onnx-ir 0.1.15__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnx_ir/__init__.py +176 -0
- onnx_ir/_cloner.py +229 -0
- onnx_ir/_convenience/__init__.py +558 -0
- onnx_ir/_convenience/_constructors.py +291 -0
- onnx_ir/_convenience/_extractor.py +191 -0
- onnx_ir/_core.py +4435 -0
- onnx_ir/_display.py +54 -0
- onnx_ir/_enums.py +474 -0
- onnx_ir/_graph_comparison.py +23 -0
- onnx_ir/_graph_containers.py +373 -0
- onnx_ir/_io.py +133 -0
- onnx_ir/_linked_list.py +284 -0
- onnx_ir/_metadata.py +45 -0
- onnx_ir/_name_authority.py +72 -0
- onnx_ir/_polyfill.py +26 -0
- onnx_ir/_protocols.py +627 -0
- onnx_ir/_safetensors/__init__.py +510 -0
- onnx_ir/_tape.py +242 -0
- onnx_ir/_thirdparty/asciichartpy.py +310 -0
- onnx_ir/_type_casting.py +89 -0
- onnx_ir/_version_utils.py +48 -0
- onnx_ir/analysis/__init__.py +21 -0
- onnx_ir/analysis/_implicit_usage.py +74 -0
- onnx_ir/convenience.py +38 -0
- onnx_ir/external_data.py +459 -0
- onnx_ir/passes/__init__.py +41 -0
- onnx_ir/passes/_pass_infra.py +351 -0
- onnx_ir/passes/common/__init__.py +54 -0
- onnx_ir/passes/common/_c_api_utils.py +76 -0
- onnx_ir/passes/common/clear_metadata_and_docstring.py +60 -0
- onnx_ir/passes/common/common_subexpression_elimination.py +207 -0
- onnx_ir/passes/common/constant_manipulation.py +230 -0
- onnx_ir/passes/common/default_attributes.py +99 -0
- onnx_ir/passes/common/identity_elimination.py +120 -0
- onnx_ir/passes/common/initializer_deduplication.py +179 -0
- onnx_ir/passes/common/inliner.py +223 -0
- onnx_ir/passes/common/naming.py +280 -0
- onnx_ir/passes/common/onnx_checker.py +57 -0
- onnx_ir/passes/common/output_fix.py +141 -0
- onnx_ir/passes/common/shape_inference.py +112 -0
- onnx_ir/passes/common/topological_sort.py +37 -0
- onnx_ir/passes/common/unused_removal.py +215 -0
- onnx_ir/py.typed +1 -0
- onnx_ir/serde.py +2043 -0
- onnx_ir/tape.py +15 -0
- onnx_ir/tensor_adapters.py +210 -0
- onnx_ir/testing.py +197 -0
- onnx_ir/traversal.py +118 -0
- onnx_ir-0.1.15.dist-info/METADATA +68 -0
- onnx_ir-0.1.15.dist-info/RECORD +53 -0
- onnx_ir-0.1.15.dist-info/WHEEL +5 -0
- onnx_ir-0.1.15.dist-info/licenses/LICENSE +202 -0
- onnx_ir-0.1.15.dist-info/top_level.txt +1 -0
onnx_ir/_tape.py
ADDED
|
@@ -0,0 +1,242 @@
|
|
|
1
|
+
# Copyright (c) ONNX Project Contributors
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
"""Convenience methods for constructing the IR."""
|
|
4
|
+
|
|
5
|
+
from __future__ import annotations
|
|
6
|
+
|
|
7
|
+
from collections.abc import Mapping, Sequence
|
|
8
|
+
from typing import (
|
|
9
|
+
Any,
|
|
10
|
+
Optional,
|
|
11
|
+
)
|
|
12
|
+
|
|
13
|
+
import onnx_ir as ir
|
|
14
|
+
from onnx_ir import _convenience
|
|
15
|
+
|
|
16
|
+
# A type representing the domains/versions used in creating nodes in IR.
|
|
17
|
+
UsedOpsets = set[tuple[str, Optional[int]]]
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class Tape:
|
|
21
|
+
"""Tape class.
|
|
22
|
+
|
|
23
|
+
A tape is a recorder that collects nodes and initializers that are created so
|
|
24
|
+
that they can be used for creating a graph.
