onnx-diagnostic 0.8.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnx_diagnostic/__init__.py +7 -0
- onnx_diagnostic/__main__.py +4 -0
- onnx_diagnostic/_command_lines_parser.py +1141 -0
- onnx_diagnostic/api.py +15 -0
- onnx_diagnostic/doc.py +100 -0
- onnx_diagnostic/export/__init__.py +2 -0
- onnx_diagnostic/export/api.py +124 -0
- onnx_diagnostic/export/dynamic_shapes.py +1083 -0
- onnx_diagnostic/export/shape_helper.py +296 -0
- onnx_diagnostic/export/validate.py +173 -0
- onnx_diagnostic/ext_test_case.py +1290 -0
- onnx_diagnostic/helpers/__init__.py +1 -0
- onnx_diagnostic/helpers/_log_helper.py +463 -0
- onnx_diagnostic/helpers/args_helper.py +132 -0
- onnx_diagnostic/helpers/bench_run.py +450 -0
- onnx_diagnostic/helpers/cache_helper.py +687 -0
- onnx_diagnostic/helpers/config_helper.py +170 -0
- onnx_diagnostic/helpers/doc_helper.py +163 -0
- onnx_diagnostic/helpers/fake_tensor_helper.py +273 -0
- onnx_diagnostic/helpers/graph_helper.py +386 -0
- onnx_diagnostic/helpers/helper.py +1707 -0
- onnx_diagnostic/helpers/log_helper.py +2245 -0
- onnx_diagnostic/helpers/memory_peak.py +249 -0
- onnx_diagnostic/helpers/mini_onnx_builder.py +600 -0
- onnx_diagnostic/helpers/model_builder_helper.py +469 -0
- onnx_diagnostic/helpers/onnx_helper.py +1200 -0
- onnx_diagnostic/helpers/ort_session.py +736 -0
- onnx_diagnostic/helpers/rt_helper.py +476 -0
- onnx_diagnostic/helpers/torch_helper.py +987 -0
- onnx_diagnostic/reference/__init__.py +4 -0
- onnx_diagnostic/reference/evaluator.py +254 -0
- onnx_diagnostic/reference/ops/__init__.py +1 -0
- onnx_diagnostic/reference/ops/op_add_add_mul_mul.py +68 -0
- onnx_diagnostic/reference/ops/op_attention.py +60 -0
- onnx_diagnostic/reference/ops/op_average_pool_grad.py +63 -0
- onnx_diagnostic/reference/ops/op_bias_softmax.py +16 -0
- onnx_diagnostic/reference/ops/op_cast_like.py +46 -0
- onnx_diagnostic/reference/ops/op_complex.py +26 -0
- onnx_diagnostic/reference/ops/op_concat.py +15 -0
- onnx_diagnostic/reference/ops/op_constant_of_shape.py +67 -0
- onnx_diagnostic/reference/ops/op_fused_matmul.py +31 -0
- onnx_diagnostic/reference/ops/op_gather.py +29 -0
- onnx_diagnostic/reference/ops/op_gather_elements.py +45 -0
- onnx_diagnostic/reference/ops/op_gather_grad.py +12 -0
- onnx_diagnostic/reference/ops/op_memcpy_host.py +11 -0
- onnx_diagnostic/reference/ops/op_mul_sigmoid.py +23 -0
- onnx_diagnostic/reference/ops/op_negxplus1.py +8 -0
- onnx_diagnostic/reference/ops/op_qlinear_average_pool.py +40 -0
- onnx_diagnostic/reference/ops/op_qlinear_conv.py +102 -0
- onnx_diagnostic/reference/ops/op_quick_gelu.py +23 -0
- onnx_diagnostic/reference/ops/op_replace_zero.py +13 -0
- onnx_diagnostic/reference/ops/op_rotary.py +19 -0
- onnx_diagnostic/reference/ops/op_scan.py +65 -0
- onnx_diagnostic/reference/ops/op_scatter_elements.py +107 -0
- onnx_diagnostic/reference/ops/op_scatternd_of_shape.py +22 -0
