omnigenome 0.3.0a0__py3-none-any.whl → 0.3.1a0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (73) hide show
  1. omnigenome/__init__.py +29 -44
  2. omnigenome/auto/auto_bench/__init__.py +0 -1
  3. omnigenome/auto/auto_bench/auto_bench.py +24 -14
  4. omnigenome/auto/auto_train/__init__.py +0 -1
  5. omnigenome/auto/auto_train/auto_train.py +11 -12
  6. omnigenome/auto/bench_hub/__init__.py +0 -1
  7. omnigenome/auto/bench_hub/bench_hub.py +1 -1
  8. omnigenome/cli/__init__.py +0 -1
  9. omnigenome/cli/commands/__init__.py +0 -1
  10. omnigenome/cli/commands/base.py +10 -10
  11. omnigenome/cli/commands/bench/__init__.py +0 -1
  12. omnigenome/cli/commands/bench/bench_cli.py +10 -10
  13. omnigenome/cli/commands/rna/__init__.py +0 -1
  14. omnigenome/cli/commands/rna/rna_design.py +10 -11
  15. omnigenome/src/__init__.py +0 -1
  16. omnigenome/src/abc/__init__.py +0 -1
  17. omnigenome/src/abc/abstract_dataset.py +38 -19
  18. omnigenome/src/abc/abstract_metric.py +7 -7
  19. omnigenome/src/abc/abstract_model.py +15 -14
  20. omnigenome/src/abc/abstract_tokenizer.py +9 -7
  21. omnigenome/src/dataset/omni_dataset.py +16 -14
  22. omnigenome/src/lora/__init__.py +0 -1
  23. omnigenome/src/lora/lora_model.py +47 -41
  24. omnigenome/src/metric/classification_metric.py +11 -11
  25. omnigenome/src/metric/metric.py +19 -19
  26. omnigenome/src/metric/ranking_metric.py +15 -15
  27. omnigenome/src/metric/regression_metric.py +18 -18
  28. omnigenome/src/misc/utils.py +214 -150
  29. omnigenome/src/model/augmentation/__init__.py +0 -1
  30. omnigenome/src/model/augmentation/model.py +17 -17
  31. omnigenome/src/model/classification/__init__.py +0 -1
  32. omnigenome/src/model/classification/model.py +28 -32
  33. omnigenome/src/model/embedding/__init__.py +0 -1
  34. omnigenome/src/model/embedding/model.py +35 -35
  35. omnigenome/src/model/mlm/__init__.py +0 -1
  36. omnigenome/src/model/mlm/model.py +13 -13
  37. omnigenome/src/model/module_utils.py +17 -17
  38. omnigenome/src/model/regression/__init__.py +0 -1
  39. omnigenome/src/model/regression/model.py +72 -77
  40. omnigenome/src/model/regression/resnet.py +32 -32
  41. omnigenome/src/model/rna_design/__init__.py +0 -1
  42. omnigenome/src/model/rna_design/model.py +168 -118
  43. omnigenome/src/model/seq2seq/__init__.py +0 -1
  44. omnigenome/src/model/seq2seq/model.py +4 -4
  45. omnigenome/src/tokenizer/bpe_tokenizer.py +27 -27
  46. omnigenome/src/tokenizer/kmers_tokenizer.py +22 -22
  47. omnigenome/src/tokenizer/single_nucleotide_tokenizer.py +11 -11
  48. omnigenome/src/trainer/accelerate_trainer.py +40 -32
  49. omnigenome/src/trainer/hf_trainer.py +8 -8
  50. omnigenome/src/trainer/trainer.py +37 -25
  51. omnigenome/utility/dataset_hub/__init__.py +0 -1
  52. omnigenome/utility/dataset_hub/dataset_hub.py +13 -13
  53. omnigenome/utility/ensemble.py +26 -26
  54. omnigenome/utility/hub_utils.py +8 -8
  55. omnigenome/utility/model_hub/__init__.py +0 -1
  56. omnigenome/utility/model_hub/model_hub.py +26 -25
  57. omnigenome/utility/pipeline_hub/__init__.py +0 -1
  58. omnigenome/utility/pipeline_hub/pipeline.py +49 -49
  59. omnigenome/utility/pipeline_hub/pipeline_hub.py +17 -17
  60. {omnigenome-0.3.0a0.dist-info → omnigenome-0.3.1a0.dist-info}/METADATA +3 -3
  61. omnigenome-0.3.1a0.dist-info/RECORD +78 -0
  62. {omnigenome-0.3.0a0.dist-info → omnigenome-0.3.1a0.dist-info}/top_level.txt +0 -1
  63. omnigenome-0.3.0a0.dist-info/RECORD +0 -85
  64. tests/__init__.py +0 -9
  65. tests/conftest.py +0 -160
  66. tests/test_dataset_patterns.py +0 -291
  67. tests/test_examples_syntax.py +0 -83
  68. tests/test_model_loading.py +0 -183
  69. tests/test_rna_functions.py +0 -255
  70. tests/test_training_patterns.py +0 -302
  71. {omnigenome-0.3.0a0.dist-info → omnigenome-0.3.1a0.dist-info}/WHEEL +0 -0
  72. {omnigenome-0.3.0a0.dist-info → omnigenome-0.3.1a0.dist-info}/entry_points.txt +0 -0
  73. {omnigenome-0.3.0a0.dist-info → omnigenome-0.3.1a0.dist-info}/licenses/LICENSE +0 -0
omnigenome/__init__.py CHANGED
@@ -8,19 +8,13 @@
8
8
  # Copyright (C) 2019-2024. All Rights Reserved.
9
9
 