|
|
25
|
+
|
|
26
|
+
Example::
|
|
27
|
+
|
|
28
|
+
>>> import onnx_ir as ir
|
|
29
|
+
|
|
30
|
+
>>> tape = ir.tape.Tape()
|
|
31
|
+
>>> a = tape.initializer(ir.tensor([1.0, 2.0, 3.0], name="a"))
|
|
32
|
+
>>> b: ir.Value = ir.val("b", dtype=ir.DataType.FLOAT, shape=(3,))
|
|
33
|
+
>>> c: ir.Value = ir.val("c", dtype=ir.DataType.FLOAT, shape=(3,))
|
|
34
|
+
>>> x = tape.op("Add", [a, b])
|
|
35
|
+
>>> y = tape.op("Elu", [x, c], attributes={"alpha": 2.0})
|
|
36
|
+
>>> y.shape = ir.Shape((3,))
|
|
37
|
+
>>> y.dtype = ir.DataType.FLOAT
|
|
38
|
+
>>> model = ir.Model(
|
|
39
|
+
... ir.Graph(
|
|
40
|
+
... inputs=[b, c],
|
|
41
|
+
... outputs=[y],
|
|
42
|
+
... nodes=tape.nodes,
|
|
43
|
+
... initializers=tape.initializers,
|
|
44
|
+
... opset_imports={"": 20},
|
|
45
|
+
... name="main_graph",
|
|
46
|
+
... ),
|
|
47
|
+
... ir_version=10,
|
|
48
|
+
... )
|
|
49
|
+
>>> print(model) # doctest: +NORMALIZE_WHITESPACE
|
|
50
|
+
<
|
|
51
|
+
ir_version=10,
|
|
52
|
+
opset_imports={'': 20},
|
|
53
|
+
producer_name=None,
|
|
54
|
+
producer_version=None,
|
|
55
|
+
domain=None,
|
|
56
|
+
model_version=None,
|
|
57
|
+
>
|
|
58
|
+
graph(
|
|
59
|
+
name=main_graph,
|
|
60
|
+
inputs=(
|
|
61
|
+
%"b"<FLOAT,[3]>,
|
|
62
|
+
%"c"<FLOAT,[3]>
|
|
63
|
+
),
|
|
64
|
+
outputs=(
|
|
65
|
+
%"val_1"<FLOAT,[3]>
|
|
66
|
+
),
|
|
67
|
+
initializers=(
|
|
68
|
+
%"a"<FLOAT,[3]>{Tensor<FLOAT,[3]>(array([1., 2., 3.], dtype=float32), name='a')}
|
|
69
|
+
),
|
|
70
|
+
) {
|
|
71
|
+
0 | # node_Add_0
|
|
72
|
+
%"val_0"<?,?> ⬅️ ::Add(%"a"{[1.0, 2.0, 3.0]}, %"b")
|
|
73
|
+
1 | # node_Elu_1
|
|
74
|
+
%"val_1"<FLOAT,[3]> ⬅️ ::Elu(%"val_0", %"c") {alpha=2.0}
|
|
75
|
+
return %"val_1"<FLOAT,[3]>
|
|
76
|
+
}
|
|
77
|
+
|
|
78
|
+
Attributes:
|
|
79
|
+
graph_like: The graph to append the new nodes and initializers to. When
|
|
80
|
+
it is None, the nodes and initializers are creating without owned by a graph.
|
|
81
|
+
Initializers will not be added to functions because it is not supported by ONNX.
|
|
82
|
+
"""
|
|
83
|
+
|
|
84
|
+
def __init__(self, graph_like: ir.Graph | ir.Function | None = None) -> None:
|
|
85
|
+
self._nodes: list[ir.Node] = []
|
|
86
|
+
self._initializers: list[ir.Value] = []
|
|
87
|
+
self._used_opsets: UsedOpsets = set()
|
|
88
|
+
self.graph_like = graph_like
|
|
89
|
+
|
|
90
|
+
def __repr__(self) -> str:
|
|
91
|
+
return f"Tape(nodes={self._nodes}, initializers={self._initializers})"
|
|
92
|
+
|
|
93
|
+
@property
|
|
94
|
+
def nodes(self) -> Sequence[ir.Node]:
|
|
95
|
+
return tuple(self._nodes)
|
|
96
|
+
|
|
97
|
+
@property
|
|
98
|
+
def initializers(self) -> Sequence[ir.Value]:
|
|
99
|
+
return tuple(self._initializers)
|
|
100
|
+
|
|
101
|
+
@property
|
|
102
|
+
def used_opsets(self) -> UsedOpsets:
|
|
103
|
+
return self._used_opsets
|
|
104
|
+
|
|
105
|
+
def op(
|
|
106
|
+
self,
|
|
107
|
+
op_type: str,
|
|
108
|
+
inputs: Sequence[ir.Value | None],
|
|
109
|
+
attributes: Mapping[str, _convenience.SupportedAttrTypes] | None = None,
|
|
110
|
+
*,
|
|
111
|
+
domain: str = "",
|
|
112
|
+
overload: str = "",
|
|
113
|
+
version: int | None = None,
|
|
114
|
+
graph: ir.Graph | None = None,
|
|
115
|
+
name: str | None = None,
|
|
116
|
+
doc_string: str | None = None,
|
|
117
|
+
metadata_props: dict[str, str] | None = None,
|
|
118
|
+
output: ir.Value | None = None,
|
|
119
|
+
) -> ir.Value:
|
|
120
|
+
if attributes is None:
