omnigenome 0.3.0a0__py3-none-any.whl → 0.3.1a0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- omnigenome/__init__.py +29 -44
- omnigenome/auto/auto_bench/__init__.py +0 -1
- omnigenome/auto/auto_bench/auto_bench.py +24 -14
- omnigenome/auto/auto_train/__init__.py +0 -1
- omnigenome/auto/auto_train/auto_train.py +11 -12
- omnigenome/auto/bench_hub/__init__.py +0 -1
- omnigenome/auto/bench_hub/bench_hub.py +1 -1
- omnigenome/cli/__init__.py +0 -1
- omnigenome/cli/commands/__init__.py +0 -1
- omnigenome/cli/commands/base.py +10 -10
- omnigenome/cli/commands/bench/__init__.py +0 -1
- omnigenome/cli/commands/bench/bench_cli.py +10 -10
- omnigenome/cli/commands/rna/__init__.py +0 -1
- omnigenome/cli/commands/rna/rna_design.py +10 -11
- omnigenome/src/__init__.py +0 -1
- omnigenome/src/abc/__init__.py +0 -1
- omnigenome/src/abc/abstract_dataset.py +38 -19
- omnigenome/src/abc/abstract_metric.py +7 -7
- omnigenome/src/abc/abstract_model.py +15 -14
- omnigenome/src/abc/abstract_tokenizer.py +9 -7
- omnigenome/src/dataset/omni_dataset.py +16 -14
- omnigenome/src/lora/__init__.py +0 -1
- omnigenome/src/lora/lora_model.py +47 -41
- omnigenome/src/metric/classification_metric.py +11 -11
- omnigenome/src/metric/metric.py +19 -19
- omnigenome/src/metric/ranking_metric.py +15 -15
- omnigenome/src/metric/regression_metric.py +18 -18
- omnigenome/src/misc/utils.py +214 -150
- omnigenome/src/model/augmentation/__init__.py +0 -1
- omnigenome/src/model/augmentation/model.py +17 -17
- omnigenome/src/model/classification/__init__.py +0 -1
- omnigenome/src/model/classification/model.py +28 -32
- omnigenome/src/model/embedding/__init__.py +0 -1
- omnigenome/src/model/embedding/model.py +35 -35
- omnigenome/src/model/mlm/__init__.py +0 -1
- omnigenome/src/model/mlm/model.py +13 -13
- omnigenome/src/model/module_utils.py +17 -17
- omnigenome/src/model/regression/__init__.py +0 -1
- omnigenome/src/model/regression/model.py +72 -77
- omnigenome/src/model/regression/resnet.py +32 -32
- omnigenome/src/model/rna_design/__init__.py +0 -1
- omnigenome/src/model/rna_design/model.py +168 -118
- omnigenome/src/model/seq2seq/__init__.py +0 -1
- omnigenome/src/model/seq2seq/model.py +4 -4
- omnigenome/src/tokenizer/bpe_tokenizer.py +27 -27
- omnigenome/src/tokenizer/kmers_tokenizer.py +22 -22
- omnigenome/src/tokenizer/single_nucleotide_tokenizer.py +11 -11
- omnigenome/src/trainer/accelerate_trainer.py +40 -32
- omnigenome/src/trainer/hf_trainer.py +8 -8
- omnigenome/src/trainer/trainer.py +37 -25
- omnigenome/utility/dataset_hub/__init__.py +0 -1
- omnigenome/utility/dataset_hub/dataset_hub.py +13 -13
- omnigenome/utility/ensemble.py +26 -26
- omnigenome/utility/hub_utils.py +8 -8
- omnigenome/utility/model_hub/__init__.py +0 -1
- omnigenome/utility/model_hub/model_hub.py +26 -25
- omnigenome/utility/pipeline_hub/__init__.py +0 -1
- omnigenome/utility/pipeline_hub/pipeline.py +49 -49
- omnigenome/utility/pipeline_hub/pipeline_hub.py +17 -17
- {omnigenome-0.3.0a0.dist-info → omnigenome-0.3.1a0.dist-info}/METADATA +3 -3
- omnigenome-0.3.1a0.dist-info/RECORD +78 -0
- {omnigenome-0.3.0a0.dist-info → omnigenome-0.3.1a0.dist-info}/top_level.txt +0 -1
- omnigenome-0.3.0a0.dist-info/RECORD +0 -85
- tests/__init__.py +0 -9
- tests/conftest.py +0 -160
- tests/test_dataset_patterns.py +0 -291
- tests/test_examples_syntax.py +0 -83
- tests/test_model_loading.py +0 -183
- tests/test_rna_functions.py +0 -255
- tests/test_training_patterns.py +0 -302
- {omnigenome-0.3.0a0.dist-info → omnigenome-0.3.1a0.dist-info}/WHEEL +0 -0
- {omnigenome-0.3.0a0.dist-info → omnigenome-0.3.1a0.dist-info}/entry_points.txt +0 -0
- {omnigenome-0.3.0a0.dist-info → omnigenome-0.3.1a0.dist-info}/licenses/LICENSE +0 -0
|
@@ -31,12 +31,12 @@ from ...src.trainer.trainer import Trainer
|
|
|
31
31
|
class Pipeline:
|
|
32
32
|
"""
|
|
33
33
|
Complete machine learning pipeline combining model, tokenizer, datasets, and trainer.
|
|
34
|
-
|
|
34
|
+
|
|
35
35
|
The Pipeline class provides a unified interface for managing complete machine
|
|
36
36
|
learning workflows. It handles model initialization, training, inference, and
|
|
37
37
|
persistence. Pipelines can be loaded from pre-built configurations or created
|
|
38
38
|
from scratch with custom components.
|
|
39
|
-
|
|
39
|
+
|
|
40
40
|
Attributes:
|
|
41
41
|
model (OmniModel): The underlying model for the pipeline.
|
|
42
42
|
tokenizer: Tokenizer for preprocessing input sequences.
|
|
@@ -45,7 +45,7 @@ class Pipeline:
|
|
|
45
45
|
trainer (Trainer): Trainer instance for model training.
|
|
46
46
|
device (str): Target device for model execution (CPU/GPU).
|
|
47
47
|
name (str): Name identifier for the pipeline.
|
|
48
|
-
|
|
48
|
+
|
|
49
49
|
Example:
|
|
50
50
|
>>> from omnigenome import Pipeline, OmniModelForSequenceClassification
|
|
51
51
|
>>> # Create pipeline from model
|
|
@@ -57,14 +57,14 @@ class Pipeline:
|
|
|
57
57
|
>>> pipeline.train(datasets)
|
|
58
58
|
>>> # Save pipeline
|
|
59
59
|
>>> pipeline.save("./saved_pipeline")
|
|
60
|
-
|
|
60
|
+
|
|
61
61
|
Note:
|
|
62
62
|
- Pipelines automatically handle device placement and model optimization
|
|
63
63
|
- Environment metadata is collected for reproducibility
|
|
64
64
|
- Pipelines can be saved and loaded for easy deployment
|
|
65
65
|
- Supports both local models and hub-based model loading
|
|
66
66
|
"""
|
|
67
|
-
|
|
67
|
+
|
|
68
68
|
model: OmniModel = None
|
|
69
69
|
tokenizer = None
|
|
70
70
|
dataset: dict = None
|
|
@@ -82,7 +82,7 @@ class Pipeline:
|
|
|
82
82
|
):
|
|
83
83
|
"""
|
|
84
84
|
Initialize a Pipeline instance.
|
|
85
|
-
|
|
85
|
+
|
|
86
86
|
Args:
|
|
87
87
|
name (str): Name identifier for the pipeline.
|
|
88
88
|
model_name_or_path (Union[str, OmniModel]): Model to use in the pipeline.