- onnx_diagnostic/reference/ops/op_simplified_layer_normalization.py +8 -0
- onnx_diagnostic/reference/ops/op_skip_layer_normalization.py +13 -0
- onnx_diagnostic/reference/ops/op_slice.py +20 -0
- onnx_diagnostic/reference/ops/op_transpose_cast.py +16 -0
- onnx_diagnostic/reference/ops/op_tri_matrix.py +17 -0
- onnx_diagnostic/reference/ort_evaluator.py +652 -0
- onnx_diagnostic/reference/quantized_tensor.py +46 -0
- onnx_diagnostic/reference/report_results_comparison.py +95 -0
- onnx_diagnostic/reference/torch_evaluator.py +669 -0
- onnx_diagnostic/reference/torch_ops/__init__.py +56 -0
- onnx_diagnostic/reference/torch_ops/_op_run.py +335 -0
- onnx_diagnostic/reference/torch_ops/access_ops.py +94 -0
- onnx_diagnostic/reference/torch_ops/binary_ops.py +108 -0
- onnx_diagnostic/reference/torch_ops/controlflow_ops.py +121 -0
- onnx_diagnostic/reference/torch_ops/generator_ops.py +36 -0
- onnx_diagnostic/reference/torch_ops/nn_ops.py +196 -0
- onnx_diagnostic/reference/torch_ops/other_ops.py +106 -0
- onnx_diagnostic/reference/torch_ops/reduce_ops.py +130 -0
- onnx_diagnostic/reference/torch_ops/sequence_ops.py +65 -0
- onnx_diagnostic/reference/torch_ops/shape_ops.py +121 -0
- onnx_diagnostic/reference/torch_ops/unary_ops.py +93 -0
- onnx_diagnostic/tasks/__init__.py +90 -0
- onnx_diagnostic/tasks/automatic_speech_recognition.py +188 -0
- onnx_diagnostic/tasks/data/__init__.py +13 -0
- onnx_diagnostic/tasks/data/dummies_imagetext2text_generation_gemma3.onnx +0 -0
- onnx_diagnostic/tasks/feature_extraction.py +162 -0
- onnx_diagnostic/tasks/fill_mask.py +89 -0
- onnx_diagnostic/tasks/image_classification.py +144 -0
- onnx_diagnostic/tasks/image_text_to_text.py +581 -0
- onnx_diagnostic/tasks/image_to_video.py +127 -0
- onnx_diagnostic/tasks/mask_generation.py +143 -0
- onnx_diagnostic/tasks/mixture_of_expert.py +79 -0
- onnx_diagnostic/tasks/object_detection.py +134 -0
- onnx_diagnostic/tasks/sentence_similarity.py +89 -0
- onnx_diagnostic/tasks/summarization.py +227 -0
- onnx_diagnostic/tasks/text2text_generation.py +230 -0
- onnx_diagnostic/tasks/text_classification.py +89 -0
- onnx_diagnostic/tasks/text_generation.py +352 -0
- onnx_diagnostic/tasks/text_to_image.py +95 -0
- onnx_diagnostic/tasks/zero_shot_image_classification.py +128 -0
- onnx_diagnostic/torch_export_patches/__init__.py +21 -0
- onnx_diagnostic/torch_export_patches/eval/__init__.py +725 -0
- onnx_diagnostic/torch_export_patches/eval/model_cases.py +898 -0
- onnx_diagnostic/torch_export_patches/onnx_export_errors.py +1098 -0
- onnx_diagnostic/torch_export_patches/onnx_export_serialization.py +311 -0
- onnx_diagnostic/torch_export_patches/patch_details.py +340 -0
- onnx_diagnostic/torch_export_patches/patch_expressions.py +108 -0
- onnx_diagnostic/torch_export_patches/patch_inputs.py +211 -0
- onnx_diagnostic/torch_export_patches/patch_module.py +1047 -0