|
|
121
|
+
attrs: Sequence[ir.Attr] = ()
|
|
122
|
+
else:
|
|
123
|
+
attrs = _convenience.convert_attributes(attributes)
|
|
124
|
+
output_kwargs: dict[str, Any]
|
|
125
|
+
if output is None:
|
|
126
|
+
output_kwargs = dict(num_outputs=1)
|
|
127
|
+
else:
|
|
128
|
+
output_kwargs = dict(outputs=[output])
|
|
129
|
+
node = ir.Node(
|
|
130
|
+
domain,
|
|
131
|
+
op_type,
|
|
132
|
+
inputs,
|
|
133
|
+
attributes=attrs,
|
|
134
|
+
**output_kwargs,
|
|
135
|
+
overload=overload,
|
|
136
|
+
version=version,
|
|
137
|
+
graph=graph or self.graph_like,
|
|
138
|
+
name=name,
|
|
139
|
+
doc_string=doc_string,
|
|
140
|
+
metadata_props=metadata_props,
|
|
141
|
+
)
|
|
142
|
+
self._nodes.append(node)
|
|
143
|
+
self._used_opsets.add((domain, version))
|
|
144
|
+
|
|
145
|
+
return node.outputs[0]
|
|
146
|
+
|
|
147
|
+
def op_multi_out(
|
|
148
|
+
self,
|
|
149
|
+
op_type: str,
|
|
150
|
+
inputs: Sequence[ir.Value | None],
|
|
151
|
+
attributes: Mapping[str, _convenience.SupportedAttrTypes] | None = None,
|
|
152
|
+
*,
|
|
153
|
+
num_outputs: int | None = None,
|
|
154
|
+
outputs: Sequence[ir.Value] | None = None,
|
|
155
|
+
domain: str = "",
|
|
156
|
+
overload: str = "",
|
|
157
|
+
version: int | None = None,
|
|
158
|
+
graph: ir.Graph | None = None,
|
|
159
|
+
name: str | None = None,
|
|
160
|
+
doc_string: str | None = None,
|
|
161
|
+
metadata_props: dict[str, str] | None = None,
|
|
162
|
+
) -> Sequence[ir.Value]:
|
|
163
|
+
if num_outputs is None and outputs is None:
|
|
164
|
+
raise ValueError("Either num_outputs or outputs must be provided.")
|
|
165
|
+
if num_outputs is not None and outputs is not None:
|
|
166
|
+
raise ValueError("Both num_outputs and outputs cannot be provided simultaneously.")
|
|
167
|
+
output_kwargs: dict[str, Any]
|
|
168
|
+
if outputs is None:
|
|
169
|
+
output_kwargs = dict(num_outputs=num_outputs)
|
|
170
|
+
else:
|
|
171
|
+
output_kwargs = dict(outputs=outputs)
|
|
172
|
+
if attributes is None:
|
|
173
|
+
attrs: Sequence[ir.Attr] = ()
|
|
174
|
+
else:
|
|
175
|
+
attrs = _convenience.convert_attributes(attributes)
|
|
176
|
+
node = ir.Node(
|
|
177
|
+
domain,
|
|
178
|
+
op_type,
|
|
179
|
+
inputs,
|
|
180
|
+
attributes=attrs,
|
|
181
|
+
**output_kwargs,
|
|
182
|
+
overload=overload,
|
|
183
|
+
version=version,
|
|
184
|
+
graph=graph or self.graph_like,
|
|
185
|
+
name=name,
|
|
186
|
+
doc_string=doc_string,
|
|
187
|
+
metadata_props=metadata_props,
|
|
188
|
+
)
|
|
189
|
+
self._nodes.append(node)
|
|
190
|
+
self._used_opsets.add((domain, version))
|
|
191
|
+
|
|
192
|
+
return node.outputs
|
|
193
|
+
|
|
194
|
+
def initializer(self, tensor: ir.TensorProtocol, name: str | None = None) -> ir.Value:
|
|
195
|
+
name = name or tensor.name
|
|
196
|
+
if name is None:
|
|
197
|
+
raise ValueError("Name must be provided for initializer.")
|
|
198
|
+
shape = ir.Shape((d if isinstance(d, int) else d.value) for d in tensor.shape.dims)
|
|
199
|
+
value = ir.Value(
|
|
200
|
+
name=name, shape=shape, type=ir.TensorType(tensor.dtype), const_value=tensor
|
|
201
|
+
)
|
|
202
|
+
self._initializers.append(value)
|
|
203
|
+
if isinstance(self.graph_like, ir.Graph):
|
|
204
|
+
self.graph_like.register_initializer(value)
|
|
205
|
+
return value
|
|
206
|
+
|
|
207
|
+
|
|
208
|
+
class Builder(Tape):
|
|
209
|
+
"""An extension of the tape that provides a more convenient API for constructing the IR."""
