onnx-ir 0.1.15__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnx_ir/__init__.py +176 -0
- onnx_ir/_cloner.py +229 -0
- onnx_ir/_convenience/__init__.py +558 -0
- onnx_ir/_convenience/_constructors.py +291 -0
- onnx_ir/_convenience/_extractor.py +191 -0
- onnx_ir/_core.py +4435 -0
- onnx_ir/_display.py +54 -0
- onnx_ir/_enums.py +474 -0
- onnx_ir/_graph_comparison.py +23 -0
- onnx_ir/_graph_containers.py +373 -0
- onnx_ir/_io.py +133 -0
- onnx_ir/_linked_list.py +284 -0
- onnx_ir/_metadata.py +45 -0
- onnx_ir/_name_authority.py +72 -0
- onnx_ir/_polyfill.py +26 -0
- onnx_ir/_protocols.py +627 -0
- onnx_ir/_safetensors/__init__.py +510 -0
- onnx_ir/_tape.py +242 -0
- onnx_ir/_thirdparty/asciichartpy.py +310 -0
- onnx_ir/_type_casting.py +89 -0
- onnx_ir/_version_utils.py +48 -0
- onnx_ir/analysis/__init__.py +21 -0
- onnx_ir/analysis/_implicit_usage.py +74 -0
- onnx_ir/convenience.py +38 -0
- onnx_ir/external_data.py +459 -0
- onnx_ir/passes/__init__.py +41 -0
- onnx_ir/passes/_pass_infra.py +351 -0
- onnx_ir/passes/common/__init__.py +54 -0
- onnx_ir/passes/common/_c_api_utils.py +76 -0
- onnx_ir/passes/common/clear_metadata_and_docstring.py +60 -0
- onnx_ir/passes/common/common_subexpression_elimination.py +207 -0
- onnx_ir/passes/common/constant_manipulation.py +230 -0
- onnx_ir/passes/common/default_attributes.py +99 -0
- onnx_ir/passes/common/identity_elimination.py +120 -0
- onnx_ir/passes/common/initializer_deduplication.py +179 -0
- onnx_ir/passes/common/inliner.py +223 -0
- onnx_ir/passes/common/naming.py +280 -0
- onnx_ir/passes/common/onnx_checker.py +57 -0
- onnx_ir/passes/common/output_fix.py +141 -0
- onnx_ir/passes/common/shape_inference.py +112 -0
- onnx_ir/passes/common/topological_sort.py +37 -0
- onnx_ir/passes/common/unused_removal.py +215 -0
- onnx_ir/py.typed +1 -0
- onnx_ir/serde.py +2043 -0
- onnx_ir/tape.py +15 -0
- onnx_ir/tensor_adapters.py +210 -0
- onnx_ir/testing.py +197 -0
- onnx_ir/traversal.py +118 -0
- onnx_ir-0.1.15.dist-info/METADATA +68 -0
- onnx_ir-0.1.15.dist-info/RECORD +53 -0
- onnx_ir-0.1.15.dist-info/WHEEL +5 -0
- onnx_ir-0.1.15.dist-info/licenses/LICENSE +202 -0
- onnx_ir-0.1.15.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,351 @@
|
|
|
1
|
+
# Copyright (c) ONNX Project Contributors
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# This module implements some APIs described in
|
|
5
|
+
# https://pytorch.org/executorch/stable/compiler-custom-compiler-passes.html
|
|
6
|
+
# for the ONNX IR.
|
|
7
|
+
# The classes {PassResult and PassManager} are derived from
|
|
8
|
+
# https://github.com/pytorch/pytorch/blob/1e47c7b11b312b47a621efd547f5c90081f0d9cb/torch/fx/passes/infra/pass_base.py#L12
|
|
9
|
+
# and
|
|
10
|
+
# https://github.com/pytorch/pytorch/blob/1e47c7b11b312b47a621efd547f5c90081f0d9cb/torch/fx/passes/infra/pass_manager.py#L147
|
|
11
|
+
# The original code is licensed under the PyTorch License https://github.com/pytorch/pytorch/blob/main/LICENSE
|
|
12
|
+
|
|
13
|
+
"""Passes infrastructure for the IR."""
