onnx 1.13.0__cp310-cp310-win32.whl → 1.14.0__cp310-cp310-win32.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of onnx might be problematic. Click here for more details.

Files changed (1057) hide show
  1. onnx/__init__.py +116 -70
  2. onnx/backend/__init__.py +2 -0
  3. onnx/backend/base.py +3 -0
  4. onnx/backend/sample/__init__.py +2 -0
  5. onnx/backend/sample/ops/__init__.py +8 -6
  6. onnx/backend/sample/ops/abs.py +1 -1
  7. onnx/backend/test/__init__.py +4 -1
  8. onnx/backend/test/case/__init__.py +4 -2
  9. onnx/backend/test/case/base.py +2 -0
  10. onnx/backend/test/case/model/__init__.py +8 -9
  11. onnx/backend/test/case/model/expand.py +4 -3
  12. onnx/backend/test/case/model/gradient.py +4 -3
  13. onnx/backend/test/case/model/sequence.py +4 -3
  14. onnx/backend/test/case/model/shrink.py +4 -4
  15. onnx/backend/test/case/model/sign.py +4 -3
  16. onnx/backend/test/case/model/single-relu.py +4 -4
  17. onnx/backend/test/case/model/stringnormalizer.py +4 -3
  18. onnx/backend/test/case/node/__init__.py +18 -12
  19. onnx/backend/test/case/node/abs.py +4 -3
  20. onnx/backend/test/case/node/acos.py +4 -3
  21. onnx/backend/test/case/node/acosh.py +4 -3
  22. onnx/backend/test/case/node/adagrad.py +4 -3
  23. onnx/backend/test/case/node/adam.py +4 -3
  24. onnx/backend/test/case/node/add.py +4 -3
  25. onnx/backend/test/case/node/ai_onnx_ml/__init__.py +0 -0
  26. onnx/backend/test/case/node/ai_onnx_ml/array_feature_extractor.py +30 -0
  27. onnx/backend/test/case/node/ai_onnx_ml/binarizer.py +27 -0
  28. onnx/backend/test/case/node/and.py +4 -3
  29. onnx/backend/test/case/node/argmax.py +6 -7
  30. onnx/backend/test/case/node/argmin.py +6 -7
  31. onnx/backend/test/case/node/asin.py +4 -3
  32. onnx/backend/test/case/node/asinh.py +4 -3
  33. onnx/backend/test/case/node/atan.py +4 -3
  34. onnx/backend/test/case/node/atanh.py +4 -3
  35. onnx/backend/test/case/node/averagepool.py +43 -4
  36. onnx/backend/test/case/node/batchnorm.py +4 -3
  37. onnx/backend/test/case/node/bernoulli.py +8 -7
  38. onnx/backend/test/case/node/bitshift.py +4 -3
  39. onnx/backend/test/case/node/bitwiseand.py +13 -11
  40. onnx/backend/test/case/node/bitwisenot.py +8 -6
  41. onnx/backend/test/case/node/bitwiseor.py +13 -11
  42. onnx/backend/test/case/node/bitwisexor.py +13 -11
  43. onnx/backend/test/case/node/blackmanwindow.py +4 -4
  44. onnx/backend/test/case/node/cast.py +218 -8
  45. onnx/backend/test/case/node/castlike.py +106 -12
  46. onnx/backend/test/case/node/ceil.py +4 -3
  47. onnx/backend/test/case/node/celu.py +4 -3
  48. onnx/backend/test/case/node/center_crop_pad.py +26 -3
  49. onnx/backend/test/case/node/clip.py +4 -3
  50. onnx/backend/test/case/node/col2im.py +5 -4
  51. onnx/backend/test/case/node/compress.py +4 -3
  52. onnx/backend/test/case/node/concat.py +4 -3
  53. onnx/backend/test/case/node/constant.py +4 -3
  54. onnx/backend/test/case/node/constantofshape.py +4 -3
  55. onnx/backend/test/case/node/conv.py +4 -6
  56. onnx/backend/test/case/node/convinteger.py +4 -5
  57. onnx/backend/test/case/node/convtranspose.py +4 -3
  58. onnx/backend/test/case/node/cos.py +4 -3
  59. onnx/backend/test/case/node/cosh.py +4 -3
  60. onnx/backend/test/case/node/cumsum.py +4 -3
  61. onnx/backend/test/case/node/deformconv.py +170 -0
  62. onnx/backend/test/case/node/depthtospace.py +4 -3
  63. onnx/backend/test/case/node/dequantizelinear.py +46 -3
  64. onnx/backend/test/case/node/det.py +4 -3
  65. onnx/backend/test/case/node/dft.py +4 -4
  66. onnx/backend/test/case/node/div.py +4 -3
  67. onnx/backend/test/case/node/dropout.py +4 -4
  68. onnx/backend/test/case/node/dynamicquantizelinear.py +4 -3
  69. onnx/backend/test/case/node/einsum.py +4 -4
  70. onnx/backend/test/case/node/elu.py +4 -3
  71. onnx/backend/test/case/node/equal.py +28 -3
  72. onnx/backend/test/case/node/erf.py +4 -3
  73. onnx/backend/test/case/node/exp.py +4 -3
  74. onnx/backend/test/case/node/expand.py +4 -3
  75. onnx/backend/test/case/node/eyelike.py +4 -3
  76. onnx/backend/test/case/node/flatten.py +4 -3
  77. onnx/backend/test/case/node/floor.py +4 -3
  78. onnx/backend/test/case/node/gather.py +4 -3
  79. onnx/backend/test/case/node/gatherelements.py +4 -3
  80. onnx/backend/test/case/node/gathernd.py +5 -4
  81. onnx/backend/test/case/node/gemm.py +4 -3
  82. onnx/backend/test/case/node/globalaveragepool.py +4 -4
  83. onnx/backend/test/case/node/globalmaxpool.py +4 -5
  84. onnx/backend/test/case/node/greater.py +4 -3
  85. onnx/backend/test/case/node/greater_equal.py +4 -3
  86. onnx/backend/test/case/node/gridsample.py +4 -3
  87. onnx/backend/test/case/node/groupnormalization.py +5 -4
  88. onnx/backend/test/case/node/gru.py +10 -9
  89. onnx/backend/test/case/node/hammingwindow.py +4 -4
  90. onnx/backend/test/case/node/hannwindow.py +4 -4
  91. onnx/backend/test/case/node/hardmax.py +4 -3
  92. onnx/backend/test/case/node/hardsigmoid.py +4 -3
  93. onnx/backend/test/case/node/hardswish.py +4 -3
  94. onnx/backend/test/case/node/identity.py +4 -3
  95. onnx/backend/test/case/node/if.py +4 -3
  96. onnx/backend/test/case/node/instancenorm.py +4 -3
  97. onnx/backend/test/case/node/isinf.py +4 -3
  98. onnx/backend/test/case/node/isnan.py +4 -3
  99. onnx/backend/test/case/node/layernormalization.py +4 -3
  100. onnx/backend/test/case/node/leakyrelu.py +4 -3
  101. onnx/backend/test/case/node/less.py +4 -3
  102. onnx/backend/test/case/node/less_equal.py +4 -3
  103. onnx/backend/test/case/node/log.py +4 -3
  104. onnx/backend/test/case/node/logsoftmax.py +4 -3
  105. onnx/backend/test/case/node/loop.py +4 -3
  106. onnx/backend/test/case/node/lppool.py +279 -0
  107. onnx/backend/test/case/node/lrn.py +4 -3
  108. onnx/backend/test/case/node/lstm.py +10 -9
  109. onnx/backend/test/case/node/matmul.py +4 -3
  110. onnx/backend/test/case/node/matmulinteger.py +4 -3
  111. onnx/backend/test/case/node/max.py +5 -4
  112. onnx/backend/test/case/node/maxpool.py +9 -4
  113. onnx/backend/test/case/node/maxunpool.py +4 -3
  114. onnx/backend/test/case/node/mean.py +4 -3
  115. onnx/backend/test/case/node/meanvariancenormalization.py +4 -3
  116. onnx/backend/test/case/node/melweightmatrix.py +4 -4
  117. onnx/backend/test/case/node/min.py +5 -4
  118. onnx/backend/test/case/node/mish.py +4 -3
  119. onnx/backend/test/case/node/mod.py +4 -3
  120. onnx/backend/test/case/node/momentum.py +4 -3
  121. onnx/backend/test/case/node/mul.py +4 -3
  122. onnx/backend/test/case/node/neg.py +4 -3
  123. onnx/backend/test/case/node/negativeloglikelihoodloss.py +4 -3
  124. onnx/backend/test/case/node/nonmaxsuppression.py +4 -3
  125. onnx/backend/test/case/node/nonzero.py +4 -3
  126. onnx/backend/test/case/node/not.py +4 -3
  127. onnx/backend/test/case/node/onehot.py +5 -4
  128. onnx/backend/test/case/node/optionalgetelement.py +4 -3
  129. onnx/backend/test/case/node/optionalhaselement.py +4 -3
  130. onnx/backend/test/case/node/or.py +4 -3
  131. onnx/backend/test/case/node/pad.py +36 -5
  132. onnx/backend/test/case/node/pool_op_common.py +20 -2
  133. onnx/backend/test/case/node/pow.py +4 -3
  134. onnx/backend/test/case/node/prelu.py +4 -3
  135. onnx/backend/test/case/node/qlinearconv.py +4 -3
  136. onnx/backend/test/case/node/qlinearmatmul.py +4 -3
  137. onnx/backend/test/case/node/quantizelinear.py +50 -3
  138. onnx/backend/test/case/node/rangeop.py +4 -3
  139. onnx/backend/test/case/node/reciprocal.py +4 -3
  140. onnx/backend/test/case/node/reduce_log_sum.py +4 -3
  141. onnx/backend/test/case/node/reduce_log_sum_exp.py +4 -3
  142. onnx/backend/test/case/node/reducel1.py +4 -3
  143. onnx/backend/test/case/node/reducel2.py +4 -3
  144. onnx/backend/test/case/node/reducemax.py +4 -3
  145. onnx/backend/test/case/node/reducemean.py +4 -3
  146. onnx/backend/test/case/node/reducemin.py +4 -3
  147. onnx/backend/test/case/node/reduceprod.py +4 -3
  148. onnx/backend/test/case/node/reducesum.py +4 -3
  149. onnx/backend/test/case/node/reducesumsquare.py +4 -3
  150. onnx/backend/test/case/node/relu.py +4 -3
  151. onnx/backend/test/case/node/reshape.py +4 -3
  152. onnx/backend/test/case/node/resize.py +73 -321
  153. onnx/backend/test/case/node/reversesequence.py +4 -3
  154. onnx/backend/test/case/node/rnn.py +10 -9
  155. onnx/backend/test/case/node/roialign.py +193 -3
  156. onnx/backend/test/case/node/round.py +4 -3
  157. onnx/backend/test/case/node/scan.py +4 -3
  158. onnx/backend/test/case/node/scatter.py +4 -3
  159. onnx/backend/test/case/node/scatterelements.py +4 -3
  160. onnx/backend/test/case/node/scatternd.py +4 -4
  161. onnx/backend/test/case/node/selu.py +4 -3
  162. onnx/backend/test/case/node/sequence_map.py +4 -4
  163. onnx/backend/test/case/node/sequenceinsert.py +4 -3
  164. onnx/backend/test/case/node/shape.py +4 -3
  165. onnx/backend/test/case/node/shrink.py +4 -3
  166. onnx/backend/test/case/node/sigmoid.py +4 -3
  167. onnx/backend/test/case/node/sign.py +4 -3
  168. onnx/backend/test/case/node/sin.py +4 -3
  169. onnx/backend/test/case/node/sinh.py +4 -3
  170. onnx/backend/test/case/node/size.py +4 -3
  171. onnx/backend/test/case/node/slice.py +4 -3
  172. onnx/backend/test/case/node/softmax.py +4 -3
  173. onnx/backend/test/case/node/softmaxcrossentropy.py +4 -3
  174. onnx/backend/test/case/node/softplus.py +4 -3
  175. onnx/backend/test/case/node/softsign.py +4 -3
  176. onnx/backend/test/case/node/spacetodepth.py +6 -3
  177. onnx/backend/test/case/node/split.py +4 -3
  178. onnx/backend/test/case/node/splittosequence.py +79 -0
  179. onnx/backend/test/case/node/sqrt.py +4 -3
  180. onnx/backend/test/case/node/squeeze.py +2 -0
  181. onnx/backend/test/case/node/stft.py +4 -4
  182. onnx/backend/test/case/node/stringnormalizer.py +4 -4
  183. onnx/backend/test/case/node/sub.py +4 -3
  184. onnx/backend/test/case/node/sum.py +4 -3
  185. onnx/backend/test/case/node/tan.py +4 -3
  186. onnx/backend/test/case/node/tanh.py +4 -3
  187. onnx/backend/test/case/node/tfidfvectorizer.py +4 -3
  188. onnx/backend/test/case/node/thresholdedrelu.py +4 -3
  189. onnx/backend/test/case/node/tile.py +4 -3
  190. onnx/backend/test/case/node/topk.py +4 -3
  191. onnx/backend/test/case/node/transpose.py +8 -7
  192. onnx/backend/test/case/node/trilu.py +4 -3
  193. onnx/backend/test/case/node/unique.py +4 -3
  194. onnx/backend/test/case/node/unsqueeze.py +4 -3
  195. onnx/backend/test/case/node/upsample.py +4 -3
  196. onnx/backend/test/case/node/where.py +4 -3
  197. onnx/backend/test/case/node/xor.py +4 -3
  198. onnx/backend/test/case/test_case.py +2 -0
  199. onnx/backend/test/case/utils.py +10 -1
  200. onnx/backend/test/cmd_tools.py +22 -13
  201. onnx/backend/test/data/light/README.md +16 -0
  202. onnx/backend/test/data/light/light_bvlc_alexnet.onnx +0 -0
  203. onnx/backend/test/data/light/light_bvlc_alexnet_output_0.pb +1 -0
  204. onnx/backend/test/data/light/light_densenet121.onnx +0 -0
  205. onnx/backend/test/data/light/light_densenet121_output_0.pb +1 -0
  206. onnx/backend/test/data/light/light_inception_v1.onnx +0 -0
  207. onnx/backend/test/data/light/light_inception_v1_output_0.pb +1 -0
  208. onnx/backend/test/data/light/light_inception_v2.onnx +0 -0
  209. onnx/backend/test/data/light/light_inception_v2_output_0.pb +1 -0
  210. onnx/backend/test/data/light/light_resnet50.onnx +0 -0
  211. onnx/backend/test/data/light/light_resnet50_output_0.pb +1 -0
  212. onnx/backend/test/data/light/light_shufflenet.onnx +0 -0
  213. onnx/backend/test/data/light/light_shufflenet_output_0.pb +1 -0
  214. onnx/backend/test/data/light/light_squeezenet.onnx +0 -0
  215. onnx/backend/test/data/light/light_squeezenet_output_0.pb +1 -0
  216. onnx/backend/test/data/light/light_vgg19.onnx +0 -0
  217. onnx/backend/test/data/light/light_vgg19_output_0.pb +1 -0
  218. onnx/backend/test/data/light/light_zfnet512.onnx +0 -0
  219. onnx/backend/test/data/light/light_zfnet512_output_0.pb +1 -0
  220. onnx/backend/test/data/node/test_acos/test_data_set_0/output_0.pb +0 -0
  221. onnx/backend/test/data/node/test_acosh/test_data_set_0/output_0.pb +1 -1
  222. onnx/backend/test/data/node/test_ai_onnx_ml_array_feature_extractor/model.onnx +19 -0
  223. onnx/backend/test/data/node/test_ai_onnx_ml_array_feature_extractor/test_data_set_0/input_0.pb +0 -0
  224. onnx/backend/test/data/node/test_ai_onnx_ml_array_feature_extractor/test_data_set_0/input_1.pb +0 -0
  225. onnx/backend/test/data/node/test_ai_onnx_ml_array_feature_extractor/test_data_set_0/output_0.pb +0 -0
  226. onnx/backend/test/data/node/test_ai_onnx_ml_binarizer/model.onnx +0 -0
  227. onnx/backend/test/data/node/test_ai_onnx_ml_binarizer/test_data_set_0/input_0.pb +1 -0
  228. onnx/backend/test/data/node/test_ai_onnx_ml_binarizer/test_data_set_0/output_0.pb +0 -0
  229. onnx/backend/test/data/node/test_asin/test_data_set_0/output_0.pb +1 -1
  230. onnx/backend/test/data/node/test_asinh/test_data_set_0/output_0.pb +1 -1
  231. onnx/backend/test/data/node/test_atan/test_data_set_0/output_0.pb +1 -1
  232. onnx/backend/test/data/node/test_atanh/test_data_set_0/output_0.pb +2 -2
  233. onnx/backend/test/data/node/test_averagepool_1d_default/model.onnx +0 -0
  234. onnx/backend/test/data/node/test_averagepool_2d_ceil/model.onnx +0 -0
  235. onnx/backend/test/data/node/test_averagepool_2d_default/model.onnx +0 -0
  236. onnx/backend/test/data/node/test_averagepool_2d_dilations/model.onnx +0 -0
  237. onnx/backend/test/data/node/test_averagepool_2d_dilations/test_data_set_0/input_0.pb +0 -0
  238. onnx/backend/test/data/node/test_averagepool_2d_dilations/test_data_set_0/output_0.pb +0 -0
  239. onnx/backend/test/data/node/test_averagepool_2d_pads/model.onnx +0 -0
  240. onnx/backend/test/data/node/test_averagepool_2d_pads_count_include_pad/model.onnx +0 -0
  241. onnx/backend/test/data/node/test_averagepool_2d_precomputed_pads/model.onnx +0 -0
  242. onnx/backend/test/data/node/test_averagepool_2d_precomputed_pads_count_include_pad/model.onnx +0 -0
  243. onnx/backend/test/data/node/test_averagepool_2d_precomputed_same_upper/model.onnx +0 -0
  244. onnx/backend/test/data/node/test_averagepool_2d_precomputed_strides/model.onnx +0 -0
  245. onnx/backend/test/data/node/test_averagepool_2d_same_lower/model.onnx +0 -0
  246. onnx/backend/test/data/node/test_averagepool_2d_same_upper/model.onnx +0 -0
  247. onnx/backend/test/data/node/test_averagepool_2d_strides/model.onnx +0 -0
  248. onnx/backend/test/data/node/test_averagepool_3d_default/model.onnx +0 -0
  249. onnx/backend/test/data/node/test_basic_deform_conv_with_padding/model.onnx +0 -0
  250. onnx/backend/test/data/node/test_basic_deform_conv_with_padding/test_data_set_0/input_0.pb +0 -0
  251. onnx/backend/test/data/node/test_basic_deform_conv_with_padding/test_data_set_0/input_1.pb +0 -0
  252. onnx/backend/test/data/node/test_basic_deform_conv_with_padding/test_data_set_0/input_2.pb +0 -0
  253. onnx/backend/test/data/node/test_basic_deform_conv_with_padding/test_data_set_0/output_0.pb +0 -0
  254. onnx/backend/test/data/node/test_basic_deform_conv_without_padding/model.onnx +0 -0
  255. onnx/backend/test/data/node/test_basic_deform_conv_without_padding/test_data_set_0/input_0.pb +0 -0
  256. onnx/backend/test/data/node/test_basic_deform_conv_without_padding/test_data_set_0/input_1.pb +0 -0
  257. onnx/backend/test/data/node/test_basic_deform_conv_without_padding/test_data_set_0/input_2.pb +0 -0
  258. onnx/backend/test/data/node/test_basic_deform_conv_without_padding/test_data_set_0/output_0.pb +0 -0
  259. onnx/backend/test/data/node/test_bitwise_and_i16_3d/test_data_set_0/input_0.pb +0 -0
  260. onnx/backend/test/data/node/test_bitwise_and_i16_3d/test_data_set_0/input_1.pb +0 -0
  261. onnx/backend/test/data/node/test_bitwise_and_i16_3d/test_data_set_0/output_0.pb +0 -0
  262. onnx/backend/test/data/node/test_bitwise_and_i32_2d/test_data_set_0/input_0.pb +0 -0
  263. onnx/backend/test/data/node/test_bitwise_and_i32_2d/test_data_set_0/input_1.pb +0 -0
  264. onnx/backend/test/data/node/test_bitwise_and_i32_2d/test_data_set_0/output_0.pb +0 -0
  265. onnx/backend/test/data/node/test_bitwise_and_ui64_bcast_3v1d/test_data_set_0/input_0.pb +0 -0
  266. onnx/backend/test/data/node/test_bitwise_and_ui64_bcast_3v1d/test_data_set_0/input_1.pb +0 -0
  267. onnx/backend/test/data/node/test_bitwise_and_ui64_bcast_3v1d/test_data_set_0/output_0.pb +0 -0
  268. onnx/backend/test/data/node/test_bitwise_and_ui8_bcast_4v3d/test_data_set_0/input_0.pb +0 -0
  269. onnx/backend/test/data/node/test_bitwise_and_ui8_bcast_4v3d/test_data_set_0/input_1.pb +0 -0
  270. onnx/backend/test/data/node/test_bitwise_and_ui8_bcast_4v3d/test_data_set_0/output_0.pb +0 -0
  271. onnx/backend/test/data/node/test_bitwise_not_2d/test_data_set_0/input_0.pb +0 -0
  272. onnx/backend/test/data/node/test_bitwise_not_2d/test_data_set_0/output_0.pb +0 -0
  273. onnx/backend/test/data/node/test_bitwise_not_3d/test_data_set_0/input_0.pb +0 -0
  274. onnx/backend/test/data/node/test_bitwise_not_3d/test_data_set_0/output_0.pb +0 -0
  275. onnx/backend/test/data/node/test_bitwise_not_4d/test_data_set_0/input_0.pb +0 -0