|
|
210
|
+
|
|
211
|
+
def __getattr__(self, op_type: str) -> Any:
|
|
212
|
+
return lambda *args, **kwargs: self._make_node(op_type, args, kwargs)
|
|
213
|
+
|
|
214
|
+
def _make_node(self, op_type: str, inputs: Sequence[ir.Value], kwargs: dict[str, Any]):
|
|
215
|
+
domain = kwargs.pop("_domain", "")
|
|
216
|
+
version = kwargs.pop("_version", None)
|
|
217
|
+
outputs = kwargs.pop("_outputs", 1)
|
|
218
|
+
if isinstance(outputs, Sequence):
|
|
219
|
+
num_outputs = len(outputs)
|
|
220
|
+
else:
|
|
221
|
+
assert isinstance(outputs, int)
|
|
222
|
+
num_outputs = outputs
|
|
223
|
+
|
|
224
|
+
if num_outputs == 1:
|
|
225
|
+
value = super().op(
|
|
226
|
+
op_type, inputs=inputs, attributes=kwargs, domain=domain, version=version
|
|
227
|
+
)
|
|
228
|
+
if isinstance(outputs, Sequence):
|
|
229
|
+
value.name = outputs[0]
|
|
230
|
+
return value
|
|
231
|
+
values = super().op_multi_out(
|
|
232
|
+
op_type,
|
|
233
|
+
inputs=inputs,
|
|
234
|
+
attributes=kwargs,
|
|
235
|
+
domain=domain,
|
|
236
|
+
version=version,
|
|
237
|
+
num_outputs=num_outputs,
|
|
238
|
+
)
|
|
239
|
+
if isinstance(outputs, Sequence):
|
|
240
|
+
for value, name in zip(values, outputs):
|
|
241
|
+
value.name = name
|
|
242
|
+
return values
|
|
@@ -0,0 +1,310 @@
|
|
|
1
|
+
# Copyright © 2016 Igor Kroitor
|
|
2
|
+
#
|
|
3
|
+
# MIT License
|
|
4
|
+
#
|
|
5
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
# of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
# in the Software without restriction, including without limitation the rights
|
|
8
|
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
# copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
# furnished to do so, subject to the following conditions:
|
|
11
|
+
#
|
|
12
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
# copies or substantial portions of the Software.
|
|
14
|
+
#
|
|
15
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
# SOFTWARE.
|
|
22
|
+
|
|
23
|
+
"""Module to generate ascii charts.
|
|
24
|
+
|
|
25
|
+
This module provides a single function `plot` that can be used to generate an
|
|
26
|
+
ascii chart from a series of numbers. The chart can be configured via several
|
|
27
|
+
options to tune the output.
|
|
28
|
+
"""
|
|
29
|
+
|
|
30
|
+
from __future__ import annotations
|
|
31
|
+
|
|
32
|
+
from collections.abc import Mapping
|
|
33
|
+
from math import ceil, floor, isnan
|
|
34
|
+
|
|
35
|
+
black = "\033[30m"
|
|
36
|
+
red = "\033[31m"
|
|
37
|
+
green = "\033[32m"
|
|
38
|
+
yellow = "\033[33m"
|
|
39
|
+
blue = "\033[34m"
|
|
40
|
+
magenta = "\033[35m"
|
|
41
|
+
cyan = "\033[36m"
|
|
42
|
+
lightgray = "\033[37m"
|
|
43
|
+
default = "\033[39m"
|
|
44
|
+
darkgray = "\033[90m"
|
|
45
|
+
lightred = "\033[91m"
|
|
46
|
+
lightgreen = "\033[92m"
|
|
47
|
+
lightyellow = "\033[93m"
|
|
48
|
+
lightblue = "\033[94m"
|
|
49
|
+
lightmagenta = "\033[95m"
|
|
50
|
+
lightcyan = "\033[96m"
|
|
51
|
+
white = "\033[97m"
|
|
52
|
+
reset = "\033[0m"
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
__all__ = [
|
|
56
|
+
"plot",
|
|
57
|
+
"black",
|
|
58
|
+
"red",
|
|
59
|
+
"green",
|
|
60
|
+
"yellow",
|
|
61
|
+
"blue",
|
|
62
|
+
"magenta",
|
|
63
|
+
"cyan",
|
|
64
|
+
"lightgray",
|
|
65
|
+
"default",
|
|
66
|
+
"darkgray",
|
|
67
|
+
"lightred",
|
|
68
|
+
"lightgreen",
|
|
69
|
+
"lightyellow",
|
|
70
|
+
"lightblue",
|
|
71
|
+
"lightmagenta",
|
|
72
|
+
"lightcyan",
|
|
73
|
+
"white",
|
|
74
|
+
"reset",
|
|
75
|
+
]
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
# Python 3.2 has math.isfinite, which could have been used, but to support older
|
|
79
|
+
# versions, this little helper is shorter than having to keep doing not isnan(),
|
|
80
|
+
# plus the double-negative of "not is not a number" is confusing, so this should
|
|
81
|
+
# help with readability.
|
|
82
|
+
def _isnum(n):
|
|
83
|
+
return not isnan(n)
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
def colored(char, color):
|
|
87
|
+
if not color:
|
|
88
|
+
return char
|
|
89
|
+
else:
|
|
90
|
+
return color + char + reset
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
_DEFAULT_SYMBOLS = ("┼", "┤", "╶", "╴", "─", "╰", "╭", "╮", "╯", "│")
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
def plot(series, *, bin_edges=None, cfg=None):
|
|
97
|
+
"""Generate an ascii chart for a series of numbers.