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
|
|
17
|
+
import dataclasses
|
|
18
|
+
import logging
|
|
19
|
+
from collections.abc import Sequence
|
|
20
|
+
from typing import Literal, final
|
|
21
|
+
|
|
22
|
+
__all__ = [
|
|
23
|
+
"PassBase",
|
|
24
|
+
"Sequential",
|
|
25
|
+
"InPlacePass",
|
|
26
|
+
"FunctionalPass",
|
|
27
|
+
"PassManager",
|
|
28
|
+
"PassResult",
|
|
29
|
+
"functionalize",
|
|
30
|
+
# Errors
|
|
31
|
+
"InvariantError",
|
|
32
|
+
"PreconditionError",
|
|
33
|
+
"PostconditionError",
|
|
34
|
+
"PassError",
|
|
35
|
+
]
|
|
36
|
+
|
|
37
|
+
import abc
|
|
38
|
+
|
|
39
|
+
import onnx_ir as ir
|
|
40
|
+
|
|
41
|
+
logger = logging.getLogger(__name__)
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
class InvariantError(Exception):
|
|
45
|
+
"""Raised when an invariant is violated."""
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
class PreconditionError(InvariantError):
|
|
49
|
+
"""Raised when a precondition is violated."""
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
class PostconditionError(InvariantError):
|
|
53
|
+
"""Raised when a postcondition is violated."""
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
class PassError(RuntimeError):
|
|
57
|
+
"""Raised when an error occurs during a pass."""
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
@dataclasses.dataclass
|
|
61
|
+
class PassResult:
|
|
62
|
+
"""Result of a pass.
|
|
63
|
+
|
|
64
|
+
Attributes:
|
|
65
|
+
model: The transformed model.
|
|
66
|
+
modified: Whether the resulting model is different from the input model.
|
|
67
|
+
"""
|
|
68
|
+
|
|
69
|
+
model: ir.Model
|
|
70
|
+
modified: bool
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
class PassBase(abc.ABC):
|
|
74
|
+
"""Base class for all passes.
|
|
75
|
+
|
|
76
|
+
``in_place`` and ``changes_input`` properties and what they mean:
|
|
77
|
+
|
|
78
|
+
+------------+------------------+----------------------------+
|
|
79
|
+
| | changes_inputs | not changes_inputs |
|
|
80
|
+
+------------+------------------+----------------------------+
|
|
81
|
+
| in_place | in place | Side-effect-only pass |
|
|
82
|
+
+------------+------------------+----------------------------+
|
|
83
|
+
| not | destructive | functional |
|
|
84
|
+
| in_place | | |
|
|
85
|
+
+------------+------------------+----------------------------+
|
|
86
|
+
"""
|
|
87
|
+
|
|
88
|
+
@property
|
|
89
|
+
@abc.abstractmethod
|
|
90
|
+
def in_place(self) -> bool:
|
|
91
|
+
"""Whether the pass modifies the model in place and returns it.
|
|
92
|
+
|
|
93
|
+
If True, the pass will return the same model object that was passed in.
|
|
94
|
+
If False, the pass will return a new model object.
|
|
95
|
+
"""
|
|
96
|
+
raise NotImplementedError
|
|
97
|
+
|
|
98
|
+
@property
|
|
99
|
+
@abc.abstractmethod
|
|
100
|
+
def changes_input(self) -> bool:
|
|
101
|
+
"""Whether the pass modifies input model."""
|
|
102
|
+
raise NotImplementedError
|
|
103
|
+
|
|
104
|
+
@property
|
|
105
|
+
def destructive(self) -> bool:
|
|
106
|
+
"""Whether the pass will destroy the input model when ``in_place=False``.