  276. onnx/backend/test/data/node/test_bitwise_not_4d/test_data_set_0/output_0.pb +0 -0
  277. onnx/backend/test/data/node/test_bitwise_or_i16_4d/test_data_set_0/input_0.pb +0 -0
  278. onnx/backend/test/data/node/test_bitwise_or_i16_4d/test_data_set_0/input_1.pb +0 -0
  279. onnx/backend/test/data/node/test_bitwise_or_i16_4d/test_data_set_0/output_0.pb +0 -0
  280. onnx/backend/test/data/node/test_bitwise_or_i32_2d/test_data_set_0/input_0.pb +0 -0
  281. onnx/backend/test/data/node/test_bitwise_or_i32_2d/test_data_set_0/input_1.pb +0 -0
  282. onnx/backend/test/data/node/test_bitwise_or_i32_2d/test_data_set_0/output_0.pb +0 -0
  283. onnx/backend/test/data/node/test_bitwise_or_ui64_bcast_3v1d/test_data_set_0/input_0.pb +0 -0
  284. onnx/backend/test/data/node/test_bitwise_or_ui64_bcast_3v1d/test_data_set_0/input_1.pb +0 -0
  285. onnx/backend/test/data/node/test_bitwise_or_ui64_bcast_3v1d/test_data_set_0/output_0.pb +0 -0
  286. onnx/backend/test/data/node/test_bitwise_or_ui8_bcast_4v3d/test_data_set_0/input_0.pb +0 -0
  287. onnx/backend/test/data/node/test_bitwise_or_ui8_bcast_4v3d/test_data_set_0/input_1.pb +0 -0
  288. onnx/backend/test/data/node/test_bitwise_or_ui8_bcast_4v3d/test_data_set_0/output_0.pb +0 -0
  289. onnx/backend/test/data/node/test_bitwise_xor_i16_3d/test_data_set_0/input_0.pb +0 -0
  290. onnx/backend/test/data/node/test_bitwise_xor_i16_3d/test_data_set_0/input_1.pb +0 -0
  291. onnx/backend/test/data/node/test_bitwise_xor_i16_3d/test_data_set_0/output_0.pb +0 -0
  292. onnx/backend/test/data/node/test_bitwise_xor_i32_2d/test_data_set_0/input_0.pb +0 -0
  293. onnx/backend/test/data/node/test_bitwise_xor_i32_2d/test_data_set_0/input_1.pb +0 -0
  294. onnx/backend/test/data/node/test_bitwise_xor_i32_2d/test_data_set_0/output_0.pb +0 -0
  295. onnx/backend/test/data/node/test_bitwise_xor_ui64_bcast_3v1d/test_data_set_0/input_0.pb +0 -0
  296. onnx/backend/test/data/node/test_bitwise_xor_ui64_bcast_3v1d/test_data_set_0/input_1.pb +0 -0
  297. onnx/backend/test/data/node/test_bitwise_xor_ui64_bcast_3v1d/test_data_set_0/output_0.pb +0 -0
  298. onnx/backend/test/data/node/test_bitwise_xor_ui8_bcast_4v3d/test_data_set_0/input_0.pb +0 -0
  299. onnx/backend/test/data/node/test_bitwise_xor_ui8_bcast_4v3d/test_data_set_0/input_1.pb +0 -0
  300. onnx/backend/test/data/node/test_bitwise_xor_ui8_bcast_4v3d/test_data_set_0/output_0.pb +0 -0
  301. onnx/backend/test/data/node/test_cast_BFLOAT16_to_FLOAT/model.onnx +0 -0
  302. onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT/model.onnx +0 -0
  303. onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT16/model.onnx +0 -0
  304. onnx/backend/test/data/node/test_cast_FLOAT16_to_DOUBLE/model.onnx +0 -0
  305. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT/model.onnx +0 -0
  306. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
  307. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -0
  308. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
  309. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  310. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -0
  311. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
  312. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
  313. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -0
  314. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
  315. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  316. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -0
  317. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
  318. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
  319. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
  320. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  321. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/model.onnx +0 -0
  322. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
  323. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
  324. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
  325. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/input_0.pb +0 -0
  326. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  327. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/model.onnx +0 -0
  328. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
  329. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
  330. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
  331. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
  332. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  333. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/model.onnx +0 -0
  334. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
  335. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
  336. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
  337. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/input_0.pb +0 -0
  338. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  339. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/model.onnx +0 -0
  340. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
  341. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
  342. onnx/backend/test/data/node/test_cast_FLOAT_to_BFLOAT16/model.onnx +0 -0
  343. onnx/backend/test/data/node/test_cast_FLOAT_to_DOUBLE/model.onnx +0 -0
  344. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT16/model.onnx +0 -0
  345. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
  346. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
  347. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
  348. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  349. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
  350. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
  351. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
  352. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
  353. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
  354. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  355. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
  356. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
  357. onnx/backend/test/data/node/test_cast_FLOAT_to_STRING/model.onnx +0 -0
  358. onnx/backend/test/data/node/test_cast_STRING_to_FLOAT/model.onnx +0 -0
  359. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
  360. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -0
  361. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
  362. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  363. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -0
  364. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
  365. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
  366. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -0
  367. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
  368. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  369. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -0
  370. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
  371. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
  372. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
  373. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
  374. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  375. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
  376. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
  377. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
  378. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
  379. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
  380. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  381. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
  382. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
  383. onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT/model.onnx +0 -0
  384. onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT_expanded/model.onnx +0 -0
  385. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT/model.onnx +0 -0
  386. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16/model.onnx +0 -0
  387. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16_expanded/model.onnx +0 -0
  388. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT_expanded/model.onnx +0 -0
  389. onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE/model.onnx +0 -0
  390. onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE_expanded/model.onnx +0 -0
  391. onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT/model.onnx +0 -0
  392. onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT_expanded/model.onnx +0 -0
  393. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
  394. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/input_0.pb +1 -0
  395. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/input_1.pb +0 -0
  396. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  397. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/model.onnx +0 -0
  398. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/test_data_set_0/input_0.pb +1 -0
  399. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/test_data_set_0/input_1.pb +0 -0
  400. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/test_data_set_0/output_0.pb +0 -0
  401. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
  402. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/input_0.pb +1 -0
  403. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/input_1.pb +0 -0
  404. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  405. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/model.onnx +0 -0
  406. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/test_data_set_0/input_0.pb +1 -0
  407. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/test_data_set_0/input_1.pb +0 -0
  408. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/test_data_set_0/output_0.pb +0 -0
  409. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
  410. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/input_0.pb +1 -0
  411. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/input_1.pb +0 -0
  412. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  413. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/model.onnx +0 -0
  414. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/test_data_set_0/input_0.pb +1 -0
  415. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/test_data_set_0/input_1.pb +0 -0
  416. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/test_data_set_0/output_0.pb +0 -0
  417. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
  418. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/test_data_set_0/input_0.pb +1 -0
  419. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/test_data_set_0/input_1.pb +0 -0
  420. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  421. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/model.onnx +0 -0
  422. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/test_data_set_0/input_0.pb +1 -0
  423. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/test_data_set_0/input_1.pb +0 -0
  424. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/test_data_set_0/output_0.pb +0 -0
  425. onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16/model.onnx +0 -0
  426. onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16_expanded/model.onnx +0 -0
  427. onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE/model.onnx +0 -0
  428. onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE_expanded/model.onnx +0 -0
  429. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16/model.onnx +0 -0
  430. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16_expanded/model.onnx +0 -0
  431. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
  432. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
  433. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_1.pb +1 -0
  434. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +1 -0
  435. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  436. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
  437. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_1.pb +1 -0
  438. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +1 -0
  439. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/model.onnx +0 -0
  440. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/test_data_set_0/input_0.pb +0 -0
  441. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/test_data_set_0/input_1.pb +1 -0
  442. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/test_data_set_0/output_0.pb +1 -0
  443. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/model.onnx +0 -0
  444. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/test_data_set_0/input_0.pb +0 -0
  445. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/test_data_set_0/input_1.pb +1 -0
  446. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/test_data_set_0/output_0.pb +1 -0
  447. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
  448. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
  449. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_1.pb +1 -0
  450. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +1 -0
  451. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  452. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
  453. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_1.pb +1 -0
  454. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +1 -0
  455. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/model.onnx +0 -0
  456. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/test_data_set_0/input_0.pb +0 -0
  457. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/test_data_set_0/input_1.pb +1 -0
  458. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/test_data_set_0/output_0.pb +1 -0
  459. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/model.onnx +0 -0
  460. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/test_data_set_0/input_0.pb +0 -0
  461. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/test_data_set_0/input_1.pb +1 -0
  462. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/test_data_set_0/output_0.pb +1 -0
  463. onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING/model.onnx +0 -0
  464. onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING_expanded/model.onnx +0 -0
  465. onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT/model.onnx +0 -0
  466. onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT_expanded/model.onnx +0 -0
  467. onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc/model.onnx +0 -0
  468. onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc/test_data_set_0/input_0.pb +0 -0
  469. onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc/test_data_set_0/input_1.pb +0 -0
  470. onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc/test_data_set_0/output_0.pb +0 -0
  471. onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc_expanded/model.onnx +0 -0
  472. onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc_expanded/test_data_set_0/input_0.pb +0 -0
  473. onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc_expanded/test_data_set_0/input_1.pb +0 -0
  474. onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc_expanded/test_data_set_0/output_0.pb +0 -0
  475. onnx/backend/test/data/node/test_col2im_pads/test_data_set_0/output_0.pb +0 -0
  476. onnx/backend/test/data/node/test_constant/model.onnx +0 -0
  477. onnx/backend/test/data/node/test_constant_pad/model.onnx +0 -0
  478. onnx/backend/test/data/node/test_constant_pad_axes/model.onnx +0 -0
  479. onnx/backend/test/data/node/test_constant_pad_negative_axes/model.onnx +0 -0
  480. onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/input_0.pb +1 -0
  481. onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/input_1.pb +0 -0
  482. onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/input_2.pb +1 -0
  483. onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/input_3.pb +1 -0
  484. onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/output_0.pb +1 -0
  485. onnx/backend/test/data/node/test_cosh/test_data_set_0/output_0.pb +1 -1
  486. onnx/backend/test/data/node/test_cosh_example/test_data_set_0/output_0.pb +0 -0
  487. onnx/backend/test/data/node/test_deform_conv_with_mask_bias/model.onnx +0 -0
  488. onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_0.pb +0 -0
  489. onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_1.pb +0 -0
  490. onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_2.pb +0 -0
  491. onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_3.pb +0 -0
  492. onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_4.pb +0 -0
  493. onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/output_0.pb +0 -0
  494. onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/model.onnx +0 -0
  495. onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/test_data_set_0/input_0.pb +0 -0
  496. onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/test_data_set_0/input_1.pb +0 -0
  497. onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/test_data_set_0/input_2.pb +0 -0
  498. onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/test_data_set_0/output_0.pb +0 -0