|
|
@@ -97,20 +97,20 @@ class Pipeline:
|
|
|
97
97
|
- device (str): Target device for model execution
|
|
98
98
|
- trust_remote_code (bool): Whether to trust remote code in tokenizers
|
|
99
99
|
- Other model-specific configuration parameters
|
|
100
|
-
|
|
100
|
+
|
|
101
101
|
Raises:
|
|
102
102
|
ValueError: If model initialization fails.
|
|
103
103
|
ImportError: If required dependencies are not available.
|
|
104
104
|
FileNotFoundError: If model path is invalid.
|
|
105
|
-
|
|
105
|
+
|
|
106
106
|
Example:
|
|
107
107
|
>>> # Create from model path
|
|
108
|
-
>>> pipeline = Pipeline("rna_classification",
|
|
108
|
+
>>> pipeline = Pipeline("rna_classification",
|
|
109
109
|
... model_name_or_path="yangheng/OmniGenome-186M")
|
|
110
110
|
>>> # Create from model instance
|
|
111
111
|
>>> model = OmniModelForSequenceClassification("model_path", tokenizer)
|
|
112
112
|
>>> pipeline = Pipeline("custom_pipeline", model_name_or_path=model)
|
|
113
|
-
|
|
113
|
+
|
|
114
114
|
Note:
|
|
115
115
|
- The pipeline automatically handles model loading and device placement
|
|
116
116
|
- Environment metadata is collected for tracking system information
|
|
@@ -140,18 +140,18 @@ class Pipeline:
|
|
|
140
140
|
def __call__(self, inputs, *args, **kwargs):
|
|
141
141
|
"""
|
|
142
142
|
Call the pipeline for inference.
|
|
143
|
-
|
|
143
|
+
|
|
144
144
|
This method provides a convenient interface for running inference
|
|
145
145
|
through the pipeline. It delegates to the model's inference method.
|
|
146
|
-
|
|
146
|
+
|
|
147
147
|
Args:
|
|
148
148
|
inputs: Input data for inference (can be string, list, or tensor).
|
|
149
149
|
*args: Additional positional arguments passed to model inference.
|
|
150
150
|
**kwargs: Additional keyword arguments passed to model inference.
|
|
151
|
-
|
|
151
|
+
|
|
152
152
|
Returns:
|
|
153
153
|
dict: Inference results including predictions and confidence scores.
|
|
154
|
-
|
|
154
|
+
|
|
155
155
|
Example:
|
|
156
156
|
>>> pipeline = Pipeline("my_pipeline", model_name_or_path=model)
|
|
157
157
|
>>> results = pipeline("ATCGATCG")
|
|
@@ -162,13 +162,13 @@ class Pipeline:
|
|
|
162
162
|
def to(self, device):
|
|
163
163
|
"""
|
|
164
164
|
Move the pipeline to a specific device.
|
|
165
|
-
|
|
165
|
+
|
|
166
166
|
Args:
|
|
167
167
|
device (str): Target device ('cpu', 'cuda', 'cuda:0', etc.).
|
|
168
|
-
|
|
168
|
+
|
|
169
169
|
Returns:
|
|
170
170
|
Pipeline: Self for method chaining.
|
|
171
|
-
|
|
171
|
+
|
|
172
172
|
Example:
|
|
173
173
|
>>> pipeline = Pipeline("my_pipeline", model_name_or_path=model)
|
|
174
174
|
>>> pipeline.to("cuda:0") # Move to GPU
|
|
@@ -181,11 +181,11 @@ class Pipeline:
|
|
|
181
181
|
def init_pipeline(self, *, model_name_or_path, tokenizer=None, **kwargs):
|
|
182
182
|
"""
|
|
183
183
|
Initialize the pipeline components from a model path.
|
|
184
|
-
|
|
184
|
+
|
|
185
185
|
This method handles loading the model, tokenizer, and configuration
|
|
186
186
|
from a model path or identifier. It tries to load from the ModelHub
|
|
187
187
|
first, then falls back to HuggingFace transformers.
|
|
188
|
-
|
|
188
|
+
|
|
189
189
|
Args:
|
|
190
190
|
model_name_or_path (str): Path or identifier of the model to load.
|
|
191
191
|
tokenizer (optional): Tokenizer instance. If None, will be loaded
|
|
@@ -194,18 +194,18 @@ class Pipeline:
|
|
|
194
194
|
- trust_remote_code (bool): Whether to trust remote code
|
|
195
195
|
- device (str): Target device for the model
|
|
196
196
|
- Other model-specific parameters
|
|
197
|
-
|
|
197
|
+
|
|
198
198
|
Returns:
|
|
199
199
|
Pipeline: Self for method chaining.
|
|
200
|
-
|
|
200
|
+
|
|
201
201
|
Raises:
|
|
202
202
|
ValueError: If model loading fails.
|
|
203
203
|
ImportError: If required dependencies are not available.
|
|
204
|
-
|
|
204
|
+
|
|
205
205
|
Example:
|
|
206
206
|
>>> pipeline = Pipeline("my_pipeline")
|
|
207
207
|
>>> pipeline.init_pipeline(model_name_or_path="yangheng/OmniGenome-186M")
|
|
208
|
-
|
|
208
|
+
|
|
209
209
|
Note:
|
|
210
210
|
- First attempts to load from OmniGenome ModelHub
|
|
211
211
|
- Falls back to HuggingFace transformers if ModelHub fails
|
|
@@ -241,11 +241,11 @@ class Pipeline:
|
|
|
241
241
|
def train(self, datasets: dict = None, trainer=None, **kwargs):
|
|
242
242
|
"""
|
|
243
243
|
Train the model in the pipeline.
|
|
244
|
-
|
|
244
|
+
|
|
245
245
|
This method initiates training of the model using the provided datasets
|
|
246
246
|
and trainer configuration. If no trainer is provided, the pipeline's
|
|
247
247
|
existing trainer will be used.
|
|
248
|
-
|
|
248
|
+
|
|
249
249
|
Args:
|
|
250
250
|
datasets (dict, optional): Dictionary containing train/validation/test
|
|
251
251
|
datasets. If None, uses the pipeline's existing datasets.
|
|
@@ -253,11 +253,11 @@ class Pipeline:
|
|
|
253
253
|
trainer (Trainer, optional): Trainer instance to use for training.
|
|
254
254
|
If None, uses the pipeline's existing trainer. Defaults to None.
|
|
255
255
|
**kwargs: Additional keyword arguments passed to the trainer.
|
|
256
|
-
|
|
256
|
+
|
|
257
257
|
Raises:
|
|
258
258
|
ValueError: If no trainer is available or datasets are invalid.
|
|
259
259
|
RuntimeError: If training fails.
|
|
260
|
-
|
|
260
|
+
|
|
261
261
|
Example:
|
|
262
262
|
>>> pipeline = Pipeline("my_pipeline", model_name_or_path=model)
|
|
263
263
|
>>> # Train with existing datasets
|
|
@@ -269,7 +269,7 @@ class Pipeline:
|
|
|
269
269
|
>>> from omnigenome import Trainer
|
|
270
270
|
>>> custom_trainer = Trainer(model, train_dataset=train_data)
|
|
271
271
|
>>> pipeline.train(trainer=custom_trainer)
|
|
272
|
-
|
|
272
|
+
|
|
273
273
|
Note:
|
|
274
274
|
- Training uses the pipeline's current model and device
|
|
275
275
|
- Progress and metrics are logged during training
|
|
@@ -284,24 +284,24 @@ class Pipeline:
|
|
|
284
284
|
def predict(self, inputs, **kwargs):
|
|
285
285
|
"""
|
|
286
286
|
Generate predictions for input data.
|
|
287
|
-
|
|
287
|
+
|
|
288
288
|
This method provides a high-level interface for generating predictions
|
|
289
289
|
from the pipeline's model. It handles preprocessing and postprocessing
|
|
290
290
|
automatically.
