onnx-diagnostic 0.8.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnx_diagnostic/__init__.py +7 -0
- onnx_diagnostic/__main__.py +4 -0
- onnx_diagnostic/_command_lines_parser.py +1141 -0
- onnx_diagnostic/api.py +15 -0
- onnx_diagnostic/doc.py +100 -0
- onnx_diagnostic/export/__init__.py +2 -0
- onnx_diagnostic/export/api.py +124 -0
- onnx_diagnostic/export/dynamic_shapes.py +1083 -0
- onnx_diagnostic/export/shape_helper.py +296 -0
- onnx_diagnostic/export/validate.py +173 -0
- onnx_diagnostic/ext_test_case.py +1290 -0
- onnx_diagnostic/helpers/__init__.py +1 -0
- onnx_diagnostic/helpers/_log_helper.py +463 -0
- onnx_diagnostic/helpers/args_helper.py +132 -0
- onnx_diagnostic/helpers/bench_run.py +450 -0
- onnx_diagnostic/helpers/cache_helper.py +687 -0
- onnx_diagnostic/helpers/config_helper.py +170 -0
- onnx_diagnostic/helpers/doc_helper.py +163 -0
- onnx_diagnostic/helpers/fake_tensor_helper.py +273 -0
- onnx_diagnostic/helpers/graph_helper.py +386 -0
- onnx_diagnostic/helpers/helper.py +1707 -0
- onnx_diagnostic/helpers/log_helper.py +2245 -0
- onnx_diagnostic/helpers/memory_peak.py +249 -0
- onnx_diagnostic/helpers/mini_onnx_builder.py +600 -0
- onnx_diagnostic/helpers/model_builder_helper.py +469 -0
- onnx_diagnostic/helpers/onnx_helper.py +1200 -0
- onnx_diagnostic/helpers/ort_session.py +736 -0
- onnx_diagnostic/helpers/rt_helper.py +476 -0
- onnx_diagnostic/helpers/torch_helper.py +987 -0
- onnx_diagnostic/reference/__init__.py +4 -0
- onnx_diagnostic/reference/evaluator.py +254 -0
- onnx_diagnostic/reference/ops/__init__.py +1 -0
- onnx_diagnostic/reference/ops/op_add_add_mul_mul.py +68 -0
- onnx_diagnostic/reference/ops/op_attention.py +60 -0
- onnx_diagnostic/reference/ops/op_average_pool_grad.py +63 -0
- onnx_diagnostic/reference/ops/op_bias_softmax.py +16 -0
- onnx_diagnostic/reference/ops/op_cast_like.py +46 -0
- onnx_diagnostic/reference/ops/op_complex.py +26 -0
- onnx_diagnostic/reference/ops/op_concat.py +15 -0
- onnx_diagnostic/reference/ops/op_constant_of_shape.py +67 -0
- onnx_diagnostic/reference/ops/op_fused_matmul.py +31 -0
- onnx_diagnostic/reference/ops/op_gather.py +29 -0
- onnx_diagnostic/reference/ops/op_gather_elements.py +45 -0
- onnx_diagnostic/reference/ops/op_gather_grad.py +12 -0
- onnx_diagnostic/reference/ops/op_memcpy_host.py +11 -0
- onnx_diagnostic/reference/ops/op_mul_sigmoid.py +23 -0
- onnx_diagnostic/reference/ops/op_negxplus1.py +8 -0
- onnx_diagnostic/reference/ops/op_qlinear_average_pool.py +40 -0
- onnx_diagnostic/reference/ops/op_qlinear_conv.py +102 -0
- onnx_diagnostic/reference/ops/op_quick_gelu.py +23 -0
- onnx_diagnostic/reference/ops/op_replace_zero.py +13 -0
- onnx_diagnostic/reference/ops/op_rotary.py +19 -0
- onnx_diagnostic/reference/ops/op_scan.py +65 -0
- onnx_diagnostic/reference/ops/op_scatter_elements.py +107 -0
- onnx_diagnostic/reference/ops/op_scatternd_of_shape.py +22 -0
- onnx_diagnostic/reference/ops/op_simplified_layer_normalization.py +8 -0
- onnx_diagnostic/reference/ops/op_skip_layer_normalization.py +13 -0
- onnx_diagnostic/reference/ops/op_slice.py +20 -0
- onnx_diagnostic/reference/ops/op_transpose_cast.py +16 -0
- onnx_diagnostic/reference/ops/op_tri_matrix.py +17 -0
- onnx_diagnostic/reference/ort_evaluator.py +652 -0
- onnx_diagnostic/reference/quantized_tensor.py +46 -0
- onnx_diagnostic/reference/report_results_comparison.py +95 -0
- onnx_diagnostic/reference/torch_evaluator.py +669 -0
- onnx_diagnostic/reference/torch_ops/__init__.py +56 -0
- onnx_diagnostic/reference/torch_ops/_op_run.py +335 -0
- onnx_diagnostic/reference/torch_ops/access_ops.py +94 -0
- onnx_diagnostic/reference/torch_ops/binary_ops.py +108 -0
- onnx_diagnostic/reference/torch_ops/controlflow_ops.py +121 -0
- onnx_diagnostic/reference/torch_ops/generator_ops.py +36 -0
- onnx_diagnostic/reference/torch_ops/nn_ops.py +196 -0
- onnx_diagnostic/reference/torch_ops/other_ops.py +106 -0
- onnx_diagnostic/reference/torch_ops/reduce_ops.py +130 -0
- onnx_diagnostic/reference/torch_ops/sequence_ops.py +65 -0
- onnx_diagnostic/reference/torch_ops/shape_ops.py +121 -0
- onnx_diagnostic/reference/torch_ops/unary_ops.py +93 -0
- onnx_diagnostic/tasks/__init__.py +90 -0
- onnx_diagnostic/tasks/automatic_speech_recognition.py +188 -0
- onnx_diagnostic/tasks/data/__init__.py +13 -0
- onnx_diagnostic/tasks/data/dummies_imagetext2text_generation_gemma3.onnx +0 -0
- onnx_diagnostic/tasks/feature_extraction.py +162 -0
- onnx_diagnostic/tasks/fill_mask.py +89 -0
- onnx_diagnostic/tasks/image_classification.py +144 -0
- onnx_diagnostic/tasks/image_text_to_text.py +581 -0
- onnx_diagnostic/tasks/image_to_video.py +127 -0
- onnx_diagnostic/tasks/mask_generation.py +143 -0
- onnx_diagnostic/tasks/mixture_of_expert.py +79 -0
- onnx_diagnostic/tasks/object_detection.py +134 -0
- onnx_diagnostic/tasks/sentence_similarity.py +89 -0
- onnx_diagnostic/tasks/summarization.py +227 -0
- onnx_diagnostic/tasks/text2text_generation.py +230 -0
- onnx_diagnostic/tasks/text_classification.py +89 -0
- onnx_diagnostic/tasks/text_generation.py +352 -0
- onnx_diagnostic/tasks/text_to_image.py +95 -0
- onnx_diagnostic/tasks/zero_shot_image_classification.py +128 -0
- onnx_diagnostic/torch_export_patches/__init__.py +21 -0
- onnx_diagnostic/torch_export_patches/eval/__init__.py +725 -0
- onnx_diagnostic/torch_export_patches/eval/model_cases.py +898 -0
- onnx_diagnostic/torch_export_patches/onnx_export_errors.py +1098 -0
- onnx_diagnostic/torch_export_patches/onnx_export_serialization.py +311 -0