|
|
107
|
+
|
|
108
|
+
A pass is destructive if it is not in place and it modifies the input model.
|
|
109
|
+
"""
|
|
110
|
+
return not self.in_place and self.changes_input
|
|
111
|
+
|
|
112
|
+
def __call__(self, model_or_result: ir.Model | PassResult, /) -> PassResult:
|
|
113
|
+
if isinstance(model_or_result, PassResult):
|
|
114
|
+
model = model_or_result.model
|
|
115
|
+
else:
|
|
116
|
+
model = model_or_result
|
|
117
|
+
# Check preconditions
|
|
118
|
+
try:
|
|
119
|
+
self.requires(model)
|
|
120
|
+
except PreconditionError:
|
|
121
|
+
raise
|
|
122
|
+
except Exception as e:
|
|
123
|
+
raise PreconditionError(
|
|
124
|
+
f"Pre-condition for pass '{self.__class__.__name__}' failed"
|
|
125
|
+
) from e
|
|
126
|
+
|
|
127
|
+
result = self.call(model)
|
|
128
|
+
|
|
129
|
+
# Check postconditions
|
|
130
|
+
try:
|
|
131
|
+
self.ensures(result.model)
|
|
132
|
+
except PostconditionError:
|
|
133
|
+
raise
|
|
134
|
+
except Exception as e:
|
|
135
|
+
raise PostconditionError(
|
|
136
|
+
f"Post-condition for pass '{self.__class__.__name__}' failed"
|
|
137
|
+
) from e
|
|
138
|
+
|
|
139
|
+
if not isinstance(result, PassResult):
|
|
140
|
+
raise TypeError(
|
|
141
|
+
f"The result of the pass '{self.__class__.__name__}' should be type PassResult. "
|
|
142
|
+
"Please create one with ir.passes.PassResult()."
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
# Checks that the declared in-place property is respected
|
|
146
|
+
if self.in_place and result.model is not model:
|
|
147
|
+
raise PassError(
|
|
148
|
+
f"The pass '{self.__class__.__name__}' is declared in-place, "
|
|
149
|
+
"but the model returned is *not* the same object as the input model. "
|
|
150
|
+
"Pass developer: Pass should return the same model object or the in_place property should return False."
|
|
151
|
+
)
|
|
152
|
+
if not self.in_place and result.model is model:
|
|
153
|
+
raise PassError(
|
|
154
|
+
f"The pass '{self.__class__.__name__}' is declared not in-place, "
|
|
155
|
+
"but the model returned *is* the same object as the input model. "
|
|
156
|
+
"Pass developer: Pass should return a new model object or the in_place property should return True."
|
|
157
|
+
)
|
|
158
|
+
return result
|
|
159
|
+
|
|
160
|
+
@abc.abstractmethod
|
|
161
|
+
def call(self, model: ir.Model) -> PassResult:
|
|
162
|
+
"""The main entry point for the pass."""
|
|
163
|
+
...
|
|
164
|
+
|
|
165
|
+
def requires(self, model: ir.Model) -> None:
|
|
166
|
+
"""Pre-conditions for the pass.
|
|
167
|
+
|
|
168
|
+
This is optional to implement, will be called before call() if run by a pass manager.
|
|
169
|
+
"""
|
|
170
|
+
del model # Unused
|
|
171
|
+
|
|
172
|
+
def ensures(self, model: ir.Model) -> None:
|
|
173
|
+
"""Post-conditions for the pass.
|
|
174
|
+
|
|
175
|
+
This is optional to implement, will be called after call() if run by a pass manager.
|
|
176
|
+
"""
|
|
177
|
+
del model # Unused
|
|
178
|
+
|
|
179
|
+
|
|
180
|
+
class InPlacePass(PassBase):
|
|
181
|
+
"""A pass that modifies the input model in place and returns it."""