10
10
  """
11
- OmniGenome: A comprehensive toolkit for genomic foundation models.
11
+ This __init__.py file exposes the Key API Entries of the library for easy access.
12
+ Use dir(omnigenome) to see all available APIs.
12
13
 
13
- This package provides a suite of tools for working with genomic data, including:
14
- - Automated benchmarking and training pipelines.
15
- - A hub for accessing pre-trained models, datasets, and pipelines.
16
- - A flexible and extensible framework for building custom models and tasks.
17
-
18
- This __init__.py file exposes the core components of the library for easy access.
19
-
20
- Key Components:
21
- ---------------
14
+ Key API Entries:
15
+ ----------------
22
16
  - AutoBench: Automated benchmarking of genomic models
23
- - AutoTrain: Automated training of genomic models
17
+ - AutoTrain: Automated training of genomic models
24
18
  - BenchHub: Hub for accessing benchmarks
25
19
  - ModelHub: Hub for accessing pre-trained models
26
20
  - PipelineHub: Hub for accessing pipelines
@@ -29,27 +23,10 @@ Key Components:
29
23
  - Tokenizer classes for different sequence representations
30
24
  - Metric classes for evaluation
31
25
  - Trainer classes for model training
32
-
33
- Example Usage:
34
- --------------
35
- ```python
36
- from omnigenome import AutoBench, AutoTrain, OmniModelForSequenceClassification
37
-
38
- # Run automated benchmarking
39
- bench = AutoBench("RGB", "model_name")
40
- bench.run()
41
-
42
- # Train a model
43
- trainer = AutoTrain("RGB", "model_name")
44
- trainer.run()
45
-
46
- # Use a specific model
47
- model = OmniModelForSequenceClassification("model_path", tokenizer)
48
- ```
49
26
  """
50
27
 
51
- __name__ = "omnigenome"
52
- __version__ = "0.3.0alpha"
28
+ __name__ = "omnigenbench"
29
+ __version__ = "0.3.1alpha"
53
30
 