- onnx_diagnostic/torch_export_patches/patch_details.py +340 -0
- onnx_diagnostic/torch_export_patches/patch_expressions.py +108 -0
- onnx_diagnostic/torch_export_patches/patch_inputs.py +211 -0
- onnx_diagnostic/torch_export_patches/patch_module.py +1047 -0
- onnx_diagnostic/torch_export_patches/patch_module_helper.py +184 -0
- onnx_diagnostic/torch_export_patches/patches/__init__.py +0 -0
- onnx_diagnostic/torch_export_patches/patches/patch_torch.py +1090 -0
- onnx_diagnostic/torch_export_patches/patches/patch_transformers.py +2139 -0
- onnx_diagnostic/torch_export_patches/serialization/__init__.py +46 -0
- onnx_diagnostic/torch_export_patches/serialization/diffusers_impl.py +34 -0
- onnx_diagnostic/torch_export_patches/serialization/transformers_impl.py +313 -0
- onnx_diagnostic/torch_models/__init__.py +0 -0
- onnx_diagnostic/torch_models/code_sample.py +343 -0
- onnx_diagnostic/torch_models/hghub/__init__.py +1 -0
- onnx_diagnostic/torch_models/hghub/hub_api.py +422 -0
- onnx_diagnostic/torch_models/hghub/hub_data.py +234 -0
- onnx_diagnostic/torch_models/hghub/hub_data_cached_configs.py +4905 -0
- onnx_diagnostic/torch_models/hghub/model_inputs.py +388 -0
- onnx_diagnostic/torch_models/hghub/model_specific.py +76 -0
- onnx_diagnostic/torch_models/llms.py +2 -0
- onnx_diagnostic/torch_models/untrained/__init__.py +0 -0
- onnx_diagnostic/torch_models/untrained/llm_phi2.py +113 -0
- onnx_diagnostic/torch_models/untrained/llm_tiny_llm.py +76 -0
- onnx_diagnostic/torch_models/validate.py +2124 -0
- onnx_diagnostic/torch_onnx/__init__.py +0 -0
- onnx_diagnostic/torch_onnx/runtime_info.py +289 -0
- onnx_diagnostic/torch_onnx/sbs.py +440 -0
- onnx_diagnostic-0.8.0.dist-info/METADATA +213 -0
- onnx_diagnostic-0.8.0.dist-info/RECORD +132 -0
- onnx_diagnostic-0.8.0.dist-info/WHEEL +5 -0
- onnx_diagnostic-0.8.0.dist-info/licenses/LICENSE.txt +19 -0
- onnx_diagnostic-0.8.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,898 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import torch
|
|
3
|
+
from ..patches.patch_torch import patched_vmap
|
|
4
|
+
|
|
5
|
+
DIM = torch.export.Dim
|
|
6
|
+
DYN = torch.export.Dim.DYNAMIC
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class AtenRollRelu(torch.nn.Module):
|
|
10
|
+
def forward(self, x):
|
|
11
|
+
return torch.relu(torch.roll(x, -1, -1))
|
|
12
|
+
|
|
13
|
+
_inputs = ((torch.arange(8 * 3) + 10).reshape((2, -1, 4)).to(torch.float32),)
|
|
14
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class AtenRollPos(torch.nn.Module):
|
|
18
|
+
def forward(self, x):
|
|
19
|
+
return torch.roll(x, 1, -1)
|
|
20
|
+
|
|
21
|
+
_inputs = ((torch.arange(8 * 3) + 10).reshape((2, -1, 4)).to(torch.float32),)
|
|
22
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class InplaceAdd(torch.nn.Module):
|
|
26
|
+
def __init__(self):
|
|
27
|
+
super().__init__()
|
|
28
|
+
self.bias = torch.ones((1, 4), dtype=torch.float32)
|
|
29
|
+
|
|
30
|
+
def forward(self, x):
|
|
31
|
+
x += self.bias
|
|
32
|
+
return x
|
|
33
|
+
|
|
34
|
+
_inputs = [(torch.rand(3, 4),), (torch.rand(5, 4),)]
|
|
35
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
class InplaceAdd2(torch.nn.Module):
|
|
39
|
+
def __init__(self):
|
|
40
|
+
super().__init__()
|
|
41
|
+
self.bias = torch.ones((1, 4), dtype=torch.float32)
|
|
42
|
+
|
|
43
|
+
def forward(self, x):
|
|
44
|
+
x.add_(self.bias)
|
|
45
|
+
return x
|
|
46
|
+
|
|
47
|
+
_inputs = [(torch.rand(3, 4),), (torch.rand(5, 4),)]
|
|
48
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
class InplaceAdd_Mul(torch.nn.Module):
|
|
52
|
+
def __init__(self):
|
|
53
|
+
super().__init__()
|
|
54
|
+
self.bias = torch.ones((1, 4), dtype=torch.float32)
|
|
55
|
+
|
|
56
|
+
def forward(self, x):
|
|
57
|
+
x.add_(self.bias)
|
|
58
|
+
return x * 2
|
|
59
|
+
|
|
60
|
+
_inputs = [(torch.rand(3, 4),), (torch.rand(5, 4),)]
|
|
61
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
class InplaceCloneAdd_(torch.nn.Module):
|
|
65
|
+
def __init__(self):
|
|
66
|
+
super().__init__()
|
|
67
|
+
self.bias = torch.ones((1, 4), dtype=torch.float32)
|
|
68
|
+
|
|
69
|
+
def forward(self, x):
|
|
70
|
+
x = x.clone()
|
|
71
|
+
x.add_(self.bias)
|
|
72
|
+
return x
|
|
73
|
+
|
|
74
|
+
_inputs = [(torch.rand(3, 4),), (torch.rand(5, 4),)]
|
|
75
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
class InplaceSetItemSquare(torch.nn.Module):
|
|
79
|
+
def forward(self, x):
|
|
80
|
+
x[:2, :3] = 1
|
|
81
|
+
return x
|
|
82
|
+
|
|
83
|
+
_inputs = [(torch.rand(5, 5),), (torch.rand(7, 5),)]
|
|
84
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
class InplaceSetItemSquareAdd(torch.nn.Module):
|
|
88
|
+
def forward(self, x):
|
|
89
|
+
x[:2, :3] = 1
|
|
90
|
+
return x + 2
|
|
91
|
+
|
|
92
|
+
_inputs = [(torch.rand(5, 5),), (torch.rand(7, 5),)]
|
|
93
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
class InplaceSetItemSquareAdd2(torch.nn.Module):
|
|
97
|
+
def forward(self, x):
|
|
98
|
+
x[:2, :3] = 1
|
|
99
|
+
return x + 2, x + 3
|
|
100
|
+
|
|
101
|
+
_inputs = [(torch.rand(5, 5),), (torch.rand(7, 5),)]
|
|
102
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
class InplaceSetItemEllipsis_1(torch.nn.Module):
|
|
106
|
+
def __init__(self):
|
|
107
|
+
super().__init__()
|
|
108
|
+
self.params = torch.zeros((1, 8192, 4), dtype=torch.float32)
|
|
109
|
+
|
|
110
|
+
def forward(self, index, update):
|
|
111
|
+
copy = self.params.clone()
|
|
112
|
+
copy[..., index] = update
|
|
113
|
+
return copy