|
|
182
|
+
|
|
183
|
+
@property
|
|
184
|
+
@final
|
|
185
|
+
def in_place(self) -> Literal[True]:
|
|
186
|
+
"""An in-place pass is in place."""
|
|
187
|
+
return True
|
|
188
|
+
|
|
189
|
+
@property
|
|
190
|
+
@final
|
|
191
|
+
def changes_input(self) -> Literal[True]:
|
|
192
|
+
"""An in-place pass changes the input model."""
|
|
193
|
+
return True
|
|
194
|
+
|
|
195
|
+
|
|
196
|
+
class FunctionalPass(PassBase):
|
|
197
|
+
"""A pass that returns a new model but does not modify the input model."""
|
|
198
|
+
|
|
199
|
+
@property
|
|
200
|
+
@final
|
|
201
|
+
def in_place(self) -> Literal[False]:
|
|
202
|
+
"""A functional pass is not in place."""
|
|
203
|
+
return False
|
|
204
|
+
|
|
205
|
+
@property
|
|
206
|
+
@final
|
|
207
|
+
def changes_input(self) -> Literal[False]:
|
|
208
|
+
"""A functional pass does not change the input model."""
|
|
209
|
+
return False
|
|
210
|
+
|
|
211
|
+
|
|
212
|
+
class Sequential(PassBase):
|
|
213
|
+
"""Run a sequence of passes in order.
|
|
214
|
+
|
|
215
|
+
Example::
|
|
216
|
+
import onnx_ir as ir
|
|
217
|
+
import onnx_ir.passes.common as common_passes
|
|
218
|
+
|
|
219
|
+
passes = ir.passes.Sequential(
|
|
220
|
+
common_passes.DeduplicateHashedInitializersPass(size_limit=1024 * 1024),
|
|
221
|
+
common_passes.CommonSubexpressionEliminationPass(),
|
|
222
|
+
common_passes.ClearMetadataAndDocStringPass(),
|
|
223
|
+
)
|
|
224
|
+
result = passes(model)
|
|
225
|
+
"""
|
|
226
|
+
|
|
227
|
+
def __init__(self, *passes: PassBase):
|
|
228
|
+
if not passes:
|
|
229
|
+
raise ValueError("Sequential must take at least one pass")
|
|
230
|
+
self.passes = passes
|
|
231
|
+
self._in_place = all(pass_.in_place for pass_ in passes)
|
|
232
|
+
# The reason changes_inputs is decided by the first pass is that if the first pass is either in-place,
|
|
233
|
+
# or if it is not designed to be in-place but somehow changes the input (destructive),
|
|
234
|
+
# this pass sequence will change inputs.
|
|
235
|
+
self._changes_input = self.passes[0].changes_input or self.passes[0].in_place
|
|
236
|
+
|
|
237
|
+
@property
|
|
238
|
+
def in_place(self) -> bool:
|
|
239
|
+
return self._in_place
|
|
240
|
+
|
|
241
|
+
@property
|
|
242
|
+
def changes_input(self) -> bool:
|
|
243
|
+
return self._changes_input
|
|
244
|
+
|
|
245
|
+
def call(self, model: ir.Model) -> PassResult:
|
|
246
|
+
modified = False
|
|
247
|
+
for i, pass_ in enumerate(self.passes):
|
|
248
|
+
logger.debug("Running the %s-th pass '%s'", i, pass_)
|
|
249
|
+
try:
|
|
250
|
+
pass_result = pass_(model)
|
|
251
|
+
except Exception as e:
|
|
252
|
+
prev_pass_names = [str(p) for p in self.passes[:i]]
|
|
253
|
+
raise PassError(
|
|
254
|
+
f"An error occurred when running the '{pass_}' pass after the "
|
|
255
|
+
f"following passes: {prev_pass_names}"
|
|
256
|
+
) from e
|
|
257
|
+
|
|
258
|
+
model = pass_result.model
|
|
259
|
+
modified = modified or pass_result.modified
|
|
260
|
+
|
|
261
|
+
return PassResult(model, modified)
|
|
262
|
+
|
|
263
|
+
|
|
264
|
+
class PassManager(Sequential):
|
|
265
|
+
"""Pass manager for the IR.