- onnx_diagnostic/torch_export_patches/patch_module_helper.py +184 -0
- onnx_diagnostic/torch_export_patches/patches/__init__.py +0 -0
- onnx_diagnostic/torch_export_patches/patches/patch_torch.py +1090 -0
- onnx_diagnostic/torch_export_patches/patches/patch_transformers.py +2139 -0
- onnx_diagnostic/torch_export_patches/serialization/__init__.py +46 -0
- onnx_diagnostic/torch_export_patches/serialization/diffusers_impl.py +34 -0
- onnx_diagnostic/torch_export_patches/serialization/transformers_impl.py +313 -0
- onnx_diagnostic/torch_models/__init__.py +0 -0
- onnx_diagnostic/torch_models/code_sample.py +343 -0
- onnx_diagnostic/torch_models/hghub/__init__.py +1 -0
- onnx_diagnostic/torch_models/hghub/hub_api.py +422 -0
- onnx_diagnostic/torch_models/hghub/hub_data.py +234 -0
- onnx_diagnostic/torch_models/hghub/hub_data_cached_configs.py +4905 -0
- onnx_diagnostic/torch_models/hghub/model_inputs.py +388 -0
- onnx_diagnostic/torch_models/hghub/model_specific.py +76 -0
- onnx_diagnostic/torch_models/llms.py +2 -0
- onnx_diagnostic/torch_models/untrained/__init__.py +0 -0
- onnx_diagnostic/torch_models/untrained/llm_phi2.py +113 -0
- onnx_diagnostic/torch_models/untrained/llm_tiny_llm.py +76 -0
- onnx_diagnostic/torch_models/validate.py +2124 -0
- onnx_diagnostic/torch_onnx/__init__.py +0 -0
- onnx_diagnostic/torch_onnx/runtime_info.py +289 -0
- onnx_diagnostic/torch_onnx/sbs.py +440 -0
- onnx_diagnostic-0.8.0.dist-info/METADATA +213 -0
- onnx_diagnostic-0.8.0.dist-info/RECORD +132 -0
- onnx_diagnostic-0.8.0.dist-info/WHEEL +5 -0
- onnx_diagnostic-0.8.0.dist-info/licenses/LICENSE.txt +19 -0
- onnx_diagnostic-0.8.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,95 @@
|
|
|
1
|
+
from typing import Any, Callable, Dict, Optional, Tuple
|
|
2
|
+
import torch
|
|
3
|
+
from ..helpers.config_helper import update_config, check_hasattr, pick
|
|
4
|
+
|
|
5
|
+
__TASK__ = "text-to-image"
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def reduce_model_config(config: Any) -> Dict[str, Any]:
|
|
9
|
+
"""Reduces a model size."""
|
|
10
|
+
check_hasattr(config, "sample_size", "cross_attention_dim")
|
|
11
|
+
kwargs = dict(
|
|
12
|
+
sample_size=min(config["sample_size"], 32),
|
|
13
|
+
cross_attention_dim=min(config["cross_attention_dim"], 64),
|
|
14
|
+
)
|
|
15
|
+
update_config(config, kwargs)
|
|
16
|
+
return kwargs
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def get_inputs(
|
|
20
|
+
model: torch.nn.Module,
|
|
21
|
+
config: Optional[Any],
|
|
22
|
+
batch_size: int,
|
|
23
|
+
sequence_length: int,
|
|
24
|
+
cache_length: int,
|
|
25
|
+
in_channels: int,
|
|
26
|
+
sample_size: int,
|
|
27
|
+
cross_attention_dim: int,
|
|
28
|
+
add_second_input: int = 1,
|
|
29
|
+
**kwargs, # unused
|
|
30
|
+
):
|
|
31
|
+
"""
|
|
32
|
+
Generates inputs for task ``text-to-image``.