|
|
114
|
+
|
|
115
|
+
_inputs = (
|
|
116
|
+
(torch.from_numpy(np.array([0, 3, 2, 1])).to(torch.int64)),
|
|
117
|
+
(torch.arange(4 * 8192) + 10).reshape((-1, 4)).to(torch.float32),
|
|
118
|
+
)
|
|
119
|
+
_dynamic = {"index": {0: DIM("batch")}, "update": {0: DIM("batch"), 1: DYN}}
|
|
120
|
+
|
|
121
|
+
|
|
122
|
+
class InplaceSetItemEllipsis_2(torch.nn.Module):
|
|
123
|
+
def __init__(self):
|
|
124
|
+
super().__init__()
|
|
125
|
+
self.params = torch.zeros((1, 8192, 6), dtype=torch.float32)
|
|
126
|
+
|
|
127
|
+
def forward(self, index, update):
|
|
128
|
+
copy = self.params.clone()
|
|
129
|
+
copy[..., index] = update
|
|
130
|
+
return copy
|
|
131
|
+
|
|
132
|
+
_inputs = (
|
|
133
|
+
torch.from_numpy(np.array([0, 3, 2, 5])).to(torch.int64),
|
|
134
|
+
(torch.arange(4 * 8192) + 10).reshape((-1, 4)).to(torch.float32),
|
|
135
|
+
)
|
|
136
|
+
_dynamic = {"index": {0: DIM("batch")}, "update": {0: DIM("batch"), 1: DYN}}
|
|
137
|
+
|
|
138
|
+
|
|
139
|
+
class InplaceSetItemMask(torch.nn.Module):
|
|
140
|
+
def forward(self, x):
|
|
141
|
+
mask = x.to(bool)
|
|
142
|
+
x[mask] = 2
|
|
143
|
+
return x
|
|
144
|
+
|
|
145
|
+
_inputs = [(torch.randn((2, 3, 3)),), (torch.randn((3, 3, 3)),)]
|
|
146
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
147
|
+
|
|
148
|
+
|
|
149
|
+
class AtenInterpolate(torch.nn.Module):
|
|
150
|
+
def forward(self, x):
|
|
151
|
+
y = torch.nn.functional.interpolate(
|
|
152
|
+
x,
|
|
153
|
+
scale_factor=2.0,
|
|
154
|
+
mode="bilinear",
|
|
155
|
+
recompute_scale_factor=False,
|
|
156
|
+
)
|
|
157
|
+
return y
|
|
158
|
+
|
|
159
|
+
_inputs = (torch.randn(2, 2, 3, 4, requires_grad=False),)
|
|
160
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
161
|
+
|
|
162
|
+
|
|
163
|
+
class AtenNonZero(torch.nn.Module):
|
|
164
|
+
def forward(self, x):
|
|
165
|
+
y = torch.nonzero(x)
|
|
166
|
+
return y
|
|
167
|
+
|
|
168
|
+
_inputs = (torch.randn(3, 4, requires_grad=False),)
|
|
169
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
170
|
+
|
|
171
|
+
|
|
172
|
+
class AtenNonZeroTuple(torch.nn.Module):
|
|
173
|
+
def forward(self, x):
|
|
174
|
+
y = torch.nonzero(x, as_tuple=True)
|
|
175
|
+
return y[0], y[1]
|
|
176
|
+
|
|
177
|
+
_inputs = (torch.randn(3, 4, requires_grad=False),)
|
|
178
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
179
|
+
|
|
180
|
+
|
|
181
|
+
class AtenAsStrided(torch.nn.Module):
|
|
182
|
+
def __init__(self):
|
|
183
|
+
super().__init__()
|
|
184
|
+
|
|
185
|
+
def forward(self, x):
|
|
186
|
+
y = torch.as_strided(x, (2, 2, 8, 4), (128, 8, 16, 1))
|
|
187
|
+
return y
|
|
188
|
+
|
|
189
|
+
_inputs = (torch.randn((2, 2, 8, 8), requires_grad=False),)
|
|
190
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
191
|
+
|
|
192
|
+
|
|
193
|
+
class ComplexPolar(torch.nn.Module):
|
|
194
|
+
def forward(self, x, angle):
|
|
195
|
+
return torch.polar(x, angle)
|
|
196
|
+
|
|
197
|
+
_inputs = (torch.rand(4, 4), torch.rand(4, 4))
|
|
198
|
+
_dynamic = {"x": {0: DIM("batch")}, "angle": {0: DIM("batch")}}
|
|
199
|
+
|
|
200
|
+
|
|
201
|
+
class ControlFlowCond(torch.nn.Module):
|
|
202
|
+
def forward(self, x):
|
|
203
|
+
def true_fn(x):
|
|
204
|
+
return torch.sin(x)
|
|
205
|
+
|
|
206
|
+
def false_fn(x):
|
|
207
|
+
return torch.cos(x)
|
|
208
|
+
|
|
209
|
+
return torch.cond(x.sum() > 0, true_fn, false_fn, [x])
|
|
210
|
+
|
|
211
|
+
_inputs = (torch.rand(5, 3),)
|
|
212
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
class ControlFlowCond2Outputs(torch.nn.Module):
|
|
216
|
+
def forward(self, x):
|
|
217
|
+
def true_fn(x):
|
|
218
|
+
return torch.sin(x), torch.cos(x)
|
|
219
|
+
|
|
220
|
+
def false_fn(x):
|
|
221
|
+
return torch.cos(x), torch.sin(x)
|
|
222
|
+
|
|
223
|
+
return torch.cond(x.sum() > 0, true_fn, false_fn, [x])
|
|
224
|
+
|
|
225
|
+
_inputs = (torch.rand(5, 3),)
|
|
226
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
227
|
+
|
|
228
|
+
|
|
229
|
+
class ControlFlowCond2Inputs(torch.nn.Module):
|
|
230
|
+
def forward(self, x, y):
|
|
231
|
+
def true_fn(x, y):
|
|
232
|
+
return torch.sin(x), torch.cos(x) + y
|
|
233
|
+
|
|
234
|
+
def false_fn(x, y):
|
|
235
|
+
return torch.cos(x), torch.sin(x) + y
|
|
236
|
+
|
|
237
|
+
return torch.cond(x.sum() > 0, true_fn, false_fn, [x, y])
|
|
238
|
+
|
|
239
|
+
_inputs = torch.rand(5, 3), torch.rand(5, 3)
|
|
240
|
+
_dynamic = {"x": {0: DIM("batch")}, "y": {0: DIM("batch")}}
|
|
241
|
+
|
|
242
|
+
|
|
243
|
+
class ControlFlowNestCond(torch.nn.Module):
|
|
244
|
+
def forward(self, x):
|
|
245
|
+
def true_fn2(x):
|
|
246
|
+
def true_fn1(x):
|
|
247
|
+
return torch.sin(x)
|
|
248
|
+
|
|
249
|
+
def false_fn1(x):
|
|
250
|
+
return torch.cos(x)
|
|
251
|
+
|
|
252
|
+
return torch.cond(x.sum() < 0, true_fn1, false_fn1, [x])
|
|
253
|
+
|
|
254
|
+
def false_fn2(x):
|
|
255
|
+
return -x
|
|
256
|
+
|
|
257
|
+
return torch.cond(x.sum() > 0, true_fn2, false_fn2, [x])
|
|
258
|
+
|
|
259
|
+
_inputs = (torch.rand(5, 3),)
|
|
260
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
261
|
+
|
|
262
|
+
|
|
263
|
+
class ControlFlowCondConstant(torch.nn.Module):
|
|
264
|
+
def forward(self, x):
|
|
265
|
+
def true_fn(x):
|
|
266
|
+
return torch.sin(x) - torch.ones(x.shape, dtype=x.dtype)
|
|
267
|
+
|
|
268
|
+
def false_fn(x):
|
|
269
|
+
return torch.cos(x) + torch.ones((1, 1024), dtype=x.dtype)
|
|
270
|
+
|
|
271
|
+
return torch.cond(x.sum() > 0, true_fn, false_fn, [x])
|
|
272
|
+