|
|
266
|
+
|
|
267
|
+
The PassManager is a Pass that runs a sequence of passes on a model.
|
|
268
|
+
|
|
269
|
+
Example::
|
|
270
|
+
import onnx_ir as ir
|
|
271
|
+
import onnx_ir.passes.common as common_passes
|
|
272
|
+
|
|
273
|
+
model = ir.load("model.onnx")
|
|
274
|
+
passes = ir.passes.PassManager(
|
|
275
|
+
[
|
|
276
|
+
# Pass managers can be nested
|
|
277
|
+
ir.passes.PassManager(
|
|
278
|
+
[
|
|
279
|
+
common_passes.DeduplicateHashedInitializersPass(size_limit=1024 * 1024),
|
|
280
|
+
common_passes.CommonSubexpressionEliminationPass(),
|
|
281
|
+
],
|
|
282
|
+
steps=2,
|
|
283
|
+
early_stop=True,
|
|
284
|
+
),
|
|
285
|
+
common_passes.ClearMetadataAndDocStringPass(),
|
|
286
|
+
],
|
|
287
|
+
steps=2,
|
|
288
|
+
early_stop=False,
|
|
289
|
+
)
|
|
290
|
+
|
|
291
|
+
# Apply the passes to the model
|
|
292
|
+
result = passes(model)
|
|
293
|
+
|
|
294
|
+
Attributes:
|
|
295
|
+
passes: The passes to run.
|
|
296
|
+
steps: The number of times to run the passes.
|
|
297
|
+
early_stop: Whether to stop running the passes if the graph stops changing.
|
|
298
|
+
"""
|
|
299
|
+
|
|
300
|
+
def __init__(
|
|
301
|
+
self,
|
|
302
|
+
passes: Sequence[PassBase],
|
|
303
|
+
steps: int = 1,
|
|
304
|
+
early_stop: bool = True,
|
|
305
|
+
):
|
|
306
|
+
# TODO(justinchuby): Implement constraints
|
|
307
|
+
super().__init__(*passes)
|
|
308
|
+
self.steps = steps
|
|
309
|
+
self.early_stop = early_stop
|
|
310
|
+
|
|
311
|
+
def call(self, model: ir.Model) -> PassResult:
|
|
312
|
+
"""Run the set of passes `steps` number of times or until the graph stops changing."""
|
|
313
|
+
overall_modified = False
|
|
314
|
+
for step in range(self.steps):
|
|
315
|
+
try:
|
|
316
|
+
# Call the call method of Sequential
|
|
317
|
+
step_result = super().call(model)
|
|
318
|
+
except Exception as e:
|
|
319
|
+
raise PassError(f"An error occurred at step {step}") from e
|
|
320
|
+
model = step_result.model
|
|
321
|
+
modified = step_result.modified
|
|
322
|
+
overall_modified = overall_modified or modified
|
|
323
|
+
# If the graph no longer changes, then we can stop running these passes
|
|
324
|
+
if not modified and self.early_stop:
|
|
325
|
+
logger.info("PassManager: No more graph changes detected after step %s", step)
|
|
326
|
+
break
|
|
327
|
+
return PassResult(model, overall_modified)
|
|
328
|
+
|
|
329
|
+
|
|
330
|
+
class _FunctionalPassWrapper(FunctionalPass):
|
|
331
|
+
def __init__(self, inner_pass: PassBase) -> None:
|
|
332
|
+
self._inner_pass = inner_pass
|
|
333
|
+
|
|
334
|
+
def call(self, model: ir.Model) -> PassResult:
|
|
335
|
+
return self._inner_pass(model.clone())
|
|
336
|
+
|
|
337
|
+
|
|
338
|
+
def functionalize(pass_instance: PassBase) -> FunctionalPass:
|
|
339
|
+
"""Produce a functional pass from a given pass.
