_sum.py +6 -29
- onnx/reference/ops/op_reduce_log_sum_exp.py +6 -29
- onnx/reference/ops/op_reduce_max.py +15 -36
- onnx/reference/ops/op_reduce_mean.py +15 -33
- onnx/reference/ops/op_reduce_min.py +15 -32
- onnx/reference/ops/op_reduce_prod.py +15 -29
- onnx/reference/ops/op_reduce_sum.py +17 -45
- onnx/reference/ops/op_reduce_sum_square.py +15 -29
- onnx/reference/ops/op_relu.py +3 -1
- onnx/reference/ops/op_reshape.py +2 -8
- onnx/reference/ops/op_resize.py +59 -28
- onnx/reference/ops/op_reverse_sequence.py +2 -0
- onnx/reference/ops/op_rnn.py +3 -9
- onnx/reference/ops/op_roi_align.py +7 -5
- onnx/reference/ops/op_round.py +4 -2
- onnx/reference/ops/op_scan.py +4 -1
- onnx/reference/ops/op_scatter_elements.py +17 -4
- onnx/reference/ops/op_scatternd.py +2 -0
- onnx/reference/ops/op_selu.py +5 -1
- onnx/reference/ops/op_sequence_at.py +2 -0
- onnx/reference/ops/op_sequence_construct.py +2 -0
- onnx/reference/ops/op_sequence_empty.py +2 -0
- onnx/reference/ops/op_sequence_erase.py +2 -0
- onnx/reference/ops/op_sequence_insert.py +4 -2
- onnx/reference/ops/op_sequence_length.py +7 -1
- onnx/reference/ops/op_sequence_map.py +4 -2
- onnx/reference/ops/op_shape.py +2 -7
- onnx/reference/ops/op_shrink.py +3 -1
- onnx/reference/ops/op_sigmoid.py +7 -1
- onnx/reference/ops/op_sign.py +3 -1
- onnx/reference/ops/op_sin.py +3 -1
- onnx/reference/ops/op_sinh.py +3 -1
- onnx/reference/ops/op_size.py +2 -0
- onnx/reference/ops/op_slice.py +3 -9
- onnx/reference/ops/op_softmax.py +4 -2
- onnx/reference/ops/op_softmax_cross_entropy_loss.py +4 -1
- onnx/reference/ops/op_softplus.py +4 -2
- onnx/reference/ops/op_softsign.py +3 -1
- onnx/reference/ops/op_space_to_depth.py +3 -1
- onnx/reference/ops/op_split.py +7 -9
- onnx/reference/ops/op_split_to_sequence.py +41 -10
- onnx/reference/ops/op_sqrt.py +4 -2
- onnx/reference/ops/op_squeeze.py +3 -12
- onnx/reference/ops/op_stft.py +8 -7
- onnx/reference/ops/op_string_normalizer.py +3 -1
- onnx/reference/ops/op_sub.py +3 -1
- onnx/reference/ops/op_sum.py +3 -1
- onnx/reference/ops/op_tan.py +3 -1
- onnx/reference/ops/op_tanh.py +3 -1
- onnx/reference/ops/op_tfidf_vectorizer.py +15 -15
- onnx/reference/ops/op_thresholded_relu.py +4 -2
- onnx/reference/ops/op_tile.py +2 -0
- onnx/reference/ops/op_topk.py +12 -19
- onnx/reference/ops/op_transpose.py +2 -0
- onnx/reference/ops/op_trilu.py +3 -1
- onnx/reference/ops/op_unique.py +2 -0
- onnx/reference/ops/op_unsqueeze.py +2 -9
- onnx/reference/ops/op_upsample.py +9 -8
- onnx/reference/ops/op_where.py +7 -1
- onnx/reference/ops/op_xor.py +3 -1
- onnx/reference/reference_evaluator.py +64 -20
- onnx/shape_inference/implementation.cc +207 -30
- onnx/shape_inference/implementation.h +15 -4
- onnx/shape_inference.py +37 -12
- onnx/string_utils.h +3 -3
- onnx/test/cpp/common_path_test.cc +2 -0
- onnx/test/cpp/data_propagation_test.cc +2 -0
- onnx/test/cpp/function_context_test.cc +2 -0
- onnx/test/cpp/function_get_test.cc +2 -0
- onnx/test/cpp/function_verify_test.cc +176 -0
- onnx/test/cpp/op_reg_test.cc +2 -0
- onnx/test/cpp/parser_test.cc +65 -1
- onnx/test/cpp/schema_registration_test.cc +2 -0
- onnx/test/cpp/shape_inference_test.cc +2 -0
- onnx/test/cpp/test_main.cc +2 -0
- onnx/tools/__init__.py +2 -0
- onnx/tools/net_drawer.py +13 -9
- onnx/tools/replace_constants.py +429 -0
- onnx/tools/update_model_dims.py +7 -9
- onnx/utils.py +16 -6
- onnx/version.py +2 -2
- onnx/version_converter/BaseConverter.h +2 -0
- onnx/version_converter/adapters/adapter.h +2 -0
- onnx/version_converter/adapters/axes_attribute_to_input.h +2 -0
- onnx/version_converter/adapters/axes_input_to_attribute.h +2 -0
- onnx/version_converter/adapters/batch_normalization_13_14.h +2 -0
- onnx/version_converter/adapters/broadcast_backward_compatibility.h +2 -0
- onnx/version_converter/adapters/broadcast_forward_compatibility.h +2 -0
- onnx/version_converter/adapters/cast_9_8.h +2 -0
- onnx/version_converter/adapters/clip_10_11.h +2 -0
- onnx/version_converter/adapters/compatible.h +2 -0
- onnx/version_converter/adapters/dropout_11_12.h +2 -0
- onnx/version_converter/adapters/extend_supported_types.h +2 -0
- onnx/version_converter/adapters/gemm_6_7.h +2 -0
- onnx/version_converter/adapters/gemm_7_6.h +2 -0
- onnx/version_converter/adapters/maxpool_8_7.h +2 -0
- onnx/version_converter/adapters/no_previous_version.h +2 -0
- onnx/version_converter/adapters/pad_10_11.h +4 -0
- onnx/version_converter/adapters/remove_consumed_inputs.h +2 -0