|
|
273
|
+
_inputs = (torch.rand(1024, 1024),)
|
|
274
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
275
|
+
|
|
276
|
+
|
|
277
|
+
class ControlFlowCondNestedModule(torch.nn.Module):
|
|
278
|
+
class Submodule(torch.nn.Module):
|
|
279
|
+
def __init__(self):
|
|
280
|
+
super().__init__()
|
|
281
|
+
# Nested weight
|
|
282
|
+
self.weight = torch.nn.Parameter(torch.tensor([100.0]))
|
|
283
|
+
|
|
284
|
+
def forward(self, x):
|
|
285
|
+
def true_fn(x):
|
|
286
|
+
return x * self.weight
|
|
287
|
+
|
|
288
|
+
def false_fn(x):
|
|
289
|
+
return x / self.weight
|
|
290
|
+
|
|
291
|
+
y = torch.cond(torch.abs(x).sum() > 100, true_fn, false_fn, [x])
|
|
292
|
+
return y
|
|
293
|
+
|
|
294
|
+
def __init__(self):
|
|
295
|
+
super().__init__()
|
|
296
|
+
self.submodule = ControlFlowCondNestedModule.Submodule()
|
|
297
|
+
self.weight = torch.nn.Parameter(torch.tensor([42.0]))
|
|
298
|
+
|
|
299
|
+
def forward(self, x):
|
|
300
|
+
def true_fn(x):
|
|
301
|
+
return self.submodule(x)
|
|
302
|
+
|
|
303
|
+
def false_fn(x):
|
|
304
|
+
return x - self.weight
|
|
305
|
+
|
|
306
|
+
y = torch.cond(x.sum() > 0, true_fn, false_fn, [x])
|
|
307
|
+
return y
|
|
308
|
+
|
|
309
|
+
_inputs = (torch.tensor([-1, 2]),)
|
|
310
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
311
|
+
|
|
312
|
+
|
|
313
|
+
class ControlFlowCondNonZero(torch.nn.Module):
|
|
314
|
+
def forward(self, input_ids, image_features, vocab_size):
|
|
315
|
+
def then_branch(input_ids, image_features, vocab_size):
|
|
316
|
+
input_shape = input_ids.size()
|
|
317
|
+
input_ids = input_ids.view(-1, input_shape[-1])
|
|
318
|
+
|
|
319
|
+
condition = (input_ids < 0) & (input_ids > -int(1e9))
|
|
320
|
+
positions = torch.nonzero(condition, as_tuple=True)
|
|
321
|
+
input_ids = input_ids.clamp_min(0).clamp_max(vocab_size)
|
|
322
|
+
return (input_ids, positions[0], positions[1])
|
|
323
|
+
|
|
324
|
+
def else_branch(input_ids, image_features, vocab_size):
|
|
325
|
+
r = torch.where(torch.zeros((1, 1), dtype=torch.bool))
|
|
326
|
+
return (input_ids, r[0], r[1])
|
|
327
|
+
|
|
328
|
+
a, b, c = torch.cond(
|
|
329
|
+
image_features.numel() > 0,
|
|
330
|
+
then_branch,
|
|
331
|
+
else_branch,
|
|
332
|
+
[input_ids, image_features, vocab_size],
|
|
333
|
+
)
|
|
334
|
+
return a, b, c
|
|
335
|
+
|
|
336
|
+
_inputs = [
|
|
337
|
+
(
|
|
338
|
+
(torch.arange(24) - 8).reshape((2, -1)).to(torch.int64),
|
|
339
|
+
torch.arange(32).reshape((2, -1)).to(torch.float32),
|
|
340
|
+
1025,
|
|
341
|
+
),
|
|
342
|
+
(
|
|
343
|
+
(torch.arange(24) - 8).reshape((2, -1)).to(torch.int64),
|
|
344
|
+
torch.tensor([[], []], dtype=torch.float32),
|
|
345
|
+
1025,
|
|
346
|
+
),
|
|
347
|
+
]
|
|
348
|
+
_dynamic = (
|
|
349
|
+
{0: DIM("batch")},
|
|
350
|
+
{0: DIM("batch"), 1: DIM("seq_length")},
|
|
351
|
+
None,
|
|
352
|
+
)
|
|
353
|
+
|
|
354
|
+
|
|
355
|
+
class ControlFlowCondIdentity_153832(torch.nn.Module):
|
|
356
|
+
"""`#153832 <https://github.com/pytorch/pytorch/issues/153832>`_"""
|
|
357
|
+
|
|
358
|
+
def forward(self, x, y):
|
|
359
|
+
def branch_cond_then_1(x):
|
|
360
|
+
x = torch.abs(x) + 1
|
|
361
|
+
return x
|
|
362
|
+
|
|
363
|
+
def branch_cond_else_1(x):
|
|
364
|
+
return x # fails but succeeds with x.clone()
|
|
365
|
+
|
|
366
|
+
x = torch.cond(x.sum() > 0, branch_cond_then_1, branch_cond_else_1, [x])
|
|
367
|
+
return x + y
|
|
368
|
+
|
|
369
|
+
_inputs = [
|
|
370
|
+
(torch.rand((3, 4)), torch.rand((3, 4))),
|
|
371
|
+
(torch.rand((4, 5)), torch.rand((4, 5))),
|
|
372
|
+
]
|
|
373
|
+
_dynamic = {"x": {0: DYN, 1: DYN}, "y": {0: DYN, 1: DYN}}
|
|
374
|
+
|
|
375
|
+
|
|
376
|
+
class ControlFlowScan(torch.nn.Module):
|
|
377
|
+
@staticmethod
|
|
378
|
+
def add(carry: torch.Tensor, y: torch.Tensor):
|
|
379
|
+
next_carry = carry + y
|
|
380
|
+
return [next_carry, next_carry]
|
|
381
|
+
|
|
382
|
+
def forward(self, x):
|
|
383
|
+
init = torch.zeros_like(x[0])
|
|
384
|
+
carry, _out = torch.ops.higher_order.scan(
|
|
385
|
+
ControlFlowScan.add, [init], [x], additional_inputs=[]
|
|
386
|
+
)
|
|
387
|
+
return carry
|
|
388
|
+
|
|
389
|
+
_inputs = (torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float32),)
|
|
390
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
391
|
+
|
|
392
|
+
|
|
393
|
+
class ControlFlowScan2Carried(torch.nn.Module):
|
|
394
|
+
@staticmethod
|
|
395
|
+
def add(carry1: torch.Tensor, carry2: torch.Tensor, y1: torch.Tensor, y2: torch.Tensor):
|
|
396
|
+
next_carry1 = carry1 + y1
|
|
397
|
+
next_carry2 = carry2 * y2
|
|
398
|
+
return [next_carry1, next_carry2, next_carry1, next_carry2]
|
|
399
|
+
|
|
400
|
+
def forward(self, x):
|
|
401
|
+
init1 = torch.zeros_like(x[0])
|
|
402
|
+
init2 = torch.ones_like(x[0])
|
|
403
|
+
carry1, carry2, out1, out2 = torch.ops.higher_order.scan(
|
|
404
|
+
ControlFlowScan2Carried.add,
|
|
405
|
+
[init1, init2],
|
|
406
|
+
[x, x * 2],
|
|
407
|
+
# dim=0, # 01/31/2025, not supported anymore
|
|
408
|
+
additional_inputs=[],
|
|
409
|
+
)
|
|
410
|
+
return carry1, carry2, out1, out2
|
|
411
|
+
|
|
412
|
+
_inputs = (
|
|
413
|
+
torch.tensor([[1, 2, 3, -1], [4, 5, 6, -1], [7, 8, 9, -1]], dtype=torch.float32),
|
|
414
|
+
)
|
|
415
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
416
|
+
|
|
417
|
+
|
|
418
|
+
class ControlFlowScanCDist(torch.nn.Module):
|
|
419
|
+
@staticmethod
|
|
420
|
+
def dist(carry: torch.Tensor, x: torch.Tensor):
|
|
421
|
+
sub = carry - x.reshape((1, -1))
