omnigenome 0.3.0a1__py3-none-any.whl → 0.3.3a0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of omnigenome might be problematic. Click here for more details.

Files changed (79) hide show
  1. omnigenome/__init__.py +252 -258
  2. {omnigenome-0.3.0a1.dist-info → omnigenome-0.3.3a0.dist-info}/METADATA +10 -10
  3. omnigenome-0.3.3a0.dist-info/RECORD +7 -0
  4. omnigenome/auto/__init__.py +0 -3
  5. omnigenome/auto/auto_bench/__init__.py +0 -12
  6. omnigenome/auto/auto_bench/auto_bench.py +0 -484
  7. omnigenome/auto/auto_bench/auto_bench_cli.py +0 -230
  8. omnigenome/auto/auto_bench/auto_bench_config.py +0 -216
  9. omnigenome/auto/auto_bench/config_check.py +0 -34
  10. omnigenome/auto/auto_train/__init__.py +0 -13
  11. omnigenome/auto/auto_train/auto_train.py +0 -430
  12. omnigenome/auto/auto_train/auto_train_cli.py +0 -222
  13. omnigenome/auto/bench_hub/__init__.py +0 -12
  14. omnigenome/auto/bench_hub/bench_hub.py +0 -25
  15. omnigenome/cli/__init__.py +0 -13
  16. omnigenome/cli/commands/__init__.py +0 -13
  17. omnigenome/cli/commands/base.py +0 -83
  18. omnigenome/cli/commands/bench/__init__.py +0 -13
  19. omnigenome/cli/commands/bench/bench_cli.py +0 -202
  20. omnigenome/cli/commands/rna/__init__.py +0 -13
  21. omnigenome/cli/commands/rna/rna_design.py +0 -178
  22. omnigenome/cli/omnigenome_cli.py +0 -128
  23. omnigenome/src/__init__.py +0 -12
  24. omnigenome/src/abc/__init__.py +0 -12
  25. omnigenome/src/abc/abstract_dataset.py +0 -622
  26. omnigenome/src/abc/abstract_metric.py +0 -114
  27. omnigenome/src/abc/abstract_model.py +0 -689
  28. omnigenome/src/abc/abstract_tokenizer.py +0 -267
  29. omnigenome/src/dataset/__init__.py +0 -16
  30. omnigenome/src/dataset/omni_dataset.py +0 -435
  31. omnigenome/src/lora/__init__.py +0 -13
  32. omnigenome/src/lora/lora_model.py +0 -294
  33. omnigenome/src/metric/__init__.py +0 -15
  34. omnigenome/src/metric/classification_metric.py +0 -184
  35. omnigenome/src/metric/metric.py +0 -199
  36. omnigenome/src/metric/ranking_metric.py +0 -142
  37. omnigenome/src/metric/regression_metric.py +0 -191
  38. omnigenome/src/misc/__init__.py +0 -3
  39. omnigenome/src/misc/utils.py +0 -499
  40. omnigenome/src/model/__init__.py +0 -19
  41. omnigenome/src/model/augmentation/__init__.py +0 -12
  42. omnigenome/src/model/augmentation/model.py +0 -219
  43. omnigenome/src/model/classification/__init__.py +0 -12
  44. omnigenome/src/model/classification/model.py +0 -642
  45. omnigenome/src/model/embedding/__init__.py +0 -12
  46. omnigenome/src/model/embedding/model.py +0 -263
  47. omnigenome/src/model/mlm/__init__.py +0 -12
  48. omnigenome/src/model/mlm/model.py +0 -177
  49. omnigenome/src/model/module_utils.py +0 -232
  50. omnigenome/src/model/regression/__init__.py +0 -12
  51. omnigenome/src/model/regression/model.py +0 -786
  52. omnigenome/src/model/regression/resnet.py +0 -483
  53. omnigenome/src/model/rna_design/__init__.py +0 -12
  54. omnigenome/src/model/rna_design/model.py +0 -469
  55. omnigenome/src/model/seq2seq/__init__.py +0 -12
  56. omnigenome/src/model/seq2seq/model.py +0 -44
  57. omnigenome/src/tokenizer/__init__.py +0 -16
  58. omnigenome/src/tokenizer/bpe_tokenizer.py +0 -226