54
31
  __author__ = "YANG, HENG"
55
32
  __email__ = "yangheng2021@gmail.com"
@@ -140,10 +117,18 @@ from .src.abc.abstract_tokenizer import OmniTokenizer as OmniGenomeTokenizer
140
117
  from .src.abc.abstract_dataset import OmniDataset as OmniGenomeDataset
141
118
  from .src.abc.abstract_metric import OmniMetric as OmniGenomeMetric
142
119
  from .src.abc.abstract_model import OmniModel as OmniGenomeModel
143
- from .src.dataset.omni_dataset import OmniDatasetForSequenceClassification as OmniGenomeDatasetForSequenceClassification
144
- from .src.dataset.omni_dataset import OmniDatasetForSequenceRegression as OmniGenomeDatasetForSequenceRegression
145
- from .src.dataset.omni_dataset import OmniDatasetForTokenClassification as OmniGenomeDatasetForTokenClassification
146
- from .src.dataset.omni_dataset import OmniDatasetForTokenRegression as OmniGenomeDatasetForTokenRegression
120
+ from .src.dataset.omni_dataset import (
121
+ OmniDatasetForSequenceClassification as OmniGenomeDatasetForSequenceClassification,
122
+ )
123
+ from .src.dataset.omni_dataset import (
124
+ OmniDatasetForSequenceRegression as OmniGenomeDatasetForSequenceRegression,
125
+ )
126
+ from .src.dataset.omni_dataset import (
127
+ OmniDatasetForTokenClassification as OmniGenomeDatasetForTokenClassification,
128
+ )
129
+ from .src.dataset.omni_dataset import (
130
+ OmniDatasetForTokenRegression as OmniGenomeDatasetForTokenRegression,
131
+ )
147
132
  from .src.lora.lora_model import OmniLoraModel as OmniGenomeLoraModel
148
133
  from .src.model import (
149
134
  OmniModelForSequenceClassification as OmniGenomeModelForSequenceClassification,
@@ -159,10 +144,10 @@ from .src.model import (
159
144
  OmniModelForRNADesign as OmniGenomeModelForRNADesign,
160
145
  OmniModelForEmbedding as OmniGenomeModelForEmbedding,
161
146
  OmniModelForAugmentation as OmniGenomeModelForAugmentation,
162
-
163
147
  )
164
148
 
165
149
  from .utility.ensemble import VoteEnsemblePredictor
150
+
166
151
  # ------------------------------------------------------------------------------
167
152
 
168
153
 
@@ -215,7 +200,7 @@ __all__ = [
215
200
  "download_benchmark",
216
201
  "download_model",
217
202
  "download_pipeline",
218
- "VoteEnsemblePredictor"
203
+ "VoteEnsemblePredictor",
219
204
  ]
220
205
 