|
|
291
|
-
|
|
291
|
+
|
|
292
292
|
Args:
|
|
293
293
|
inputs: Input data for prediction. Can be:
|
|
294
294
|
- str: Single sequence string
|
|
295
295
|
- list: List of sequence strings
|
|
296
296
|
- tensor: Preprocessed input tensors
|
|
297
297
|
**kwargs: Additional keyword arguments passed to model prediction.
|
|
298
|
-
|
|
298
|
+
|
|
299
299
|
Returns:
|
|
300
300
|
dict: Prediction results including:
|
|
301
301
|
- predictions: Predicted labels or values
|
|
302
302
|
- confidence: Confidence scores (if available)
|
|
303
303
|
- logits: Raw model outputs (if requested)
|
|
304
|
-
|
|
304
|
+
|
|
305
305
|
Example:
|
|
306
306
|
>>> pipeline = Pipeline("my_pipeline", model_name_or_path=model)
|
|
307
307
|
>>> # Single prediction
|
|
@@ -310,7 +310,7 @@ class Pipeline:
|
|
|
310
310
|
>>> # Batch prediction
|
|
311
311
|
>>> results = pipeline.predict(["ATCGATCG", "GCTAGCTA"])
|
|
312
312
|
>>> print(results['predictions'])
|
|
313
|
-
|
|
313
|
+
|
|
314
314
|
Note:
|
|
315
315
|
- Input preprocessing is handled automatically
|
|
316
316
|
- Results are formatted consistently across different model types
|
|
@@ -321,11 +321,11 @@ class Pipeline:
|
|
|
321
321
|
def inference(self, inputs, **kwargs):
|
|
322
322
|
"""
|
|
323
323
|
Run full inference pipeline on input data.
|
|
324
|
-
|
|
324
|
+
|
|
325
325
|
This method provides the complete inference pipeline including
|
|
326
326
|
preprocessing, model forward pass, and postprocessing. It's the
|
|
327
327
|
recommended method for production inference.
|
|
328
|
-
|
|
328
|
+
|
|
329
329
|
Args:
|
|
330
330
|
inputs: Input data for inference. Can be:
|
|
331
331
|
- str: Single sequence string
|
|
@@ -335,14 +335,14 @@ class Pipeline:
|
|
|
335
335
|
- return_attention: Whether to return attention weights
|
|
336
336
|
- return_hidden_states: Whether to return hidden states
|
|
337
337
|
- temperature: Temperature for sampling (if applicable)
|
|
338
|
-
|
|
338
|
+
|
|
339
339
|
Returns:
|
|
340
340
|
dict: Complete inference results including:
|
|
341
341
|
- predictions: Final predictions
|
|
342
342
|
- confidence: Confidence scores
|
|
343
343
|
- attention: Attention weights (if requested)
|
|
344
344
|
- hidden_states: Hidden states (if requested)
|
|
345
|
-
|
|
345
|
+
|
|
346
346
|
Example:
|
|
347
347
|
>>> pipeline = Pipeline("my_pipeline", model_name_or_path=model)
|
|
348
348
|
>>> # Basic inference
|
|
@@ -351,7 +351,7 @@ class Pipeline:
|
|
|
351
351
|
>>> # Inference with attention
|
|
352
352
|
>>> results = pipeline.inference("ATCGATCG", return_attention=True)
|
|
353
353
|
>>> print(results['attention'].shape)
|
|
354
|
-
|
|
354
|
+
|
|
355
355
|
Note:
|
|
356
356
|
- This is the most comprehensive inference method
|
|
357
357
|
- Handles all preprocessing and postprocessing automatically
|
|
@@ -363,10 +363,10 @@ class Pipeline:
|
|
|
363
363
|
def load(pipeline_name_or_path, local_only=False, **kwargs):
|
|
364
364
|
"""
|
|
365
365
|
Load a pipeline from disk or hub.
|
|
366
|
-
|
|
366
|
+
|
|
367
367
|
This static method loads a complete pipeline including model, tokenizer,
|
|
368
368
|
datasets, and trainer from a saved pipeline directory or hub identifier.
|
|
369
|
-
|
|
369
|
+
|
|
370
370
|
Args:
|
|
371
371
|
pipeline_name_or_path (str): Path to saved pipeline directory or
|
|
372
372
|
hub identifier for downloading.
|
|
@@ -376,16 +376,16 @@ class Pipeline:
|
|
|
376
376
|
- device: Target device for the model
|
|
377
377
|
- name: Custom name for the pipeline
|
|
378
378
|
- trust_remote_code: Whether to trust remote code
|
|
379
|
-
|
|
379
|
+
|
|
380
380
|
Returns:
|
|
381
381
|
Pipeline: Loaded pipeline instance ready for use.
|
|
382
|
-
|
|
382
|
+
|
|
383
383
|
Raises:
|
|
384
384
|
FileNotFoundError: If pipeline cannot be found locally and
|
|
385
385
|
local_only is True.
|
|
386
386
|
ValueError: If pipeline files are corrupted or invalid.
|
|
387
387
|
ImportError: If required dependencies are not available.
|
|
388
|
-
|
|
388
|
+
|
|
389
389
|
Example:
|
|
390
390
|
>>> # Load from local path
|
|
391
391
|
>>> pipeline = Pipeline.load("./saved_pipeline")
|
|
@@ -393,7 +393,7 @@ class Pipeline:
|
|
|
393
393
|
>>> pipeline = Pipeline.load("yangheng/OmniGenome-RNA-Classification")
|
|
394
394
|
>>> # Use loaded pipeline
|
|
395
395
|
>>> results = pipeline("ATCGATCG")
|
|
396
|
-
|
|
396
|
+
|
|
397
397
|
Note:
|
|
398
398
|
- Loads all pipeline components (model, tokenizer, datasets, trainer)
|
|
399
399
|
- Automatically handles device placement
|
|
@@ -430,22 +430,22 @@ class Pipeline:
|
|
|
430
430
|
def save(self, path, overwrite=False, **kwargs):
|
|
431
431
|
"""
|
|
432
432
|
Save the pipeline to disk.
|
|
433
|
-
|
|
433
|
+
|
|
434
434
|
This method saves the complete pipeline including model, tokenizer,
|
|
435
435
|
datasets, trainer, and metadata to a directory. The saved pipeline
|
|
436
436
|
can be loaded later using Pipeline.load().
|
|
437
|
-
|
|
437
|
+
|
|
438
438
|
Args:
|
|
439
439
|
path (str): Directory path where to save the pipeline.
|
|
440
440
|
overwrite (bool, optional): If True, overwrite existing directory.
|
|
441
441
|
If False, raise error if directory exists. Defaults to False.
|
|
442
442
|
**kwargs: Additional keyword arguments for model saving.
|
|
443
|
-
|
|
443
|
+
|
|
444
444
|
Raises:
|
|
445
445
|
FileExistsError: If path exists and overwrite is False.
|
|
446
446
|
OSError: If there are issues creating the directory or writing files.
|
|
447
447
|
RuntimeError: If saving fails due to model or data issues.
|
|
448
|
-
|
|
448
|
+
|
|
449
449
|
Example:
|
|
450
450
|
>>> pipeline = Pipeline("my_pipeline", model_name_or_path=model)
|
|
451
451
|
>>> # Train the pipeline
|
|
@@ -454,7 +454,7 @@ class Pipeline:
|
|
|
454
454
|
>>> pipeline.save("./trained_pipeline", overwrite=True)
|
|
455
455
|
>>> # Load the saved pipeline later
|
|
456
456
|
>>> loaded_pipeline = Pipeline.load("./trained_pipeline")
|
|
457
|
-
|
|
457
|
+
|
|
458
458
|
Note:
|
|
459
459
|
- Saves all pipeline components (model, tokenizer, datasets, trainer)
|
|
460
460
|
- Preserves training configurations and metadata
|
|
@@ -21,37 +21,37 @@ from ...src.misc.utils import env_meta_info
|
|
|
21
21
|
class PipelineHub:
|
|
22
22
|
"""
|
|
23
23
|
Hub for managing and loading pre-built OmniGenome pipelines.
