ocf-data-sampler 0.0.24__py3-none-any.whl → 0.0.26__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ocf-data-sampler might be problematic. Click here for more details.

Files changed (28) hide show
  1. ocf_data_sampler/config/model.py +84 -87
  2. ocf_data_sampler/load/load_dataset.py +55 -0
  3. ocf_data_sampler/load/nwp/providers/ecmwf.py +5 -2
  4. ocf_data_sampler/load/site.py +30 -0
  5. ocf_data_sampler/numpy_batch/__init__.py +1 -0
  6. ocf_data_sampler/numpy_batch/site.py +29 -0
  7. ocf_data_sampler/select/__init__.py +8 -1
  8. ocf_data_sampler/select/dropout.py +2 -1
  9. ocf_data_sampler/select/geospatial.py +43 -1
  10. ocf_data_sampler/select/select_spatial_slice.py +8 -2
  11. ocf_data_sampler/select/spatial_slice_for_dataset.py +53 -0
  12. ocf_data_sampler/select/time_slice_for_dataset.py +124 -0
  13. ocf_data_sampler/time_functions.py +11 -0
  14. ocf_data_sampler/torch_datasets/process_and_combine.py +153 -0
  15. ocf_data_sampler/torch_datasets/pvnet_uk_regional.py +8 -418
  16. ocf_data_sampler/torch_datasets/site.py +196 -0
  17. ocf_data_sampler/torch_datasets/valid_time_periods.py +108 -0
  18. {ocf_data_sampler-0.0.24.dist-info → ocf_data_sampler-0.0.26.dist-info}/METADATA +1 -1
  19. {ocf_data_sampler-0.0.24.dist-info → ocf_data_sampler-0.0.26.dist-info}/RECORD +28 -16
  20. {ocf_data_sampler-0.0.24.dist-info → ocf_data_sampler-0.0.26.dist-info}/WHEEL +1 -1
  21. {ocf_data_sampler-0.0.24.dist-info → ocf_data_sampler-0.0.26.dist-info}/top_level.txt +1 -0
  22. scripts/refactor_site.py +50 -0
  23. tests/config/test_config.py +9 -6
  24. tests/conftest.py +62 -0
  25. tests/load/test_load_sites.py +14 -0
  26. tests/torch_datasets/test_pvnet_uk_regional.py +4 -4
  27. tests/torch_datasets/test_site.py +85 -0
  28. {ocf_data_sampler-0.0.24.dist-info → ocf_data_sampler-0.0.26.dist-info}/LICENSE +0 -0
@@ -0,0 +1,124 @@
1
+ """ Slice datasets by time"""
2
+ import pandas as pd
3
+
4
+ from ocf_data_sampler.config import Configuration
5
+ from ocf_data_sampler.select.dropout import draw_dropout_time, apply_dropout_time
6
+ from ocf_data_sampler.select.select_time_slice import select_time_slice_nwp, select_time_slice
7
+ from ocf_data_sampler.time_functions import minutes
8
+
9
+
10
+ def slice_datasets_by_time(
11
+ datasets_dict: dict,
12
+ t0: pd.Timestamp,
13
+ config: Configuration,
14
+ ) -> dict:
15
+ """Slice the dictionary of input data sources around a given t0 time
16
+
17
+ Args:
18
+ datasets_dict: Dictionary of the input data sources
19
+ t0: The init-time
20
+ config: Configuration object.