221
206
 
@@ -227,10 +212,10 @@ LOGO1 = r"""
227
212
  @@** = **@@ \___/ |_| |_| |_||_| |_||_|
228
213
  @@** ------+ **@@
229
214
  @@** =========# **@@ ____
230
- @@ ---------------+ @@ / ___| ___ _ __ ___ _ __ ___ ___
231
- @@ ================== @@ | | _ / _ \| '_ \ / _ \ | '_ ` _ \ / _ \
232
- @@ +--------------- @@ | |_| || __/| | | || (_) || | | | | || __/
233
- @@** #========= **@@ \____| \___||_| |_| \___/ |_| |_| |_| \___|
215
+ @@ ---------------+ @@ / ___| ___ _ __
216
+ @@ ================== @@ | | _ / _ \| '_ \
217
+ @@ +--------------- @@ | |_| || __/| | | |
218
+ @@** #========= **@@ \____| \___||_| |_|
234
219
  @@** +------ **@@
235
220
  @@** = **@@
236
221
  @@** ____ _
@@ -251,10 +236,10 @@ LOGO2 = r"""
251
236
  *@@ #========= @@*
252
237
  *@@* *@@*
253
238
  *@@ +---@@@* ____
254
- *@@* ** / ___| ___ _ __ ___ _ __ ___ ___
255
- **@** | | _ / _ \| '_ \ / _ \ | '_ ` _ \ / _ \
256
- *@@* *@@* | |_| || __/| | | || (_) || | | | | || __/
257
- *@@ ---+ @@* \____| \___||_| |_| \___/ |_| |_| |_| \___|
239
+ *@@* ** / ___| ___ _ __
240
+ **@** | | _ / _ \| '_ \
241
+ *@@* *@@* | |_| || __/| | | |
242
+ *@@ ---+ @@* \____| \___||_| |_|
258
243
  *@@* *@@*
259
244
  *@@ =========# @@*
260
245
  *@@ @@*
@@ -9,4 +9,3 @@
9
9
  """
10
10
  This package contains modules for automated benchmarking of models.
11
11
  """
12
-
@@ -34,18 +34,18 @@ from ... import __version__ as omnigenome_version
34
34
  class AutoBench:
35
35
  """
36
36
  AutoBench is a class for automatically benchmarking genomic foundation models.
37
-
37
+
38
38
  This class provides a comprehensive framework for evaluating genomic models
39
39
  across multiple benchmarks and tasks. It handles loading benchmarks, models,
40
40
  tokenizers, and running evaluations with proper metric tracking and result
41
41
  visualization.
42
-
42
+
43
43
  AutoBench supports various evaluation scenarios including:
44
44
  - Single model evaluation across multiple benchmarks
45
45
  - Multi-seed evaluation for robustness testing
46
46
  - Different trainer backends (native, accelerate, huggingface)
47
47
  - Automatic metric visualization and result tracking
48
-
48
+
49
49
  Attributes:
50
50
  benchmark (str): The name or path of the benchmark to use.
51
51
  model_name_or_path (str): The name or path of the model to evaluate.
@@ -73,19 +73,19 @@ class AutoBench:
73
73
  model_name_or_path (str): The name or path of the model to evaluate.
74
74
  tokenizer: The tokenizer to use. If None, it will be loaded from the model path.
75
75
  **kwargs: Additional keyword arguments.
76
- - autocast (str): The autocast precision to use ('fp16', 'bf16', etc.).
76
+ - autocast (str): The autocast precision to use ('fp16', 'bf16', etc.).
77
77
  Defaults to 'fp16'.
78
- - overwrite (bool): Whether to overwrite existing evaluation results.
78
+ - overwrite (bool): Whether to overwrite existing evaluation results.
79
79
  Defaults to False.
80
- - trainer (str): The trainer to use ('native', 'accelerate', 'hf_trainer').
80
+ - trainer (str): The trainer to use ('native', 'accelerate', 'hf_trainer').
81
81
  Defaults to 'native'.
82
82
 
83
83
  Example:
84
84
  >>> # Initialize with a benchmark and model
85
85
  >>> bench = AutoBench("RGB", "model_name")
86
-
86
+
87
87
  >>> # Initialize with custom settings
88
- >>> bench = AutoBench("RGB", "model_name",
88
+ >>> bench = AutoBench("RGB", "model_name",
89
89
  ... autocast="bf16", trainer="accelerate")
90
90
  """
91
91
  self.benchmark = benchmark.rstrip("/")
@@ -137,7 +137,7 @@ class AutoBench:
137
137
  def bench_info(self):
138
138
  """
139
139
  Prints and returns information about the current benchmark setup.
140
-
140
+
141
141
  This method provides a comprehensive overview of the current
142
142
  benchmark configuration, including benchmark details, model information,
143
143
  and evaluation settings.
@@ -161,7 +161,7 @@ class AutoBench:
161
161
  def run(self, **kwargs):
162
162
  """
163
163
  Runs the benchmarking process.
164
-
164
+
165
165
  This method iterates through the tasks in the benchmark, loads the corresponding
166
166
  configurations, initializes the model, tokenizer, and datasets, and then
167
167
  trains and evaluates the model. It supports multiple evaluation seeds and
@@ -174,7 +174,7 @@ class AutoBench:
174
174
  Example:
175
175
  >>> # Run benchmarking with default settings
176
176
  >>> bench.run()
177
-
177
+
178
178
  >>> # Run with custom parameters
179
179
  >>> bench.run(learning_rate=1e-4, batch_size=16)
180
180
  """
@@ -218,7 +218,11 @@ class AutoBench:
218
218
  for key, value in _kwargs.items():
219
219
  if key in bench_config:
220
220
  fprint(
221
- "Override", key, "with", value, "according to the input kwargs"
221
+ "Override",
222
+ key,
223
+ "with",
224
+ value,
225
+ "according to the input kwargs",
222
226
  )
223
227
  bench_config.update({key: value})
224
228
 