- onnx/version_converter/adapters/reshape_4_5.h +2 -0
- onnx/version_converter/adapters/reshape_5_4.h +2 -0
- onnx/version_converter/adapters/resize_10_11.h +2 -0
- onnx/version_converter/adapters/scan_8_9.h +2 -0
- onnx/version_converter/adapters/scan_9_8.h +2 -0
- onnx/version_converter/adapters/scatter_10_11.h +2 -0
- onnx/version_converter/adapters/slice_9_10.h +2 -0
- onnx/version_converter/adapters/softmax_12_13.h +20 -28
- onnx/version_converter/adapters/split_12_13.h +2 -0
- onnx/version_converter/adapters/split_13_12.h +2 -0
- onnx/version_converter/adapters/split_17_18.h +2 -0
- onnx/version_converter/adapters/sum_8_7.h +2 -0
- onnx/version_converter/adapters/topk_9_10.h +2 -0
- onnx/version_converter/adapters/transformers.h +3 -1
- onnx/version_converter/adapters/type_restriction.h +2 -0
- onnx/version_converter/adapters/upsample_6_7.h +2 -0
- onnx/version_converter/adapters/upsample_8_9.h +2 -0
- onnx/version_converter/adapters/upsample_9_10.h +2 -0
- onnx/version_converter/adapters/upsample_9_8.h +2 -0
- onnx/version_converter/convert.cc +14 -7
- onnx/version_converter/convert.h +20 -0
- onnx/version_converter/helper.cc +3 -3
- onnx/version_converter/helper.h +3 -3
- onnx/version_converter.py +6 -3
- {onnx-1.13.0.dist-info → onnx-1.14.0.dist-info}/METADATA +95 -51
- {onnx-1.13.0.dist-info → onnx-1.14.0.dist-info}/RECORD +1056 -743
- {onnx-1.13.0.dist-info → onnx-1.14.0.dist-info}/WHEEL +1 -1
- onnx/backend/test/data/node/test_softplus_example_expanded/model.onnx +0 -0
- /onnx/backend/test/data/node/{test_softplus_example_expanded → test_softplus_example_expanded_ver18}/test_data_set_0/input_0.pb +0 -0
- /onnx/backend/test/data/node/{test_softplus_example_expanded → test_softplus_example_expanded_ver18}/test_data_set_0/output_0.pb +0 -0
- /onnx/backend/test/data/node/{test_softplus_expanded → test_softplus_expanded_ver18}/test_data_set_0/input_0.pb +0 -0
- /onnx/backend/test/data/node/{test_softplus_expanded → test_softplus_expanded_ver18}/test_data_set_0/output_0.pb +0 -0
- {onnx-1.13.0.dist-info → onnx-1.14.0.dist-info}/LICENSE +0 -0
- {onnx-1.13.0.dist-info → onnx-1.14.0.dist-info}/entry_points.txt +0 -0
- {onnx-1.13.0.dist-info → onnx-1.14.0.dist-info}/top_level.txt +0 -0
|
@@ -1,329 +1,22 @@
|
|
|
1
|
+
# Copyright (c) ONNX Project Contributors
|
|
2
|
+
#
|
|
1
3
|
# SPDX-License-Identifier: Apache-2.0
|
|
2
4
|
|
|
3
|
-
from typing import Any, Callable, List, Optional, Text
|
|
4
|
-
|
|
5
5
|
import numpy as np
|
|
6
6
|
|
|
7
7
|
import onnx
|
|
8
|
-
|
|
9
|
-
from
|
|
10
|
-
from . import
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
1-D arrays to form the cartesian product of.
|
|
21
|
-
out : ndarray
|
|
22
|
-
Array to place the cartesian product in.
|
|
23
|
-
Returns
|
|
24
|
-
-------
|
|
25
|
-
out : ndarray
|
|
26
|
-
2-D array of shape (M, len(arrays)) containing cartesian products
|
|
27
|
-
formed of input arrays.
|
|
28
|
-
Examples
|
|
29
|
-
--------
|
|
30
|
-
>>> cartesian(([1, 2, 3], [4, 5], [6, 7]))
|
|
31
|
-
array([[1, 4, 6],
|
|
32
|
-
[1, 4, 7],
|
|
33
|
-
[1, 5, 6],
|
|
34
|
-
[1, 5, 7],
|
|
35
|
-
[2, 4, 6],
|
|
36
|
-
[2, 4, 7],
|
|
37
|
-
[2, 5, 6],
|
|
38
|
-
[2, 5, 7],
|
|
39
|
-
[3, 4, 6],
|
|
40
|
-
[3, 4, 7],
|
|
41
|
-
[3, 5, 6],
|
|
42
|
-
[3, 5, 7]])
|
|
43
|
-
"""
|
|
44
|
-
|
|
45
|
-
arrays = [np.asarray(x) for x in arrays]
|
|
46
|
-
dtype = arrays[0].dtype
|
|
47
|
-
|
|
48
|
-
n = np.prod([x.size for x in arrays])
|
|
49
|
-
if out is None:
|
|
50
|
-
out = np.zeros([n, len(arrays)], dtype=dtype)
|
|
51
|
-
|
|
52
|
-
m = n // arrays[0].size
|
|
53
|
-
out[:, 0] = np.repeat(arrays[0], m)
|
|
54
|
-
if arrays[1:]:
|
|
55
|
-
cartesian(arrays[1:], out=out[0:m, 1:])
|
|
56
|
-
for j in range(1, arrays[0].size):
|
|
57
|
-
out[j * m : (j + 1) * m, 1:] = out[0:m, 1:]
|
|
58
|
-
return out
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
def interpolate_1d_with_x(
|
|
62
|
-
data: np.ndarray,
|
|
63
|
-
scale_factor: float,
|
|
64
|
-
x: float,
|
|
65
|
-
get_coeffs: Callable[[float, float], np.ndarray],
|
|
66
|
-
roi: np.ndarray = None,
|
|
67
|
-
extrapolation_value: float = 0.0,
|
|
68
|
-
coordinate_transformation_mode: str = "half_pixel",
|
|
69
|
-
exclude_outside: bool = False,
|
|
70
|
-
) -> np.ndarray:
|
|
71
|
-
def get_neighbor_idxes(x: float, n: int, limit: int) -> np.ndarray:
|
|
72
|
-
"""
|
|
73
|
-
Return the n nearest indexes to x among [0, limit), prefer the indexes smaller than x.