  499. onnx/backend/test/data/node/test_dequantizelinear/model.onnx +0 -0
  500. onnx/backend/test/data/node/test_dequantizelinear_axis/model.onnx +0 -0
  501. onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/model.onnx +0 -0
  502. onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/test_data_set_0/input_0.pb +0 -0
  503. onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/test_data_set_0/input_1.pb +0 -0
  504. onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/test_data_set_0/output_0.pb +0 -0
  505. onnx/backend/test/data/node/test_dequantizelinear_e5m2/model.onnx +0 -0
  506. onnx/backend/test/data/node/test_dequantizelinear_e5m2/test_data_set_0/input_0.pb +0 -0
  507. onnx/backend/test/data/node/test_dequantizelinear_e5m2/test_data_set_0/input_1.pb +0 -0
  508. onnx/backend/test/data/node/test_dequantizelinear_e5m2/test_data_set_0/output_0.pb +0 -0
  509. onnx/backend/test/data/node/test_edge_pad/model.onnx +0 -0
  510. onnx/backend/test/data/node/test_equal/model.onnx +0 -0
  511. onnx/backend/test/data/node/test_equal_bcast/model.onnx +0 -0
  512. onnx/backend/test/data/node/test_equal_string/model.onnx +0 -0
  513. onnx/backend/test/data/node/test_equal_string/test_data_set_0/input_0.pb +1 -0
  514. onnx/backend/test/data/node/test_equal_string/test_data_set_0/input_1.pb +1 -0
  515. onnx/backend/test/data/node/test_equal_string/test_data_set_0/output_0.pb +0 -0
  516. onnx/backend/test/data/node/test_equal_string_broadcast/model.onnx +0 -0
  517. onnx/backend/test/data/node/test_equal_string_broadcast/test_data_set_0/input_0.pb +1 -0
  518. onnx/backend/test/data/node/test_equal_string_broadcast/test_data_set_0/input_1.pb +1 -0
  519. onnx/backend/test/data/node/test_equal_string_broadcast/test_data_set_0/output_0.pb +0 -0
  520. onnx/backend/test/data/node/test_identity/model.onnx +0 -0
  521. onnx/backend/test/data/node/test_identity_sequence/model.onnx +0 -0
  522. onnx/backend/test/data/node/test_lppool_1d_default/model.onnx +0 -0
  523. onnx/backend/test/data/node/test_lppool_1d_default/test_data_set_0/input_0.pb +1 -0
  524. onnx/backend/test/data/node/test_lppool_1d_default/test_data_set_0/output_0.pb +2 -0
  525. onnx/backend/test/data/node/test_lppool_2d_default/model.onnx +0 -0
  526. onnx/backend/test/data/node/test_lppool_2d_default/test_data_set_0/input_0.pb +0 -0
  527. onnx/backend/test/data/node/test_lppool_2d_default/test_data_set_0/output_0.pb +0 -0
  528. onnx/backend/test/data/node/test_lppool_2d_dilations/model.onnx +0 -0
  529. onnx/backend/test/data/node/test_lppool_2d_dilations/test_data_set_0/input_0.pb +0 -0
  530. onnx/backend/test/data/node/test_lppool_2d_dilations/test_data_set_0/output_0.pb +1 -0
  531. onnx/backend/test/data/node/test_lppool_2d_pads/model.onnx +0 -0
  532. onnx/backend/test/data/node/test_lppool_2d_pads/test_data_set_0/input_0.pb +0 -0
  533. onnx/backend/test/data/node/test_lppool_2d_pads/test_data_set_0/output_0.pb +0 -0
  534. onnx/backend/test/data/node/test_lppool_2d_same_lower/model.onnx +0 -0
  535. onnx/backend/test/data/node/test_lppool_2d_same_lower/test_data_set_0/input_0.pb +0 -0
  536. onnx/backend/test/data/node/test_lppool_2d_same_lower/test_data_set_0/output_0.pb +0 -0
  537. onnx/backend/test/data/node/test_lppool_2d_same_upper/model.onnx +0 -0
  538. onnx/backend/test/data/node/test_lppool_2d_same_upper/test_data_set_0/input_0.pb +0 -0
  539. onnx/backend/test/data/node/test_lppool_2d_same_upper/test_data_set_0/output_0.pb +0 -0
  540. onnx/backend/test/data/node/test_lppool_2d_strides/model.onnx +0 -0
  541. onnx/backend/test/data/node/test_lppool_2d_strides/test_data_set_0/input_0.pb +0 -0
  542. onnx/backend/test/data/node/test_lppool_2d_strides/test_data_set_0/output_0.pb +0 -0
  543. onnx/backend/test/data/node/test_lppool_3d_default/model.onnx +0 -0
  544. onnx/backend/test/data/node/test_lppool_3d_default/test_data_set_0/input_0.pb +0 -0
  545. onnx/backend/test/data/node/test_lppool_3d_default/test_data_set_0/output_0.pb +0 -0
  546. onnx/backend/test/data/node/test_mish/test_data_set_0/output_0.pb +0 -0
  547. onnx/backend/test/data/node/test_mish_expanded/test_data_set_0/output_0.pb +0 -0
  548. onnx/backend/test/data/node/test_quantizelinear/model.onnx +0 -0
  549. onnx/backend/test/data/node/test_quantizelinear_axis/model.onnx +0 -0
  550. onnx/backend/test/data/node/test_quantizelinear_e4m3fn/model.onnx +0 -0
  551. onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_0.pb +0 -0
  552. onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_1.pb +0 -0
  553. onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_2.pb +0 -0
  554. onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/output_0.pb +0 -0
  555. onnx/backend/test/data/node/test_quantizelinear_e5m2/model.onnx +0 -0
  556. onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_0.pb +0 -0
  557. onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_1.pb +0 -0
  558. onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_2.pb +0 -0
  559. onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/output_0.pb +0 -0
  560. onnx/backend/test/data/node/test_reflect_pad/model.onnx +0 -0
  561. onnx/backend/test/data/node/test_reshape_allowzero_reordered/model.onnx +0 -0
  562. onnx/backend/test/data/node/test_reshape_extended_dims/model.onnx +0 -0
  563. onnx/backend/test/data/node/test_reshape_negative_dim/model.onnx +0 -0
  564. onnx/backend/test/data/node/test_reshape_negative_extended_dims/model.onnx +0 -0
  565. onnx/backend/test/data/node/test_reshape_one_dim/model.onnx +0 -0
  566. onnx/backend/test/data/node/test_reshape_reduced_dims/model.onnx +0 -0
  567. onnx/backend/test/data/node/test_reshape_reordered_all_dims/model.onnx +0 -0
  568. onnx/backend/test/data/node/test_reshape_reordered_last_dims/model.onnx +0 -0
  569. onnx/backend/test/data/node/test_reshape_zero_and_negative_dim/model.onnx +0 -0
  570. onnx/backend/test/data/node/test_reshape_zero_dim/model.onnx +0 -0
  571. onnx/backend/test/data/node/test_resize_downsample_scales_cubic/model.onnx +0 -0
  572. onnx/backend/test/data/node/test_resize_downsample_scales_cubic_A_n0p5_exclude_outside/model.onnx +0 -0
  573. onnx/backend/test/data/node/test_resize_downsample_scales_cubic_align_corners/model.onnx +0 -0
  574. onnx/backend/test/data/node/test_resize_downsample_scales_cubic_antialias/model.onnx +0 -0
  575. onnx/backend/test/data/node/test_resize_downsample_scales_linear/model.onnx +0 -0
  576. onnx/backend/test/data/node/test_resize_downsample_scales_linear_align_corners/model.onnx +0 -0
  577. onnx/backend/test/data/node/test_resize_downsample_scales_linear_antialias/model.onnx +0 -0
  578. onnx/backend/test/data/node/test_resize_downsample_scales_linear_half_pixel_symmetric/model.onnx +0 -0
  579. onnx/backend/test/data/node/test_resize_downsample_scales_linear_half_pixel_symmetric/test_data_set_0/input_0.pb +0 -0
  580. onnx/backend/test/data/node/test_resize_downsample_scales_linear_half_pixel_symmetric/test_data_set_0/input_1.pb +0 -0
  581. onnx/backend/test/data/node/test_resize_downsample_scales_linear_half_pixel_symmetric/test_data_set_0/output_0.pb +1 -0
  582. onnx/backend/test/data/node/test_resize_downsample_scales_nearest/model.onnx +0 -0
  583. onnx/backend/test/data/node/test_resize_downsample_sizes_cubic/model.onnx +0 -0
  584. onnx/backend/test/data/node/test_resize_downsample_sizes_cubic_antialias/model.onnx +0 -0
  585. onnx/backend/test/data/node/test_resize_downsample_sizes_linear_antialias/model.onnx +0 -0
  586. onnx/backend/test/data/node/test_resize_downsample_sizes_linear_pytorch_half_pixel/model.onnx +0 -0
  587. onnx/backend/test/data/node/test_resize_downsample_sizes_nearest/model.onnx +0 -0
  588. onnx/backend/test/data/node/test_resize_downsample_sizes_nearest_not_larger/model.onnx +0 -0
  589. onnx/backend/test/data/node/test_resize_downsample_sizes_nearest_not_smaller/model.onnx +0 -0
  590. onnx/backend/test/data/node/test_resize_tf_crop_and_resize/model.onnx +0 -0
  591. onnx/backend/test/data/node/test_resize_tf_crop_and_resize_axes_2_3/model.onnx +0 -0
  592. onnx/backend/test/data/node/test_resize_tf_crop_and_resize_axes_3_2/model.onnx +0 -0
  593. onnx/backend/test/data/node/test_resize_upsample_scales_cubic/model.onnx +0 -0
  594. onnx/backend/test/data/node/test_resize_upsample_scales_cubic_A_n0p5_exclude_outside/model.onnx +0 -0
  595. onnx/backend/test/data/node/test_resize_upsample_scales_cubic_align_corners/model.onnx +0 -0
  596. onnx/backend/test/data/node/test_resize_upsample_scales_cubic_asymmetric/model.onnx +0 -0
  597. onnx/backend/test/data/node/test_resize_upsample_scales_linear/model.onnx +0 -0
  598. onnx/backend/test/data/node/test_resize_upsample_scales_linear_align_corners/model.onnx +0 -0
  599. onnx/backend/test/data/node/test_resize_upsample_scales_linear_half_pixel_symmetric/model.onnx +0 -0
  600. onnx/backend/test/data/node/test_resize_upsample_scales_linear_half_pixel_symmetric/test_data_set_0/input_0.pb +0 -0
  601. onnx/backend/test/data/node/test_resize_upsample_scales_linear_half_pixel_symmetric/test_data_set_0/input_1.pb +0 -0
  602. onnx/backend/test/data/node/test_resize_upsample_scales_linear_half_pixel_symmetric/test_data_set_0/output_0.pb +0 -0
  603. onnx/backend/test/data/node/test_resize_upsample_scales_nearest/model.onnx +0 -0
  604. onnx/backend/test/data/node/test_resize_upsample_scales_nearest_axes_2_3/model.onnx +0 -0
  605. onnx/backend/test/data/node/test_resize_upsample_scales_nearest_axes_3_2/model.onnx +0 -0
  606. onnx/backend/test/data/node/test_resize_upsample_sizes_cubic/model.onnx +0 -0
  607. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest/model.onnx +0 -0
  608. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_axes_2_3/model.onnx +0 -0
  609. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_axes_3_2/model.onnx +0 -0
  610. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_ceil_half_pixel/model.onnx +0 -0
  611. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_floor_align_corners/model.onnx +0 -0
  612. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_larger/model.onnx +0 -0
  613. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_round_prefer_ceil_asymmetric/model.onnx +0 -0
  614. onnx/backend/test/data/node/test_roialign_mode_max/model.onnx +0 -0
  615. onnx/backend/test/data/node/test_roialign_mode_max/test_data_set_0/input_0.pb +0 -0
  616. onnx/backend/test/data/node/test_roialign_mode_max/test_data_set_0/input_1.pb +0 -0
  617. onnx/backend/test/data/node/test_roialign_mode_max/test_data_set_0/input_2.pb +0 -0
  618. onnx/backend/test/data/node/test_roialign_mode_max/test_data_set_0/output_0.pb +2 -0
  619. onnx/backend/test/data/node/test_shape/model.onnx +0 -0
  620. onnx/backend/test/data/node/test_shape_clip_end/model.onnx +0 -0
  621. onnx/backend/test/data/node/test_shape_clip_start/model.onnx +0 -0
  622. onnx/backend/test/data/node/test_shape_end_1/model.onnx +0 -0
  623. onnx/backend/test/data/node/test_shape_end_negative_1/model.onnx +0 -0
  624. onnx/backend/test/data/node/test_shape_example/model.onnx +0 -0
  625. onnx/backend/test/data/node/test_shape_start_1/model.onnx +0 -0
  626. onnx/backend/test/data/node/test_shape_start_1_end_2/model.onnx +0 -0
  627. onnx/backend/test/data/node/test_shape_start_1_end_negative_1/model.onnx +0 -0
  628. onnx/backend/test/data/node/test_shape_start_negative_1/model.onnx +0 -0
  629. onnx/backend/test/data/node/test_sinh/test_data_set_0/output_0.pb +1 -1
  630. onnx/backend/test/data/node/test_size/model.onnx +0 -0
  631. onnx/backend/test/data/node/test_size_example/model.onnx +0 -0
  632. onnx/backend/test/data/node/test_softplus_example_expanded_ver18/model.onnx +0 -0
  633. onnx/backend/test/data/node/{test_softplus_expanded → test_softplus_expanded_ver18}/model.onnx +0 -0
  634. onnx/backend/test/data/node/test_split_to_sequence_1/model.onnx +0 -0
  635. onnx/backend/test/data/node/test_split_to_sequence_1/test_data_set_0/input_0.pb +0 -0
  636. onnx/backend/test/data/node/test_split_to_sequence_1/test_data_set_0/input_1.pb +0 -0
  637. onnx/backend/test/data/node/test_split_to_sequence_1/test_data_set_0/output_0.pb +0 -0
  638. onnx/backend/test/data/node/test_split_to_sequence_2/model.onnx +0 -0
  639. onnx/backend/test/data/node/test_split_to_sequence_2/test_data_set_0/input_0.pb +0 -0
  640. onnx/backend/test/data/node/test_split_to_sequence_2/test_data_set_0/input_1.pb +0 -0
  641. onnx/backend/test/data/node/test_split_to_sequence_2/test_data_set_0/output_0.pb +0 -0
  642. onnx/backend/test/data/node/test_split_to_sequence_nokeepdims/model.onnx +0 -0
  643. onnx/backend/test/data/node/test_split_to_sequence_nokeepdims/test_data_set_0/input_0.pb +0 -0
  644. onnx/backend/test/data/node/test_split_to_sequence_nokeepdims/test_data_set_0/output_0.pb +0 -0
  645. onnx/backend/test/data/node/test_tan/test_data_set_0/output_0.pb +1 -1
  646. onnx/backend/test/data/node/test_wrap_pad/model.onnx +0 -0
  647. onnx/backend/test/data/node/test_wrap_pad/test_data_set_0/input_0.pb +0 -0
  648. onnx/backend/test/data/node/test_wrap_pad/test_data_set_0/input_1.pb +0 -0
  649. onnx/backend/test/data/node/test_wrap_pad/test_data_set_0/output_0.pb +0 -0
  650. onnx/backend/test/data/real/test_bvlc_alexnet/data.json +1 -1
  651. onnx/backend/test/data/real/test_densenet121/data.json +1 -1
  652. onnx/backend/test/data/real/test_inception_v1/data.json +1 -1
  653. onnx/backend/test/data/real/test_inception_v2/data.json +1 -1
  654. onnx/backend/test/data/real/test_resnet50/data.json +1 -1
  655. onnx/backend/test/data/real/test_shufflenet/data.json +1 -1
  656. onnx/backend/test/data/real/test_squeezenet/data.json +1 -1
  657. onnx/backend/test/data/real/test_vgg19/data.json +1 -1
  658. onnx/backend/test/data/real/test_zfnet512/data.json +1 -1
  659. onnx/backend/test/loader/__init__.py +3 -1
  660. onnx/backend/test/report/__init__.py +3 -1
  661. onnx/backend/test/report/base.py +2 -0
  662. onnx/backend/test/report/coverage.py +8 -14
  663. onnx/backend/test/runner/__init__.py +145 -38
  664. onnx/backend/test/runner/item.py +2 -0
  665. onnx/backend/test/stat_coverage.py +23 -26
  666. onnx/bin/__init__.py +2 -0
  667. onnx/bin/checker.py +2 -0
  668. onnx/checker.cc +17 -5
  669. onnx/checker.h +3 -3
  670. onnx/checker.py +22 -5
  671. onnx/common/array_ref.h +2 -0
  672. onnx/common/assertions.cc +2 -0
  673. onnx/common/assertions.h +2 -0
  674. onnx/common/common.h +2 -0
  675. onnx/common/constants.h +3 -3
  676. onnx/common/file_utils.h +3 -1
  677. onnx/common/graph_node_list.h +2 -0
  678. onnx/common/interned_strings.cc +2 -0
  679. onnx/common/interned_strings.h +2 -0
  680. onnx/common/ir.h +2 -0
  681. onnx/common/ir_pb_converter.cc +7 -1
  682. onnx/common/ir_pb_converter.h +2 -0
  683. onnx/common/model_helpers.cc +3 -3
  684. onnx/common/model_helpers.h +3 -3
  685. onnx/common/path.cc +0 -1
  686. onnx/common/path.h +0 -1
  687. onnx/common/platform_helpers.h +2 -0
  688. onnx/common/status.cc +2 -0
  689. onnx/common/status.h +2 -0
  690. onnx/common/stl_backports.h +3 -3
  691. onnx/common/tensor.h +24 -171
  692. onnx/common/version.h +3 -1
  693. onnx/compose.py +40 -32
  694. onnx/cpp2py_export.cc +268 -89
  695. onnx/defs/__init__.py +9 -7
  696. onnx/defs/attr_proto_util.cc +2 -0
  697. onnx/defs/attr_proto_util.h +2 -0
  698. onnx/defs/controlflow/defs.cc +25 -369
  699. onnx/defs/controlflow/old.cc +444 -0
  700. onnx/defs/controlflow/utils.cc +357 -0
  701. onnx/defs/controlflow/utils.h +21 -0
  702. onnx/defs/data_propagators.h +2 -0
  703. onnx/defs/data_type_utils.cc +6 -2
  704. onnx/defs/gen_doc.py +31 -45
  705. onnx/defs/gen_shape_inference_information.py +2 -0
  706. onnx/defs/generator/defs.cc +21 -19
  707. onnx/defs/generator/old.cc +157 -0
  708. onnx/defs/logical/defs.cc +17 -16
  709. onnx/defs/logical/old.cc +23 -0
  710. onnx/defs/math/defs.cc +155 -131
  711. onnx/defs/math/old.cc +1 -1
  712. onnx/defs/nn/defs.cc +135 -45
  713. onnx/defs/nn/old.cc +142 -9
  714. onnx/defs/operator_sets.h +45 -0
  715. onnx/defs/optional/defs.cc +8 -4
  716. onnx/defs/parser.cc +61 -4
  717. onnx/defs/parser.h +43 -31
  718. onnx/defs/printer.cc +7 -1
  719. onnx/defs/printer.h +1 -1
  720. onnx/defs/quantization/defs.cc +63 -26
  721. onnx/defs/quantization/old.cc +102 -1
  722. onnx/defs/reduction/defs.cc +1 -1
  723. onnx/defs/reduction/utils.cc +5 -4
  724. onnx/defs/rnn/defs.cc +95 -173
  725. onnx/defs/schema.cc +45 -29
  726. onnx/defs/schema.h +125 -15
  727. onnx/defs/sequence/defs.cc +11 -8
  728. onnx/defs/shape_inference.cc +25 -4
  729. onnx/defs/shape_inference.h +29 -1
  730. onnx/defs/tensor/defs.cc +499 -565
  731. onnx/defs/tensor/old.cc +777 -47
  732. onnx/defs/tensor/utils.cc +130 -8
  733. onnx/defs/tensor/utils.h +2 -0
  734. onnx/defs/tensor_proto_util.cc +3 -0
  735. onnx/defs/traditionalml/defs.cc +19 -2
  736. onnx/examples/Protobufs.ipynb +129 -31
  737. onnx/examples/check_model.ipynb +29 -21
  738. onnx/examples/load_model.ipynb +25 -3
  739. onnx/examples/make_model.ipynb +32 -23
  740. onnx/external_data_helper.py +8 -9