@@ -239,7 +243,11 @@ class AutoBench:
239
243
  for key, value in _kwargs.items():
240
244
  if key in bench_config:
241
245
  fprint(
242
- "Override", key, "with", value, "according to the input kwargs"
246
+ "Override",
247
+ key,
248
+ "with",
249
+ value,
250
+ "according to the input kwargs",
243
251
  )
244
252
  bench_config.update({key: value})
245
253
 
@@ -290,7 +298,9 @@ class AutoBench:
290
298
  fprint(f"\n{model}")
291
299
 
292
300
  if kwargs.get("lora_config", None) is not None:
293
- fprint("Applying LoRA to the model with config:", kwargs["lora_config"])
301
+ fprint(
302
+ "Applying LoRA to the model with config:", kwargs["lora_config"]
303
+ )
294
304
  model = OmniLoraModel(model, **kwargs.get("lora_config", {}))
295
305
 
296
306
  # Init Trainer
@@ -10,4 +10,3 @@
10
10
  """
11
11
  This package contains modules for automated training of models.
12
12
  """
13
-
@@ -33,17 +33,17 @@ autotrain_evaluations = "./autotrain_evaluations"
33
33
  class AutoTrain:
34
34
  """
35
35
  AutoTrain is a class for automatically training genomic foundation models on a given dataset.
36
-
36
+
37
37
  This class provides a comprehensive framework for training genomic models
38
38
  on various datasets with minimal configuration. It handles dataset loading,
39
39
  model initialization, training configuration, and result tracking.
40
-
40
+
41
41
  AutoTrain supports various training scenarios including:
42
42
  - Single dataset training with multiple seeds
43
43
  - Different trainer backends (native, accelerate, huggingface)
44
44
  - Automatic metric visualization and result tracking
45
45
  - Configurable training parameters
46
-
46
+
47
47
  Attributes:
48
48
  dataset (str): The name or path of the dataset to use for training.
49
49
  model_name_or_path (str): The name or path of the model to train.
@@ -70,19 +70,19 @@ class AutoTrain:
70
70
  model_name_or_path (str): The name or path of the model to train.
71
71
  tokenizer: The tokenizer to use. If None, it will be loaded from the model path.
72
72
  **kwargs: Additional keyword arguments.
73
- - autocast (str): The autocast precision to use ('fp16', 'bf16', etc.).
73
+ - autocast (str): The autocast precision to use ('fp16', 'bf16', etc.).
74
74
  Defaults to 'fp16'.
75
- - overwrite (bool): Whether to overwrite existing training results.
75
+ - overwrite (bool): Whether to overwrite existing training results.
76
76
  Defaults to False.
77
- - trainer (str): The trainer to use ('native', 'accelerate', 'hf_trainer').
77
+ - trainer (str): The trainer to use ('native', 'accelerate', 'hf_trainer').
78
78
  Defaults to 'accelerate'.
79
79
 
80
80
  Example:
81
81
  >>> # Initialize with a dataset and model
82
82
  >>> trainer = AutoTrain("dataset_name", "model_name")
83
-
83
+
84
84
  >>> # Initialize with custom settings
85
- >>> trainer = AutoTrain("dataset_name", "model_name",
85
+ >>> trainer = AutoTrain("dataset_name", "model_name",
86
86
  ... autocast="bf16", trainer="accelerate")
87
87
  """
88
88
  self.dataset = dataset.rstrip("/")
@@ -118,7 +118,7 @@ class AutoTrain:
118
118
  def bench_info(self):
119
119
  """
120
120
  Print and return information about the current training setup.
121
-
121
+
122
122
  This method provides a comprehensive overview of the current
123
123
  training configuration, including dataset details, model information,
124
124
  and training settings.
@@ -140,7 +140,7 @@ class AutoTrain:
140
140
  def run(self, **kwargs):
141
141
  """
142
142
  Run the training process.
143
-
143
+
144
144
  This method loads the dataset configuration, initializes the model and
145
145
  tokenizer, and runs training across multiple seeds. It supports various
146
146
  training backends and automatic result tracking.
@@ -152,12 +152,11 @@ class AutoTrain:
152
152
  Example:
153
153
  >>> # Run training with default settings
154
154
  >>> trainer.run()
155
-
155
+
156
156
  >>> # Run with custom parameters
157
157
  >>> trainer.run(learning_rate=1e-4, batch_size=16)
158
158
  """
159
159
 