|
|
74
|
-
As a result, the ratio must be in (0, 1]
|
|
75
|
-
Examples:
|
|
76
|
-
get_neighbor_idxes(4, 2, 10) == [3, 4]
|
|
77
|
-
get_neighbor_idxes(4, 3, 10) == [3, 4, 5]
|
|
78
|
-
get_neighbor_idxes(4.4, 3, 10) == [3, 4, 5]
|
|
79
|
-
get_neighbor_idxes(4.5, 3, 10) == [3, 4, 5]
|
|
80
|
-
get_neighbor_idxes(4.6, 3, 10) == [4, 5, 6]
|
|
81
|
-
get_neighbor_idxes(4.4, 1, 10) == [4]
|
|
82
|
-
get_neighbor_idxes(4.6, 1, 10) == [5]
|
|
83
|
-
:param x:
|
|
84
|
-
:param n: the number of the wanted indexes
|
|
85
|
-
:param limit: the maximum value of index
|
|
86
|
-
:return: An np.array containing n nearest indexes in ascending order
|
|
87
|
-
"""
|
|
88
|
-
idxes = sorted(range(limit), key=lambda idx: (abs(x - idx), idx))[:n]
|
|
89
|
-
idxes = sorted(idxes)
|
|
90
|
-
return np.array(idxes)
|
|
91
|
-
|
|
92
|
-
def get_neighbor(x: float, n: int, data: np.ndarray) -> np.ndarray:
|
|
93
|
-
"""
|
|
94
|
-
Pad `data` in 'edge' mode, and get n nearest elements in the padded array and their indexes in the original
|
|
95
|
-
array
|
|
96
|
-
:param x: center index (in the unpadded coordinate system) of the found nearest elements.
|
|
97
|
-
:param n: the number of neighbors.
|
|
98
|
-
:param data: the array
|
|
99
|
-
:return: A tuple containing the indexes of neighbor elements (the index can be smaller than 0 or higher than
|
|
100
|
-
len(data)) and the value of these elements
|
|
101
|
-
"""
|
|
102
|
-
pad_width = np.ceil(n / 2).astype(int)
|
|
103
|
-
padded = np.pad(data, pad_width, mode="edge")
|
|
104
|
-
x += pad_width
|
|
105
|
-
|
|
106
|
-
idxes = get_neighbor_idxes(x, n, len(padded))
|
|
107
|
-
ret = padded[idxes]
|
|
108
|
-
return idxes - pad_width, ret
|
|
109
|
-
|
|
110
|
-
input_width = len(data)
|
|
111
|
-
output_width = scale_factor * input_width
|
|
112
|
-
if coordinate_transformation_mode == "align_corners":
|
|
113
|
-
if output_width == 1:
|
|
114
|
-
x_ori = 0.0
|
|
115
|
-
else:
|
|
116
|
-
x_ori = x * (input_width - 1) / (output_width - 1)
|
|
117
|
-
elif coordinate_transformation_mode == "asymmetric":
|
|
118
|
-
x_ori = x / scale_factor
|
|
119
|
-
elif coordinate_transformation_mode == "tf_crop_and_resize":
|
|
120
|
-
if output_width == 1:
|
|
121
|
-
x_ori = (roi[1] - roi[0]) * (input_width - 1) / 2
|
|
122
|
-
else:
|
|
123
|
-
x_ori = x * (roi[1] - roi[0]) * (input_width - 1) / (output_width - 1)
|
|
124
|
-
x_ori += roi[0] * (input_width - 1)
|
|
125
|
-
# Return extrapolation_value directly as what TF CropAndResize does
|
|
126
|
-
if x_ori < 0 or x_ori > input_width - 1:
|
|
127
|
-
return extrapolation_value
|
|
128
|
-
elif coordinate_transformation_mode == "pytorch_half_pixel":
|
|
129
|
-
if output_width == 1:
|
|
130
|
-
x_ori = -0.5
|
|
131
|
-
else:
|
|
132
|
-
x_ori = (x + 0.5) / scale_factor - 0.5
|
|
133
|
-
elif coordinate_transformation_mode == "half_pixel":
|
|
134
|
-
x_ori = (x + 0.5) / scale_factor - 0.5
|
|
135
|
-
else:
|
|
136
|
-
raise ValueError(
|
|
137
|
-
f"invalid coordinate_transformation_mode: {coordinate_transformation_mode}"
|
|
138
|
-
)
|
|
139
|
-
x_ori_int = np.floor(x_ori).astype(int).item()
|
|
140
|
-
|
|
141
|
-
# ratio must be in (0, 1] since we prefer the pixel on the left of `x_ori`
|
|
142
|
-
if x_ori.is_integer():
|
|
143
|
-
ratio = 1
|
|
144
|
-
else:
|
|
145
|
-
ratio = x_ori - x_ori_int
|
|
146
|
-
|
|
147
|
-
coeffs = get_coeffs(ratio, scale_factor)
|
|
148
|
-
n = len(coeffs)
|
|
149
|
-
|
|
150
|
-
idxes, points = get_neighbor(x_ori, n, data)
|
|
151
|
-
|
|
152
|
-
if exclude_outside:
|
|
153
|
-
for i, idx in enumerate(idxes):