|
|
98
|
+
|
|
99
|
+
`series` should be a list of ints or floats. Missing data values in the
|
|
100
|
+
series can be specified as a NaN. In Python versions less than 3.5, use
|
|
101
|
+
float("nan") to specify an NaN. With 3.5 onwards, use math.nan to specify a
|
|
102
|
+
NaN.
|
|
103
|
+
|
|
104
|
+
>>> series = [1,2,3,4,float("nan"),4,3,2,1]
|
|
105
|
+
>>> print(plot(series))
|
|
106
|
+
4.00 ┤ ╭╴╶╮
|
|
107
|
+
3.00 ┤ ╭╯ ╰╮
|
|
108
|
+
2.00 ┤╭╯ ╰╮
|
|
109
|
+
1.00 ┼╯ ╰
|
|
110
|
+
|
|
111
|
+
`series` can also be a list of lists to support multiple data series.
|
|
112
|
+
|
|
113
|
+
>>> series = [[10,20,30,40,30,20,10], [40,30,20,10,20,30,40]]
|
|
114
|
+
>>> print(plot(series, cfg={'height': 3}))
|
|
115
|
+
40.00 ┤╮ ╭╮ ╭
|
|
116
|
+
30.00 ┤╰╮╯╰╭╯
|
|
117
|
+
20.00 ┤╭╰╮╭╯╮
|
|
118
|
+
10.00 ┼╯ ╰╯ ╰
|
|
119
|
+
|
|
120
|
+
`bin_edges` is an optional list of bin edges to display on the x-axis. If
|
|
121
|
+
provided, the x-axis will be labeled with the bin edges. If there are too
|
|
122
|
+
many bin edges to fit on the x-axis, some labels will be dropped and they
|
|
123
|
+
will be spaced out evenly to fit the width of the chart.
|
|
124
|
+
The labels will be formatted using the `x_format` option in `cfg`.
|
|
125
|
+
|
|
126
|
+
`cfg` is an optional dictionary of various parameters to tune the appearance
|
|
127
|
+
of the chart. `min` and `max` will clamp the y-axis and all values:
|
|
128
|
+
|
|
129
|
+
>>> series = [1,2,3,4,float("nan"),4,3,2,1]
|
|
130
|
+
>>> print(plot(series, cfg={'min': 0}))
|
|
131
|
+
4.00 ┼ ╭╴╶╮
|
|
132
|
+
3.00 ┤ ╭╯ ╰╮
|
|
133
|
+
2.00 ┤╭╯ ╰╮
|
|
134
|
+
1.00 ┼╯ ╰
|
|
135
|
+
0.00 ┤
|
|
136
|
+
|
|
137
|
+
>>> print(plot(series, cfg={'min': 2}))
|
|
138
|
+
4.00 ┤ ╭╴╶╮
|
|
139
|
+
3.00 ┤ ╭╯ ╰╮
|
|
140
|
+
2.00 ┼─╯ ╰─
|
|
141
|
+
|
|
142
|
+
>>> print(plot(series, cfg={'min': 2, 'max': 3}))
|
|
143
|
+
3.00 ┤ ╭─╴╶─╮
|
|
144
|
+
2.00 ┼─╯ ╰─
|
|
145
|
+
|
|
146
|
+
`height` specifies the number of rows the graph should occupy. It can be
|
|
147
|
+
used to scale down a graph with large data values:
|
|
148
|
+
|
|
149
|
+
>>> series = [10,20,30,40,50,40,30,20,10]
|
|
150
|
+
>>> print(plot(series, cfg={'height': 4}))
|
|
151
|
+
50.00 ┤ ╭╮
|
|
152
|
+
40.00 ┤ ╭╯╰╮
|
|
153
|
+
30.00 ┤ ╭╯ ╰╮
|
|
154
|
+
20.00 ┤╭╯ ╰╮
|
|
155
|
+
10.00 ┼╯ ╰
|
|
156
|
+
|
|
157
|
+
`format` specifies a Python format string used to format the labels on the
|
|
158
|
+
y-axis. The default value is "{:8.2f} ". This can be used to remove the
|
|
159
|
+
decimal point:
|
|
160
|
+
|
|
161
|
+
>>> series = [10,20,30,40,50,40,30,20,10]
|
|
162
|
+
>>> print(plot(series, cfg={'height': 4, 'format':'{:8.0f}'}))
|
|
163
|
+
50 ┤ ╭╮
|
|
164
|
+
40 ┤ ╭╯╰╮
|
|
165
|
+
30 ┤ ╭╯ ╰╮
|
|
166
|
+
20 ┤╭╯ ╰╮
|
|
167
|
+
10 ┼╯ ╰
|
|
168
|
+
"""
|
|
169
|
+
if len(series) == 0:
|
|
170
|
+
return ""
|
|
171
|
+
|
|
172
|
+
if not isinstance(series[0], list):
|
|
173
|
+
if all(isnan(n) for n in series):
|
|
174
|
+
return ""
|
|
175
|
+
else:
|
|
176
|
+
series = [series]
|
|
177
|
+
|
|
178
|
+
if cfg is not None and not isinstance(cfg, Mapping):
|
|
179
|
+
raise TypeError("cfg must be a dictionary or None")
|
|
180
|
+
|
|
181
|
+
cfg = cfg or {}
|
|
182
|
+
|
|
183
|
+
colors = cfg.get("colors", [None])
|
|
184
|
+
|
|
185
|
+
minimum = cfg.get("min", min(filter(_isnum, [j for i in series for j in i])))
|
|
186
|
+
maximum = cfg.get("max", max(filter(_isnum, [j for i in series for j in i])))
|
|
187
|
+
|
|
188
|
+
symbols = cfg.get("symbols", _DEFAULT_SYMBOLS)
|
|
189
|
+
|
|
190
|
+
if minimum > maximum:
|
|
191
|
+
raise ValueError("The min value cannot exceed the max value.")