|
|
422
|
+
sq = sub * sub
|
|
423
|
+
rd = sq.sum(axis=1) ** 0.5
|
|
424
|
+
# clone --> UnsupportedAliasMutationException:
|
|
425
|
+
# Combine_fn might be aliasing the input!
|
|
426
|
+
return [carry.clone(), rd]
|
|
427
|
+
|
|
428
|
+
def forward(self, x):
|
|
429
|
+
_carry, out = torch.ops.higher_order.scan(
|
|
430
|
+
ControlFlowScanCDist.dist,
|
|
431
|
+
[x],
|
|
432
|
+
[x],
|
|
433
|
+
# dim=0, # 01/31/2025, not supported anymore
|
|
434
|
+
additional_inputs=[],
|
|
435
|
+
)
|
|
436
|
+
return out
|
|
437
|
+
|
|
438
|
+
_inputs = (
|
|
439
|
+
torch.tensor([[1, 2, 3, -1], [4, 5, 6, -1], [7, 8, 9, -1]], dtype=torch.float32),
|
|
440
|
+
)
|
|
441
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
442
|
+
|
|
443
|
+
|
|
444
|
+
class ControlFlowScanCDist2(torch.nn.Module):
|
|
445
|
+
@staticmethod
|
|
446
|
+
def dist(unused: torch.Tensor, x: torch.Tensor, samex: torch.Tensor):
|
|
447
|
+
sub = samex - x.reshape((1, -1))
|
|
448
|
+
sq = sub * sub
|
|
449
|
+
rd = torch.sqrt(sq.sum(axis=1))
|
|
450
|
+
# clone --> UnsupportedAliasMutationException:
|
|
451
|
+
# Combine_fn might be aliasing the input!
|
|
452
|
+
return [unused.clone(), rd]
|
|
453
|
+
|
|
454
|
+
def forward(self, x):
|
|
455
|
+
z = torch.tensor([0], dtype=torch.float32)
|
|
456
|
+
y = x.clone()
|
|
457
|
+
out = torch.ops.higher_order.scan(
|
|
458
|
+
ControlFlowScanCDist2.dist,
|
|
459
|
+
[z],
|
|
460
|
+
[x],
|
|
461
|
+
# dim=0, # 01/31/2025, not supported anymore
|
|
462
|
+
additional_inputs=[y],
|
|
463
|
+
)
|
|
464
|
+
return out[1]
|
|
465
|
+
|
|
466
|
+
_inputs = (
|
|
467
|
+
torch.tensor([[1, 2, 3, -1], [4, 5, 6, -1], [7, 8, 9, -1]], dtype=torch.float32),
|
|
468
|
+
)
|
|
469
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
470
|
+
|
|
471
|
+
|
|
472
|
+
class ControlFlowScanCDistXY(torch.nn.Module):
|
|
473
|
+
@staticmethod
|
|
474
|
+
def dist(y: torch.Tensor, scanned_x: torch.Tensor):
|
|
475
|
+
sub = y - scanned_x.reshape((1, -1))
|
|
476
|
+
sq = sub * sub
|
|
477
|
+
rd = torch.sqrt(sq.sum(axis=1))
|
|
478
|
+
# clone --> UnsupportedAliasMutationException:
|
|
479
|
+
# Combine_fn might be aliasing the input!
|
|
480
|
+
return [y.clone(), rd]
|
|
481
|
+
|
|
482
|
+
def forward(self, x, y):
|
|
483
|
+
_carry, out = torch.ops.higher_order.scan(
|
|
484
|
+
ControlFlowScanCDistXY.dist,
|
|
485
|
+
[y],
|
|
486
|
+
[x],
|
|
487
|
+
# dim=0, # 01/31/2025, not supported anymore
|
|
488
|
+
additional_inputs=[],
|
|
489
|
+
)
|
|
490
|
+
return out
|
|
491
|
+
|
|
492
|
+
_inputs = [
|
|
493
|
+
(torch.randn(3, 4), torch.randn(5, 4)),
|
|
494
|
+
(torch.randn(13, 14), torch.randn(15, 14)),
|
|
495
|
+
]
|
|
496
|
+
_dynamic = {
|
|
497
|
+
"x": {0: DIM("x_rows"), 1: DIM("dim")},
|
|
498
|
+
"y": {0: DIM("y_rows"), 1: DIM("dim")},
|
|
499
|
+
}
|
|
500
|
+
|
|
501
|
+
|
|
502
|
+
class ControlFlowScanInplace_153705(torch.nn.Module):
|
|
503
|
+
"""
|
|
504
|
+
`#153705 <https://github.com/pytorch/pytorch/issues/153705>`_
|
|
505
|
+
"""
|
|
506
|
+
|
|
507
|
+
def forward(self, x, y):
|
|
508
|
+
def loop_body_1(z, iv, x, y):
|
|
509
|
+
z = z.clone()
|
|
510
|
+
i = iv.item()
|
|
511
|
+
z[i, :] = ((x[i, :] - y) ** 2).sum(dim=-1)
|
|
512
|
+
return [z, iv]
|
|
513
|
+
|
|
514
|
+
z = torch.empty((x.shape[0], y.shape[0]))
|
|
515
|
+
r = torch.ops.higher_order.scan(
|
|
516
|
+
loop_body_1, [z], [torch.arange(x.shape[0], dtype=torch.int64)], [x, y]
|
|
517
|
+
)
|
|
518
|
+
return r[0]
|
|
519
|
+
|
|
520
|
+
_inputs = [
|
|
521
|
+
(torch.rand((3, 4)), torch.rand((5, 4))),
|
|
522
|
+
(torch.rand((4, 5)), torch.rand((6, 5))),
|
|
523
|
+
]
|
|
524
|
+
_dynamic = {"x": {0: DYN, 1: DYN}, "y": {0: DYN, 1: DYN}}
|
|
525
|
+
|
|
526
|
+
|
|
527
|
+
class ControlFlowScanDecomposition_151564(torch.nn.Module):
|
|
528
|
+
"""
|
|
529
|
+
`#151564 <https://github.com/pytorch/pytorch/issues/151564>`_
|
|
530
|
+
"""
|
|
531
|
+
|
|
532
|
+
@classmethod
|
|
533
|
+
def dummy_loop(cls, padded: torch.Tensor, pos: torch.Tensor):
|
|
534
|
+
copy = torch.zeros(padded.shape)
|
|
535
|
+
for i in range(pos.shape[0]):
|
|
536
|
+
p = pos[i]
|
|
537
|
+
copy[i, :p] = padded[i, :p]
|
|
538
|
+
return copy
|
|
539
|
+
|
|
540
|
+
@classmethod
|
|
541
|
+
def dummy_loop_with_scan(cls, padded: torch.Tensor, pos: torch.Tensor):
|
|
542
|
+
def pad_row(padded, p):
|
|
543
|
+
row = torch.zeros((padded.shape[0],))
|
|
544
|
+
torch._check(p.item() > 0)
|
|
545
|
+
torch._check(p.item() < padded.shape[0])
|
|
546
|
+
# this check is not always true, we add it anyway to make this dimension >= 2
|