|
|
154
|
-
if idx < 0 or idx >= input_width:
|
|
155
|
-
coeffs[i] = 0
|
|
156
|
-
coeffs /= sum(coeffs)
|
|
157
|
-
|
|
158
|
-
return np.dot(coeffs, points).item()
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
def interpolate_nd_with_x(
|
|
162
|
-
data: np.ndarray,
|
|
163
|
-
n: int,
|
|
164
|
-
scale_factors: List[float],
|
|
165
|
-
x: List[float],
|
|
166
|
-
get_coeffs: Callable[[float, float], np.ndarray],
|
|
167
|
-
roi: np.ndarray = None,
|
|
168
|
-
**kwargs: Any,
|
|
169
|
-
) -> np.ndarray:
|
|
170
|
-
if n == 1:
|
|
171
|
-
return interpolate_1d_with_x(
|
|
172
|
-
data, scale_factors[0], x[0], get_coeffs, roi=roi, **kwargs
|
|
173
|
-
)
|
|
174
|
-
return interpolate_1d_with_x(
|
|
175
|
-
[
|
|
176
|
-
interpolate_nd_with_x(
|
|
177
|
-
data[i],
|
|
178
|
-
n - 1,
|
|
179
|
-
scale_factors[1:],
|
|
180
|
-
x[1:],
|
|
181
|
-
get_coeffs,
|
|
182
|
-
roi=None if roi is None else np.concatenate([roi[1:n], roi[n + 1 :]]),
|
|
183
|
-
**kwargs,
|
|
184
|
-
)
|
|
185
|
-
for i in range(data.shape[0])
|
|
186
|
-
],
|
|
187
|
-
scale_factors[0],
|
|
188
|
-
x[0],
|
|
189
|
-
get_coeffs,
|
|
190
|
-
roi=None if roi is None else [roi[0], roi[n]],
|
|
191
|
-
**kwargs,
|
|
192
|
-
)
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
def interpolate_nd(
|
|
196
|
-
data: np.ndarray,
|
|
197
|
-
get_coeffs: Callable[[float, float], np.ndarray],
|
|
198
|
-
output_size: Optional[List[int]] = None,
|
|
199
|
-
scale_factors: Optional[List[float]] = None,
|
|
200
|
-
axes: Optional[List[int]] = None,
|
|
201
|
-
roi: np.ndarray = None,
|
|
202
|
-
keep_aspect_ratio_policy: Optional[Text] = "stretch",
|
|
203
|
-
**kwargs: Any,
|
|
204
|
-
) -> np.ndarray:
|
|
205
|
-
def get_all_coords(data: np.ndarray) -> np.ndarray:
|
|
206
|
-
return cartesian([list(range(data.shape[i])) for i in range(len(data.shape))])
|
|
207
|
-
|
|
208
|
-
assert output_size is not None or scale_factors is not None
|
|
209
|
-
|
|
210
|
-
r = len(data.shape)
|
|
211
|
-
if axes is not None:
|
|
212
|
-
if scale_factors is not None:
|
|
213
|
-
new_scale_factors = [1.0] * r
|
|
214
|
-
for i, d in enumerate(axes):
|
|
215
|
-
new_scale_factors[d] = scale_factors[i]
|
|
216
|
-
scale_factors = new_scale_factors
|
|
217
|
-
|
|
218
|
-
if output_size is not None:
|
|
219
|
-
new_output_size = [data.shape[i] for i in range(r)]
|
|
220
|
-
for i, d in enumerate(axes):
|
|
221
|
-
new_output_size[d] = output_size[i]
|
|
222
|
-
output_size = new_output_size
|
|
223
|
-
|
|
224
|
-
if roi is not None:
|
|
225
|
-
new_roi = ([0.0] * r) + ([1.0] * r)
|
|
226
|
-
naxes = len(axes)
|
|
227
|
-
for i, d in enumerate(axes):
|
|
228
|
-
new_roi[d] = roi[i]
|
|
229
|
-
new_roi[r + d] = roi[naxes + i]
|
|
230
|
-
roi = new_roi
|
|
231
|
-
else:
|
|
232
|
-
axes = list(range(r))
|
|
233
|
-
|
|
234
|
-
if output_size is not None:
|
|
235
|
-
scale_factors = [output_size[i] / data.shape[i] for i in range(r)]
|
|
236
|
-
if keep_aspect_ratio_policy != "stretch":
|
|
237
|
-
if keep_aspect_ratio_policy == "not_larger":
|
|
238
|
-
scale = np.array(scale_factors)[axes].min()
|
|
239
|
-
elif keep_aspect_ratio_policy == "not_smaller":
|
|
240
|
-
scale = np.array(scale_factors)[axes].max()
|
|
241
|
-
else:
|
|
242
|
-
raise ValueError(
|
|
243
|
-
f"invalid keep_aspect_ratio_policy: {keep_aspect_ratio_policy}"
|
|
244
|
-
)
|
|
245
|
-
|
|
246
|
-
scale_factors = [scale if i in axes else 1.0 for i in range(r)]
|
|
247
|
-
|
|
248
|
-
def round_half_up(x: float) -> int:
|
|
249
|
-
return int(x + 0.5)
|
|
250
|
-
|
|
251
|
-
output_size = [