|
|
33
|
+
Example:
|
|
34
|
+
|
|
35
|
+
::
|
|
36
|
+
|
|
37
|
+
sample:T10s2x4x96x96[-3.7734375,4.359375:A-0.043463995395642184]
|
|
38
|
+
timestep:T7s=101
|
|
39
|
+
encoder_hidden_states:T10s2x77x1024[-6.58203125,13.0234375:A-0.16780663634440257]
|
|
40
|
+
"""
|
|
41
|
+
assert (
|
|
42
|
+
"cls_cache" not in kwargs
|
|
43
|
+
), f"Not yet implemented for cls_cache={kwargs['cls_cache']!r}."
|
|
44
|
+
batch = "batch"
|
|
45
|
+
shapes = {
|
|
46
|
+
"sample": {0: batch},
|
|
47
|
+
"timestep": {},
|
|
48
|
+
"encoder_hidden_states": {0: batch, 1: "encoder_length"},
|
|
49
|
+
}
|
|
50
|
+
inputs = dict(
|
|
51
|
+
sample=torch.randn((batch_size, sequence_length, sample_size, sample_size)).to(
|
|
52
|
+
torch.float32
|
|
53
|
+
),
|
|
54
|
+
timestep=torch.tensor([101], dtype=torch.int64),
|
|
55
|
+
encoder_hidden_states=torch.randn(
|
|
56
|
+
(batch_size, sequence_length, cross_attention_dim)
|
|
57
|
+
).to(torch.float32),
|
|
58
|
+
)
|
|
59
|
+
res = dict(inputs=inputs, dynamic_shapes=shapes)
|
|
60
|
+
if add_second_input:
|
|
61
|
+
assert (
|
|
62
|
+
add_second_input > 0
|
|
63
|
+
), f"Not implemented for add_second_input={add_second_input}."
|
|
64
|
+
res["inputs2"] = get_inputs(
|
|
65
|
+
model=model,
|
|
66
|
+
config=config,
|
|
67
|
+
batch_size=batch_size + 1,
|
|
68
|
+
sequence_length=sequence_length,
|
|
69
|
+
cache_length=cache_length + add_second_input,
|
|
70
|
+
in_channels=in_channels,
|
|
71
|
+
sample_size=sample_size,
|
|
72
|
+
cross_attention_dim=cross_attention_dim,
|
|
73
|
+
add_second_input=0,
|
|
74
|
+
**kwargs,
|
|
75
|
+
)["inputs"]
|
|
76
|
+
return res
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
def random_input_kwargs(config: Any) -> Tuple[Dict[str, Any], Callable]:
|
|
80
|
+
"""
|
|
81
|
+
Inputs kwargs.
|
|
82
|
+
|
|
83
|
+
If the configuration is None, the function selects typical dimensions.
|
|
84
|
+
"""
|
|
85
|
+
if config is not None:
|
|
86
|
+
check_hasattr(config, "sample_size", "cross_attention_dim", "in_channels")
|
|
87
|
+
kwargs = dict(
|
|
88
|
+
batch_size=2,
|
|
89
|
+
sequence_length=pick(config, "in_channels", 4),
|
|
90
|
+
cache_length=77,
|
|
91
|
+
in_channels=pick(config, "in_channels", 4),
|
|
92
|
+
sample_size=pick(config, "sample_size", 32),
|
|
93
|
+
cross_attention_dim=pick(config, "cross_attention_dim", 64),
|
|
94
|
+
)
|
|
95
|
+
return kwargs, get_inputs
|
|
@@ -0,0 +1,128 @@
|
|
|
1
|
+
from typing import Any, Callable, Dict, Optional, Tuple
|
|
2
|
+
import torch
|
|
3
|
+
from ..helpers.config_helper import update_config, check_hasattr
|
|
4
|
+
|
|
5
|
+
__TASK__ = "zero-shot-image-classification"
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def reduce_model_config(config: Any) -> Dict[str, Any]:
|
|
9
|
+
"""Reduces a model size."""