  59. omnigenome/src/tokenizer/kmers_tokenizer.py +0 -247
  60. omnigenome/src/tokenizer/single_nucleotide_tokenizer.py +0 -249
  61. omnigenome/src/trainer/__init__.py +0 -14
  62. omnigenome/src/trainer/accelerate_trainer.py +0 -739
  63. omnigenome/src/trainer/hf_trainer.py +0 -75
  64. omnigenome/src/trainer/trainer.py +0 -579
  65. omnigenome/utility/__init__.py +0 -3
  66. omnigenome/utility/dataset_hub/__init__.py +0 -13
  67. omnigenome/utility/dataset_hub/dataset_hub.py +0 -178
  68. omnigenome/utility/ensemble.py +0 -324
  69. omnigenome/utility/hub_utils.py +0 -517
  70. omnigenome/utility/model_hub/__init__.py +0 -12
  71. omnigenome/utility/model_hub/model_hub.py +0 -231
  72. omnigenome/utility/pipeline_hub/__init__.py +0 -12
  73. omnigenome/utility/pipeline_hub/pipeline.py +0 -483
  74. omnigenome/utility/pipeline_hub/pipeline_hub.py +0 -129
  75. omnigenome-0.3.0a1.dist-info/RECORD +0 -78
  76. {omnigenome-0.3.0a1.dist-info → omnigenome-0.3.3a0.dist-info}/WHEEL +0 -0
  77. {omnigenome-0.3.0a1.dist-info → omnigenome-0.3.3a0.dist-info}/entry_points.txt +0 -0
  78. {omnigenome-0.3.0a1.dist-info → omnigenome-0.3.3a0.dist-info}/licenses/LICENSE +0 -0
  79. {omnigenome-0.3.0a1.dist-info → omnigenome-0.3.3a0.dist-info}/top_level.txt +0 -0
@@ -1,499 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- # file: utils.py
3
- # time: 14:45 06/04/2024
4
- # author: YANG, HENG <hy345@exeter.ac.uk> (杨恒)
5
- # github: https://github.com/yangheng95
6
- # huggingface: https://huggingface.co/yangheng
7
- # google scholar: https://scholar.google.com/citations?user=NPq5a_0AAAAJ&hl=en
8
- # Copyright (C) 2019-2024. All Rights Reserved.
9
- import multiprocessing
10
- import os
11
- import pickle
12
- import sys
13
- import tempfile
14
- import time
15
- import warnings
16
-
17
- import ViennaRNA as RNA
18
- import findfile
19
-
20
- default_omnigenome_repo = (
21
- "https://huggingface.co/spaces/yangheng/OmniGenomeLeaderboard/"
22
- )
23
-
24
-
25
- def seed_everything(seed=42):
26
- """
27
- Sets random seeds for reproducibility across all random number generators.
28
-
29
- This function sets seeds for Python's random module, NumPy, PyTorch (CPU and CUDA),
30
- and sets the PYTHONHASHSEED environment variable to ensure reproducible results
31
- across different runs.
32
-
33
- Args:
34
- seed (int): The seed value to use for all random number generators.
35
- Defaults to 42.
36
-
37
- Example:
38
- >>> # Set seeds for reproducibility
39
- >>> seed_everything(42)
40
- >>> # Now all random operations will be reproducible
41
- """
42
- import random
43
- import numpy as np
44
- import torch
45
-
46
- random.seed(seed)
47
- os.environ["PYTHONHASHSEED"] = str(seed)
48
- np.random.seed(seed)
49
- torch.manual_seed(seed)
50
- torch.cuda.manual_seed(seed)
51
- torch.backends.cudnn.deterministic = True
52
- torch.backends.cudnn.benchmark = False
53
-
54
-
55
- class RNA2StructureCache(dict):
56
- """
57
- A cache for RNA secondary structure predictions using ViennaRNA.
58
-
59
- This class provides a caching mechanism for RNA secondary structure predictions
60
- to avoid redundant computations. It supports both single sequence and batch
61
- processing with optional multiprocessing for improved performance.