  741. onnx/frontend/__init__.py +2 -0
  742. onnx/gen_proto.py +18 -24
  743. onnx/helper.py +394 -107
  744. onnx/hub.py +189 -20
  745. onnx/mapping.py +33 -7
  746. onnx/numpy_helper.py +263 -52
  747. onnx/onnx-ml.proto +28 -6
  748. onnx/onnx-operators-ml.proto +1 -1
  749. onnx/onnx-operators.in.proto +1 -1
  750. onnx/onnx-operators.proto +1 -1
  751. onnx/onnx.in.proto +28 -6
  752. onnx/onnx.proto +28 -6
  753. onnx/onnx_cpp2py_export.cp310-win32.pyd +0 -0
  754. onnx/onnx_data_pb2.pyi +2 -1
  755. onnx/onnx_ml_pb2.py +33 -33
  756. onnx/onnx_ml_pb2.pyi +12 -2
  757. onnx/onnx_operators_ml_pb2.pyi +2 -1
  758. onnx/parser.py +29 -13
  759. onnx/printer.py +6 -4
  760. onnx/proto_utils.h +3 -3
  761. onnx/py_utils.h +3 -3
  762. onnx/reference/__init__.py +2 -0
  763. onnx/reference/custom_element_types.py +11 -0
  764. onnx/reference/op_run.py +84 -8
  765. onnx/reference/ops/__init__.py +5 -1
  766. onnx/reference/ops/_helpers.py +55 -0
  767. onnx/reference/ops/_op.py +18 -11
  768. onnx/reference/ops/_op_common_indices.py +2 -0
  769. onnx/reference/ops/_op_common_pool.py +4 -10
  770. onnx/reference/ops/_op_common_random.py +2 -0
  771. onnx/reference/ops/_op_common_window.py +2 -0
  772. onnx/reference/ops/_op_list.py +208 -214
  773. onnx/reference/ops/aionnx_preview_training/__init__.py +4 -2
  774. onnx/reference/ops/aionnx_preview_training/_op_list.py +15 -38
  775. onnx/reference/ops/aionnx_preview_training/_op_run_training.py +2 -0
  776. onnx/reference/ops/aionnx_preview_training/op_adagrad.py +3 -1
  777. onnx/reference/ops/aionnx_preview_training/op_adam.py +3 -1
  778. onnx/reference/ops/aionnx_preview_training/op_momentum.py +3 -1
  779. onnx/reference/ops/aionnxml/__init__.py +3 -0
  780. onnx/reference/ops/aionnxml/_common_classifier.py +81 -0
  781. onnx/reference/ops/aionnxml/_op_list.py +97 -0
  782. onnx/reference/ops/aionnxml/_op_run_aionnxml.py +8 -0
  783. onnx/reference/ops/aionnxml/op_array_feature_extractor.py +50 -0
  784. onnx/reference/ops/aionnxml/op_binarizer.py +15 -0
  785. onnx/reference/ops/aionnxml/op_dict_vectorizer.py +56 -0
  786. onnx/reference/ops/aionnxml/op_feature_vectorizer.py +30 -0
  787. onnx/reference/ops/aionnxml/op_imputer.py +47 -0
  788. onnx/reference/ops/aionnxml/op_label_encoder.py +52 -0
  789. onnx/reference/ops/aionnxml/op_linear_classifier.py +99 -0
  790. onnx/reference/ops/aionnxml/op_linear_regressor.py +26 -0
  791. onnx/reference/ops/aionnxml/op_normalizer.py +41 -0
  792. onnx/reference/ops/aionnxml/op_one_hot_encoder.py +55 -0
  793. onnx/reference/ops/aionnxml/op_scaler.py +12 -0
  794. onnx/reference/ops/aionnxml/op_svm_classifier.py +334 -0
  795. onnx/reference/ops/aionnxml/op_svm_helper.py +99 -0
  796. onnx/reference/ops/aionnxml/op_svm_regressor.py +45 -0
  797. onnx/reference/ops/aionnxml/op_tree_ensemble_classifier.py +132 -0
  798. onnx/reference/ops/aionnxml/op_tree_ensemble_helper.py +109 -0
  799. onnx/reference/ops/aionnxml/op_tree_ensemble_regressor.py +105 -0
  800. onnx/reference/ops/experimental/__init__.py +3 -1
  801. onnx/reference/ops/experimental/_op_list.py +15 -36
  802. onnx/reference/ops/experimental/_op_run_experimental.py +2 -0
  803. onnx/reference/ops/experimental/op_im2col.py +3 -2
  804. onnx/reference/ops/op_abs.py +3 -1
  805. onnx/reference/ops/op_acos.py +3 -1
  806. onnx/reference/ops/op_acosh.py +3 -1
  807. onnx/reference/ops/op_add.py +3 -1
  808. onnx/reference/ops/op_and.py +3 -1
  809. onnx/reference/ops/op_argmax.py +4 -9
  810. onnx/reference/ops/op_argmin.py +4 -9
  811. onnx/reference/ops/op_asin.py +3 -1
  812. onnx/reference/ops/op_asinh.py +3 -1
  813. onnx/reference/ops/op_atan.py +3 -1
  814. onnx/reference/ops/op_atanh.py +3 -1
  815. onnx/reference/ops/op_attribute_has_value.py +2 -0
  816. onnx/reference/ops/op_average_pool.py +80 -2
  817. onnx/reference/ops/op_batch_normalization.py +14 -11
  818. onnx/reference/ops/op_bernoulli.py +3 -2
  819. onnx/reference/ops/op_bitshift.py +3 -1
  820. onnx/reference/ops/op_bitwise_and.py +3 -1
  821. onnx/reference/ops/op_bitwise_not.py +3 -1
  822. onnx/reference/ops/op_bitwise_or.py +3 -1
  823. onnx/reference/ops/op_bitwise_xor.py +3 -1
  824. onnx/reference/ops/op_blackman_window.py +3 -1
  825. onnx/reference/ops/op_cast.py +91 -10
  826. onnx/reference/ops/op_cast_like.py +32 -7
  827. onnx/reference/ops/op_ceil.py +3 -1
  828. onnx/reference/ops/op_celu.py +3 -1
  829. onnx/reference/ops/op_center_crop_pad.py +7 -3
  830. onnx/reference/ops/op_clip.py +2 -7
  831. onnx/reference/ops/op_col2im.py +3 -4
  832. onnx/reference/ops/op_compress.py +2 -0
  833. onnx/reference/ops/op_concat.py +6 -5
  834. onnx/reference/ops/op_concat_from_sequence.py +2 -0
  835. onnx/reference/ops/op_constant.py +46 -35
  836. onnx/reference/ops/op_constant_of_shape.py +4 -0
  837. onnx/reference/ops/op_conv.py +62 -39
  838. onnx/reference/ops/op_conv_integer.py +3 -2
  839. onnx/reference/ops/op_conv_transpose.py +4 -4
  840. onnx/reference/ops/op_cos.py +3 -1
  841. onnx/reference/ops/op_cosh.py +3 -1
  842. onnx/reference/ops/op_cum_sum.py +2 -0
  843. onnx/reference/ops/op_deform_conv.py +178 -0
  844. onnx/reference/ops/op_depth_to_space.py +2 -0
  845. onnx/reference/ops/op_dequantize_linear.py +72 -21
  846. onnx/reference/ops/op_det.py +3 -4
  847. onnx/reference/ops/op_dft.py +2 -0
  848. onnx/reference/ops/op_div.py +3 -1
  849. onnx/reference/ops/op_dropout.py +2 -7
  850. onnx/reference/ops/op_dynamic_quantize_linear.py +2 -0
  851. onnx/reference/ops/op_einsum.py +2 -0
  852. onnx/reference/ops/op_elu.py +4 -2
  853. onnx/reference/ops/op_equal.py +3 -1
  854. onnx/reference/ops/op_erf.py +3 -1
  855. onnx/reference/ops/op_exp.py +4 -2
  856. onnx/reference/ops/op_expand.py +2 -0
  857. onnx/reference/ops/op_eyelike.py +9 -4
  858. onnx/reference/ops/op_flatten.py +3 -1
  859. onnx/reference/ops/op_floor.py +3 -1
  860. onnx/reference/ops/op_gather.py +2 -0
  861. onnx/reference/ops/op_gather_elements.py +2 -0
  862. onnx/reference/ops/op_gathernd.py +3 -1
  863. onnx/reference/ops/op_gemm.py +5 -10
  864. onnx/reference/ops/op_global_average_pool.py +6 -5
  865. onnx/reference/ops/op_global_max_pool.py +2 -0
  866. onnx/reference/ops/op_greater.py +3 -1
  867. onnx/reference/ops/op_greater_or_equal.py +3 -1
  868. onnx/reference/ops/op_grid_sample.py +3 -1
  869. onnx/reference/ops/op_gru.py +4 -1
  870. onnx/reference/ops/op_hamming_window.py +3 -1
  871. onnx/reference/ops/op_hann_window.py +3 -1
  872. onnx/reference/ops/op_hard_sigmoid.py +3 -1
  873. onnx/reference/ops/op_hardmax.py +3 -1
  874. onnx/reference/ops/op_identity.py +3 -1
  875. onnx/reference/ops/op_if.py +16 -8
  876. onnx/reference/ops/op_instance_normalization.py +2 -0
  877. onnx/reference/ops/op_isinf.py +2 -0
  878. onnx/reference/ops/op_isnan.py +3 -1
  879. onnx/reference/ops/op_layer_normalization.py +2 -0
  880. onnx/reference/ops/op_leaky_relu.py +4 -2
  881. onnx/reference/ops/op_less.py +3 -1
  882. onnx/reference/ops/op_less_or_equal.py +3 -1
  883. onnx/reference/ops/op_log.py +4 -2
  884. onnx/reference/ops/op_log_softmax.py +3 -1
  885. onnx/reference/ops/op_loop.py +4 -2
  886. onnx/reference/ops/op_lp_normalization.py +4 -2
  887. onnx/reference/ops/op_lp_pool.py +41 -0
  888. onnx/reference/ops/op_lrn.py +9 -5
  889. onnx/reference/ops/op_lstm.py +4 -2
  890. onnx/reference/ops/op_matmul.py +3 -1
  891. onnx/reference/ops/op_matmul_integer.py +2 -0
  892. onnx/reference/ops/op_max.py +3 -1
  893. onnx/reference/ops/op_max_pool.py +3 -4
  894. onnx/reference/ops/op_max_unpool.py +2 -1
  895. onnx/reference/ops/op_mean.py +3 -1
  896. onnx/reference/ops/op_mel_weight_matrix.py +2 -0
  897. onnx/reference/ops/op_min.py +3 -1
  898. onnx/reference/ops/op_mod.py +2 -0
  899. onnx/reference/ops/op_mul.py +3 -1
  900. onnx/reference/ops/op_neg.py +3 -1
  901. onnx/reference/ops/op_negative_log_likelihood_loss.py +3 -1
  902. onnx/reference/ops/op_non_max_suppression.py +22 -20
  903. onnx/reference/ops/op_non_zero.py +4 -1
  904. onnx/reference/ops/op_not.py +3 -1
  905. onnx/reference/ops/op_one_hot.py +3 -1
  906. onnx/reference/ops/op_optional.py +2 -0
  907. onnx/reference/ops/op_optional_get_element.py +4 -8
  908. onnx/reference/ops/op_optional_has_element.py +3 -9
  909. onnx/reference/ops/op_or.py +3 -1
  910. onnx/reference/ops/op_pad.py +18 -29
  911. onnx/reference/ops/op_pow.py +2 -0
  912. onnx/reference/ops/op_prelu.py +4 -2
  913. onnx/reference/ops/op_qlinear_conv.py +3 -2
  914. onnx/reference/ops/op_qlinear_matmul.py +2 -0
  915. onnx/reference/ops/op_quantize_linear.py +100 -15
  916. onnx/reference/ops/op_random_normal.py +3 -1
  917. onnx/reference/ops/op_random_normal_like.py +3 -2
  918. onnx/reference/ops/op_random_uniform.py +3 -1
  919. onnx/reference/ops/op_random_uniform_like.py +3 -2
  920. onnx/reference/ops/op_range.py +2 -0
  921. onnx/reference/ops/op_reciprocal.py +4 -2
  922. onnx/reference/ops/op_reduce_l1.py +17 -31
  923. onnx/reference/ops/op_reduce_l2.py +17 -35
  924. onnx/reference/ops/op_reduce_log_sum.py +6 -29
  925. onnx/reference/ops/op_reduce_log_sum_exp.py +6 -29
  926. onnx/reference/ops/op_reduce_max.py +15 -36
  927. onnx/reference/ops/op_reduce_mean.py +15 -33
  928. onnx/reference/ops/op_reduce_min.py +15 -32
  929. onnx/reference/ops/op_reduce_prod.py +15 -29
  930. onnx/reference/ops/op_reduce_sum.py +17 -45
  931. onnx/reference/ops/op_reduce_sum_square.py +15 -29
  932. onnx/reference/ops/op_relu.py +3 -1
  933. onnx/reference/ops/op_reshape.py +2 -8
  934. onnx/reference/ops/op_resize.py +59 -28
  935. onnx/reference/ops/op_reverse_sequence.py +2 -0
  936. onnx/reference/ops/op_rnn.py +3 -9
  937. onnx/reference/ops/op_roi_align.py +7 -5
  938. onnx/reference/ops/op_round.py +4 -2
  939. onnx/reference/ops/op_scan.py +4 -1
  940. onnx/reference/ops/op_scatter_elements.py +17 -4
  941. onnx/reference/ops/op_scatternd.py +2 -0
  942. onnx/reference/ops/op_selu.py +5 -1
  943. onnx/reference/ops/op_sequence_at.py +2 -0
  944. onnx/reference/ops/op_sequence_construct.py +2 -0
  945. onnx/reference/ops/op_sequence_empty.py +2 -0
  946. onnx/reference/ops/op_sequence_erase.py +2 -0
  947. onnx/reference/ops/op_sequence_insert.py +4 -2
  948. onnx/reference/ops/op_sequence_length.py +7 -1
  949. onnx/reference/ops/op_sequence_map.py +4 -2
  950. onnx/reference/ops/op_shape.py +2 -7
  951. onnx/reference/ops/op_shrink.py +3 -1
  952. onnx/reference/ops/op_sigmoid.py +7 -1
  953. onnx/reference/ops/op_sign.py +3 -1
  954. onnx/reference/ops/op_sin.py +3 -1
  955. onnx/reference/ops/op_sinh.py +3 -1
  956. onnx/reference/ops/op_size.py +2 -0
  957. onnx/reference/ops/op_slice.py +3 -9
  958. onnx/reference/ops/op_softmax.py +4 -2
  959. onnx/reference/ops/op_softmax_cross_entropy_loss.py +4 -1
  960. onnx/reference/ops/op_softplus.py +4 -2
  961. onnx/reference/ops/op_softsign.py +3 -1
  962. onnx/reference/ops/op_space_to_depth.py +3 -1
  963. onnx/reference/ops/op_split.py +7 -9
  964. onnx/reference/ops/op_split_to_sequence.py +41 -10
  965. onnx/reference/ops/op_sqrt.py +4 -2
  966. onnx/reference/ops/op_squeeze.py +3 -12
  967. onnx/reference/ops/op_stft.py +8 -7
  968. onnx/reference/ops/op_string_normalizer.py +3 -1
  969. onnx/reference/ops/op_sub.py +3 -1
  970. onnx/reference/ops/op_sum.py +3 -1
  971. onnx/reference/ops/op_tan.py +3 -1
  972. onnx/reference/ops/op_tanh.py +3 -1
  973. onnx/reference/ops/op_tfidf_vectorizer.py +15 -15
  974. onnx/reference/ops/op_thresholded_relu.py +4 -2
  975. onnx/reference/ops/op_tile.py +2 -0
  976. onnx/reference/ops/op_topk.py +12 -19
  977. onnx/reference/ops/op_transpose.py +2 -0
  978. onnx/reference/ops/op_trilu.py +3 -1
  979. onnx/reference/ops/op_unique.py +2 -0
  980. onnx/reference/ops/op_unsqueeze.py +2 -9
  981. onnx/reference/ops/op_upsample.py +9 -8
  982. onnx/reference/ops/op_where.py +7 -1
  983. onnx/reference/ops/op_xor.py +3 -1
  984. onnx/reference/reference_evaluator.py +64 -20
  985. onnx/shape_inference/implementation.cc +207 -30
  986. onnx/shape_inference/implementation.h +15 -4
  987. onnx/shape_inference.py +37 -12
  988. onnx/string_utils.h +3 -3
  989. onnx/test/cpp/common_path_test.cc +2 -0
  990. onnx/test/cpp/data_propagation_test.cc +2 -0
  991. onnx/test/cpp/function_context_test.cc +2 -0
  992. onnx/test/cpp/function_get_test.cc +2 -0
  993. onnx/test/cpp/function_verify_test.cc +176 -0
  994. onnx/test/cpp/op_reg_test.cc +2 -0
  995. onnx/test/cpp/parser_test.cc +65 -1
  996. onnx/test/cpp/schema_registration_test.cc +2 -0
  997. onnx/test/cpp/shape_inference_test.cc +2 -0
  998. onnx/test/cpp/test_main.cc +2 -0
  999. onnx/tools/__init__.py +2 -0
  1000. onnx/tools/net_drawer.py +13 -9
  1001. onnx/tools/replace_constants.py +429 -0
  1002. onnx/tools/update_model_dims.py +7 -9
  1003. onnx/utils.py +16 -6
  1004. onnx/version.py +2 -2
  1005. onnx/version_converter/BaseConverter.h +2 -0
  1006. onnx/version_converter/adapters/adapter.h +2 -0
  1007. onnx/version_converter/adapters/axes_attribute_to_input.h +2 -0
  1008. onnx/version_converter/adapters/axes_input_to_attribute.h +2 -0
  1009. onnx/version_converter/adapters/batch_normalization_13_14.h +2 -0
  1010. onnx/version_converter/adapters/broadcast_backward_compatibility.h +2 -0
  1011. onnx/version_converter/adapters/broadcast_forward_compatibility.h +2 -0
  1012. onnx/version_converter/adapters/cast_9_8.h +2 -0
  1013. onnx/version_converter/adapters/clip_10_11.h +2 -0
  1014. onnx/version_converter/adapters/compatible.h +2 -0
  1015. onnx/version_converter/adapters/dropout_11_12.h +2 -0
  1016. onnx/version_converter/adapters/extend_supported_types.h +2 -0
  1017. onnx/version_converter/adapters/gemm_6_7.h +2 -0
  1018. onnx/version_converter/adapters/gemm_7_6.h +2 -0
  1019. onnx/version_converter/adapters/maxpool_8_7.h +2 -0
  1020. onnx/version_converter/adapters/no_previous_version.h +2 -0
  1021. onnx/version_converter/adapters/pad_10_11.h +4 -0
  1022. onnx/version_converter/adapters/remove_consumed_inputs.h +2 -0
  1023. onnx/version_converter/adapters/reshape_4_5.h +2 -0
  1024. onnx/version_converter/adapters/reshape_5_4.h +2 -0
  1025. onnx/version_converter/adapters/resize_10_11.h +2 -0
  1026. onnx/version_converter/adapters/scan_8_9.h +2 -0
  1027. onnx/version_converter/adapters/scan_9_8.h +2 -0
  1028. onnx/version_converter/adapters/scatter_10_11.h +2 -0
  1029. onnx/version_converter/adapters/slice_9_10.h +2 -0
  1030. onnx/version_converter/adapters/softmax_12_13.h +20 -28
  1031. onnx/version_converter/adapters/split_12_13.h +2 -0
  1032. onnx/version_converter/adapters/split_13_12.h +2 -0
  1033. onnx/version_converter/adapters/split_17_18.h +2 -0
  1034. onnx/version_converter/adapters/sum_8_7.h +2 -0
  1035. onnx/version_converter/adapters/topk_9_10.h +2 -0
  1036. onnx/version_converter/adapters/transformers.h +3 -1
  1037. onnx/version_converter/adapters/type_restriction.h +2 -0
  1038. onnx/version_converter/adapters/upsample_6_7.h +2 -0
  1039. onnx/version_converter/adapters/upsample_8_9.h +2 -0
  1040. onnx/version_converter/adapters/upsample_9_10.h +2 -0
  1041. onnx/version_converter/adapters/upsample_9_8.h +2 -0
  1042. onnx/version_converter/convert.cc +14 -7
  1043. onnx/version_converter/convert.h +20 -0
  1044. onnx/version_converter/helper.cc +3 -3
  1045. onnx/version_converter/helper.h +3 -3
  1046. onnx/version_converter.py +6 -3
  1047. {onnx-1.13.0.dist-info → onnx-1.14.0.dist-info}/METADATA +95 -51
  1048. {onnx-1.13.0.dist-info → onnx-1.14.0.dist-info}/RECORD +1056 -743
  1049. {onnx-1.13.0.dist-info → onnx-1.14.0.dist-info}/WHEEL +1 -1
  1050. onnx/backend/test/data/node/test_softplus_example_expanded/model.onnx +0 -0
  1051. /onnx/backend/test/data/node/{test_softplus_example_expanded → test_softplus_example_expanded_ver18}/test_data_set_0/input_0.pb +0 -0
  1052. /onnx/backend/test/data/node/{test_softplus_example_expanded → test_softplus_example_expanded_ver18}/test_data_set_0/output_0.pb +0 -0
  1053. /onnx/backend/test/data/node/{test_softplus_expanded → test_softplus_expanded_ver18}/test_data_set_0/input_0.pb +0 -0
  1054. /onnx/backend/test/data/node/{test_softplus_expanded → test_softplus_expanded_ver18}/test_data_set_0/output_0.pb +0 -0
  1055. {onnx-1.13.0.dist-info → onnx-1.14.0.dist-info}/LICENSE +0 -0
  1056. {onnx-1.13.0.dist-info → onnx-1.14.0.dist-info}/entry_points.txt +0 -0
  1057. {onnx-1.13.0.dist-info → onnx-1.14.0.dist-info}/top_level.txt +0 -0
onnx/defs/math/defs.cc CHANGED
@@ -75,7 +75,7 @@ Performs element-wise binary {name} (with Numpy-style broadcasting support).
75
75
  1,
76
76
  OpSchema::Differentiable);
77
77
  schema.TypeConstraint(
78
- "T", OpSchema::all_numeric_types_with_bfloat(), "Constrain input and output types to all numeric tensors.");
78
+ "T", OpSchema::all_numeric_types_ir4(), "Constrain input and output types to all numeric tensors.");
79
79
  schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
80
80
  propagateElemTypeFromInputToOutput(ctx, 0, 0);
81
81
  if (hasNInputShapes(ctx, 2))
@@ -103,16 +103,16 @@ ONNX_OPERATOR_SET_SCHEMA(
103
103
 