|
|
252
|
-
round_half_up(scale * data.shape[i]) if i in axes else data.shape[i]
|
|
253
|
-
for i in range(r)
|
|
254
|
-
]
|
|
255
|
-
|
|
256
|
-
else:
|
|
257
|
-
output_size = (scale_factors * np.array(data.shape)).astype(int)
|
|
258
|
-
|
|
259
|
-
assert scale_factors is not None
|
|
260
|
-
|
|
261
|
-
ret = np.zeros(output_size)
|
|
262
|
-
for x in get_all_coords(ret):
|
|
263
|
-
ret[tuple(x)] = interpolate_nd_with_x(
|
|
264
|
-
data, len(data.shape), scale_factors, x, get_coeffs, roi=roi, **kwargs
|
|
265
|
-
)
|
|
266
|
-
return ret
|
|
267
|
-
|
|
268
|
-
|
|
269
|
-
def cubic_coeffs(ratio: float, A: float = -0.75) -> np.ndarray:
|
|
270
|
-
coeffs = [
|
|
271
|
-
((A * (ratio + 1) - 5 * A) * (ratio + 1) + 8 * A) * (ratio + 1) - 4 * A,
|
|
272
|
-
((A + 2) * ratio - (A + 3)) * ratio * ratio + 1,
|
|
273
|
-
((A + 2) * (1 - ratio) - (A + 3)) * (1 - ratio) * (1 - ratio) + 1,
|
|
274
|
-
((A * ((1 - ratio) + 1) - 5 * A) * ((1 - ratio) + 1) + 8 * A)
|
|
275
|
-
* ((1 - ratio) + 1)
|
|
276
|
-
- 4 * A,
|
|
277
|
-
]
|
|
278
|
-
return np.array(coeffs)
|
|
279
|
-
|
|
280
|
-
|
|
281
|
-
def cubic_coeffs_antialias(ratio: float, scale: float, A: float = -0.75) -> np.ndarray:
|
|
282
|
-
if scale > 1.0: # Antialias is applied when downsampling
|
|
283
|
-
scale = 1.0
|
|
284
|
-
|
|
285
|
-
def W(x: float) -> float:
|
|
286
|
-
x = abs(x)
|
|
287
|
-
x_2 = x * x
|
|
288
|
-
x_3 = x * x_2
|
|
289
|
-
if x <= 1:
|
|
290
|
-
return (A + 2) * x_3 - (A + 3) * x_2 + 1
|
|
291
|
-
if x < 2:
|
|
292
|
-
return A * x_3 - 5 * A * x_2 + 8 * A * x - 4 * A
|
|
293
|
-
return 0.0
|
|
294
|
-
|
|
295
|
-
i_start = int(np.floor(-2 / scale) + 1)
|
|
296
|
-
i_end = 2 - i_start
|
|
297
|
-
args = [scale * (i - ratio) for i in range(i_start, i_end)]
|
|
298
|
-
coeffs = [W(x) for x in args]
|
|
299
|
-
return np.array(coeffs) / sum(coeffs)
|
|
300
|
-
|
|
301
|
-
|
|
302
|
-
def linear_coeffs(ratio: float) -> np.ndarray:
|
|
303
|
-
return np.array([1 - ratio, ratio])
|
|
304
|
-
|
|
305
|
-
|
|
306
|
-
def linear_coeffs_antialias(ratio: float, scale: float) -> np.ndarray:
|
|
307
|
-
if scale > 1.0: # Antialias is applied when downsampling
|
|
308
|
-
scale = 1.0
|
|
309
|
-
start = int(np.floor(-1 / scale) + 1)
|
|
310
|
-
footprint = 2 - 2 * start
|
|
311
|
-
args = (np.arange(start, start + footprint) - ratio) * scale
|
|
312
|
-
coeffs = np.clip(1 - np.abs(args), 0, 1)
|
|
313
|
-
return np.array(coeffs) / sum(coeffs)
|
|
314
|
-
|
|
315
|
-
|
|
316
|
-
def nearest_coeffs(ratio: float, mode: Text = "round_prefer_floor") -> np.ndarray:
|
|
317
|
-
if type(ratio) == int or ratio.is_integer():
|
|
318
|
-
return np.array([0, 1])
|
|
319
|
-
elif mode == "round_prefer_floor":
|
|
320
|
-
return np.array([ratio <= 0.5, ratio > 0.5])
|
|
321
|
-
elif mode == "round_prefer_ceil":
|
|
322
|
-
return np.array([ratio < 0.5, ratio >= 0.5])
|
|
323
|
-
elif mode == "floor":
|
|
324
|
-
return np.array([1, 0])
|
|
325
|
-
elif mode == "ceil":
|
|
326
|
-
return np.array([0, 1])
|
|
8
|
+
from onnx.backend.test.case.base import Base
|
|
9
|
+
from onnx.backend.test.case.node import expect
|
|
10
|
+
from onnx.reference.ops.op_resize import _cubic_coeffs as cubic_coeffs
|
|
11
|
+
from onnx.reference.ops.op_resize import (
|
|
12
|
+
_cubic_coeffs_antialias as cubic_coeffs_antialias,
|
|
13
|
+
)
|
|
14
|
+
from onnx.reference.ops.op_resize import _interpolate_nd as interpolate_nd
|
|
15
|
+
from onnx.reference.ops.op_resize import _linear_coeffs as linear_coeffs
|
|
16
|
+
from onnx.reference.ops.op_resize import (
|
|
17
|
+