62
-
63
- Attributes:
64
- cache (dict): Dictionary storing sequence-structure mappings
65
- cache_file (str): Path to the cache file on disk
66
- queue_num (int): Counter for tracking cache updates
67
- """
68
-
69
- def __init__(self, cache_file=None, *args, **kwargs):
70
- """
71
- Initialize the RNA structure cache.
72
-
73
- Args:
74
- cache_file (str, optional): Path to the cache file. If None, uses
75
- a default temporary file.
76
- *args: Additional positional arguments for dict initialization
77
- **kwargs: Additional keyword arguments for dict initialization
78
- """
79
- super().__init__(*args, **kwargs)
80
- self.cache = dict(*args, **kwargs)
81
- self.cache_file = (
82
- cache_file
83
- if cache_file is not None
84
- else os.path.join(tempfile.gettempdir(), "rna_structure_cache.pkl")
85
- )
86
- self.queue_num = 0
87
-
88
- # Load existing cache if available
89
- if os.path.exists(self.cache_file):
90
- try:
91
- with open(self.cache_file, "rb") as f:
92
- self.cache.update(pickle.load(f))
93
- except Exception as e:
94
- warnings.warn(f"Failed to load cache file: {e}")
95
-
96
- def __getitem__(self, key):
97
- """Gets a cached structure prediction."""
98
- return self.cache[key]
99
-
100
- def __setitem__(self, key, value):
101
- """Sets a structure prediction in the cache."""
102
- self.cache[key] = value
103
-
104
- def __str__(self):
105
- """String representation of the cache."""
106
- return str(self.cache)
107
-
108
- def __repr__(self):
109
- """String representation of the cache."""
110
- return str(self.cache)
111
-
112
- def _fold_single_sequence(self, sequence):
113
- """
114
- Predict structure for a single sequence (worker function for multiprocessing).
115
-
116
- Args:
117
- sequence (str): RNA sequence to fold
118
-
119
- Returns:
120
- tuple: (structure, mfe) tuple
121
- """
122
- try:
123
- return RNA.fold(sequence)
124
- except Exception as e:
125
- warnings.warn(f"Failed to fold sequence {sequence}: {e}")
126
- return ("." * len(sequence), 0.0)
127
-
128
- def fold(self, sequence, return_mfe=False, num_workers=1):
129
- """
130
- Predicts RNA secondary structure for given sequences.
131
-
132
- This method predicts RNA secondary structures using ViennaRNA. It supports
133
- both single sequences and batches of sequences. The method uses caching
134
- to avoid redundant predictions and supports multiprocessing for batch
135
- processing on non-Windows systems.
136
-
137
- Args:
138
- sequence (str or list): A single RNA sequence or a list of sequences.
139
- return_mfe (bool): Whether to return minimum free energy along with
140
- structure. Defaults to False.
141
- num_workers (int): Number of worker processes for batch processing.
142
- Defaults to 1. Set to None for auto-detection.
143
-
144
- Returns:
145
- str or list: The predicted structure(s). If return_mfe is True,
146
- returns tuples of (structure, mfe).
147
-
148
- Example:
149
- >>> cache = RNA2StructureCache()
150
- >>> # Predict structure for a single sequence
151
- >>> structure = cache.fold("GGGAAAUCC")
152
- >>> print(structure) # "(((...)))"
153
-
154
- >>> # Predict structures for multiple sequences
155
- >>> structures = cache.fold(["GGGAAAUCC", "AUUGCUAA"])
156
- >>> print(structures) # ["(((...)))", "........"]