|
|
340
|
+
|
|
341
|
+
A new functional pass is created that clones the input model before running the pass.
|
|
342
|
+
|
|
343
|
+
.. versionadded:: 0.1.14
|
|
344
|
+
|
|
345
|
+
Args:
|
|
346
|
+
pass_instance: The pass to convert.
|
|
347
|
+
|
|
348
|
+
Returns:
|
|
349
|
+
A functional pass.
|
|
350
|
+
"""
|
|
351
|
+
return _FunctionalPassWrapper(pass_instance)
|
|
@@ -0,0 +1,54 @@
|
|
|
1
|
+
# Copyright (c) ONNX Project Contributors
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
|
|
4
|
+
__all__ = [
|
|
5
|
+
"AddDefaultAttributesPass",
|
|
6
|
+
"AddInitializersToInputsPass",
|
|
7
|
+
"CheckerPass",
|
|
8
|
+
"ClearMetadataAndDocStringPass",
|
|
9
|
+
"CommonSubexpressionEliminationPass",
|
|
10
|
+
"DeduplicateHashedInitializersPass",
|
|
11
|
+
"DeduplicateInitializersPass",
|
|
12
|
+
"IdentityEliminationPass",
|
|
13
|
+
"InlinePass",
|
|
14
|
+
"LiftConstantsToInitializersPass",
|
|
15
|
+
"LiftSubgraphInitializersToMainGraphPass",
|
|
16
|
+
"NameFixPass",
|
|
17
|
+
"OutputFixPass",
|
|
18
|
+
"RemoveInitializersFromInputsPass",
|
|
19
|
+
"RemoveUnusedFunctionsPass",
|
|
20
|
+
"RemoveUnusedNodesPass",
|
|
21
|
+
"RemoveUnusedOpsetsPass",
|
|
22
|
+
"ShapeInferencePass",
|
|
23
|
+
"TopologicalSortPass",
|
|
24
|
+
]
|
|
25
|
+
|
|
26
|
+
from onnx_ir.passes.common.clear_metadata_and_docstring import (
|
|
27
|
+
ClearMetadataAndDocStringPass,
|
|
28
|
+
)
|
|
29
|
+
from onnx_ir.passes.common.common_subexpression_elimination import (
|
|
30
|
+
CommonSubexpressionEliminationPass,
|
|
31
|
+
)
|
|
32
|
+
from onnx_ir.passes.common.constant_manipulation import (
|
|
33
|
+
AddInitializersToInputsPass,
|
|
34
|
+
LiftConstantsToInitializersPass,
|
|
35
|
+
LiftSubgraphInitializersToMainGraphPass,
|
|
36
|
+
RemoveInitializersFromInputsPass,
|
|
37
|
+
)
|
|
38
|
+
from onnx_ir.passes.common.default_attributes import AddDefaultAttributesPass
|
|
39
|
+
from onnx_ir.passes.common.identity_elimination import IdentityEliminationPass
|
|
40
|
+
from onnx_ir.passes.common.initializer_deduplication import (
|
|
41
|
+
DeduplicateHashedInitializersPass,
|
|
42
|
+
DeduplicateInitializersPass,
|
|
43
|
+
)
|
|
44
|
+
from onnx_ir.passes.common.inliner import InlinePass
|
|
45
|
+
from onnx_ir.passes.common.naming import NameFixPass
|
|
46
|
+
from onnx_ir.passes.common.onnx_checker import CheckerPass
|
|
47
|
+
from onnx_ir.passes.common.output_fix import OutputFixPass
|
|
48
|
+
from onnx_ir.passes.common.shape_inference import ShapeInferencePass
|
|
49
|
+
from onnx_ir.passes.common.topological_sort import TopologicalSortPass
|
|
50
|
+
from onnx_ir.passes.common.unused_removal import (
|
|
51
|
+
RemoveUnusedFunctionsPass,
|
|
52
|
+
RemoveUnusedNodesPass,
|
|
53
|
+
RemoveUnusedOpsetsPass,
|
|
54
|
+
)
|
|
@@ -0,0 +1,76 @@
|
|
|
1
|
+
# Copyright (c) ONNX Project Contributors
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
"""Utilities for interfacing with onnx C APIs."""