|
547
|
+
# and avoid raising an exception about dynamic dimension in {0, 1}
|
|
548
|
+
if torch.compiler.is_exporting():
|
|
549
|
+
torch._check(p.item() > 1)
|
|
550
|
+
row[: p.item()] = padded[: p.item()]
|
|
551
|
+
return (row,)
|
|
552
|
+
|
|
553
|
+
return torch.ops.higher_order.scan(
|
|
554
|
+
pad_row,
|
|
555
|
+
[],
|
|
556
|
+
[padded, pos],
|
|
557
|
+
[],
|
|
558
|
+
)
|
|
559
|
+
|
|
560
|
+
@classmethod
|
|
561
|
+
def select_when_exporting(cls, f, f_scan):
|
|
562
|
+
return f_scan if torch.compiler.is_exporting() else f
|
|
563
|
+
|
|
564
|
+
def forward(self, images, position):
|
|
565
|
+
return self.select_when_exporting(self.dummy_loop, self.dummy_loop_with_scan)(
|
|
566
|
+
images, position
|
|
567
|
+
)
|
|
568
|
+
|
|
569
|
+
_inputs = [(torch.randn((5, 6)), torch.arange(5, dtype=torch.int64) + 1)]
|
|
570
|
+
_dynamic = {"images": {0: DYN, 1: DYN}, "position": {0: DYN}}
|
|
571
|
+
|
|
572
|
+
|
|
573
|
+
class SignatureInt1(torch.nn.Module):
|
|
574
|
+
def __init__(self, n_dims: int = 3, n_targets: int = 1):
|
|
575
|
+
super().__init__()
|
|
576
|
+
self.linear = torch.nn.Linear(n_dims, n_targets)
|
|
577
|
+
self.buff = torch.nn.parameter.Buffer(torch.tensor([0.5] * n_targets))
|
|
578
|
+
|
|
579
|
+
def forward(self, x, i: int = 2):
|
|
580
|
+
return torch.sigmoid(self.linear(x)) - self.buff + x[:, i : i + 1]
|
|
581
|
+
|
|
582
|
+
_inputs = [
|
|
583
|
+
((torch.arange(4 * 3) + 10).reshape((-1, 3)).to(torch.float32), 1),
|
|
584
|
+
((torch.arange(8 * 3) + 10).reshape((-1, 3)).to(torch.float32), 2),
|
|
585
|
+
]
|
|
586
|
+
_dynamic = ({0: DIM("batch", min=1, max=1024)}, None)
|
|
587
|
+
|
|
588
|
+
|
|
589
|
+
class SignatureFloat1(torch.nn.Module):
|
|
590
|
+
def __init__(self, n_dims: int = 3, n_targets: int = 1):
|
|
591
|
+
super().__init__()
|
|
592
|
+
self.linear = torch.nn.Linear(n_dims, n_targets)
|
|
593
|
+
self.buff = torch.nn.parameter.Buffer(torch.tensor([0.5] * n_targets))
|
|
594
|
+
|
|
595
|
+
def forward(self, x, alpha: float = 2.0):
|
|
596
|
+
return torch.sigmoid(self.linear(x)) - self.buff * alpha
|
|
597
|
+
|
|
598
|
+
_inputs = [
|
|
599
|
+
((torch.arange(4 * 3) + 10).reshape((-1, 3)).to(torch.float32), 1.5),
|
|
600
|
+
((torch.arange(8 * 3) + 10).reshape((-1, 3)).to(torch.float32), 2.5),
|
|
601
|
+
]
|
|
602
|
+
_dynamic = ({0: DIM("batch", min=1, max=1024)}, None)
|
|
603
|
+
|
|
604
|
+
|
|
605
|
+
class SignatureInt2(torch.nn.Module):
|
|
606
|
+
def __init__(self, n_dims: int = 3, n_targets: int = 1):
|
|
607
|
+
super().__init__()
|
|
608
|
+
self.linear = torch.nn.Linear(n_dims, n_targets)
|
|
609
|
+
self.buff = torch.nn.parameter.Buffer(torch.tensor([0.5] * n_targets))
|
|
610
|
+
|
|
611
|
+
def forward(self, x, i: int = 2):
|
|
612
|
+
return torch.sigmoid(self.linear(x)) - self.buff + x[:, i]
|
|
613
|
+
|
|
614
|
+
_inputs = ((torch.arange(4 * 3) + 10).reshape((-1, 3)).to(torch.float32), 1)
|
|
615
|
+
_dynamic = {
|
|
616
|
+
"x": {0: DIM("batch")},
|
|
617
|
+
"i": None, # DIM("ii", min=0, max=3)}
|
|
618
|
+
}
|
|
619
|
+
|
|
620
|
+
|
|
621
|
+
class SignatureListFixedLength(torch.nn.Module):
|
|
622
|
+
def __init__(self, n_dims: int = 3, n_targets: int = 1):
|
|
623
|
+
super().__init__()
|
|
624
|
+
self.linear = torch.nn.Linear(n_dims, n_targets)
|
|
625
|
+
self.buff = torch.nn.parameter.Buffer(torch.tensor([0.5] * n_targets))
|
|
626
|
+
|
|
627
|
+
def forward(self, x, lx: list):
|
|
628
|
+
return (
|
|
629
|
+
torch.sigmoid(self.linear(x)) - self.buff + lx[0] * lx[1].sum(axis=1, keepdim=True)
|
|
630
|
+
)
|
|
631
|
+
|
|
632
|
+
_inputs = [
|
|
633
|
+
(
|
|
634
|
+
(torch.arange(4 * 3) + 10).reshape((-1, 3)).to(torch.float32),
|
|
635
|
+
[
|
|
636
|
+
(torch.arange(4) + 10).reshape((-1, 1)).to(torch.float32),
|
|
637
|
+
(torch.arange(4 * 2) + 10).reshape((-1, 2)).to(torch.float32),
|
|
638
|
+
],
|
|
639
|
+
),
|
|
640
|
+
(
|
|
641
|
+
(torch.arange(8 * 3) + 10).reshape((-1, 3)).to(torch.float32),
|
|
642
|
+
[
|
|
643
|
+
(torch.arange(8) + 10).reshape((-1, 1)).to(torch.float32),
|
|
644
|
+
(torch.arange(8 * 2) + 10).reshape((-1, 2)).to(torch.float32),
|
|
645
|
+
],
|
|
646
|
+
),
|
|
647
|
+
]
|
|
648
|
+
_dynamic = {
|
|
649
|
+
"x": {0: DIM("batch")},
|
|
650
|
+
"lx": [{0: DIM("batch")}, {0: DIM("batch")}],
|
|
651
|
+
}
|
|
652
|
+
|
|
653
|
+
|
|
654
|
+
class SignatureListVariableLength(torch.nn.Module):
|
|
655
|
+
def __init__(self, n_dims: int = 3, n_targets: int = 1):
|
|
656
|
+
super().__init__()