157
- """
158
- if not isinstance(sequence, list):
159
- sequences = [sequence]
160
- else:
161
- sequences = sequence
162
-
163
- # Determine if we should use multiprocessing
164
- use_multiprocessing = (
165
- os.name != "nt" and # Not Windows
166
- len(sequences) > 1 and # Multiple sequences
167
- num_workers > 1 # Multiple workers requested
168
- )
169
-
170
- # Find sequences that need prediction
171
- sequences_to_predict = [seq for seq in sequences if seq not in self.cache]
172
-
173
- if sequences_to_predict:
174
- if use_multiprocessing:
175
- # Use multiprocessing for batch prediction
176
- if num_workers is None:
177
- num_workers = min(os.cpu_count(), len(sequences_to_predict))
178
-
179
- try:
180
- # Set multiprocessing start method to 'spawn' for better compatibility
181
- if multiprocessing.get_start_method(allow_none=True) != 'spawn':
182
- multiprocessing.set_start_method('spawn', force=True)
183
-
184
- with multiprocessing.Pool(num_workers) as pool:
185
- # Use map instead of apply_async for better error handling
186
- results = pool.map(self._fold_single_sequence, sequences_to_predict)
187
-
188
- # Update cache with results
189
- for seq, result in zip(sequences_to_predict, results):
190
- self.cache[seq] = result
191
- self.queue_num += 1
192
-
193
- except Exception as e:
194
- warnings.warn(f"Multiprocessing failed, falling back to sequential: {e}")
195
- # Fallback to sequential processing
196
- for seq in sequences_to_predict:
197
- self.cache[seq] = self._fold_single_sequence(seq)
198
- self.queue_num += 1
199
- else:
200
- # Sequential processing
201
- for seq in sequences_to_predict:
202
- self.cache[seq] = self._fold_single_sequence(seq)
203
- self.queue_num += 1
204
-
205
- # Prepare output
206
- if return_mfe:
207
- structures = [self.cache[seq] for seq in sequences]
208
- else:
209
- structures = [self.cache[seq][0] for seq in sequences]
210
-
211
- # Update cache file periodically
212
- self.update_cache_file(self.cache_file)
213
-
214
- # Return single result or list
215
- if len(structures) == 1:
216
- return structures[0]
217
- else:
218
- return structures
219
-
220
- def update_cache_file(self, cache_file=None):
221
- """
222
- Updates the cache file on disk.
223
-
224
- This method saves the in-memory cache to disk. It only saves when
225
- the queue_num reaches 100 to avoid excessive disk I/O.
226
-
227
- Args:
228
- cache_file (str, optional): Path to the cache file. If None, uses
229
- the instance's cache_file.
230
-
231
- Example:
232
- >>> cache.update_cache_file() # Force save to disk
233
- """
234
- if self.queue_num < 100:
235
- return
236
-
237
- if cache_file is None:
238
- cache_file = self.cache_file
239
-
240
- try:
241
- if not os.path.exists(os.path.dirname(cache_file)):
242
- os.makedirs(os.path.dirname(cache_file))
243
-
244
- with open(cache_file, "wb") as f:
245
- pickle.dump(self.cache, f)
246
-
247
- self.queue_num = 0
248
- except Exception as e:
249
- warnings.warn(f"Failed to update cache file: {e}")
250
-
251
-
252
- def env_meta_info():
253
- """
254
- Collects metadata about the current environment and library versions.
255
-
256
- This function gathers information about the current Python environment,
257
- including versions of key libraries like PyTorch and Transformers,
258
- as well as OmniGenome version information.
259
-
260
- Returns:
261
- dict: A dictionary containing environment metadata including:
262
- - library_name: Name of the OmniGenome library
263
- - omnigenome_version: Version of OmniGenome
264
- - torch_version: PyTorch version with CUDA info
265
- - transformers_version: Transformers library version
266
-
267
- Example:
268
- >>> metadata = env_meta_info()
269
- >>> print(metadata['torch_version']) # "2.0.0+cu118+git..."
270
- """
271
- from torch.version import __version__ as torch_version
272
- from torch.version import cuda as torch_cuda_version
273
- from torch.version import git_version
274
- from transformers import __version__ as transformers_version
275
- from ... import __version__ as omnigenome_version
276
- from ... import __name__ as omnigenome_name
277
-
278
- return {
279
- "library_name": omnigenome_name,
280
- "omnigenome_version": omnigenome_version,
281
- "torch_version": f"{torch_version}+cu{torch_cuda_version}+git{git_version}",
282
- "transformers_version": transformers_version,
283
- }
284
-
285
-
286
- def naive_secondary_structure_repair(sequence, structure):
287
- """
288
- Repair the secondary structure of a sequence.