|
|
24
|
-
|
|
24
|
+
|
|
25
25
|
The PipelineHub provides a centralized interface for accessing pre-built
|
|
26
26
|
pipelines that combine models, tokenizers, datasets, and training
|
|
27
27
|
configurations. It handles automatic downloading and loading of pipelines
|
|
28
28
|
from the OmniGenome hub.
|
|
29
|
-
|
|
29
|
+
|
|
30
30
|
Attributes:
|
|
31
31
|
metadata (dict): Environment metadata including system information,
|
|
32
32
|
package versions, and hardware details.
|
|
33
|
-
|
|
33
|
+
|
|
34
34
|
Example:
|
|
35
35
|
>>> from omnigenome import PipelineHub
|
|
36
36
|
>>> hub = PipelineHub()
|
|
37
37
|
>>> pipeline = hub.load("yangheng/OmniGenome-RNA-Classification")
|
|
38
38
|
>>> predictions = pipeline("ATCGATCG")
|
|
39
39
|
>>> print(predictions['predictions'])
|
|
40
|
-
|
|
40
|
+
|
|
41
41
|
Note:
|
|
42
42
|
- Pipelines can be loaded from local paths or downloaded from the hub
|
|
43
43
|
- The hub automatically handles model, tokenizer, and dataset loading
|
|
44
44
|
- Environment metadata is collected for reproducibility
|
|
45
45
|
"""
|
|
46
|
-
|
|
46
|
+
|
|
47
47
|
def __init__(self, *args, **kwargs):
|
|
48
48
|
"""
|
|
49
49
|
Initialize the PipelineHub.
|
|
50
|
-
|
|
50
|
+
|
|
51
51
|
Args:
|
|
52
52
|
*args: Variable length argument list (currently unused).
|
|
53
53
|
**kwargs: Arbitrary keyword arguments (currently unused).
|
|
54
|
-
|
|
54
|
+
|
|
55
55
|
Note:
|
|
56
56
|
The constructor initializes environment metadata for tracking
|
|
57
57
|
system information and package versions.
|
|
@@ -63,11 +63,11 @@ class PipelineHub:
|
|
|
63
63
|
def load(pipeline_name_or_path, local_only=False, **kwargs):
|
|
64
64
|
"""
|
|
65
65
|
Load a pipeline from the hub or local path.
|
|
66
|
-
|
|
66
|
+
|
|
67
67
|
This method loads a complete pipeline including the model, tokenizer,
|
|
68
68
|
datasets, and trainer configuration. If the pipeline doesn't exist
|
|
69
69
|
locally and local_only is False, it will be downloaded from the hub.
|
|
70
|
-
|
|
70
|
+
|
|
71
71
|
Args:
|
|
72
72
|
pipeline_name_or_path (str): Name or path of the pipeline to load.
|
|
73
73
|
Can be a local directory path or a hub identifier.
|
|
@@ -78,17 +78,17 @@ class PipelineHub:
|
|
|
78
78
|
- device: Target device for the model
|
|
79
79
|
- trust_remote_code: Whether to trust remote code in tokenizers
|
|
80
80
|
- name: Custom name for the pipeline
|
|
81
|
-
|
|
81
|
+
|
|
82
82
|
Returns:
|
|
83
83
|
Pipeline: Loaded pipeline instance with model, tokenizer, datasets,
|
|
84
84
|
and trainer ready for use.
|
|
85
|
-
|
|
85
|
+
|
|
86
86
|
Raises:
|
|
87
87
|
FileNotFoundError: If the pipeline cannot be found locally and
|
|
88
88
|
local_only is True.
|
|
89
89
|
ValueError: If the pipeline configuration is invalid.
|
|
90
90
|
ImportError: If required dependencies are not available.
|
|
91
|
-
|
|
91
|
+
|
|
92
92
|
Example:
|
|
93
93
|
>>> hub = PipelineHub()
|
|
94
94
|
>>> # Load from hub
|
|
@@ -97,7 +97,7 @@ class PipelineHub:
|
|
|
97
97
|
>>> pipeline = hub.load("./my_pipeline", local_only=True)
|
|
98
98
|
>>> # Use pipeline for inference
|
|
99
99
|
>>> results = pipeline("ATCGATCG")
|
|
100
|
-
|
|
100
|
+
|
|
101
101
|
Note:
|
|
102
102
|
- The pipeline includes all necessary components for training and inference
|
|
103
103
|
- Model weights, tokenizer, and datasets are automatically loaded
|
|
@@ -108,17 +108,17 @@ class PipelineHub:
|
|
|
108
108
|
def push(self, pipeline, **kwargs):
|
|
109
109
|
"""
|
|
110
110
|
Push a pipeline to the hub (not yet implemented).
|
|
111
|
-
|
|
111
|
+
|
|
112
112
|
This method is intended to upload custom pipelines to the OmniGenome hub
|
|
113
113
|
for sharing and distribution. Currently not implemented.
|
|
114
|
-
|
|
114
|
+
|
|
115
115
|
Args:
|
|
116
116
|
pipeline (Pipeline): Pipeline instance to upload to the hub.
|
|
117
117
|
**kwargs: Additional keyword arguments for the upload process.
|
|
118
|
-
|
|
118
|
+
|
|
119
119
|
Raises:
|
|
120
120
|
NotImplementedError: This method has not been implemented yet.
|
|
121
|
-
|
|
121
|
+
|
|
122
122
|
Note:
|
|
123
123
|
Future implementation will support:
|
|
124
124
|
- Pipeline metadata and documentation
|
|
@@ -1,11 +1,11 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: omnigenome
|
|
3
|
-
Version: 0.3.
|
|
3
|
+
Version: 0.3.1a0
|
|
4
4
|
Summary: OmniGenome: A comprehensive toolkit for genome analysis.