104
104
  static const char* Mod_doc = R"DOC(
105
105
  Performs element-wise binary modulus (with Numpy-style broadcasting support).
106
- The sign of the remainder is the same as that of the Divisor.
106
+ The sign of the remainder is the same as that of the Divisor.
107
107
 
108
- Mod operator can also behave like C fmod() or numpy.fmod. In this case, the sign of the remainder however, will be the same as the Dividend
109
- (in contrast to integer mod). To force a behavior like numpy.fmod() an 'fmod' Attribute is provided.
110
- This attribute is set to 0 by default causing the behavior to be like integer mod.
111
- Setting this attribute to 1 causes the remainder to be calculated similar to that of numpy.fmod().
108
+ Mod operator can also behave like C fmod() or numpy.fmod. In this case, the sign of the remainder however, will be the same as the Dividend
109
+ (in contrast to integer mod). To force a behavior like numpy.fmod() an 'fmod' Attribute is provided.
110
+ This attribute is set to 0 by default causing the behavior to be like integer mod.
111
+ Setting this attribute to 1 causes the remainder to be calculated similar to that of numpy.fmod().
112
112
 
113
- If the input type is floating point, then `fmod` attribute must be set to 1.
113
+ If the input type is floating point, then `fmod` attribute must be set to 1.
114
114
 