160
-
161
160
  clean_temp_checkpoint(1) # clean temp checkpoint older than 1 day
162
161
 
163
162
  _kwargs = kwargs.copy()
@@ -9,4 +9,3 @@
9
9
  """
10
10
  This package contains modules for the benchmark hub.
11
11
  """
12
-
@@ -11,7 +11,7 @@
11
11
  class BenchHub:
12
12
  """
13
13
  A hub for accessing and managing benchmarks.
14
-
14
+
15
15
  This class is intended to provide a centralized way to list, download,
16
16
  and inspect available benchmarks for OmniGenome.
17
17
  """
@@ -10,4 +10,3 @@
10
10
  """
11
11
  This package contains modules for the command-line interface.
12
12
  """
13
-
@@ -10,4 +10,3 @@
10
10
  """
11
11
  This package contains modules for the CLI commands.
12
12
  """
13
-
@@ -13,15 +13,15 @@ from abc import ABC, abstractmethod
13
13
  class BaseCommand(ABC):
14
14
  """
15
15
  Abstract base class for all CLI commands in OmniGenome.
16
-
16
+
17
17
  This class provides a common interface for all command-line interface
18
18
  commands in the OmniGenome framework. It defines the structure that
19
19
  all command classes must follow, including registration and common
20
20
  argument handling.
21
-
21
+
22
22
  Subclasses must implement the `register_command` method to define
23
23
  their specific command-line interface and arguments.
24
-
24
+
25
25
  Example:
26
26
  >>> class MyCommand(BaseCommand):
27
27
  ... @classmethod
@@ -29,7 +29,7 @@ class BaseCommand(ABC):
29
29
  ... parser = subparsers.add_parser("mycommand", help="My command")
30
30
  ... parser.add_argument("--input", required=True)
31
31
  ... parser.set_defaults(func=cls.execute)
32
- ...
32
+ ...
33
33
  ... @staticmethod
34
34
  ... def execute(args):
35
35
  ... print(f"Executing with input: {args.input}")
@@ -40,14 +40,14 @@ class BaseCommand(ABC):
40
40
  def register_command(cls, subparsers):
41
41
  """
42
42
  Register the command and its arguments with the main parser.
43
-
43
+
44
44
  This abstract method must be implemented by all subclasses to define
45
45
  their specific command-line interface, including arguments, help text,
46
46
  and default functions.
47
-
47
+
48
48
  Args:
49
49
  subparsers: The subparsers object from the main ArgumentParser
50
-
50
+
51
51
  Example:
52
52
  >>> parser = argparse.ArgumentParser()
53
53
  >>> subparsers = parser.add_subparsers()
@@ -59,13 +59,13 @@ class BaseCommand(ABC):
59
59
  def add_common_arguments(cls, parser):
60
60
  """
61
61
  Add common arguments to a command's parser.
62
-
62
+
63
63
  This method adds standard arguments that are common across all
64
64
  OmniGenome CLI commands, such as logging level and output directory.
65
-
65
+
66
66
  Args:
67
67
  parser: The ArgumentParser for the specific command
68
-
68
+
69
69
  Example:
70
70
  >>> parser = argparse.ArgumentParser()
71
71
  >>> BaseCommand.add_common_arguments(parser)
@@ -10,4 +10,3 @@
10
10
  """
11
11
  This package contains modules for the benchmark command.
12
12
  """
13
-
@@ -43,18 +43,18 @@ class BenchCommand(BaseCommand):
43
43
  ... --bs_scale 2 \
44
44
  ... --overwrite True
45
45
  """
46
-
46
+
47
47
  @classmethod
48
48
  def register_command(cls, subparsers):
49
49
  """
50
50
  Register the autobench command with the argument parser.
51
-
51
+
52
52
  This method sets up the command-line interface for the autobench functionality,
53
53
  including all necessary arguments and their descriptions.
54
-
54
+
55
55
  Args:
56
56
  subparsers: The subparsers object from argparse to add the command to
57
-
57
+
58
58
  Example:
59
59
  >>> parser = argparse.ArgumentParser()
60
60
  >>> subparsers = parser.add_subparsers()