|
|
5
|
-
Home-page: https://github.com/yangheng95/
|
|
5
|
+
Home-page: https://github.com/yangheng95/OmniGenBench
|
|
6
6
|
Author: Yang, Heng
|
|
7
7
|
Author-email: hy345@exeter.ac.uk
|
|
8
|
-
License:
|
|
8
|
+
License: Apache-2.0
|
|
9
9
|
Platform: Windows
|
|
10
10
|
Platform: Linux
|
|
11
11
|
Platform: Mac OS-X
|
|
@@ -0,0 +1,78 @@
|
|
|
1
|
+
omnigenome/__init__.py,sha256=2tXjLkxTWA1Akx9iks04X-JZckhVmkIEPDO5wKTucF8,9897
|
|
2
|
+
omnigenome/auto/__init__.py,sha256=UhcuYy43WsR7IowjajlcGwNVFFFDaufl8KqtNDmVqz0,97
|
|
3
|
+
omnigenome/auto/auto_bench/__init__.py,sha256=M2roe3FdlmRLeXs9cOH00KrccLrazkDvlYGSg_N9upo,410
|
|
4
|
+
omnigenome/auto/auto_bench/auto_bench.py,sha256=BdCzS-KF_Eos22TGlNdTtLFXlNt0Hd6yYpfvb1TawjE,20997
|
|
5
|
+
omnigenome/auto/auto_bench/auto_bench_cli.py,sha256=B3iJiTKuAc6dkEu2h9ApGFpJJwS0I2zwxXtZ6bWfarM,7608
|
|
6
|
+
omnigenome/auto/auto_bench/auto_bench_config.py,sha256=2mw6VFcWCSR6dJVAGDejlwmK_VmAZgqMvYlqznl5Ck8,7723
|
|
7
|
+
omnigenome/auto/auto_bench/config_check.py,sha256=5RYOOOC-CqvU-46-3uSK6vspLtPSVxdZsFMnNa-3rj0,1086
|
|
8
|
+
omnigenome/auto/auto_train/__init__.py,sha256=JClK_1E1_YVAy2rNzQewYzYxvLanqm71-swdXAx8uZs,447
|
|
9
|
+
omnigenome/auto/auto_train/auto_train.py,sha256=af5ca6SGyxn8apIxwU0vKPoAC0mKDP2CFqN9w1N_a2M,17506
|
|
10
|
+
omnigenome/auto/auto_train/auto_train_cli.py,sha256=vSjQ1t3hfe4HEvIWVB7V6cmYf-47_obKZGHWrk_LWDc,7298
|
|
11
|
+
omnigenome/auto/bench_hub/__init__.py,sha256=JryopzWvewnBtN_EZKNEDKvIsc6x0wCsntNFyCGhpmU,395
|
|
12
|
+
omnigenome/auto/bench_hub/bench_hub.py,sha256=eTxcVrKQdb-tdgt4CZDmD7zsUxMdw6McOeDAuaDiQZc,740
|
|
13
|
+
omnigenome/cli/__init__.py,sha256=sLM_HMGX4lK8LKvIsIBmQUAbZKih6bfYoHmqQFKfGBM,445
|
|
14
|
+
omnigenome/cli/omnigenome_cli.py,sha256=fvpxWqowa7IFSU097EXrhChYcMN4yekGS9UA5nsbpz4,4386
|
|
15
|
+
omnigenome/cli/commands/__init__.py,sha256=nnD9NFBNHGYhUt7nI5y4iuylIn2JOdvn6iEhlDJjhes,435
|
|
16
|
+
omnigenome/cli/commands/base.py,sha256=KU_lhhZpjCMRAK0LZz_txV3R9ZfzCAo_k3u44cBztMk,2858
|
|
17
|
+
omnigenome/cli/commands/bench/__init__.py,sha256=dAVl47_QKktT5DpHjv0VMY18vlmxkNMSXbfIWZ1l69k,440
|
|
18
|
+
omnigenome/cli/commands/bench/bench_cli.py,sha256=N4mkhg2MRo3beAWmUDJe2NsB5vL3hquxs8fBN-c9Z-A,7523
|
|
19
|
+
omnigenome/cli/commands/rna/__init__.py,sha256=rUyJljDj9JGcn83iyRSB2qC2BAXkgsbb24SWsimOFVE,434
|
|
20
|
+
omnigenome/cli/commands/rna/rna_design.py,sha256=Vb9jhh4Aj8RlUsBSHirQY5supkmMYzaXNIbs32Jjsyo,6408
|
|
21
|
+
omnigenome/src/__init__.py,sha256=MtntWq77RoL1K6iUQQlVcwgfDZIrykvjcpP4O4_7jgM,412
|
|
22
|
+
omnigenome/src/abc/__init__.py,sha256=4E5Ba2Fwf9VlxmjwZ50kku-YPGU00JZPgAcNuesaG3g,424
|
|
23
|
+
omnigenome/src/abc/abstract_dataset.py,sha256=YEHMwqohAPozmmbVemzA7CoA2hKyvrkW1wIB1msEQqA,24254
|
|
24
|
+
omnigenome/src/abc/abstract_metric.py,sha256=nRISSO93i1L9Q-TDL0ZnhtKAXgLRKVlzL6oKHknFU-4,4326
|
|
25
|
+
omnigenome/src/abc/abstract_model.py,sha256=t1XqLqs7VLJ4I9Tzu0chWYyFr3_ElaHk5vzQK5JGa7E,28639
|
|
26
|
+
omnigenome/src/abc/abstract_tokenizer.py,sha256=5z5dhL2qSswTa5W7Gdn7u8q7sC8cBfv2JuJf3G-F8Gw,9888
|
|
27
|
+
omnigenome/src/dataset/__init__.py,sha256=2Lz3xfGaiP5hl2Pf1eW0eenpzrDk3zDyyi63CXbC4hE,628
|
|
28
|
+
omnigenome/src/dataset/omni_dataset.py,sha256=dFsDraF3x9N-JIsxbAyPiDhY74BIdWn2pg0A_bV8iuc,17609
|
|
29
|
+
omnigenome/src/lora/__init__.py,sha256=EncdIW5iV7LWh8JndQqoXIDTZgHWAIGaeNUEyMa1SlU,457
|
|
30
|
+
omnigenome/src/lora/lora_model.py,sha256=HX_CW_ZlwHjGWLY-wcL01_6X6fIQKS7QxDZrmdmll44,10101
|
|
31
|
+
omnigenome/src/metric/__init__.py,sha256=lZr6uiL44G8ujmCz98wTH_anHRv9QUdO3tUiBHriZXA,543
|
|
32
|
+
omnigenome/src/metric/classification_metric.py,sha256=9AEBqtwga6cojFcS1lP_i-LGkbmn3QLAD7JGFz2Z6bY,8030
|
|
33
|
+
omnigenome/src/metric/metric.py,sha256=lAn7brhugv-gOEnE3SatnhczjWDgV8JTLfWxJU-regc,7724
|
|
34
|
+
omnigenome/src/metric/ranking_metric.py,sha256=iQZd7DIHIiNqykQJPNPVVjmGlrV-6nSEeKIh5o2XUt4,5670
|
|
35
|
+
omnigenome/src/metric/regression_metric.py,sha256=hfUPD6TnrfrQ_wpW5Lyk6t6xdHyMWhJ0rthsk3MXJkw,7585
|
|
36
|
+
omnigenome/src/misc/__init__.py,sha256=Dpa-uCQdwKVKkprqy26Np71mRobcWglCjgtITjU6yw0,63
|
|
37
|
+
omnigenome/src/misc/utils.py,sha256=WHoXcRpwliV1-9YO5ZfttvJNzUGib77uHS6oNVUnVjo,17108
|
|
38
|
+
omnigenome/src/model/__init__.py,sha256=vu1vJVYp8FR9BgF7X2msKkwMfa6jbzsfAsUHduTB21w,621
|
|
39
|
+
omnigenome/src/model/module_utils.py,sha256=dmiORa835Jg6cGS24h8e1ZrwfB9_tGiz30IbwUagdaw,9158
|
|
40
|
+
omnigenome/src/model/augmentation/__init__.py,sha256=Q1uTFVJjlDV_nJZ9YP44gq6LSolz9b8_6gJ0Iz0RtAc,395