_linear_coeffs_antialias as linear_coeffs_antialias,
|
|
18
|
+
)
|
|
19
|
+
from onnx.reference.ops.op_resize import _nearest_coeffs as nearest_coeffs
|
|
327
20
|
|
|
328
21
|
|
|
329
22
|
class Resize(Base):
|
|
@@ -1959,3 +1652,62 @@ class Resize(Base):
|
|
|
1959
1652
|
outputs=[output],
|
|
1960
1653
|
name="test_resize_downsample_sizes_nearest_not_smaller",
|
|
1961
1654
|
)
|
|
1655
|
+
|
|
1656
|
+
@staticmethod
|
|
1657
|
+
def export_resize_downsample_scales_linear_half_pixel_symmetric() -> None:
|
|
1658
|
+
node = onnx.helper.make_node(
|
|
1659
|
+
"Resize",
|
|
1660
|
+
inputs=["X", "", "scales"],
|
|
1661
|
+
outputs=["Y"],
|
|
1662
|
+
mode="linear",
|
|
1663
|
+
coordinate_transformation_mode="half_pixel_symmetric",
|
|
1664
|
+
)
|
|
1665
|
+
|
|
1666
|
+
data = np.array([[[[1, 2, 3, 4]]]], dtype=np.float32)
|
|
1667
|
+
scales = np.array([1.0, 1.0, 1.0, 0.6], dtype=np.float32)
|
|
1668
|
+
|
|
1669
|
+
# [[[[1.6666667, 3.3333333]]]]
|
|
1670
|
+
output = interpolate_nd(
|
|
1671
|
+
data,
|
|
1672
|
+
lambda x, _: linear_coeffs(x),
|
|
1673
|
+
scale_factors=scales,
|
|
1674
|
+
coordinate_transformation_mode="half_pixel_symmetric",
|
|
1675
|
+
).astype(np.float32)
|
|
1676
|
+
|
|
1677
|
+
expect(
|
|
1678
|
+
node,
|
|
1679
|
+
inputs=[data, scales],
|
|
1680
|
+
outputs=[output],
|
|
1681
|
+
name="test_resize_downsample_scales_linear_half_pixel_symmetric",
|
|
1682
|
+
)
|
|
1683
|
+
|
|
1684
|
+
@staticmethod
|
|
1685
|
+
def export_resize_upsample_scales_linear_half_pixel_symmetric() -> None:
|
|
1686
|
+
node = onnx.helper.make_node(
|
|
1687
|
+
"Resize",
|
|
1688
|
+
inputs=["X", "", "scales"],
|
|
1689
|
+
outputs=["Y"],
|
|
1690
|
+
mode="linear",
|
|
1691
|
+
coordinate_transformation_mode="half_pixel_symmetric",
|
|
1692
|
+
)
|
|
1693
|
+
|
|
1694
|
+
data = np.array([[[[1, 2], [3, 4]]]], dtype=np.float32)
|
|
1695
|
+
scales = np.array([1.0, 1.0, 2.3, 2.94], dtype=np.float32)
|
|
1696
|
+
|
|
1697
|
+
# [[[[1. , 1.15986395, 1.5 , 1.84013605, 2. ],
|
|
1698
|
+
# [1.56521738, 1.72508133, 2.06521738, 2.40535343, 2.56521738],
|
|
1699
|
+
# [2.43478262, 2.59464657, 2.93478262, 3.27491867, 3.43478262],
|
|
1700
|
+
# [3. , 3.15986395, 3.5 , 3.84013605, 4. ]]]]
|
|
1701
|
+
output = interpolate_nd(
|
|
1702
|
+
data,
|
|
1703
|
+
lambda x, _: linear_coeffs(x),
|
|
1704
|
+
scale_factors=scales,
|
|
1705
|
+
coordinate_transformation_mode="half_pixel_symmetric",
|
|
1706
|
+
).astype(np.float32)
|
|
1707
|
+
|
|
1708
|
+
expect(
|
|
1709
|
+
node,
|
|
1710
|
+
inputs=[data, scales],
|
|
1711
|
+
outputs=[output],
|
|
1712
|
+
name="test_resize_upsample_scales_linear_half_pixel_symmetric",
|
|
1713
|
+
)
|
|
@@ -1,11 +1,12 @@
|
|
|
1
|
+
# Copyright (c) ONNX Project Contributors
|
|
2
|
+
#
|
|
1
3
|
# SPDX-License-Identifier: Apache-2.0
|
|
2
4
|
|
|
3
5
|
import numpy as np
|
|
4
6
|
|
|
5
7
|
import onnx
|
|
6
|
-
|
|
7
|
-
from
|
|
8
|
-
from . import expect
|
|
8
|
+
from onnx.backend.test.case.base import Base
|
|
9
|
+
from onnx.backend.test.case.node import expect
|
|
9
10
|
|
|
10
11
|
|
|
11
12
|
class ReverseSequence(Base):
|
|
@@ -1,3 +1,5 @@
|
|
|
1
|
+
# Copyright (c) ONNX Project Contributors
|
|
2
|
+
#
|
|
1
3
|
# SPDX-License-Identifier: Apache-2.0
|
|
2
4
|
|
|
3
5
|
from typing import Any, Tuple
|
|
@@ -5,12 +7,11 @@ from typing import Any, Tuple
|
|
|
5
7
|
import numpy as np
|
|
6
8
|
|
|
7
9
|
import onnx
|
|
10
|
+
from onnx.backend.test.case.base import Base
|
|
11
|
+
from onnx.backend.test.case.node import expect
|
|
8
12
|
|
|
9
|
-
from ..base import Base
|
|
10
|
-