115
- In case of dividend being zero, the results will be platform dependent.
115
+ In case of dividend being zero, the results will be platform dependent.
116
116
 
117
117
  This operator supports **multidirectional (i.e., Numpy-style) broadcasting**; for more details please check [the doc](Broadcasting.md).
118
118
  )DOC";
@@ -132,7 +132,7 @@ ONNX_OPERATOR_SET_SCHEMA(
132
132
  .Output(0, "C", "Remainder tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
133
133
  .TypeConstraint(
134
134
  "T",
135
- OpSchema::all_numeric_types_with_bfloat(),
135
+ OpSchema::all_numeric_types_ir4(),
136
136
  "Constrain input and output types to high-precision numeric tensors.")
137
137
  .TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
138
138
  propagateElemTypeFromInputToOutput(ctx, 0, 0);
@@ -193,7 +193,7 @@ ONNX_OPERATOR_SET_SCHEMA(
193
193
  .Output(0, "Y", "Output tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
194
194
  .TypeConstraint(
195
195
  "T",
196
- OpSchema::all_numeric_types_with_bfloat(),
196
+ OpSchema::all_numeric_types_ir4(),
197
197
  "Constrain input and output types to all numeric tensors.")
198
198
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
199
199
 
@@ -219,7 +219,7 @@ ONNX_OPERATOR_SET_SCHEMA(
219
219
  static const char* Floor_ver13_doc = R"DOC(
220
220
  Floor takes one input data (Tensor<T>) and produces one output data
221
221
  (Tensor<T>) where the floor is, y = floor(x), is applied to
222
- the tensor elementwise.
222
+ the tensor elementwise. If x is integral, +0, -0, NaN, or infinite, x itself is returned.
223
223
  )DOC";
224
224
 
225
225
  ONNX_OPERATOR_SET_SCHEMA(
@@ -238,7 +238,7 @@ ONNX_OPERATOR_SET_SCHEMA(
238
238
  static const char* Ceil_ver13_doc = R"DOC(
239
239
  Ceil takes one input data (Tensor<T>) and produces one output data
240
240
  (Tensor<T>) where the ceil is, y = ceil(x), is applied to
241
- the tensor elementwise.
241
+ the tensor elementwise. If x is integral, +0, -0, NaN, or infinite, x itself is returned.
242
242
  )DOC";
243
243
 
244
244
  ONNX_OPERATOR_SET_SCHEMA(
@@ -312,9 +312,6 @@ static const char* LeakyRelu_ver16_doc = R"DOC(
312
312
  LeakyRelu takes input data (Tensor<T>) and an argument alpha, and produces one
313
313
  output data (Tensor<T>) where the function `f(x) = alpha * x for x < 0`,
314
314
  `f(x) = x for x >= 0`, is applied to the data tensor elementwise.
315
-
316
- **History**
317
- - Version 16 adds bfloat16 to the types allowed.
318
315
  )DOC";
319
316
 
320
317
  ONNX_OPERATOR_SET_SCHEMA(
@@ -698,9 +695,6 @@ static const char* PRelu_ver16_doc = R"DOC(
698
695
  PRelu takes input data (Tensor<T>) and slope tensor as input, and produces one
699
696
  output data (Tensor<T>) where the function `f(x) = slope * x for x < 0`,
700
697
  `f(x) = x for x >= 0`., is applied to the data tensor elementwise.
701
-
702
- **History**
703
- - Version 16 adds bfloat16 to the types allowed.
704
698
  )DOC";
705
699
 