|
|
192
|
+
|
|
193
|
+
interval = maximum - minimum
|
|
194
|
+
offset = cfg.get("offset", 3)
|
|
195
|
+
height = cfg.get("height", interval)
|
|
196
|
+
ratio = height / interval if interval > 0 else 1
|
|
197
|
+
|
|
198
|
+
min2 = floor(minimum * ratio)
|
|
199
|
+
max2 = ceil(maximum * ratio)
|
|
200
|
+
|
|
201
|
+
def clamp(n):
|
|
202
|
+
return min(max(n, minimum), maximum)
|
|
203
|
+
|
|
204
|
+
def scaled(y):
|
|
205
|
+
return int(round(clamp(y) * ratio) - min2)
|
|
206
|
+
|
|
207
|
+
rows = max2 - min2
|
|
208
|
+
|
|
209
|
+
width = 0
|
|
210
|
+
for series_i in series:
|
|
211
|
+
width = max(width, len(series_i))
|
|
212
|
+
width += offset
|
|
213
|
+
|
|
214
|
+
placeholder = cfg.get("format", "{:8.2f} ")
|
|
215
|
+
x_placeholder = cfg.get("x_format", "{:4.4f}")
|
|
216
|
+
|
|
217
|
+
result = [[" "] * width for i in range(rows + 1)]
|
|
218
|
+
|
|
219
|
+
# axis and labels
|
|
220
|
+
for y in range(min2, max2 + 1):
|
|
221
|
+
label = placeholder.format(maximum - ((y - min2) * interval / (rows if rows else 1)))
|
|
222
|
+
result[y - min2][max(offset - len(label), 0)] = label
|
|
223
|
+
result[y - min2][offset - 1] = symbols[0] if y == 0 else symbols[1] # zero tick mark
|
|
224
|
+
|
|
225
|
+
# first value is a tick mark across the y-axis
|
|
226
|
+
d0 = series[0][0]
|
|
227
|
+
if _isnum(d0):
|
|
228
|
+
result[rows - scaled(d0)][offset - 1] = symbols[0]
|
|
229
|
+
|
|
230
|
+
for i, series_i in enumerate(series):
|
|
231
|
+
color = colors[i % len(colors)]
|
|
232
|
+
|
|
233
|
+
# plot the line
|
|
234
|
+
for x in range(len(series_i) - 1):
|
|
235
|
+
d0 = series_i[x + 0]
|
|
236
|
+
d1 = series_i[x + 1]
|
|
237
|
+
|
|
238
|
+
if isnan(d0) and isnan(d1):
|
|
239
|
+
continue
|
|
240
|
+
|
|
241
|
+
if isnan(d0) and _isnum(d1):
|
|
242
|
+
result[rows - scaled(d1)][x + offset] = colored(symbols[2], color)
|
|
243
|
+
continue
|
|
244
|
+
|
|
245
|
+
if _isnum(d0) and isnan(d1):
|
|
246
|
+
result[rows - scaled(d0)][x + offset] = colored(symbols[3], color)
|
|
247
|
+
continue
|
|
248
|
+
|
|
249
|
+
y0 = scaled(d0)
|
|
250
|
+
y1 = scaled(d1)
|
|
251
|
+
if y0 == y1:
|
|
252
|
+
result[rows - y0][x + offset] = colored(symbols[4], color)
|
|
253
|
+
continue
|
|
254
|
+
|
|
255
|
+
result[rows - y1][x + offset] = (
|
|
256
|
+
colored(symbols[5], color) if y0 > y1 else colored(symbols[6], color)
|
|
257
|
+
)
|
|
258
|
+
result[rows - y0][x + offset] = (
|
|
259
|
+
colored(symbols[7], color) if y0 > y1 else colored(symbols[8], color)
|
|
260
|
+
)
|
|
261
|
+
|
|
262
|
+
start = min(y0, y1) + 1
|
|
263
|
+
end = max(y0, y1)
|
|
264
|
+
for y in range(start, end):
|
|
265
|
+
result[rows - y][x + offset] = colored(symbols[9], color)
|
|
266
|
+
|
|
267
|
+
the_plot = "\n".join(["".join(row).rstrip() for row in result])
|
|
268
|
+
|
|
269
|
+
if bin_edges is None or len(bin_edges) == 0:
|
|
270
|
+
return the_plot
|
|
271
|
+
|
|
272
|
+
# Plot x axis labels
|
|
273
|
+
current_location = 0
|
|
274
|
+
# Compute the amount of leading space for the first x-label using the old label size
|
|
275
|
+
leading_space = offset + len(label)
|
|
276
|
+
# Obtain the first x-label to compute its size
|
|
277
|
+
x_label = x_placeholder.format(bin_edges[0])