@@ -122,15 +122,15 @@ class BenchCommand(BaseCommand):
122
122
  def execute(args: argparse.Namespace):
123
123
  """
124
124
  Execute the autobench command with the provided arguments.
125
-
125
+
126
126
  This method runs the automated benchmarking process using the AutoBench
127
127
  class. It handles model and tokenizer loading, benchmark execution,
128
128
  and result logging.
129
-
129
+
130
130
  Args:
131
131
  args (argparse.Namespace): Parsed command-line arguments containing
132
132
  benchmark configuration and model settings
133
-
133
+
134
134
  Example:
135
135
  >>> args = parser.parse_args(['autobench', '--model', 'model_name'])
136
136
  >>> BenchCommand.execute(args)
@@ -187,13 +187,13 @@ class BenchCommand(BaseCommand):
187
187
  def register_command(subparsers):
188
188
  """
189
189
  Register the autobench command with the CLI.
190
-
190
+
191
191
  This function is a convenience wrapper for registering the BenchCommand
192
192
  with the argument parser.
193
-
193
+
194
194
  Args:
195
195
  subparsers: The subparsers object from argparse to add the command to
196
-
196
+
197
197
  Example:
198
198
  >>> parser = argparse.ArgumentParser()
199
199
  >>> subparsers = parser.add_subparsers()
@@ -10,4 +10,3 @@
10
10
  """
11
11
  This package contains modules for the rna command.
12
12
  """
13
-
@@ -54,13 +54,13 @@ class RNADesignCommand(BaseCommand):
54
54
  def register_command(cls, subparsers):
55
55
  """
56
56
  Register the RNA design command with the argument parser.
57
-
57
+
58
58
  This method sets up the command-line interface for RNA sequence design,
59
59
  including all necessary arguments and their descriptions.
60
-
60
+
61
61
  Args:
62
62
  subparsers: The subparsers object from argparse to add the command to
63
-
63
+
64
64
  Example:
65
65
  >>> parser = argparse.ArgumentParser()
66
66
  >>> subparsers = parser.add_subparsers()
@@ -109,18 +109,18 @@ class RNADesignCommand(BaseCommand):
109
109
  def execute(args: argparse.Namespace):
110
110
  """
111
111
  Execute the RNA design command with the provided arguments.
112
-
112
+
113
113
  This method runs the RNA sequence design process using genetic algorithms.
114
114
  It validates parameters, loads the model, runs the design optimization,
115
115
  and outputs or saves the results.
116
-
116
+
117
117
  Args:
118
118
  args (argparse.Namespace): Parsed command-line arguments containing
119
119
  design parameters and model settings
120
-
120
+
121
121
  Raises:
122
122
  ValueError: If mutation_ratio is not between 0.0 and 1.0
123
-
123
+
124
124
  Example:
125
125
  >>> args = parser.parse_args(['design', '--structure', '(((...)))'])
126
126
  >>> RNADesignCommand.execute(args)
@@ -162,17 +162,16 @@ class RNADesignCommand(BaseCommand):
162
162
  def register_command(subparsers):
163
163
  """
164
164
  Register the RNA design command with the CLI.
165
-
165
+
166
166
  This function is a convenience wrapper for registering the RNADesignCommand
167
167
  with the argument parser.
168
-
168
+
169
169
  Args:
170
170
  subparsers: The subparsers object from argparse to add the command to
171
-
171
+
172
172
  Example:
173
173
  >>> parser = argparse.ArgumentParser()
174
174
  >>> subparsers = parser.add_subparsers()
175
175
  >>> register_command(subparsers)
176
176
  """
177
177
  RNADesignCommand.register_command(subparsers)
178
-
@@ -9,4 +9,3 @@
9
9
  """
10
10
  This package contains the core source code of the OmniGenome library.
11
11
  """
12
-
@@ -9,4 +9,3 @@
9
9
  """
10
10
  This package contains abstract base classes for datasets, models, and tokenizers.
11
11
  """
12
-