|
|
10
|
+
check_hasattr(config, "vision_config", "text_config")
|
|
11
|
+
check_hasattr(config.vision_config, "num_hidden_layers", "num_attention_heads")
|
|
12
|
+
check_hasattr(config.text_config, "num_hidden_layers", "num_attention_heads")
|
|
13
|
+
kwargs = dict(
|
|
14
|
+
vision_config=dict(
|
|
15
|
+
num_hidden_layers=min(2, config.vision_config.num_hidden_layers),
|
|
16
|
+
num_attention_heads=min(2, config.vision_config.num_attention_heads),
|
|
17
|
+
),
|
|
18
|
+
text_config=dict(
|
|
19
|
+
num_hidden_layers=min(2, config.text_config.num_hidden_layers),
|
|
20
|
+
num_attention_heads=min(2, config.text_config.num_attention_heads),
|
|
21
|
+
),
|
|
22
|
+
)
|
|
23
|
+
update_config(config, kwargs)
|
|
24
|
+
return kwargs
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def get_inputs(
|
|
28
|
+
model: torch.nn.Module,
|
|
29
|
+
config: Optional[Any],
|
|
30
|
+
dummy_max_token_id: int,
|
|
31
|
+
batch_size: int = 2,
|
|
32
|
+
sequence_length: int = 30,
|
|
33
|
+
input_width: int = 224,
|
|
34
|
+
input_height: int = 224,
|
|
35
|
+
input_channels: int = 3,
|
|
36
|
+
batch_size_image=3,
|
|
37
|
+
add_second_input: int = 1,
|
|
38
|
+
**kwargs, # unused
|
|
39
|
+
):
|
|
40
|
+
"""
|
|
41
|
+
Generates inputs for task ``zero-short-image-classification``.
|
|
42
|
+
|
|
43
|
+
:param model: model to get the missing information
|
|
44
|
+
:param config: configuration used to generate the model
|
|
45
|
+
:param dummy_max_token_id: vocabulary size
|
|
46
|
+
:param batch_size: batch size
|
|
47
|
+
:param sequence_length: sequence length
|
|
48
|
+
:param batch_size_image: number of images
|
|
49
|
+
:param input_channels: input channel
|
|
50
|
+
:param input_width: input width
|
|
51
|
+
:param input_height: input height
|
|
52
|
+
:return: dictionary
|
|
53
|
+
|
|
54
|
+
# input_ids:T7s2x7
|
|
55
|
+
# attention_mask:T7s2x7
|
|
56
|
+
# pixel_values:T1s2x3x224x224
|
|
57
|
+
"""
|
|
58
|
+
assert (
|
|
59
|
+
"cls_cache" not in kwargs
|
|
60
|
+
), f"Not yet implemented for cls_cache={kwargs['cls_cache']!r}."
|
|
61
|
+
assert isinstance(
|
|
62
|
+
input_width, int
|
|
63
|
+
), f"Unexpected type for input_width {type(input_width)}{config}"
|
|
64
|
+
assert isinstance(
|
|
65
|
+
input_width, int
|
|
66
|
+
), f"Unexpected type for input_height {type(input_height)}{config}"
|
|
67
|
+
|
|
68
|
+
batch = "batch"
|
|
69
|
+
seq_length = "seq_length" # torch.export.Dim("seq_length", min=1, max=4096)
|
|
70
|
+
shapes = {
|
|
71
|
+
"input_ids": {0: batch, 1: seq_length},
|
|
72
|
+
"attention_mask": {0: batch, 1: seq_length},
|
|
73
|
+
"pixel_values": {
|
|
74
|
+
0: torch.export.Dim("batch_img", min=1, max=1024),
|
|
75
|
+
# 2: torch.export.Dim("width", min=1, max=4096),
|
|
76
|
+
# 3: torch.export.Dim("height", min=1, max=4096),
|
|
77
|
+
},
|
|
78
|
+
}
|
|
79
|
+
inputs = dict(
|
|
80
|
+
input_ids=torch.randint(0, dummy_max_token_id, (batch_size, sequence_length)).to(
|
|
81
|
+
torch.int64
|
|
82
|
+
),
|
|
83
|
+
attention_mask=torch.ones((batch_size, sequence_length)).to(torch.int64),
|
|
84
|
+
pixel_values=torch.randn(
|
|
85
|
+
batch_size_image, input_channels, input_width, input_height
|
|
86
|
+
).clamp(-1, 1),
|
|
87
|
+
)
|
|
88
|
+
res = dict(inputs=inputs, dynamic_shapes=shapes)
|
|
89
|
+
if add_second_input:
|
|
90
|
+
assert (
|
|
91
|
+
add_second_input > 0
|
|
92
|
+
), f"Not implemented for add_second_input={add_second_input}."