289
-
290
- This function attempts to repair malformed RNA secondary structure
291
- representations by ensuring proper bracket matching. It handles
292
- common issues like unmatched brackets by converting them to dots.
293
-
294
- Args:
295
- sequence (str): A string representing the sequence.
296
- structure (str): A string representing the secondary structure.
297
-
298
- Returns:
299
- str: A string representing the repaired secondary structure.
300
-
301
- Example:
302
- >>> sequence = "GGGAAAUCC"
303
- >>> structure = "(((...)" # Malformed structure
304
- >>> repaired = naive_secondary_structure_repair(sequence, structure)
305
- >>> print(repaired) # "(((...))"
306
- """
307
- repaired_structure = ""
308
- stack = []
309
- for i, (s, c) in enumerate(zip(structure, sequence)):
310
- if s == "(":
311
- stack.append(i)
312
- elif s == ")":
313
- if stack:
314
- stack.pop()
315
- else:
316
- repaired_structure += "."
317
- else:
318
- repaired_structure += s
319
- for i in stack:
320
- repaired_structure = repaired_structure[:i] + "." + repaired_structure[i + 1 :]
321
- return repaired_structure
322
-
323
-
324
- def save_args(config, save_path):
325
- """
326
- Save arguments to a file.
327
-
328
- This function saves the arguments from a configuration object to a text file.
329
- It's useful for logging experiment parameters and configurations.
330
-
331
- Args:
332
- config: A Namespace object containing the arguments.
333
- save_path (str): A string representing the path of the file to be saved.
334
-
335
- Example:
336
- >>> from argparse import Namespace
337
- >>> config = Namespace(learning_rate=0.001, batch_size=32)
338
- >>> save_args(config, "config.txt")
339
- """
340
- f = open(os.path.join(save_path), mode="w", encoding="utf8")
341
- for arg in config.args:
342
- if config.args_call_count[arg]:
343
- f.write("{}: {}\n".format(arg, config.args[arg]))
344
- f.close()
345
-
346
-
347
- def print_args(config, logger=None):
348
- """
349
- Print the arguments to the console.
350
-
351
- This function prints the arguments from a configuration object to the console
352
- or a logger. It's useful for debugging and logging experiment parameters.
353
-
354
- Args:
355
- config: A Namespace object containing the arguments.
356
- logger: A logger object. If None, prints to console.
357
-
358
- Example:
359
- >>> from argparse import Namespace
360
- >>> config = Namespace(learning_rate=0.001, batch_size=32)
361
- >>> print_args(config)
362
- """
363
- if logger is None:
364
- for arg in config.args:
365
- if config.args_call_count[arg]:
366
- print("{}: {}".format(arg, config.args[arg]))
367
- else:
368
- for arg in config.args:
369
- if config.args_call_count[arg]:
370
- logger.info("{}: {}".format(arg, config.args[arg]))
371
-
372
-
373
- def fprint(*objects, sep=" ", end="\n", file=sys.stdout, flush=False):
374
- """
375
- Enhanced print function with automatic flushing.
376
-
377
- This function provides a print-like interface with automatic flushing
378
- to ensure output is displayed immediately. It's useful for real-time
379
- logging and progress tracking.
380
-
381
- Args:
382
- *objects: Objects to print
383
- sep (str): Separator between objects (default: " ")
384
- end (str): String appended after the last value (default: "\n")
385
- file: File-like object to write to (default: sys.stdout)
386
- flush (bool): Whether to flush the stream (default: False)
387
-
388
- Example:
389
- >>> fprint("Training started...", flush=True)
390
- >>> fprint("Epoch 1/10", "Loss: 0.5", sep=" | ")
391
- """
392
- print(*objects, sep=sep, end=end, file=file, flush=True)
393
-
394
-
395
- def clean_temp_checkpoint(days_threshold=7):
396
- """
397
- Clean up temporary checkpoint files older than specified days.
398
-
399
- This function removes temporary checkpoint files that are older than
400
- the specified threshold to free up disk space.
401
-
402
- Args:
403
- days_threshold (int): Number of days after which files are considered old.
404
- Defaults to 7.