706
700
  ONNX_OPERATOR_SET_SCHEMA(
@@ -736,7 +730,7 @@ ONNX_OPERATOR_SET_SCHEMA(
736
730
  .FunctionBody(R"ONNX(
737
731
  {
738
732
  Zero = Constant <value = float {0.0}>()
739
- ZeroCast = CastLike(Zero, X)
733
+ ZeroCast = CastLike(Zero, X)
740
734
  XLessThanZero = Less (X, ZeroCast)
741
735
  SlopeMulX = Mul (slope, X)
742
736
  Y = Where(XLessThanZero, SlopeMulX, X)
@@ -874,7 +868,7 @@ ONNX_OPERATOR_SET_SCHEMA(
874
868
  .FillUsing(ElementwiseMultiOpDocGenerator("max"))
875
869
  .TypeConstraint(
876
870
  "T",
877
- OpSchema::all_numeric_types_with_bfloat(),
871
+ OpSchema::all_numeric_types_ir4(),
878
872
  "Constrain input and output types to numeric tensors."));
879
873
 
880
874
  ONNX_OPERATOR_SET_SCHEMA(
@@ -884,7 +878,7 @@ ONNX_OPERATOR_SET_SCHEMA(
884
878
  .FillUsing(ElementwiseMultiOpDocGenerator("min"))
885
879
  .TypeConstraint(
886
880
  "T",
887
- OpSchema::all_numeric_types_with_bfloat(),
881
+ OpSchema::all_numeric_types_ir4(),
888
882
  "Constrain input and output types to numeric tensors."));
889
883
 
890
884
  ONNX_OPERATOR_SET_SCHEMA(
@@ -985,7 +979,7 @@ ONNX_OPERATOR_SET_SCHEMA(
985
979
  OpSchema::Differentiable)
986
980
  .TypeConstraint(
987
981
  "T",
988
- OpSchema::all_numeric_types_with_bfloat(),
982
+ OpSchema::all_numeric_types_ir4(),
989
983
  "Constrain input and output types to all numeric tensors.")
990
984
  .SetContextDependentFunctionBodyBuilder(BuildContextDependentFunctionBodyClip)
991
985
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
@@ -1143,21 +1137,23 @@ ONNX_OPERATOR_SET_SCHEMA(
1143
1137
  {"tensor(float16)", "tensor(float)", "tensor(double)"},
1144
1138
  "Constrain input and output types to float tensors.")
1145
1139
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput)
1146
- .FunctionBody(R"ONNX(
1147
- {
1148
- exp_x = Exp (X)
1149
- one = Constant <value = float {1.0}>()
1150
- exp_x_add_one = Add (exp_x, one)
1151
- Y = Log (exp_x_add_one)
1152
- }
1153
- )ONNX"));
1140
+ .FunctionBody(
1141
+ R"ONNX(
1142
+ {
1143
+ exp_x = Exp (X)
1144
+ one = Constant <value = float {1.0}>()
1145
+ one_cast = CastLike (one, X)
1146
+ exp_x_add_one = Add (exp_x, one_cast)
1147
+ Y = Log (exp_x_add_one)
1148
+ }
1149
+ )ONNX",
1150
+ 18));
1154
1151
 
1155
1152
  static const char* Gemm_ver13_doc = R"DOC(General Matrix multiplication:
1156
1153
  https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3
1157
1154
 
1158
- A' = transpose(A) if transA else A
1159
-
1160
- B' = transpose(B) if transB else B
1155
+ * A' = transpose(A) if transA else A
1156
+ * B' = transpose(B) if transB else B
1161
1157
 
1162
1158
  Compute Y = alpha * A' * B' + beta * C, where input tensor A has shape (M, K) or (K, M),
1163
1159
  input tensor B has shape (K, N) or (N, K), input tensor C is broadcastable to shape (M, N),
@@ -1339,18 +1335,19 @@ ONNX_OPERATOR_SET_SCHEMA(
1339
1335
  static const char* TopK_ver11_doc = R"DOC(
1340
1336
  Retrieve the top-K largest or smallest elements along a specified axis. Given an input tensor of
1341
1337
  shape [a_1, a_2, ..., a_n, r] and integer argument k, return two outputs:
1342
- -Value tensor of shape [a_1, a_2, ..., a_{axis-1}, k, a_{axis+1}, ... a_n]
1343
- which contains the values of the top k elements along the specified axis
1344
- -Index tensor of shape [a_1, a_2, ..., a_{axis-1}, k, a_{axis+1}, ... a_n] which
1345
- contains the indices of the top k elements (original indices from the input
1346
- tensor).
1347
1338
 
1348
- If "largest" is 1 (the default value) then the k largest elements are returned.
1349
- If "sorted" is 1 (the default value) then the resulting k elements will be sorted.
1350
- If "sorted" is 0, order of returned 'Values' and 'Indices' are undefined.
1339
+ * Value tensor of shape [a_1, a_2, ..., a_{axis-1}, k, a_{axis+1}, ... a_n]
1340
+ which contains the values of the top k elements along the specified axis
1341
+ * Index tensor of shape [a_1, a_2, ..., a_{axis-1}, k, a_{axis+1}, ... a_n] which
1342
+ contains the indices of the top k elements (original indices from the input
1343
+ tensor).
1344
+
1345
+ * If "largest" is 1 (the default value) then the k largest elements are returned.
1346
+ * If "sorted" is 1 (the default value) then the resulting k elements will be sorted.
1347
+ * If "sorted" is 0, order of returned 'Values' and 'Indices' are undefined.
1351
1348
 
1352
1349
  Given two equivalent values, this operator uses the indices along the axis as
1353
- a tiebreaker. That is, the element with the lower index will appear first.
1350
+ a tiebreaker. That is, the element with the lower index will appear first.
1354
1351
  )DOC";
1355
1352
 
1356
1353
  ONNX_OPERATOR_SET_SCHEMA(
@@ -1654,10 +1651,7 @@ ONNX_OPERATOR_SET_SCHEMA(
1654
1651
  1,
1655
1652
  OpSchema::NonDifferentiable)
1656
1653
  .Output(0, "output", "Output tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
1657
- .TypeConstraint(
1658
- "T",
1659
- OpSchema::all_tensor_types_with_bfloat(),
1660
- "Constrain input and output types to all tensors.")
1654
+ .TypeConstraint("T", OpSchema::all_tensor_types_ir4(), "Constrain input and output types to all tensors.")
1661
1655
  .TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
1662
1656
  // Type inference
1663
1657
  propagateElemTypeFromInputToOutput(ctx, 0, 0);
@@ -1827,7 +1821,7 @@ ONNX_OPERATOR_SET_SCHEMA(
1827
1821
  OpSchema::NonDifferentiable)
1828
1822
  .TypeConstraint(
1829
1823
  "T",
1830
- OpSchema::all_numeric_types_with_bfloat(),
1824
+ OpSchema::all_numeric_types_ir4(),
1831
1825
  "Constrain input and output types to all numeric tensors.")
1832
1826
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
1833
1827
 
@@ -1853,7 +1847,7 @@ ONNX_OPERATOR_SET_SCHEMA(
1853
1847
  OpSchema::Differentiable)
1854
1848
  .TypeConstraint(
1855
1849
  "T",
1856
- OpSchema::all_numeric_types_with_bfloat(),
1850
+ OpSchema::all_numeric_types_ir4(),
1857
1851
  "Constrain input and output types to all numeric tensors.")
1858
1852
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
1859
1853
 
@@ -2111,7 +2105,7 @@ ONNX_OPERATOR_SET_SCHEMA(
2111
2105
  OpSchema::Differentiable)
2112
2106
  .TypeConstraint(
2113
2107
  "T",
2114
- OpSchema::numeric_types_for_math_reduction_with_bfloat(),
2108
+ OpSchema::numeric_types_for_math_reduction_ir4(),
2115
2109
  "Constrain input and output types to high-precision numeric tensors.")
2116
2110
  .TypeConstraint("T2", {"tensor(int32)", "tensor(int64)"}, "axis tensor can be int32 or int64 only")
2117
2111
  .TypeAndShapeInferenceFunction(ONNX_NAMESPACE::propagateShapeAndTypeFromFirstInput));
@@ -2120,6 +2114,7 @@ static const char* Round_ver11_doc = R"DOC(
2120
2114
  Round takes one input Tensor and rounds the values, element-wise, meaning
2121
2115
  it finds the nearest integer for each value.
2122
2116
  In case of halfs, the rule is to round them to the nearest even integer.
2117
+ If input x is integral, +0, -0, NaN, or infinite, x itself is returned.
2123
2118
  The output tensor has the same shape and type as the input.
2124
2119
 
2125
2120
  Examples:
@@ -2204,85 +2199,100 @@ The operator's "target" input tensor has the shape of (N, d1, d2, ..., dk). It e
2204
2199
  or it may contain a special value (indicated by an attribute ignore_index) for N x d1 x d2 x ... x dk samples.
2205
2200
  The loss value for input[n, :, d_1, d_2,...d_k] being classified as class c = target[n][d_1][d_2]...[d_k] is computed as:
2206
2201
 
2207
- loss[n][d_1][d_2]...[d_k] = -input[n][c][d_1][d_2]...[d_k].
2202
+ ```
2203
+ loss[n][d_1][d_2]...[d_k] = -input[n][c][d_1][d_2]...[d_k].
2204
+ ```
2208
2205
 
2209
2206
  When an optional "weight" is provided, the sample loss is calculated as:
2210
2207
 
2211
- loss[n][d_1][d_2]...[d_k] = -input[n][c][d_1][d_2]...[d_k] * weight[c].
2208
+ ```
2209
+ loss[n][d_1][d_2]...[d_k] = -input[n][c][d_1][d_2]...[d_k] * weight[c].
2210
+ ```
2212
2211
 
2213
2212
  loss is zero for the case when target-value equals ignore_index.
2214
2213
 
2215
- loss[n][d_1][d_2]...[d_k] = 0, when target[n][d_1][d_2]...[d_k] = ignore_index
2214
+ ```
2215
+ loss[n][d_1][d_2]...[d_k] = 0, when target[n][d_1][d_2]...[d_k] = ignore_index
2216
+ ```
2216
2217
 
2217
2218
  If "reduction" attribute is set to "none", the operator's output will be the above loss with shape (N, d1, d2, ..., dk).
2218
2219
  If "reduction" attribute is set to "mean" (the default attribute value), the output loss is (weight) averaged:
2219
2220
 
2220
- mean(loss), if "weight" is not provided,
2221
+ ```
2222
+ mean(loss), if "weight" is not provided,
2223
+ ```
2221
2224
 
2222
2225
  or if weight is provided,
2223
2226
 
2224
- sum(loss) / sum(weight[target[n][d_1][d_2]...[d_k]]]), for all samples.
2227
+ ```
2228
+ sum(loss) / sum(weight[target[n][d_1][d_2]...[d_k]]]), for all samples.
2229
+ ```
2225
2230
 
2226
- If "reduction" attribute is set to "sum", the output is a scalar:
2227
- sum(loss).
2231
+ If "reduction" attribute is set to "sum", the output is a scalar: `sum(loss)`.
2228
2232
 
2229
2233
  See also https://pytorch.org/docs/stable/nn.html#torch.nn.NLLLoss.
2230
2234
 
2231
2235
  Example 1:
2232
2236
 
2233
- // negative log likelihood loss, "none" reduction
2234
- N, C, d1 = 2, 3, 2
2235
- input = [[[1.0, 2.0], [2.0, 2.0], [3.0, 2.0]],
2236
- [[0.0, 1.0], [2.0, 2.0], [1.0, 2]]]
2237
- target = [[2, 1], [0, 2]]
2238
-
2239
- loss = np.zeros((N, d1))
2240
- for n in range(N):
2241
- for d_1 in range(d1):
2242
- c = target[n][d_1]
2243
- loss[n][d_1] = -input[n][c][d_1]
2244
-
2245
- // print(loss)
2246
- // [[-3. -2.]
2247
- // [-0. -2.]]
2237
+ ```
2238
+ // negative log likelihood loss, "none" reduction
2239
+ N, C, d1 = 2, 3, 2
2240
+ input = [[[1.0, 2.0], [2.0, 2.0], [3.0, 2.0]],
2241
+ [[0.0, 1.0], [2.0, 2.0], [1.0, 2]]]
2242
+ target = [[2, 1], [0, 2]]
2243
+
2244
+ loss = np.zeros((N, d1))
2245
+ for n in range(N):
2246
+ for d_1 in range(d1):
2247
+ c = target[n][d_1]
2248
+ loss[n][d_1] = -input[n][c][d_1]
2249
+
2250
+ // print(loss)
2251
+ // [[-3. -2.]
2252
+ // [-0. -2.]]
2253
+ ```
2248
2254
 
2249
2255
  Example 2:
2250
2256
 
2251
- // weighted negative log likelihood loss, sum reduction
2252
- N, C, d1 = 2, 3, 2
2253
- input = [[[1.0, 2.0], [2.0, 2.0], [3.0, 2.0]],
2254
- [[0.0, 1.0], [2.0, 2.0], [1.0, 2]]]
2255
- target = [[2, 1], [0, 2]]
2256
- weight = [0.2, 0.3, 0.1]
2257
- loss = np.zeros((N, d1))
2258
- for n in range(N):
2259
- for d_1 in range(d1):
2260
- c = target[n][d_1]
2261
- loss[n][d_1] = -input[n][c][d_1] * weight[c]
2262
-
2263
- loss = np.sum(loss)
2264
- // print(loss)
2265
- // -1.1
2257
+ ```
2258
+ // weighted negative log likelihood loss, sum reduction
2259
+ N, C, d1 = 2, 3, 2
2260
+ input = [[[1.0, 2.0], [2.0, 2.0], [3.0, 2.0]],
2261
+ [[0.0, 1.0], [2.0, 2.0], [1.0, 2]]]
2262
+ target = [[2, 1], [0, 2]]
2263
+ weight = [0.2, 0.3, 0.1]
2264
+ loss = np.zeros((N, d1))
2265
+ for n in range(N):
2266
+ for d_1 in range(d1):
2267
+ c = target[n][d_1]
2268
+ loss[n][d_1] = -input[n][c][d_1] * weight[c]
2269
+
2270
+ loss = np.sum(loss)
2271
+ // print(loss)
2272
+ // -1.1
2273
+ ```
2266
2274
 