|
|
41
|
+
omnigenome/src/model/augmentation/model.py,sha256=rA-NZGzydqvpZuHy4fq4xVJcFA97rjb6NcoV-Leeaqg,8174
|
|
42
|
+
omnigenome/src/model/classification/__init__.py,sha256=T1pW6HLdjUywf4-mN9d4ERRWPiZsGpDqsbalFPtyVCc,399
|
|
43
|
+
omnigenome/src/model/classification/model.py,sha256=wAets3HAF_T66LbBmdoEutKMYAwaIvWvMffDgGhnUbU,25022
|
|
44
|
+
omnigenome/src/model/embedding/__init__.py,sha256=Q6UqgzCEOujfAvYKcHnYhCa6kMIzFFFIa_5Ut8iHQgg,394
|
|
45
|
+
omnigenome/src/model/embedding/model.py,sha256=JJIjQTy50U8fVzeeXbgvUdJv_W59dF-f0gZD6qB8ha8,10140
|
|
46
|
+
omnigenome/src/model/mlm/__init__.py,sha256=PqKckKLXhvkJr8dLkSpKTwFYsclGv51nhXBKjI55oYw,406
|
|
47
|
+
omnigenome/src/model/mlm/model.py,sha256=rFYjn_QYFcREqHzSGO8GsbdUGGMzjOkAcooa-P9SaQ8,6435
|
|
48
|
+
omnigenome/src/model/regression/__init__.py,sha256=9_PEGxaiJrwPXvzOf6jGx6Wl1x4UQlOsCGUwNYPUDbc,395
|
|
49
|
+
omnigenome/src/model/regression/model.py,sha256=lXLg1Z0B7jzXHRkt8F1sP3KAitfSIAvhe8EAOFiUMFI,27591
|
|
50
|
+
omnigenome/src/model/regression/resnet.py,sha256=Xvpssyo3LmmPMJYHwdqKHU0x9F39dllkKY94aI9mHO0,16861
|
|
51
|
+
omnigenome/src/model/rna_design/__init__.py,sha256=cqC0Ap954sBDOe3RI8nVlYahx_gIg0nqwoBg8CRQ62E,395
|
|
52
|
+
omnigenome/src/model/rna_design/model.py,sha256=kDDM0BHpoFN9nlGxNWrjTjsFWn7E6CPYjfAfkJyLxGY,16939
|
|
53
|
+
omnigenome/src/model/seq2seq/__init__.py,sha256=38YtCYxAQRytOsW98G8cqgCXB6mmzrSGPKs1DbwzZ40,405
|
|
54
|
+
omnigenome/src/model/seq2seq/model.py,sha256=UC7j691BSbr6He3kCYwO_93V4RLWLt3fQOCQnnwJwgQ,1695
|
|
55
|
+
omnigenome/src/tokenizer/__init__.py,sha256=zYUgX-FJ-fw0GNJuuW8ovo9kflDmGDd8Z0F3AMDFXF4,556
|
|
56
|
+
omnigenome/src/tokenizer/bpe_tokenizer.py,sha256=_g1x3jJ3wzGgDu3_y2pW-KghYllgbiqoJfjMUF3sNTE,7646
|
|
57
|
+
omnigenome/src/tokenizer/kmers_tokenizer.py,sha256=KpPA5_MSP-Wvbp2aeRGD67al6xS1unhbreIQOio-1U4,9155
|
|
58
|
+
omnigenome/src/tokenizer/single_nucleotide_tokenizer.py,sha256=alwWeXuvGvzGflsyzm_V0AelAbdfMs79FGSo4pL5roo,9710
|
|
59
|
+
omnigenome/src/trainer/__init__.py,sha256=adib_MJlED-EXXkNCt9MhV1U9mPPoOrLReA-dxhgdT0,453
|
|
60
|
+
omnigenome/src/trainer/accelerate_trainer.py,sha256=u0gU1MRLjEcj3zPAkDztjxU1aNWDA_XTl6k_Wk3esIs,28377
|
|
61
|
+
omnigenome/src/trainer/hf_trainer.py,sha256=eRw0v21lBZW1gTi-5zmagLuR0A1X7OOb0bZlmzROcMI,2591
|
|
62
|
+
omnigenome/src/trainer/trainer.py,sha256=wyHJcb8IhrIrSW9dE7uK5MU_EL0_LRHJBP65z7RW9gA,21333
|
|
63
|
+
omnigenome/utility/__init__.py,sha256=UvgBH3hsW2JoXfGG6dHJeQLHVF7rXdzK39wGCoJOEKI,101
|
|
64
|
+
omnigenome/utility/ensemble.py,sha256=z9opb_9H213OeeNn4VJbKQfXVK_Kzig3mNDIjviG1oQ,13141
|
|
65
|
+
omnigenome/utility/hub_utils.py,sha256=iYxt1iAKW2OTsQ0rYxMixRiarwIxjYzCQtaDyijFnWw,20269
|
|
66
|
+
omnigenome/utility/dataset_hub/__init__.py,sha256=86rjBJixstpSiTbtprf0RnaC1V5lykh2Bs2cnZG9j3s,433
|
|
67
|
+
omnigenome/utility/dataset_hub/dataset_hub.py,sha256=aTPfk5Owoa5OtSGbFPM34WmZ3Oy9x8ZrILQgF6VXI3g,6960
|
|
68
|
+
omnigenome/utility/model_hub/__init__.py,sha256=Y5AcnzrtX9zPVbsAZy-6kLPJef-eddcPtZRAe8N7BOE,391
|
|
69
|
+
omnigenome/utility/model_hub/model_hub.py,sha256=0K0XOQvPLiscHt0LRphF7Gja6MXHDgBARbdQzr1G8mI,8574
|
|
70
|
+
omnigenome/utility/pipeline_hub/__init__.py,sha256=lz9kdc_arVwqDENvt_dN0h8fAhBeTRyG6LQRQrQAjGE,394
|
|
71
|
+
omnigenome/utility/pipeline_hub/pipeline.py,sha256=Ft56dolrLJWSLBj7jba8Fka3yCwtBso2Vx_Nt17ZB7A,19756
|
|
72
|
+
omnigenome/utility/pipeline_hub/pipeline_hub.py,sha256=bt2QLg4cld8QT2fbMZXJKL0vE3ReuNWHsqhLgiwc6HI,5268
|
|
73
|
+
omnigenome-0.3.1a0.dist-info/licenses/LICENSE,sha256=oQoefBV6siHctF0ET-OO3EaSZgtqGtf-wdIAmokS8iY,11560
|
|
74
|
+
omnigenome-0.3.1a0.dist-info/METADATA,sha256=LA0FxjRSjsEhsXvOV3noKYAis1t4_JY-wqTDjV9Fszo,10315
|
|
75
|
+
omnigenome-0.3.1a0.dist-info/WHEEL,sha256=lTU6B6eIfYoiQJTZNc-fyaR6BpL6ehTzU3xGYxn2n8k,91
|
|
76
|
+
omnigenome-0.3.1a0.dist-info/entry_points.txt,sha256=uu40UgMPxY65ASdRbrhkwH94r7CIYgyG_iDBmqFQbD8,84
|
|
77
|
+
omnigenome-0.3.1a0.dist-info/top_level.txt,sha256=LVFxm_WPaxjj9KnAqdW94W4D4lbOk30gdsaKlJiSzTo,11
|
|
78
|
+
omnigenome-0.3.1a0.dist-info/RECORD,,
|
|
@@ -1,85 +0,0 @@
|
|
|
1
|
-
omnigenome/__init__.py,sha256=rG1SRLhIMfh9IbKkpDjoaa99jx67AItyNmW9hmQ6WF0,10719
|
|
2
|
-
omnigenome/auto/__init__.py,sha256=UhcuYy43WsR7IowjajlcGwNVFFFDaufl8KqtNDmVqz0,97
|
|
3
|
-
omnigenome/auto/auto_bench/__init__.py,sha256=o0sPxaZM_KP5lRgidFUySr12OWguqB6PlL9ZhvWV1DM,411
|
|
4
|
-
omnigenome/auto/auto_bench/auto_bench.py,sha256=nprUgDGLLh4OIG9Qys6Aing1j8n_aw3ndSmx4PzAYN4,20781