|
|
278
|
+
# Initialize the x-label text with the leading space. We allow the first label to
|
|
279
|
+
# recess so that the center of it is aligned with the first tick mark.
|
|
280
|
+
x_label_size = len(x_label)
|
|
281
|
+
x_leading_space = max(0, leading_space - x_label_size)
|
|
282
|
+
|
|
283
|
+
x_labels = []
|
|
284
|
+
# This is the amount of space we have to fit the x-labels. It can overflow the width
|
|
285
|
+
# by half of the x-label size
|
|
286
|
+
workable_width = width + x_label_size // 2
|
|
287
|
+
# Compute the spacing between x-labels
|
|
288
|
+
# If we fit labels and space them by 2 characters, we can fit this many labels:
|
|
289
|
+
min_spacing = 2
|
|
290
|
+
num_labels_can_fit = width // (x_label_size + min_spacing)
|
|
291
|
+
labels_count = len(bin_edges)
|
|
292
|
+
# Find out the actual number of labels we need to display
|
|
293
|
+
num_labels_to_display = min(labels_count, num_labels_can_fit)
|
|
294
|
+
num_spaces = num_labels_to_display - 1
|
|
295
|
+
spacing = max(
|
|
296
|
+
min_spacing,
|
|
297
|
+
(workable_width - num_labels_to_display * x_label_size) // num_spaces,
|
|
298
|
+
)
|
|
299
|
+
# Now start placing labels
|
|
300
|
+
while current_location < workable_width:
|
|
301
|
+
# Find the current label that would be suitable for the current location
|
|
302
|
+
bin_index = int((current_location / workable_width) * labels_count)
|
|
303
|
+
x_label = x_placeholder.format(bin_edges[bin_index])
|
|
304
|
+
x_labels.append(x_label)
|
|
305
|
+
# Move to the next location
|
|
306
|
+
current_location += len(x_label) + spacing
|
|
307
|
+
# Create the x-label row
|
|
308
|
+
x_labels_text = " " * x_leading_space + (" " * spacing).join(x_labels)
|
|
309
|
+
|
|
310
|
+
return the_plot + "\n" + x_labels_text
|
onnx_ir/_type_casting.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
1
|
+
# Copyright (c) ONNX Project Contributors
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
"""Numpy utilities for non-native type operation."""
|
|
4
|
+
|
|
5
|
+
from __future__ import annotations
|
|
6
|
+
|
|
7
|
+
import typing
|
|
8
|
+
from collections.abc import Sequence
|
|
9
|
+
|
|
10
|
+
import numpy as np
|
|
11
|
+
|
|
12
|
+
if typing.TYPE_CHECKING:
|
|
13
|
+
import numpy.typing as npt
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
def pack_4bitx2(array: np.ndarray) -> npt.NDArray[np.uint8]:
|
|
17
|
+
"""Convert a numpy array to flatten, packed int4/uint4. Elements must be in the correct range."""
|
|
18
|
+
# Create a 1D copy
|
|
19
|
+
array_flat = array.ravel().view(np.uint8).copy()
|
|
20
|
+
size = array.size
|
|
21
|
+
odd_sized = size % 2 == 1
|
|
22
|
+
if odd_sized:
|
|
23
|
+
array_flat.resize([size + 1], refcheck=False)
|
|
24
|
+
array_flat &= 0x0F
|
|
25
|
+
array_flat[1::2] <<= 4
|
|
26
|
+
return array_flat[0::2] | array_flat[1::2] # type: ignore[return-type]
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def unpack_4bitx2(data: npt.NDArray[np.uint8], dims: Sequence[int]) -> npt.NDArray[np.uint8]:
|
|
30
|
+
"""Convert a packed uint4 array to unpacked uint4 array represented as uint8.
|
|
31
|
+
|
|
32
|
+
Args:
|
|
33
|
+
data: A numpy array.
|
|
34
|
+
dims: The dimensions are used to reshape the unpacked buffer.
|
|
35
|
+
|
|
36
|
+
Returns:
|
|
37
|
+
A numpy array of int8/uint8 reshaped to dims.