|
|
93
|
+
res["inputs2"] = get_inputs(
|
|
94
|
+
model=model,
|
|
95
|
+
config=config,
|
|
96
|
+
dummy_max_token_id=dummy_max_token_id,
|
|
97
|
+
batch_size=batch_size + 1,
|
|
98
|
+
sequence_length=sequence_length + add_second_input,
|
|
99
|
+
input_width=input_width,
|
|
100
|
+
input_height=input_height,
|
|
101
|
+
input_channels=input_channels,
|
|
102
|
+
batch_size_image=batch_size_image + 1,
|
|
103
|
+
add_second_input=0,
|
|
104
|
+
**kwargs,
|
|
105
|
+
)["inputs"]
|
|
106
|
+
return res
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
def random_input_kwargs(config: Any) -> Tuple[Dict[str, Any], Callable]:
|
|
110
|
+
"""
|
|
111
|
+
Inputs kwargs.
|
|
112
|
+
|
|
113
|
+
If the configuration is None, the function selects typical dimensions.
|
|
114
|
+
"""
|
|
115
|
+
if config is not None:
|
|
116
|
+
check_hasattr(config, "vision_config", "text_config")
|
|
117
|
+
check_hasattr(config.vision_config, "image_size", "num_channels")
|
|
118
|
+
check_hasattr(config.text_config, "vocab_size")
|
|
119
|
+
kwargs = dict(
|
|
120
|
+
batch_size=2,
|
|
121
|
+
batch_size_image=3,
|
|
122
|
+
sequence_length=30,
|
|
123
|
+
dummy_max_token_id=(49408 if config is None else (config.text_config.vocab_size - 1)),
|
|
124
|
+
input_width=224 if config is None else config.vision_config.image_size,
|
|
125
|
+
input_height=224 if config is None else config.vision_config.image_size,
|
|
126
|
+
input_channels=3 if config is None else config.vision_config.num_channels,
|
|
127
|
+
)
|
|
128
|
+
return kwargs, get_inputs
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
from .onnx_export_errors import (
|
|
2
|
+
torch_export_patches,
|
|
3
|
+
register_additional_serialization_functions,
|
|
4
|
+
)
|
|
5
|
+
from .patch_module import torch_export_rewrite
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
# bypass_export_some_errors is the first name given to the patches.
|
|
9
|
+
bypass_export_some_errors = torch_export_patches # type: ignore
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def register_flattening_functions(verbose: int = 0):
|
|
13
|
+
"""
|
|
14
|
+
Registers functions to serialize deserialize cache or other classes
|
|
15
|
+
implemented in :epkg:`transformers` and used as inputs.
|
|
16
|
+
This is needed whenever a model must be exported through
|
|
17
|
+
:func:`torch.export.export`.
|
|
18
|
+
"""
|
|
19
|
+
from .onnx_export_serialization import register_cache_serialization
|
|
20
|
+
|
|
21
|
+
return register_cache_serialization(verbose=verbose)
|