2267
2275
  Example 3:
2268
2276
 
2269
- // weighted negative log likelihood loss, mean reduction
2270
- N, C, d1 = 2, 3, 2
2271
- input = [[[1.0, 2.0], [2.0, 2.0], [3.0, 2.0]],
2272
- [[0.0, 1.0], [2.0, 2.0], [1.0, 2]]]
2273
- target = [[2, 1], [0, 2]]
2274
- weight = [0.2, 0.3, 0.1]
2275
- loss = np.zeros((N, d1))
2276
- weight_total = 0
2277
- for n in range(N):
2278
- for d_1 in range(d1):
2279
- c = target[n][d_1]
2280
- loss[n][d_1] = -input[n][c][d_1] * weight[c]
2281
- weight_total = weight_total + weight[c]
2282
-
2283
- loss = np.sum(loss) / weight_total
2284
- // print(loss)
2285
- // -1.57
2277
+ ```
2278
+ // weighted negative log likelihood loss, mean reduction
2279
+ N, C, d1 = 2, 3, 2
2280
+ input = [[[1.0, 2.0], [2.0, 2.0], [3.0, 2.0]],
2281
+ [[0.0, 1.0], [2.0, 2.0], [1.0, 2]]]
2282
+ target = [[2, 1], [0, 2]]
2283
+ weight = [0.2, 0.3, 0.1]
2284
+ loss = np.zeros((N, d1))
2285
+ weight_total = 0
2286
+ for n in range(N):
2287
+ for d_1 in range(d1):
2288
+ c = target[n][d_1]
2289
+ loss[n][d_1] = -input[n][c][d_1] * weight[c]
2290
+ weight_total = weight_total + weight[c]
2291
+
2292
+ loss = np.sum(loss) / weight_total
2293
+ // print(loss)
2294
+ // -1.57
2295
+ ```
2286
2296
  )DOC";
2287
2297
 
2288
2298
  bool BuildContextDependentFunctionBody(
@@ -2602,9 +2612,11 @@ void einsumRankInference(ONNX_NAMESPACE::InferenceContext& ctx, std::string equa
2602
2612
  }
2603
2613
 
2604
2614
  static const char* Einsum_ver12_doc = R"DOC(
2605
- An einsum of the form ```term1, term2 -> output-term``` produces an output tensor using the following equation
2615
+ An einsum of the form `term1, term2 -> output-term` produces an output tensor using the following equation
2606
2616
 
2607
- ```output[output-term] = reduce-sum( input1[term1] * input2[term] )```
2617
+ ```
2618
+ output[output-term] = reduce-sum( input1[term1] * input2[term] )
2619
+ ```
2608
2620
 
2609
2621
  where the reduce-sum performs a summation over all the indices occurring in the input terms (term1, term2)
2610
2622
  that do not occur in the output-term.
@@ -2665,29 +2677,38 @@ If the input is N-D tensor with shape (N, C, D1, D2, ..., Dk),
2665
2677
  the loss tensor L may have (N, D1, D2, ..., Dk) as its shape and L[i,][j_1][j_2]...[j_k] denotes a scalar element in L.
2666
2678
  After L is available, this operator can optionally do a reduction operator.
2667
2679
 
2668
- shape(scores): (N, C) where C is the number of classes, or (N, C, D1, D2,..., Dk),
2669
- with K >= 1 in case of K-dimensional loss.
2670
- shape(labels): (N) where each value is 0 <= labels[i] <= C-1, or (N, D1, D2,..., Dk),
2671
- with K >= 1 in case of K-dimensional loss.
2680
+ * shape(scores): (N, C) where C is the number of classes, or (N, C, D1, D2,..., Dk),
2681
+ with K >= 1 in case of K-dimensional loss.
2682
+ * shape(labels): (N) where each value is 0 <= labels[i] <= C-1, or (N, D1, D2,..., Dk),
2683
+ with K >= 1 in case of K-dimensional loss.
2672
2684
 
2673
2685
  The loss for one sample, l_i, can caculated as follows:
2674
- l[i][d1][d2]...[dk] = -y[i][c][d1][d2]..[dk], where i is the index of classes.
2686
+ ```
2687
+ l[i][d1][d2]...[dk] = -y[i][c][d1][d2]..[dk], where i is the index of classes.
2688
+ ```
2675
2689
  or
2676
- l[i][d1][d2]...[dk] = -y[i][c][d1][d2]..[dk] * weights[c], if 'weights' is provided.
2690
+ ```
2691
+ l[i][d1][d2]...[dk] = -y[i][c][d1][d2]..[dk] * weights[c], if 'weights' is provided.
2692
+ ```
2677
2693
 
2678
2694
  loss is zero for the case when label-value equals ignore_index.
2679
- l[i][d1][d2]...[dk] = 0, when labels[n][d1][d2]...[dk] = ignore_index
2695
+ ```
2696
+ l[i][d1][d2]...[dk] = 0, when labels[n][d1][d2]...[dk] = ignore_index
2697
+ ```
2680
2698
 
2681
2699
  where:
2682
- p = Softmax(scores)
2683
- y = Log(p)
2684
- c = labels[i][d1][d2]...[dk]
2700
+ ```
2701
+ p = Softmax(scores)
2702
+ y = Log(p)
2703
+ c = labels[i][d1][d2]...[dk]
2704
+ ```
2685
2705
 
2686
2706
  Finally, L is optionally reduced:
2687
- If reduction = 'none', the output is L with shape (N, D1, D2, ..., Dk).
2688
- If reduction = 'sum', the output is scalar: Sum(L).
2689
- If reduction = 'mean', the output is scalar: ReduceMean(L), or if weight is provided: ReduceSum(L) / ReduceSum(W),
2690
- where tensor W is of shape (N, D1, D2, ..., Dk) and W[n][d1][d2]...[dk] = weights[labels[i][d1][d2]...[dk]].
2707
+
2708
+ * If reduction = 'none', the output is L with shape (N, D1, D2, ..., Dk).
2709
+ * If reduction = 'sum', the output is scalar: Sum(L).
2710
+ * If reduction = 'mean', the output is scalar: ReduceMean(L), or if weight is provided: `ReduceSum(L) / ReduceSum(W)`,
2711
+ where tensor W is of shape `(N, D1, D2, ..., Dk)` and `W[n][d1][d2]...[dk] = weights[labels[i][d1][d2]...[dk]]`.
2691
2712
  )DOC";
2692
2713
 
2693
2714
  bool BuildContextDependentFunctionBodySCE(
@@ -2893,9 +2914,9 @@ ONNX_OPERATOR_SET_SCHEMA(
2893
2914
  "output",
2894
2915
  "The Fourier Transform of the input vector."
2895
2916
  "If onesided is 0, the following shape is expected: [batch_idx][signal_dim1][signal_dim2]...[signal_dimN][2]. "
2896
- "If axis=0 and onesided is 1, the following shape is expected: [batch_idx][floor(signal_dim1/2)+1][signal_dim2]...[signal_dimN][2]. "
2897
- "If axis=1 and onesided is 1, the following shape is expected: [batch_idx][signal_dim1][floor(signal_dim2/2)+1]...[signal_dimN][2]. "
2898
- "If axis=N-1 and onesided is 1, the following shape is expected: [batch_idx][signal_dim1][signal_dim2]...[floor(signal_dimN/2)+1][2]. "
2917
+ "If axis=1 and onesided is 1, the following shape is expected: [batch_idx][floor(signal_dim1/2)+1][signal_dim2]...[signal_dimN][2]. "
2918
+ "If axis=2 and onesided is 1, the following shape is expected: [batch_idx][signal_dim1][floor(signal_dim2/2)+1]...[signal_dimN][2]. "
2919
+ "If axis=N and onesided is 1, the following shape is expected: [batch_idx][signal_dim1][signal_dim2]...[floor(signal_dimN/2)+1][2]. "
2899
2920
  "The signal_dim at the specified axis is equal to the dft_length.",
2900
2921
  "T1")
2901
2922
  .TypeConstraint(
@@ -3050,7 +3071,7 @@ ONNX_OPERATOR_SET_SCHEMA(
3050
3071
  OpSchema()
3051
3072
  .FillUsing(CosineSumWindowOpDocGenerator("Hann"))
3052
3073
  .TypeConstraint("T1", {"tensor(int32)", "tensor(int64)"}, "Constrain the input size to int64_t.")
3053
- .TypeConstraint("T2", OpSchema::all_numeric_types_with_bfloat(), "Constrain output types to numeric tensors.")
3074
+ .TypeConstraint("T2", OpSchema::all_numeric_types_ir4(), "Constrain output types to numeric tensors.")
3054
3075
  .FunctionBody(R"ONNX(
3055
3076
  {
3056
3077
  A0 = Constant <value = float {0.5}>()
@@ -3088,7 +3109,7 @@ ONNX_OPERATOR_SET_SCHEMA(
3088
3109
  OpSchema()
3089
3110
  .FillUsing(CosineSumWindowOpDocGenerator("Hamming"))
3090
3111
  .TypeConstraint("T1", {"tensor(int32)", "tensor(int64)"}, "Constrain the input size to int64_t.")
3091
- .TypeConstraint("T2", OpSchema::all_numeric_types_with_bfloat(), "Constrain output types to numeric tensors.")
3112
+ .TypeConstraint("T2", OpSchema::all_numeric_types_ir4(), "Constrain output types to numeric tensors.")
3092
3113
  .FunctionBody(R"ONNX(
3093
3114
  {
3094
3115
  A0 = Constant <value = float {0.54347826087}>()
@@ -3126,7 +3147,7 @@ ONNX_OPERATOR_SET_SCHEMA(
3126
3147
  OpSchema()
3127
3148
  .FillUsing(CosineSumWindowOpDocGenerator("Blackman"))
3128
3149
  .TypeConstraint("T1", {"tensor(int32)", "tensor(int64)"}, "Constrain the input size to int64_t.")
3129
- .TypeConstraint("T2", OpSchema::all_numeric_types_with_bfloat(), "Constrain output types to numeric tensors.")
3150
+ .TypeConstraint("T2", OpSchema::all_numeric_types_ir4(), "Constrain output types to numeric tensors.")
3130
3151
  .FunctionBody(R"ONNX(
3131
3152
  {
3132
3153
  A0 = Constant <value = float {0.42}>()
@@ -3242,7 +3263,7 @@ ONNX_OPERATOR_SET_SCHEMA(
3242
3263
  "T2",
3243
3264
  {"tensor(float)", "tensor(float16)", "tensor(double)", "tensor(bfloat16)"},
3244
3265
  "Constrain to float tensors")
3245
- .TypeConstraint("T3", OpSchema::all_numeric_types_with_bfloat(), "Constrain to any numerical types.")
3266
+ .TypeConstraint("T3", OpSchema::all_numeric_types_ir4(), "Constrain to any numerical types.")
3246
3267
  .TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
3247
3268
  auto output_datatype = getAttribute(ctx, "output_datatype", static_cast<int64_t>(TensorProto_DataType_FLOAT));
3248
3269
  updateOutputElemType(ctx, 0, output_datatype);
@@ -3444,17 +3465,20 @@ ONNX_OPERATOR_SET_SCHEMA(
3444
3465
  }
3445
3466
 
3446
3467
  bool is_onesided = static_cast<bool>(getAttribute(ctx, "onesided", 0));
3447
- if (is_onesided) {
3448
- dft_size = is_onesided ? ((dft_size >> 1) + 1) : dft_size;
3449
- }
3468
+ int64_t dft_unique_bins = is_onesided ? ((dft_size >> 1) + 1) : dft_size;
3450
3469
 
3451
3470
  auto n_dfts = static_cast<int64_t>((signal_size - dft_size) / static_cast<float>(frame_step_value)) + 1;
3452
3471
 
3453
3472
  // The output has the following shape: [batch_size][frames][dft_unique_bins][2]
3454
3473
  ONNX_NAMESPACE::TensorShapeProto result_shape_proto;
3455
- result_shape_proto.add_dim()->set_dim_value(input_shape.dim(0).dim_value()); // batch size
3474
+ auto batch_dim = result_shape_proto.add_dim();
3475
+
3476
+ if (input_shape.dim(0).has_dim_value()) {
3477
+ batch_dim->set_dim_value(input_shape.dim(0).dim_value()); // batch size
3478
+ }
3479
+
3456
3480
  result_shape_proto.add_dim()->set_dim_value(n_dfts);
3457
- result_shape_proto.add_dim()->set_dim_value(dft_size);
3481
+ result_shape_proto.add_dim()->set_dim_value(dft_unique_bins);
3458
3482
  result_shape_proto.add_dim()->set_dim_value(2);
3459
3483
  updateOutputShape(ctx, 0, result_shape_proto);
3460
3484
  }));
onnx/defs/math/old.cc CHANGED
@@ -34,7 +34,7 @@ Performs element-wise binary {name} (with Numpy-style broadcasting support).
34
34
  OpSchema::Differentiable);
35
35
  schema.TypeConstraint(
36
36
  "T",
37
- OpSchema::numeric_types_for_math_reduction_with_bfloat(),
37
+ OpSchema::numeric_types_for_math_reduction_ir4(),
38
38
  "Constrain input and output types to high-precision numeric tensors.");
39
39
  schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
40
40
  propagateElemTypeFromInputToOutput(ctx, 0, 0);