from . import expect
|
|
11
13
|
|
|
12
|
-
|
|
13
|
-
class RNN_Helper:
|
|
14
|
+
class RNNHelper:
|
|
14
15
|
def __init__(self, **params: Any) -> None:
|
|
15
16
|
# RNN Input Names
|
|
16
17
|
X = "X"
|
|
@@ -27,7 +28,7 @@ class RNN_Helper:
|
|
|
27
28
|
self.num_directions = params[str(W)].shape[0]
|
|
28
29
|
|
|
29
30
|
if self.num_directions == 1:
|
|
30
|
-
for k in params
|
|
31
|
+
for k in params:
|
|
31
32
|
if k != X:
|
|
32
33
|
params[k] = np.squeeze(params[k], axis=0)
|
|
33
34
|
|
|
@@ -108,7 +109,7 @@ class RNN(Base):
|
|
|
108
109
|
W = weight_scale * np.ones((1, hidden_size, input_size)).astype(np.float32)
|
|
109
110
|
R = weight_scale * np.ones((1, hidden_size, hidden_size)).astype(np.float32)
|
|
110
111
|
|
|
111
|
-
rnn =
|
|
112
|
+
rnn = RNNHelper(X=input, W=W, R=R)
|
|
112
113
|
_, Y_h = rnn.step()
|
|
113
114
|
expect(
|
|
114
115
|
node,
|
|
@@ -143,7 +144,7 @@ class RNN(Base):
|
|
|
143
144
|
R_B = np.zeros((1, hidden_size)).astype(np.float32)
|
|
144
145
|
B = np.concatenate((W_B, R_B), axis=1)
|
|
145
146
|
|
|
146
|
-
rnn =
|
|
147
|
+
rnn = RNNHelper(X=input, W=W, R=R, B=B)
|
|
147
148
|
_, Y_h = rnn.step()
|
|
148
149
|
expect(
|
|
149
150
|
node,
|
|
@@ -179,7 +180,7 @@ class RNN(Base):
|
|
|
179
180
|
R_B = np.random.randn(1, hidden_size).astype(np.float32)
|
|
180
181
|
B = np.concatenate((W_B, R_B), axis=1)
|
|
181
182
|
|
|
182
|
-
rnn =
|
|
183
|
+
rnn = RNNHelper(X=input, W=W, R=R, B=B)
|
|
183
184
|
_, Y_h = rnn.step()
|
|
184
185
|
expect(
|
|
185
186
|
node,
|
|
@@ -208,7 +209,7 @@ class RNN(Base):
|
|
|
208
209
|
W = weight_scale * np.ones((1, hidden_size, input_size)).astype(np.float32)
|
|
209
210
|
R = weight_scale * np.ones((1, hidden_size, hidden_size)).astype(np.float32)
|
|
210
211
|
|
|
211
|
-
rnn =
|
|
212
|
+
rnn = RNNHelper(X=input, W=W, R=R, layout=layout)
|
|
212
213
|
Y, Y_h = rnn.step()
|
|
213
214
|
expect(
|
|
214
215
|
node,
|
|
@@ -1,11 +1,12 @@
|
|
|
1
|
+
# Copyright (c) ONNX Project Contributors
|
|
2
|
+
#
|
|
1
3
|
# SPDX-License-Identifier: Apache-2.0
|
|
2
4
|
|
|
3
5
|
import numpy as np
|
|
4
6
|
|
|
5
7
|
import onnx
|
|
6
|
-
|
|
7
|
-
from
|
|
8
|
-
from . import expect
|
|
8
|
+
from onnx.backend.test.case.base import Base
|
|
9
|
+
from onnx.backend.test.case.node import expect
|
|
9
10
|
|
|
10
11
|
|
|
11
12
|
def get_roi_align_input_values(): # type: ignore
|
|
@@ -253,3 +254,192 @@ class RoiAlign(Base):
|
|
|
253
254
|
outputs=[Y],
|
|
254
255
|
name="test_roialign_aligned_true",
|
|
255
256
|
)
|
|
257
|
+
|
|
258
|
+
@staticmethod
|
|
259
|
+
def export_roialign_mode_max() -> None:
|
|
260
|
+
X = np.array(
|
|
261
|
+
[
|
|
262
|
+
[
|
|
263
|
+
[
|
|
264
|
+
[
|
|
265
|
+
0.2764,
|
|
266
|
+
0.715,
|
|
267
|
+
0.1958,
|
|
268
|
+
0.3416,
|
|
269
|
+
0.4638,
|
|
270
|
+
0.0259,
|
|
271
|
+
0.2963,
|
|
272
|
+
0.6518,
|
|
273
|
+
0.4856,
|
|
274
|
+
0.725,
|
|
275
|
+
],
|
|
276
|
+
[
|
|
277
|
+
0.9637,
|
|
278
|
+
0.0895,
|
|
279
|
+
0.2919,
|
|
280
|
+
0.6753,
|
|
281
|
+
0.0234,
|
|
282
|
+
0.6132,
|
|
283
|
+
0.8085,
|
|
284
|
+
0.5324,
|
|
285
|
+
0.8992,
|
|
286
|
+
0.4467,
|
|
287
|
+
],
|
|
288
|
+
[
|
|
289
|
+
0.3265,
|
|
290
|
+
0.8479,
|
|
291
|
+
0.9698,
|
|
292
|
+
0.2471,
|
|
293
|
+
0.9336,
|
|
294
|
+
0.1878,
|
|
295
|
+
0.4766,
|
|
296
|
+
0.4308,
|
|
297
|
+
0.34,
|
|
298
|
+
0.2162,
|
|
299
|
+
],
|
|
300
|
+
[
|
|
301
|
+
0.0206,
|
|
302
|
+
0.172,
|
|
303
|
+
0.2155,
|
|
304
|
+
0.4394,
|
|
305
|
+
0.0653,
|
|
306
|
+
0.3406,
|
|
307
|
+
0.7724,
|
|
308
|
+
0.3921,
|
|
309
|
+
0.2541,
|
|
310
|
+
0.5799,
|