21
+ """
22
+
23
+ sliced_datasets_dict = {}
24
+
25
+ if "nwp" in datasets_dict:
26
+
27
+ sliced_datasets_dict["nwp"] = {}
28
+
29
+ for nwp_key, da_nwp in datasets_dict["nwp"].items():
30
+
31
+ nwp_config = config.input_data.nwp[nwp_key]
32
+
33
+ sliced_datasets_dict["nwp"][nwp_key] = select_time_slice_nwp(
34
+ da_nwp,
35
+ t0,
36
+ sample_period_duration=minutes(nwp_config.time_resolution_minutes),
37
+ history_duration=minutes(nwp_config.history_minutes),
38
+ forecast_duration=minutes(nwp_config.forecast_minutes),
39
+ dropout_timedeltas=minutes(nwp_config.dropout_timedeltas_minutes),
40
+ dropout_frac=nwp_config.dropout_fraction,
41
+ accum_channels=nwp_config.accum_channels,
42
+ )
43
+
44
+ if "sat" in datasets_dict:
45
+
46
+ sat_config = config.input_data.satellite
47
+
48
+ sliced_datasets_dict["sat"] = select_time_slice(
49
+ datasets_dict["sat"],
50
+ t0,
51
+ sample_period_duration=minutes(sat_config.time_resolution_minutes),
52
+ interval_start=minutes(-sat_config.history_minutes),
53
+ interval_end=minutes(-sat_config.live_delay_minutes),
54
+ max_steps_gap=2,
55
+ )
56
+
57
+ # Randomly sample dropout
58
+ sat_dropout_time = draw_dropout_time(
59
+ t0,
60
+ dropout_timedeltas=minutes(sat_config.dropout_timedeltas_minutes),
61
+ dropout_frac=sat_config.dropout_fraction,
62
+ )
63
+
64
+ # Apply the dropout
65
+ sliced_datasets_dict["sat"] = apply_dropout_time(
66
+ sliced_datasets_dict["sat"],
67
+ sat_dropout_time,
68
+ )
69
+
70
+ if "gsp" in datasets_dict:
71
+ gsp_config = config.input_data.gsp
72
+
73
+ sliced_datasets_dict["gsp_future"] = select_time_slice(
74
+ datasets_dict["gsp"],
75
+ t0,
76
+ sample_period_duration=minutes(gsp_config.time_resolution_minutes),
77
+ interval_start=minutes(30),
78
+ interval_end=minutes(gsp_config.forecast_minutes),
79
+ )
80
+
81
+ sliced_datasets_dict["gsp"] = select_time_slice(
82
+ datasets_dict["gsp"],
83
+ t0,
84
+ sample_period_duration=minutes(gsp_config.time_resolution_minutes),
85
+ interval_start=-minutes(gsp_config.history_minutes),
86
+ interval_end=minutes(0),
87
+ )
88
+
89
+ # Dropout on the GSP, but not the future GSP
90
+ gsp_dropout_time = draw_dropout_time(
91
+ t0,
92
+ dropout_timedeltas=minutes(gsp_config.dropout_timedeltas_minutes),
93
+ dropout_frac=gsp_config.dropout_fraction,
94
+ )
95
+
96
+ sliced_datasets_dict["gsp"] = apply_dropout_time(
97
+ sliced_datasets_dict["gsp"], gsp_dropout_time
98
+ )
99
+
100
+ if "site" in datasets_dict:
101
+ site_config = config.input_data.site
102
+
103
+ sliced_datasets_dict["site"] = select_time_slice(
104
+ datasets_dict["site"],
105
+ t0,
106
+ sample_period_duration=minutes(site_config.time_resolution_minutes),
107
+ interval_start=-minutes(site_config.history_minutes),
108
+ interval_end=minutes(site_config.forecast_minutes),
109
+ )
110
+
111
+ # Randomly sample dropout
112
+ site_dropout_time = draw_dropout_time(
113
+ t0,
114
+ dropout_timedeltas=minutes(site_config.dropout_timedeltas_minutes),
115
+ dropout_frac=site_config.dropout_fraction,
116
+ )
117
+
118
+ # Apply the dropout
119
+ sliced_datasets_dict["site"] = apply_dropout_time(
120
+ sliced_datasets_dict["site"],
121
+ site_dropout_time,
122
+ )
123
+
124
+ return sliced_datasets_dict
@@ -0,0 +1,11 @@
1
+ import pandas as pd
2
+
3
+
4
+ def minutes(minutes: int | list[float]) -> pd.Timedelta | pd.TimedeltaIndex:
5
+ """Timedelta minutes
6
+
7
+ Args:
8
+ minutes: the number of minutes, single value or list
9
+ """
10
+ minutes_delta = pd.to_timedelta(minutes, unit="m")
11
+ return minutes_delta
@@ -0,0 +1,153 @@
1
+ import numpy as np
2
+ import pandas as pd
3
+ import xarray as xr
4
+
5
+ from ocf_data_sampler.config import Configuration
6
+ from ocf_data_sampler.constants import NWP_MEANS, NWP_STDS
7
+ from ocf_data_sampler.numpy_batch import (
8
+ convert_nwp_to_numpy_batch,
9
+ convert_satellite_to_numpy_batch,
10
+ convert_gsp_to_numpy_batch,
11
+ make_sun_position_numpy_batch,