405
-
406
- Example:
407
- >>> clean_temp_checkpoint(3) # Remove files older than 3 days
408
- """
409
- import glob
410
- import time
411
-
412
- temp_patterns = [
413
- "temp_checkpoint_*",
414
- "checkpoint_*",
415
- "*.tmp",
416
- "*.temp",
417
- ]
418
-
419
- current_time = time.time()
420
- threshold_time = current_time - (days_threshold * 24 * 60 * 60)
421
-
422
- for pattern in temp_patterns:
423
- for file_path in glob.glob(pattern):
424
- try:
425
- if os.path.getmtime(file_path) < threshold_time:
426
- os.remove(file_path)
427
- except Exception:
428
- pass
429
-
430
-
431
- def load_module_from_path(module_name, file_path):
432
- """
433
- Load a Python module from a file path.
434
-
435
- This function dynamically loads a Python module from a file path,
436
- useful for loading configuration files or custom modules.
437
-
438
- Args:
439
- module_name (str): Name to assign to the loaded module
440
- file_path (str): Path to the Python file to load
441
-
442
- Returns:
443
- module: The loaded module object
444
-
445
- Example:
446
- >>> config = load_module_from_path("config", "config.py")
447
- >>> print(config.some_variable)
448
- """
449
- import importlib.util
450
-
451
- spec = importlib.util.spec_from_file_location(module_name, file_path)
452
- module = importlib.util.module_from_spec(spec)
453
- spec.loader.exec_module(module)
454
- return module
455
-
456
-
457
- def check_bench_version(bench_version, omnigenome_version):
458
- """
459
- Check if benchmark version is compatible with OmniGenome version.
460
-
461
- This function compares the benchmark version with the OmniGenome version
462
- to ensure compatibility and warns if there are potential issues.
463
-
464
- Args:
465
- bench_version (str): Version of the benchmark
466
- omnigenome_version (str): Version of OmniGenome
467
-
468
- Example:
469
- >>> check_bench_version("0.2.0", "0.3.0")
470
- """
471
- if bench_version != omnigenome_version:
472
- warnings.warn(
473
- f"Benchmark version ({bench_version}) differs from "
474
- f"OmniGenome version ({omnigenome_version}). "
475
- f"This may cause compatibility issues."
476
- )
477
-
478
-
479
- def clean_temp_dir_pt_files():
480
- """
481
- Clean up temporary PyTorch files in the current directory.
482
-
483
- This function removes temporary PyTorch files (like .pt, .pth files)
484
- that may be left over from previous runs.
485
-
486
- Example:
487
- >>> clean_temp_dir_pt_files()
488
- """
489
- import glob
490
-
491
- temp_patterns = ["*.pt", "*.pth", "temp_*", "checkpoint_*"]
492
-
493
- for pattern in temp_patterns:
494
- for file_path in glob.glob(pattern):
495
- try:
496
- if os.path.isfile(file_path):
497
- os.remove(file_path)
498
- except Exception:
499
- pass
@@ -1,19 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- # file: __init__.py
3
- # time: 14:08 06/04/2024
4
- # author: YANG, HENG <hy345@exeter.ac.uk> (杨恒)
5
- # github: https://github.com/yangheng95
6
- # huggingface: https://huggingface.co/yangheng
7
- # google scholar: https://scholar.google.com/citations?user=NPq5a_0AAAAJ&hl=en
8
- # Copyright (C) 2019-2024. All Rights Reserved.
9
- """
10
- This package contains model definitions for various tasks.
11
- """
12
-
13
- from .classification.model import *
14
- from .mlm.model import *
15
- from .regression.model import *
16
- from .seq2seq.model import *
17
- from .rna_design.model import *
18
- from .embedding.model import *
19
- from .augmentation.model import *
@@ -1,12 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- # file: __init__.py
3
- # time: 19:06 22/09/2024
4
- # author: YANG, HENG <hy345@exeter.ac.uk> (杨恒)
5
- # github: https://github.com/yangheng95
6
- # huggingface: https://huggingface.co/yangheng
7
- # google scholar: https://scholar.google.com/citations?user=NPq5a_0AAAAJ&hl=en
8
- # Copyright (C) 2019-2024. All Rights Reserved.
9
- """
10
- This package contains modules for data augmentation.
11
- """
12
-