|
311
|
+
],
|
|
312
|
+
[
|
|
313
|
+
0.4062,
|
|
314
|
+
0.2194,
|
|
315
|
+
0.4473,
|
|
316
|
+
0.4687,
|
|
317
|
+
0.7109,
|
|
318
|
+
0.9327,
|
|
319
|
+
0.9815,
|
|
320
|
+
0.632,
|
|
321
|
+
0.1728,
|
|
322
|
+
0.6119,
|
|
323
|
+
],
|
|
324
|
+
[
|
|
325
|
+
0.3097,
|
|
326
|
+
0.1283,
|
|
327
|
+
0.4984,
|
|
328
|
+
0.5068,
|
|
329
|
+
0.4279,
|
|
330
|
+
0.0173,
|
|
331
|
+
0.4388,
|
|
332
|
+
0.043,
|
|
333
|
+
0.4671,
|
|
334
|
+
0.7119,
|
|
335
|
+
],
|
|
336
|
+
[
|
|
337
|
+
0.1011,
|
|
338
|
+
0.8477,
|
|
339
|
+
0.4726,
|
|
340
|
+
0.1777,
|
|
341
|
+
0.9923,
|
|
342
|
+
0.4042,
|
|
343
|
+
0.1869,
|
|
344
|
+
0.7795,
|
|
345
|
+
0.9946,
|
|
346
|
+
0.9689,
|
|
347
|
+
],
|
|
348
|
+
[
|
|
349
|
+
0.1366,
|
|
350
|
+
0.3671,
|
|
351
|
+
0.7011,
|
|
352
|
+
0.6234,
|
|
353
|
+
0.9867,
|
|
354
|
+
0.5585,
|
|
355
|
+
0.6985,
|
|
356
|
+
0.5609,
|
|
357
|
+
0.8788,
|
|
358
|
+
0.9928,
|
|
359
|
+
],
|
|
360
|
+
[
|
|
361
|
+
0.5697,
|
|
362
|
+
0.8511,
|
|
363
|
+
0.6711,
|
|
364
|
+
0.9406,
|
|
365
|
+
0.8751,
|
|
366
|
+
0.7496,
|
|
367
|
+
0.165,
|
|
368
|
+
0.1049,
|
|
369
|
+
0.1559,
|
|
370
|
+
0.2514,
|
|
371
|
+
],
|
|
372
|
+
[
|
|
373
|
+
0.7012,
|
|
374
|
+
0.4056,
|
|
375
|
+
0.7879,
|
|
376
|
+
0.3461,
|
|
377
|
+
0.0415,
|
|
378
|
+
0.2998,
|
|
379
|
+
0.5094,
|
|
380
|
+
0.3727,
|
|
381
|
+
0.5482,
|
|
382
|
+
0.0502,
|
|
383
|
+
],
|
|
384
|
+
]
|
|
385
|
+
]
|
|
386
|
+
],
|
|
387
|
+
dtype=np.float32,
|
|
388
|
+
)
|
|
389
|
+
rois = np.array(
|
|
390
|
+
[[0.0, 0.0, 9.0, 9.0], [0.0, 5.0, 4.0, 9.0], [5.0, 5.0, 9.0, 9.0]],
|
|
391
|
+
dtype=np.float32,
|
|
392
|
+
)
|
|
393
|
+
batch_indices = np.array([0, 0, 0], dtype=np.int64)
|
|
394
|
+
|
|
395
|
+
Y = np.array(
|
|
396
|
+
[
|
|
397
|
+
[
|
|
398
|
+
[
|
|
399
|
+
[0.3445228, 0.37310338, 0.37865096, 0.446696, 0.37991184],
|
|
400
|
+
[0.4133513, 0.5455125, 0.6651902, 0.55805874, 0.27110294],
|
|
401
|
+
[0.21223956, 0.40924096, 0.8417618, 0.792561, 0.37196714],
|
|
402
|
+
[0.46835402, 0.39741728, 0.8012819, 0.4969306, 0.5495158],
|
|
403
|
+
[0.3595896, 0.5196813, 0.5403741, 0.23814403, 0.19992709],
|
|
404
|
+
]
|
|
405
|
+
],
|
|
406
|
+
[
|
|
407
|
+
[
|
|
408
|
+
[0.30517197, 0.5086199, 0.3189761, 0.4054401, 0.47630402],
|
|
409
|
+
[0.50862, 0.8477, 0.37808004, 0.24936005, 0.79384017],
|
|
410
|
+
[0.17620805, 0.29368007, 0.44870415, 0.4987201, 0.63148826],
|
|
411
|
+
[0.51066005, 0.8511, 0.5368801, 0.9406, 0.70008016],
|
|
412
|
+
[0.4487681, 0.51066035, 0.5042561, 0.5643603, 0.42004836],
|
|
413
|
+
]
|
|
414
|
+
],
|
|
415
|
+
[
|
|
416
|
+
[
|
|
417
|
+
[0.21062402, 0.3510401, 0.37416005, 0.5967599, 0.46507207],
|
|
418
|
+
[0.32336006, 0.31180006, 0.6236001, 0.9946, 0.7751202],
|
|
419
|
+
[0.35744014, 0.5588001, 0.35897616, 0.7030401, 0.6353923],
|
|
420
|
+
[0.5996801, 0.27940005, 0.17948808, 0.35152006, 0.31769615],
|
|
421
|
+
[0.3598083, 0.40752012, 0.2385281, 0.43856013, 0.26313624],
|
|
422
|
+
]
|
|
423
|
+
],
|
|
424
|
+
],
|
|
425
|
+
dtype=np.float32,
|
|
426
|
+
)
|
|
427
|
+
|
|
428
|
+
node = onnx.helper.make_node(
|
|
429
|
+
"RoiAlign",
|
|
430
|
+
inputs=["X", "rois", "batch_indices"],
|
|
431
|
+
mode="max",
|
|
432
|
+
outputs=["Y"],
|
|
433
|
+
spatial_scale=1.0,
|
|
434
|
+
output_height=5,
|
|
435
|
+
output_width=5,
|
|
436
|
+
sampling_ratio=2,
|
|
437
|
+
coordinate_transformation_mode="output_half_pixel",
|
|
438
|
+
)
|
|
439
|
+
|
|
440
|
+
expect(
|
|
441
|
+
node,
|
|
442
|
+
inputs=[X, rois, batch_indices],
|
|
443
|
+
outputs=[Y],
|
|
444
|
+
name="test_roialign_mode_max",
|
|
445
|
+
)
|