|
|
4
|
+
|
|
5
|
+
from __future__ import annotations
|
|
6
|
+
|
|
7
|
+
import logging
|
|
8
|
+
from typing import TYPE_CHECKING, Callable, TypeVar
|
|
9
|
+
|
|
10
|
+
import onnx_ir as ir
|
|
11
|
+
|
|
12
|
+
if TYPE_CHECKING:
|
|
13
|
+
import onnx # noqa: TID251
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
logger = logging.getLogger(__name__)
|
|
17
|
+
# Temporarily remove initializers larger than this size to keep model size down
|
|
18
|
+
# for the onnx.shape_inference call because it needs to serialize the model
|
|
19
|
+
_BIG_TENSOR_SIZE_LIMIT = 1000 # 1KB
|
|
20
|
+
_R = TypeVar("_R")
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def call_onnx_api(func: Callable[[onnx.ModelProto], _R], model: ir.Model) -> _R:
|
|
24
|
+
"""Call an ONNX C API function by temporarily removing initializers.
|
|
25
|
+
|
|
26
|
+
This is necessary because the ONNX C API does not support large models
|
|
27
|
+
with initializers that have large tensor values. The input model is left
|
|
28
|
+
unchanged no matter the call succeeds or not.
|
|
29
|
+
|
|
30
|
+
Args:
|
|
31
|
+
func: Partially applied function that takes a model proto and returns anything.
|
|
32
|
+
model: The IR model to pass to the API function.
|
|
33
|
+
|
|
34
|
+
Returns:
|
|
35
|
+
The resulting ModelProto that contains the result of the API call.
|
|
36
|
+
"""
|
|
37
|
+
# Store the original initializer values so they can be restored
|
|
38
|
+
initializer_values = tuple(model.graph.initializers.values())
|
|
39
|
+
tensors = {v.name: v.const_value for v in initializer_values}
|
|
40
|
+
original_inputs_len = len(model.graph.inputs)
|
|
41
|
+
|
|
42
|
+
# Turn the initializers into inputs and clear the initializers
|
|
43
|
+
# to limit the model size
|
|
44
|
+
for initializer in initializer_values:
|
|
45
|
+
# Make sure the initializer has its shape/type set
|
|
46
|
+
assert initializer.const_value is not None
|
|
47
|
+
if initializer.shape is None:
|
|
48
|
+
initializer.shape = initializer.const_value.shape # type: ignore[assignment]
|
|
49
|
+
if initializer.dtype is None:
|
|
50
|
+
initializer.dtype = initializer.const_value.dtype
|
|
51
|
+
if initializer not in model.graph.inputs:
|
|
52
|
+
model.graph.inputs.append(initializer)
|
|
53
|
+
if initializer.const_value.nbytes > _BIG_TENSOR_SIZE_LIMIT:
|
|
54
|
+
# Temporarily remove the initializer value to reduce model size
|
|
55
|
+
# for onnx.shape_inference
|
|
56
|
+
initializer.const_value = None
|
|
57
|
+
assert initializer.name is not None
|
|
58
|
+
model.graph.initializers.pop(initializer.name)
|
|
59
|
+
|
|
60
|
+
proto = ir.serde.serialize_model(model)
|
|
61
|
+
|
|
62
|
+
try:
|
|
63
|
+
# Call the ONNX C API function
|
|
64
|
+
result = func(proto)
|
|
65
|
+
finally:
|
|
66
|
+
# Restore the original initializer values so the model is unchanged
|
|
67
|
+
for initializer in initializer_values:
|
|
68
|
+
initializer.const_value = tensors[initializer.name]
|
|
69
|
+
model.graph.register_initializer(initializer)
|
|
70
|
+
|
|
71
|
+
# Restore the original inputs
|
|
72
|
+
inputs = model.graph.inputs[:original_inputs_len]
|
|
73
|
+
model.graph.inputs.clear()
|
|
74
|
+
model.graph.inputs.extend(inputs)
|
|
75
|
+
|
|
76
|
+
return result
|
|
@@ -0,0 +1,60 @@
|
|
|
1
|
+
# Copyright (c) ONNX Project Contributors
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
"""Clear all metadata and docstring from the model, graphs, nodes, and functions."""