|
|
657
|
+
self.linear = torch.nn.Linear(n_dims, n_targets)
|
|
658
|
+
self.buff = torch.nn.parameter.Buffer(torch.tensor([0.5] * n_targets))
|
|
659
|
+
|
|
660
|
+
def forward(self, x, lx: list):
|
|
661
|
+
t = torch.cat(lx, dim=1).sum(axis=1, keepdim=True)
|
|
662
|
+
return torch.sigmoid(self.linear(x)) - self.buff + t
|
|
663
|
+
|
|
664
|
+
_inputs = [
|
|
665
|
+
(
|
|
666
|
+
(torch.arange(4 * 3) + 10).reshape((-1, 3)).to(torch.float32),
|
|
667
|
+
[
|
|
668
|
+
(torch.arange(4) + 10).reshape((-1, 1)).to(torch.float32),
|
|
669
|
+
(torch.arange(4 * 2) + 10).reshape((-1, 2)).to(torch.float32),
|
|
670
|
+
],
|
|
671
|
+
),
|
|
672
|
+
(
|
|
673
|
+
(torch.arange(8 * 3) + 10).reshape((-1, 3)).to(torch.float32),
|
|
674
|
+
[
|
|
675
|
+
(torch.arange(8) + 10).reshape((-1, 1)).to(torch.float32),
|
|
676
|
+
(torch.arange(8 * 2) + 10).reshape((-1, 2)).to(torch.float32),
|
|
677
|
+
(torch.arange(8 * 3) + 10).reshape((-1, 3)).to(torch.float32),
|
|
678
|
+
],
|
|
679
|
+
),
|
|
680
|
+
]
|
|
681
|
+
_dynamic = {
|
|
682
|
+
"x": {0: DIM("batch")},
|
|
683
|
+
"lx": [{0: DIM("batch")}, {0: DIM("batch")}],
|
|
684
|
+
}
|
|
685
|
+
|
|
686
|
+
|
|
687
|
+
class BuildInLen(torch.nn.Module):
|
|
688
|
+
def __init__(self, n_dims: int = 3, n_targets: int = 1):
|
|
689
|
+
super().__init__()
|
|
690
|
+
self.linear = torch.nn.Linear(n_dims, n_targets)
|
|
691
|
+
self.buff = torch.nn.parameter.Buffer(torch.tensor([0.5] * n_targets))
|
|
692
|
+
|
|
693
|
+
def forward(self, x, lx: list):
|
|
694
|
+
t = lx[0] * lx[1].sum(axis=1, keepdim=True)
|
|
695
|
+
if len(lx) > 2:
|
|
696
|
+
t = t + lx[2].sum(axis=1, keepdim=True)
|
|
697
|
+
return torch.sigmoid(self.linear(x)) - self.buff + t
|
|
698
|
+
|
|
699
|
+
_inputs = [
|
|
700
|
+
(
|
|
701
|
+
(torch.arange(4 * 3) + 10).reshape((-1, 3)).to(torch.float32),
|
|
702
|
+
[
|
|
703
|
+
(torch.arange(4) + 10).reshape((-1, 1)).to(torch.float32),
|
|
704
|
+
(torch.arange(4 * 2) + 10).reshape((-1, 2)).to(torch.float32),
|
|
705
|
+
],
|
|
706
|
+
),
|
|
707
|
+
(
|
|
708
|
+
(torch.arange(8 * 3) + 10).reshape((-1, 3)).to(torch.float32),
|
|
709
|
+
[
|
|
710
|
+
(torch.arange(8) + 10).reshape((-1, 1)).to(torch.float32),
|
|
711
|
+
(torch.arange(8 * 2) + 10).reshape((-1, 2)).to(torch.float32),
|
|
712
|
+
(torch.arange(8 * 3) + 10).reshape((-1, 3)).to(torch.float32),
|
|
713
|
+
],
|
|
714
|
+
),
|
|
715
|
+
]
|
|
716
|
+
_dynamic = {
|
|
717
|
+
"x": {0: DIM("batch")},
|
|
718
|
+
"lx": [{0: DIM("batch")}, {0: DIM("batch")}],
|
|
719
|
+
}
|
|
720
|
+
|
|
721
|
+
|
|
722
|
+
class BuildInIsInstance(torch.nn.Module):
|
|
723
|
+
def __init__(self, n_dims: int = 3, n_targets: int = 1):
|
|
724
|
+
super().__init__()
|
|
725
|
+
self.linear = torch.nn.Linear(n_dims, n_targets)
|
|
726
|
+
self.buff = torch.nn.parameter.Buffer(torch.tensor([0.5] * n_targets))
|
|
727
|
+
|
|
728
|
+
def forward(self, x, lx: list | torch.Tensor):
|
|
729
|
+
if isinstance(lx, list):
|
|
730
|
+
t = lx[0] * lx[1].sum(axis=1, keepdim=True)
|
|
731
|
+
return torch.sigmoid(self.linear(x)) - self.buff + t
|
|
732
|
+
return torch.sigmoid(self.linear(x)) - self.buff + lx
|
|
733
|
+
|
|
734
|
+
_inputs = [
|
|
735
|
+
(
|
|
736
|
+
(torch.arange(4 * 3) + 10).reshape((-1, 3)).to(torch.float32),
|
|
737
|
+
[
|
|
738
|
+
(torch.arange(4) + 10).reshape((-1, 1)).to(torch.float32),
|
|
739
|
+
(torch.arange(4 * 2) + 10).reshape((-1, 2)).to(torch.float32),
|
|
740
|
+
],
|
|
741
|
+
),
|
|
742
|
+
(
|
|
743
|
+
(torch.arange(8 * 3) + 10).reshape((-1, 3)).to(torch.float32),
|
|
744
|
+
[
|
|
745
|
+
(torch.arange(8) + 10).reshape((-1, 1)).to(torch.float32),
|
|
746
|
+
(torch.arange(8 * 2) + 10).reshape((-1, 2)).to(torch.float32),
|
|
747
|
+
],
|
|
748
|
+
),
|
|
749
|
+
]
|
|
750
|
+
_dynamic = {
|
|
751
|
+
"x": {0: DIM("batch")},
|
|
752
|
+
"lx": [{0: DIM("batch")}, {0: DIM("batch")}],
|
|
753
|
+
}
|
|
754
|
+
|
|
755
|
+
|
|
756
|
+
class SignatureShapeAsIndex(torch.nn.Module):
|
|
757
|
+
def __init__(self, n_dims: int = 3, n_targets: int = 1):
|
|
758
|
+
super().__init__()
|
|
759
|
+
self.linear = torch.nn.Linear(n_dims, n_targets)
|
|
760
|
+
self.buff = torch.nn.parameter.Buffer(torch.tensor([0.5] * n_targets))
|
|
761
|
+
|
|
762
|
+
def forward(self, x, y):
|
|
763
|
+
t = torch.sigmoid(self.linear(x)) + x
|
|
764
|
+
return t[:, : y.shape[1]]
|
|
765
|
+
|
|
766
|
+
_inputs = (
|
|
767
|
+
(torch.arange(4 * 3) + 10).reshape((-1, 3)).to(torch.float32),
|
|
768
|
+
(torch.arange(4 * 2) + 10).reshape((-1, 2)).to(torch.float32),