|
|
38
|
+
"""
|
|
39
|
+
assert data.dtype == np.uint8, "Input data must be of type uint8"
|
|
40
|
+
result = np.empty([data.size * 2], dtype=data.dtype)
|
|
41
|
+
array_low = data & np.uint8(0x0F)
|
|
42
|
+
array_high = data & np.uint8(0xF0)
|
|
43
|
+
array_high >>= np.uint8(4)
|
|
44
|
+
result[0::2] = array_low
|
|
45
|
+
result[1::2] = array_high
|
|
46
|
+
if result.size == np.prod(dims) + 1:
|
|
47
|
+
# handle single-element padding due to odd number of elements
|
|
48
|
+
result = result[:-1]
|
|
49
|
+
result.resize(dims, refcheck=False)
|
|
50
|
+
return result
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def pack_2bitx4(array: np.ndarray) -> npt.NDArray[np.uint8]:
|
|
54
|
+
"""Convert a numpy array to flatten, packed int2/uint2. Elements must be in the correct range."""
|
|
55
|
+
# Create a 1D copy
|
|
56
|
+
array_flat = array.ravel().view(np.uint8).copy()
|
|
57
|
+
size = array.size
|
|
58
|
+
padding = (4 - (size % 4)) % 4
|
|
59
|
+
if padding > 0:
|
|
60
|
+
array_flat.resize([size + padding], refcheck=False)
|
|
61
|
+
array_flat &= 0x03
|
|
62
|
+
array_flat[1::4] <<= 2
|
|
63
|
+
array_flat[2::4] <<= 4
|
|
64
|
+
array_flat[3::4] <<= 6
|
|
65
|
+
return array_flat[0::4] | array_flat[1::4] | array_flat[2::4] | array_flat[3::4] # type: ignore[return-type]
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
def unpack_2bitx4(data: npt.NDArray[np.uint8], dims: Sequence[int]) -> npt.NDArray[np.uint8]:
|
|
69
|
+
"""Convert a packed uint2 array to unpacked uint2 array represented as uint8.
|
|
70
|
+
|
|
71
|
+
Args:
|
|
72
|
+
data: A numpy array.
|
|
73
|
+
dims: The dimensions are used to reshape the unpacked buffer.
|
|
74
|
+
|
|
75
|
+
Returns:
|
|
76
|
+
A numpy array of int8/uint8 reshaped to dims.
|
|
77
|
+
"""
|
|
78
|
+
assert data.dtype == np.uint8, "Input data must be of type uint8"
|
|
79
|
+
result = np.empty([data.size * 4], dtype=data.dtype)
|
|
80
|
+
result[0::4] = data & np.uint8(0x03)
|
|
81
|
+
result[1::4] = (data & np.uint8(0x0C)) >> np.uint8(2)
|
|
82
|
+
result[2::4] = (data & np.uint8(0x30)) >> np.uint8(4)
|
|
83
|
+
result[3::4] = (data & np.uint8(0xC0)) >> np.uint8(6)
|
|
84
|
+
total_elements = int(np.prod(dims))
|
|
85
|
+
if result.size > total_elements:
|
|
86
|
+
# handle padding due to element count not being a multiple of 4
|
|
87
|
+
result = result[:total_elements]
|
|
88
|
+
result.resize(dims, refcheck=False)
|
|
89
|
+
return result
|
|
@@ -0,0 +1,48 @@
|
|
|
1
|
+
# Copyright (c) ONNX Project Contributors
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
"""Version utils for testing."""
|
|
4
|
+
|
|
5
|
+
# pylint: disable=import-outside-toplevel
|
|
6
|
+
from __future__ import annotations
|
|
7
|
+
|
|
8
|
+
import packaging.version
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def onnx_older_than(version: str) -> bool:
|
|
12
|
+
"""Returns True if the ONNX version is older than the given version."""
|
|
13
|
+
import onnx # noqa: TID251
|
|
14
|
+
|
|
15
|
+
return (
|
|
16
|
+
packaging.version.parse(onnx.__version__).release
|
|
17
|
+
< packaging.version.parse(version).release
|
|
18
|
+
)
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def torch_older_than(version: str) -> bool:
|
|
22
|
+
"""Returns True if the torch version is older than the given version."""
|
|
23
|
+
import torch
|
|
24
|
+
|
|
25
|
+
return (
|
|
26
|
+
packaging.version.parse(torch.__version__).release
|
|
27
|
+
< packaging.version.parse(version).release
|
|
28
|
+
)
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def onnxruntime_older_than(version: str) -> bool:
|
|
32
|
+
"""Returns True if the onnxruntime version is older than the given version."""
|
|
33
|
+
import onnxruntime
|
|
34
|
+
|
|
35
|
+
return (
|
|
36
|
+
packaging.version.parse(onnxruntime.__version__).release
|
|
37
|
+
< packaging.version.parse(version).release
|
|
38
|
+
)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def numpy_older_than(version: str) -> bool:
|
|
42
|
+
"""Returns True if the numpy version is older than the given version."""
|
|
43
|
+
import numpy
|
|
44
|
+
|
|
45
|
+
return (
|
|
46
|
+
packaging.version.parse(numpy.__version__).release
|
|
47
|
+
< packaging.version.parse(version).release
|
|
48
|
+
)
|