|
|
5
|
-
omnigenome/auto/auto_bench/auto_bench_cli.py,sha256=B3iJiTKuAc6dkEu2h9ApGFpJJwS0I2zwxXtZ6bWfarM,7608
|
|
6
|
-
omnigenome/auto/auto_bench/auto_bench_config.py,sha256=2mw6VFcWCSR6dJVAGDejlwmK_VmAZgqMvYlqznl5Ck8,7723
|
|
7
|
-
omnigenome/auto/auto_bench/config_check.py,sha256=5RYOOOC-CqvU-46-3uSK6vspLtPSVxdZsFMnNa-3rj0,1086
|
|
8
|
-
omnigenome/auto/auto_train/__init__.py,sha256=piAuS6ry7obkTthpbBvn5u2kqqhtrTwiGsrWIPqE4w0,448
|
|
9
|
-
omnigenome/auto/auto_train/auto_train.py,sha256=ne2G9oOMsqYysDxpOQbrp-v29-aDqtuAu4fo_HG4D2A,17563
|
|
10
|
-
omnigenome/auto/auto_train/auto_train_cli.py,sha256=vSjQ1t3hfe4HEvIWVB7V6cmYf-47_obKZGHWrk_LWDc,7298
|
|
11
|
-
omnigenome/auto/bench_hub/__init__.py,sha256=lbqmvd01gyyaijag-cg_MqjIlKcXfDskf-vLaWKpxBM,396
|
|
12
|
-
omnigenome/auto/bench_hub/bench_hub.py,sha256=CsnONzpcDw2HWNszCa_Ak4zUpIqKhV72cENkG0qoB0U,744
|
|
13
|
-
omnigenome/cli/__init__.py,sha256=xDO_D_enpEDCkpOqIcgIBn_nA7Na1x3AIHFfw42w_XU,446
|
|
14
|
-
omnigenome/cli/omnigenome_cli.py,sha256=fvpxWqowa7IFSU097EXrhChYcMN4yekGS9UA5nsbpz4,4386
|
|
15
|
-
omnigenome/cli/commands/__init__.py,sha256=vKd5VEfonNnNc6k77q2lGyfpyA12Lgl9cI0soMU24Ns,436
|
|
16
|
-
omnigenome/cli/commands/base.py,sha256=cziPHmbzHyBlQ1t-SbDt3k1Mwkb9i6cba8i-MCaoRWw,2931
|
|
17
|
-
omnigenome/cli/commands/bench/__init__.py,sha256=BnoQ23hFXEkKy8GtNVQbynvGyKNkvVF8UFDSmSprSAI,441
|
|
18
|
-
omnigenome/cli/commands/bench/bench_cli.py,sha256=5tpPpV_pIBC4_oUoD2jz9GlMjEHR7f-zbThlIYkWrwU,7625
|
|
19
|
-
omnigenome/cli/commands/rna/__init__.py,sha256=hLyxZjMFFSGU8wuSEaxvWxM2plLbCGoI9B-sMcrxjvY,435
|
|
20
|
-
omnigenome/cli/commands/rna/rna_design.py,sha256=JQGaCMMTq45mTAxFXylFQ4gfpLWb9mvciTRGtapDpu8,6519
|
|
21
|
-
omnigenome/src/__init__.py,sha256=gciGhCbdgcNEVoyquqnWubNmN1X-Ir53dHT2cAgOZUk,413
|
|
22
|
-
omnigenome/src/abc/__init__.py,sha256=RdVIA2WOyGbt9aTdMWXDZIG3I_6M49BV_WP8ti887LM,425
|
|
23
|
-
omnigenome/src/abc/abstract_dataset.py,sha256=jZFRVnAmif4gwGvhi2uYApLPYyYTz6k-RENGeWizrfU,23816
|
|
24
|
-
omnigenome/src/abc/abstract_metric.py,sha256=bR5mBnEiDAzBbzd2kF8aYV59Kipej2wZ8QlZsPzFP7o,4353
|
|
25
|
-
omnigenome/src/abc/abstract_model.py,sha256=E_YuhScqBi8Qt_-wEbTtP0c_dxv0oz7fe7NfyFNszwk,28670
|
|
26
|
-
omnigenome/src/abc/abstract_tokenizer.py,sha256=tfiYddutKIuUZiQJ3ujiakehWINiGOYbrKV-tUwtF5U,9894
|
|
27
|
-
omnigenome/src/dataset/__init__.py,sha256=2Lz3xfGaiP5hl2Pf1eW0eenpzrDk3zDyyi63CXbC4hE,628
|
|
28
|
-
omnigenome/src/dataset/omni_dataset.py,sha256=1ryp9TZu7Josv3ua_8GZJbA6BOOIeQ3Ty_kBtj9FgRc,17633
|
|
29
|
-
omnigenome/src/lora/__init__.py,sha256=VRNwSjziZywM4bRegcho4y1zGNF-kvBgxYXyATSgRL0,458
|
|
30
|
-
omnigenome/src/lora/lora_model.py,sha256=cFE2SW-KW9G64tu8mb94ymwtZsg4N0Ykmj3p8V6fh1k,10293
|
|
31
|
-
omnigenome/src/metric/__init__.py,sha256=lZr6uiL44G8ujmCz98wTH_anHRv9QUdO3tUiBHriZXA,543
|
|
32
|
-
omnigenome/src/metric/classification_metric.py,sha256=ndv2MPx6xv0k0CaHVQoeWyUW5HkMCqqZ0okeUUsXtgs,8109
|
|
33
|
-
omnigenome/src/metric/metric.py,sha256=mDd-8huMv9PiyWSaVWiIqNIaXQC5yI-zc_5WOTXWAxY,7912
|
|
34
|
-
omnigenome/src/metric/ranking_metric.py,sha256=DTyNyhleDPDPEyg5HlDjlUpLS5uYne17SdDUejpXmCs,5826
|
|
35
|
-
omnigenome/src/metric/regression_metric.py,sha256=J_XOZ1jXSdqzkOgw4adHA-YLA4A_QcGlW8g0lgIm9xs,7753
|
|
36
|
-
omnigenome/src/misc/__init__.py,sha256=Dpa-uCQdwKVKkprqy26Np71mRobcWglCjgtITjU6yw0,63
|
|
37
|
-
omnigenome/src/misc/utils.py,sha256=8b7FHp0OlyIbmbINOEgHa9nlhKz5qZ92x1tfAy7S0ko,15296
|
|
38
|
-
omnigenome/src/model/__init__.py,sha256=vu1vJVYp8FR9BgF7X2msKkwMfa6jbzsfAsUHduTB21w,621
|
|
39
|
-
omnigenome/src/model/module_utils.py,sha256=rPJJfAcA4C8KumxSBJRCrCRxUSrwiRvLdbilIYIPS5U,9286
|
|
40
|
-
omnigenome/src/model/augmentation/__init__.py,sha256=JEZ1rszRUq7NBzwyu02eyNb_TTph2K3lXnXOCbHTtJc,396
|
|
41
|
-
omnigenome/src/model/augmentation/model.py,sha256=VHfi4z1LX5mDKrjHqg_B7kCvykc-E-YZd-TMSSn8yV0,8318
|
|
42
|
-
omnigenome/src/model/classification/__init__.py,sha256=6LxPh0ROdvzxMRLyLiksuX32H3F72vIbm1N3VCPnz4A,400
|
|
43
|
-
omnigenome/src/model/classification/model.py,sha256=_XPiVhoF-7QD_VV9shG5c95F_XD6t8E-czg3Eb2xDdQ,25184
|
|
44
|
-
omnigenome/src/model/embedding/__init__.py,sha256=pxrepPcVIp5ZmkEC5M3vRnmBJJTB1qXII5Zot_WSA3k,395
|
|
45
|
-
omnigenome/src/model/embedding/model.py,sha256=H3XyIJ-HxgYDPFqnfd1XsWO3JYV5DnDAbMqgz6oe3g0,10355
|
|
46
|
-
omnigenome/src/model/mlm/__init__.py,sha256=_rVEdL3nec_7hze2nTG0jgoupDJYMyl8EVcb02ZNwRs,407
|
|