|
|
769
|
+
)
|
|
770
|
+
_dynamic = {
|
|
771
|
+
"x": {0: DIM("batch", min=0, max=1024)},
|
|
772
|
+
"y": {
|
|
773
|
+
0: DIM("batch", min=0, max=1024),
|
|
774
|
+
1: DIM("length", min=0, max=2),
|
|
775
|
+
},
|
|
776
|
+
}
|
|
777
|
+
|
|
778
|
+
|
|
779
|
+
class TypeBFloat16(torch.nn.Module):
|
|
780
|
+
def forward(self, x):
|
|
781
|
+
xb = x.to(torch.bfloat16)
|
|
782
|
+
return (xb + xb).to(torch.float32)
|
|
783
|
+
|
|
784
|
+
_inputs = (torch.rand(4, 4).to(torch.float32),)
|
|
785
|
+
_dynamic = {"x": {0: DIM("batch")}}
|
|
786
|
+
|
|
787
|
+
|
|
788
|
+
class CropLastDimensionWithTensorShape(torch.nn.Module):
|
|
789
|
+
|
|
790
|
+
def forward(self, x, y):
|
|
791
|
+
return x[..., : y.shape[0]]
|
|
792
|
+
|
|
793
|
+
_inputs = [
|
|
794
|
+
(
|
|
795
|
+
torch.rand(3, 4, 4).to(torch.float32),
|
|
796
|
+
torch.rand(
|
|
797
|
+
2,
|
|
798
|
+
).to(torch.float32),
|
|
799
|
+
),
|
|
800
|
+
(
|
|
801
|
+
torch.rand(6, 4, 4).to(torch.float32),
|
|
802
|
+
torch.rand(
|
|
803
|
+
3,
|
|
804
|
+
).to(torch.float32),
|
|
805
|
+
),
|
|
806
|
+
]
|
|
807
|
+
_dynamic = {
|
|
808
|
+
"x": {0: DIM("batch")},
|
|
809
|
+
"y": {0: DIM("crop", min=1, max=3)},
|
|
810
|
+
}
|
|
811
|
+
|
|
812
|
+
|
|
813
|
+
class CropLastDimensionWithTensorContent(torch.nn.Module):
|
|
814
|
+
def forward(self, x, shape):
|
|
815
|
+
return x[..., : shape[0]]
|
|
816
|
+
|
|
817
|
+
_inputs = [
|
|
818
|
+
(torch.rand(3, 4, 4).to(torch.float32), torch.tensor([2], dtype=torch.int64)),
|
|
819
|
+
(torch.rand(6, 4, 4).to(torch.float32), torch.tensor([3], dtype=torch.int64)),
|
|
820
|
+
]
|
|
821
|
+
_dynamic = {"x": {0: DIM("batch")}, "shape": {}}
|
|
822
|
+
|
|
823
|
+
|
|
824
|
+
class SignatureListFixedWithNone(torch.nn.Module):
|
|
825
|
+
def forward(self, lx):
|
|
826
|
+
x = lx[0]
|
|
827
|
+
if lx[1] is not None:
|
|
828
|
+
x += lx[1]
|
|
829
|
+
if lx[2] is not None:
|
|
830
|
+
x += lx[2]
|
|
831
|
+
return x
|
|
832
|
+
|
|
833
|
+
_inputs = [
|
|
834
|
+
([torch.rand((4, 4)), torch.rand((4, 4)), None],),
|
|
835
|
+
([torch.rand((4, 4)), torch.rand((4, 4)), torch.rand((4, 4))],),
|
|
836
|
+
]
|
|
837
|
+
_dynamic = {
|
|
838
|
+
"lx": [{0: DIM("batch")}, {0: DIM("batch")}],
|
|
839
|
+
}
|
|
840
|
+
|
|
841
|
+
|
|
842
|
+
class CreateFromShape(torch.nn.Module):
|
|
843
|
+
def forward(self, x):
|
|
844
|
+
y = torch.ones((x.shape[0], x.shape[1] + 1))
|
|
845
|
+
return y
|
|
846
|
+
|
|
847
|
+
_inputs = [(torch.rand((4, 4)),), (torch.rand((5, 5)),)]
|
|
848
|
+
_dynamic = {"x": {0: DIM("dx"), 1: DIM("dy")}}
|
|
849
|
+
|
|
850
|
+
|
|
851
|
+
class CreateFromShapeThroughFunction(torch.nn.Module):
|
|
852
|
+
@staticmethod
|
|
853
|
+
def add_one(dim):
|
|
854
|
+
return dim + 1
|
|
855
|
+
|
|
856
|
+
def forward(self, x):
|
|
857
|
+
dy1 = CreateFromShapeThroughFunction.add_one(x.shape[1])
|
|
858
|
+
y = torch.ones((x.shape[0], dy1))
|
|
859
|
+
return y
|
|
860
|
+
|
|
861
|
+
_inputs = [(torch.rand((4, 4)),)]
|
|
862
|
+
_dynamic = {"x": {0: DIM("dx"), 1: DIM("dy")}}
|
|
863
|
+
|
|
864
|
+
|
|
865
|
+
class Vmap(torch.nn.Module):
|
|
866
|
+
def forward(self, x, y):
|
|
867
|
+
f = lambda x, y: x * y + 1 # noqa: E731
|
|
868
|
+
return torch.vmap(f)(x, y)
|
|
869
|
+
|
|
870
|
+
_inputs = [(torch.tensor([1.0, 2.0, 3.0]), torch.tensor([0.1, 0.2, 0.3]))]
|
|
871
|
+
_dynamic = {"x": {0: DYN}, "y": {0: DYN}}
|
|
872
|
+
|
|
873
|
+
|
|
874
|
+
class VmapPython(torch.nn.Module):
|
|
875
|
+
def forward(self, x, y):
|
|
876
|
+
f = lambda x, y: x * y + 1 # noqa: E731
|
|
877
|
+
return patched_vmap(f)(x, y)
|
|
878
|
+
|
|
879
|
+
_inputs = [(torch.tensor([1.0, 2.0, 3.0]), torch.tensor([0.1, 0.2, 0.3]))]
|
|
880
|
+
_dynamic = {"x": {0: DYN}, "y": {0: DYN}}
|
|
881
|
+
|
|
882
|
+
|
|
883
|
+
class ExportWithDimension0(torch.nn.Module):
|
|
884
|
+
def forward(self, x):
|
|
885
|
+
return x @ torch.arange(x.shape[1], dtype=torch.float32).reshape((-1, 1))
|
|
886
|
+
|
|
887
|
+
_inputs = [(torch.empty((0, 3), dtype=torch.float32),)]
|
|
888
|
+
_dynamic = {"x": {0: DYN, 1: DYN}}
|
|
889
|
+
_valid = [(torch.rand((2, 3), dtype=torch.float32),)]
|
|
890
|
+
|
|
891
|
+
|
|
892
|
+
class ExportWithDimension1(torch.nn.Module):
|
|
893
|
+
def forward(self, x):
|
|
894
|
+
return x @ torch.arange(x.shape[1], dtype=torch.float32).reshape((-1, 1))
|
|
895
|
+
|
|
896
|
+
_inputs = [(torch.zeros((1, 3), dtype=torch.float32),)]
|
|
897
|
+
_dynamic = {"x": {0: DYN, 1: DYN}}
|
|
898
|
+
_valid = [(torch.rand((2, 3), dtype=torch.float32),)]
|