|
|
4
|
+
|
|
5
|
+
from __future__ import annotations
|
|
6
|
+
|
|
7
|
+
__all__ = [
|
|
8
|
+
"ClearMetadataAndDocStringPass",
|
|
9
|
+
]
|
|
10
|
+
|
|
11
|
+
import logging
|
|
12
|
+
|
|
13
|
+
import onnx_ir as ir
|
|
14
|
+
|
|
15
|
+
logger = logging.getLogger(__name__)
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class ClearMetadataAndDocStringPass(ir.passes.InPlacePass):
|
|
19
|
+
"""Clear all metadata and docstring from the model, graphs, nodes, and functions."""
|
|
20
|
+
|
|
21
|
+
def call(self, model: ir.Model) -> ir.passes.PassResult:
|
|
22
|
+
# 0. TODO: Should we clean model metadata and docstring?
|
|
23
|
+
|
|
24
|
+
# 1. Clean up the graph and the belonged nodes metadata properties
|
|
25
|
+
modified = self._clear_graph_or_function_metadata_and_docstring(model.graph)
|
|
26
|
+
|
|
27
|
+
# 2. Clean up all of the functions metadata properties
|
|
28
|
+
for function in model.functions.values():
|
|
29
|
+
modified = (
|
|
30
|
+
self._clear_graph_or_function_metadata_and_docstring(function) or modified
|
|
31
|
+
)
|
|
32
|
+
return ir.passes.PassResult(model, modified=modified)
|
|
33
|
+
|
|
34
|
+
def _clear_graph_or_function_metadata_and_docstring(
|
|
35
|
+
self,
|
|
36
|
+
graph_or_function: ir.Graph | ir.Function,
|
|
37
|
+
) -> bool:
|
|
38
|
+
"""Clear metadata and docstring from the graph or function."""
|
|
39
|
+
checked_graphs_or_functions: set[ir.Graph | ir.Function] = set()
|
|
40
|
+
modified = False
|
|
41
|
+
# Clean up all of the nodes metadata properties
|
|
42
|
+
for node in ir.traversal.RecursiveGraphIterator(graph_or_function):
|
|
43
|
+
if node.metadata_props:
|
|
44
|
+
modified = True
|
|
45
|
+
logger.debug("Removed metadata from %s nodes", node.name)
|
|
46
|
+
node.metadata_props.clear()
|
|
47
|
+
node.doc_string = None
|
|
48
|
+
|
|
49
|
+
# Clean up the owning graph/function metadata properties
|
|
50
|
+
# and doc_string if the graph/function is not already checked
|
|
51
|
+
assert node.graph is not None
|
|
52
|
+
if node.graph not in checked_graphs_or_functions and (
|
|
53
|
+
node.graph.metadata_props or node.graph.doc_string
|
|
54
|
+
):
|
|
55
|
+
modified = True
|
|
56
|
+
logger.debug("Removed metadata from %s graph/function", node.graph.name)
|
|
57
|
+
node.graph.metadata_props.clear()
|
|
58
|
+
node.graph.doc_string = None
|
|
59
|
+
checked_graphs_or_functions.add(node.graph)
|
|
60
|
+
return modified
|