47
|
-
omnigenome/src/model/mlm/model.py,sha256=RaUiX66Kzinn6vE1Rp23paJSOJP78EpxS0a9QJinQn0,6547
|
|
48
|
-
omnigenome/src/model/regression/__init__.py,sha256=Qdd4ctbc6jqTJDxHLe5MzSA3eDvW4vdypJm28bMQkco,396
|
|
49
|
-
omnigenome/src/model/regression/model.py,sha256=sgFqZ00J_gmeP9eRt1JYlbNN_KZhWLP1m4bEKKzV1Z8,28177
|
|
50
|
-
omnigenome/src/model/regression/resnet.py,sha256=YgzUAhGdXG_pAmvjQOpEjjzwxtm7sOb-a4et0CPJ09Y,17093
|
|
51
|
-
omnigenome/src/model/rna_design/__init__.py,sha256=jHAhyxuJScz1h1HY1UfZ3_fSVmwJOwsSACQkTItAl38,396
|
|
52
|
-
omnigenome/src/model/rna_design/model.py,sha256=_4RQtlmLPCpMCDXWweV_FOiWPNN-ZrjceWcnw9Gphsc,15826
|
|
53
|
-
omnigenome/src/model/seq2seq/__init__.py,sha256=OAi4RVSwCbFOIvEwQZCDTImBOFrLkHs1JXwipL_4fqs,406
|
|
54
|
-
omnigenome/src/model/seq2seq/model.py,sha256=-dGUjg7uRmnbR4rPH_lF8SgpR-U5lCoVJm4oNqzCOGg,1715
|
|
55
|
-
omnigenome/src/tokenizer/__init__.py,sha256=zYUgX-FJ-fw0GNJuuW8ovo9kflDmGDd8Z0F3AMDFXF4,556
|
|
56
|
-
omnigenome/src/tokenizer/bpe_tokenizer.py,sha256=5_qIuTYOWkhZH4O1jRf-hm4C130SjyVQP6avQkAkUr4,7898
|
|
57
|
-
omnigenome/src/tokenizer/kmers_tokenizer.py,sha256=KqyoY3xxllhl2Ij3YZk_zuW16dtH96I0hU5OMvO-EtA,9359
|
|
58
|
-
omnigenome/src/tokenizer/single_nucleotide_tokenizer.py,sha256=MAIeTtqQUDn6LYbYMy8RTzIU6S40rM5IE-imyM2MgFE,9794
|
|
59
|
-
omnigenome/src/trainer/__init__.py,sha256=adib_MJlED-EXXkNCt9MhV1U9mPPoOrLReA-dxhgdT0,453
|
|
60
|
-
omnigenome/src/trainer/accelerate_trainer.py,sha256=d5xtBdxtNWFyPYtodGkmnUi8t9ex3qlD4YFNOy3hvaY,28393
|
|
61
|
-
omnigenome/src/trainer/hf_trainer.py,sha256=FdWU7g7iH0s-pmbTDOqYBwVMr6TKSKGUyrcfhum39Nk,2631
|
|
62
|
-
omnigenome/src/trainer/trainer.py,sha256=NByvYdcazND_c9Ot2RSxoFjOV-Wc6kReu099BZbk13A,21179
|
|
63
|
-
omnigenome/utility/__init__.py,sha256=UvgBH3hsW2JoXfGG6dHJeQLHVF7rXdzK39wGCoJOEKI,101
|
|
64
|
-
omnigenome/utility/ensemble.py,sha256=2xSDvGULKJwE5LfLWfnNjsWo2DFf_TFmvqyhrYFlC90,13413
|
|
65
|
-
omnigenome/utility/hub_utils.py,sha256=yJF5RVICFbWy9JQU2P0lM3NXumu7HxNLCjpTKAudZf4,20313
|
|
66
|
-
omnigenome/utility/dataset_hub/__init__.py,sha256=6OTdqTWgKkuPQRBCGycpS1BboBoyT8rF3jY1EBSSAmE,434
|
|
67
|
-
omnigenome/utility/dataset_hub/dataset_hub.py,sha256=OW0XE27nCbuVD18UatFwi1w4UEfKxnv77R61D7bd0Vg,7008
|
|
68
|
-
omnigenome/utility/model_hub/__init__.py,sha256=N0xf5urzb6MxR8g-xF1CTzX0OFpHjngfETk6cmn92sc,392
|
|
69
|
-
omnigenome/utility/model_hub/model_hub.py,sha256=kgyjrU9qUb_pflIKqOQOUrk3zlF5pM8JazBxJyiBTck,8792
|
|
70
|
-
omnigenome/utility/pipeline_hub/__init__.py,sha256=rm7k6GDXyrYGQyLO3ZFpYLnjAYf6s8xmJuOPypDNQ-g,395
|
|
71
|
-
omnigenome/utility/pipeline_hub/pipeline.py,sha256=F_pDC_JKJF3b8OZtqzKzl99Q1FLMRQdBaGURi8CjZzg,20121
|
|
72
|
-
omnigenome/utility/pipeline_hub/pipeline_hub.py,sha256=9HB5xZTr8HZtsuC6MrWWNbR4cg_5BW0CVXKQk2AwcWA,5384
|
|
73
|
-
omnigenome-0.3.0a0.dist-info/licenses/LICENSE,sha256=oQoefBV6siHctF0ET-OO3EaSZgtqGtf-wdIAmokS8iY,11560
|
|
74
|
-
tests/__init__.py,sha256=MsAPLRxLTpyXAhwM2gnJ4ibJT6h5-SvyFd7gglSfZ2c,270
|
|
75
|
-
tests/conftest.py,sha256=YNK66YqdtjofE65R59JJ2aiq24a3ltQ1ISSdf4Uqvlg,4344
|
|
76
|
-
tests/test_dataset_patterns.py,sha256=x0pv09jOircm2fzbZ1xseCitZCSEftoOvVKv-3O_BJ4,11020
|
|
77
|
-
tests/test_examples_syntax.py,sha256=0ERqLxOoi05zGZqkKKaAoHkhWggxyXGd7h2HVVd2Wtc,3277
|
|
78
|
-
tests/test_model_loading.py,sha256=H5Ug1jNns74_CzL_j5fzqm_eFke4VlQF9HEmAV733eY,7145
|
|
79
|
-
tests/test_rna_functions.py,sha256=f5RsT0n1dWv8YCuHkAaXzUjrn3nLqNoe3CIyGfMDYNY,10066
|
|
80
|
-
tests/test_training_patterns.py,sha256=ouAP-tDlAbUR2EmHjqDcsMnfOyp3Y4s7rfftzxZPF0I,10979
|
|
81
|
-
omnigenome-0.3.0a0.dist-info/METADATA,sha256=gQmzq0zgIiL7Lbl8qvMqraVDPqRu74C_WTDF9LODX0M,10306
|
|
82
|
-
omnigenome-0.3.0a0.dist-info/WHEEL,sha256=lTU6B6eIfYoiQJTZNc-fyaR6BpL6ehTzU3xGYxn2n8k,91
|
|
83
|
-
omnigenome-0.3.0a0.dist-info/entry_points.txt,sha256=uu40UgMPxY65ASdRbrhkwH94r7CIYgyG_iDBmqFQbD8,84
|
|
84
|
-
omnigenome-0.3.0a0.dist-info/top_level.txt,sha256=m8gQveMmM9nKDt36SOZTsagU7jEtZq7seCOwmDws-Lw,17
|
|
85
|
-
omnigenome-0.3.0a0.dist-info/RECORD,,
|
tests/__init__.py
DELETED
|
@@ -1,9 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
OmniGenBench test suite.
|
|
3
|
-
|
|
4
|
-
This test suite validates functionality based on examples in the examples/ directory.
|
|
5
|
-
Tests are designed to be fast and avoid heavy dependencies while ensuring
|
|
6
|
-
code patterns and interfaces work correctly.
|
|
7
|
-
"""
|
|
8
|
-
|
|
9
|
-
__version__ = "0.1.0"
|