12
+ convert_site_to_numpy_batch,
13
+ )
14
+ from ocf_data_sampler.numpy_batch.gsp import GSPBatchKey
15
+ from ocf_data_sampler.numpy_batch.nwp import NWPBatchKey
16
+ from ocf_data_sampler.select.geospatial import osgb_to_lon_lat
17
+ from ocf_data_sampler.select.location import Location
18
+ from ocf_data_sampler.time_functions import minutes
19
+
20
+
21
+ def process_and_combine_datasets(
22
+ dataset_dict: dict,
23
+ config: Configuration,
24
+ t0: pd.Timestamp,
25
+ location: Location,
26
+ sun_position_key: str = 'gsp'
27
+ ) -> dict:
28
+ """Normalize and convert data to numpy arrays"""
29
+
30
+ numpy_modalities = []
31
+
32
+ if "nwp" in dataset_dict:
33
+
34
+ nwp_numpy_modalities = dict()
35
+
36
+ for nwp_key, da_nwp in dataset_dict["nwp"].items():
37
+ # Standardise
38
+ provider = config.input_data.nwp[nwp_key].provider
39
+ da_nwp = (da_nwp - NWP_MEANS[provider]) / NWP_STDS[provider]
40
+ # Convert to NumpyBatch
41
+ nwp_numpy_modalities[nwp_key] = convert_nwp_to_numpy_batch(da_nwp)
42
+
43
+ # Combine the NWPs into NumpyBatch
44
+ numpy_modalities.append({NWPBatchKey.nwp: nwp_numpy_modalities})
45
+
46
+ if "sat" in dataset_dict:
47
+ # Satellite is already in the range [0-1] so no need to standardise
48
+ da_sat = dataset_dict["sat"]
49
+
50
+ # Convert to NumpyBatch
51
+ numpy_modalities.append(convert_satellite_to_numpy_batch(da_sat))
52
+
53
+ gsp_config = config.input_data.gsp
54
+
55
+ if "gsp" in dataset_dict:
56
+ da_gsp = xr.concat([dataset_dict["gsp"], dataset_dict["gsp_future"]], dim="time_utc")
57
+ da_gsp = da_gsp / da_gsp.effective_capacity_mwp
58
+
59
+ numpy_modalities.append(
60
+ convert_gsp_to_numpy_batch(
61
+ da_gsp, t0_idx=gsp_config.history_minutes // gsp_config.time_resolution_minutes
62
+ )
63
+ )
64
+
65
+ # Add coordinate data
66
+ # TODO: Do we need all of these?
67
+ numpy_modalities.append(
68
+ {
69
+ GSPBatchKey.gsp_id: location.id,
70
+ GSPBatchKey.x_osgb: location.x,
71
+ GSPBatchKey.y_osgb: location.y,
72
+ }
73
+ )
74
+
75
+
76
+ if "site" in dataset_dict:
77
+ site_config = config.input_data.site
78
+ da_sites = dataset_dict["site"]
79
+ da_sites = da_sites / da_sites.capacity_kwp
80
+
81
+ numpy_modalities.append(
82
+ convert_site_to_numpy_batch(
83
+ da_sites, t0_idx=site_config.history_minutes / site_config.time_resolution_minutes
84
+ )
85
+ )
86
+
87
+ if sun_position_key == 'gsp':
88
+ # Make sun coords NumpyBatch
89
+ datetimes = pd.date_range(
90
+ t0 - minutes(gsp_config.history_minutes),
91
+ t0 + minutes(gsp_config.forecast_minutes),
92
+ freq=minutes(gsp_config.time_resolution_minutes),
93
+ )
94
+
95
+ lon, lat = osgb_to_lon_lat(location.x, location.y)
96
+ key_prefix = "gsp"
97
+
98
+ elif sun_position_key == 'site':
99
+ # Make sun coords NumpyBatch
100
+ datetimes = pd.date_range(
101
+ t0 - minutes(site_config.history_minutes),
102
+ t0 + minutes(site_config.forecast_minutes),
103
+ freq=minutes(site_config.time_resolution_minutes),
104
+ )
105
+
106
+ lon, lat = location.x, location.y
107
+ key_prefix = "site"
108
+
109
+ numpy_modalities.append(
110
+ make_sun_position_numpy_batch(datetimes, lon, lat, key_prefix=key_prefix)
111
+ )
112
+
113
+ # Combine all the modalities and fill NaNs
114
+ combined_sample = merge_dicts(numpy_modalities)
115
+ combined_sample = fill_nans_in_arrays(combined_sample)
116
+
117
+ return combined_sample
118
+
119
+
120
+ def merge_dicts(list_of_dicts: list[dict]) -> dict:
121
+ """Merge a list of dictionaries into a single dictionary"""
122
+ # TODO: This doesn't account for duplicate keys, which will be overwritten
123
+ combined_dict = {}
124
+ for d in list_of_dicts:
125
+ combined_dict.update(d)
126
+ return combined_dict
127
+
128
+
129
+ def fill_nans_in_arrays(batch: dict) -> dict:
130
+ """Fills all NaN values in each np.ndarray in the batch dictionary with zeros.
131
+
132
+ Operation is performed in-place on the batch.
133
+ """
134
+ for k, v in batch.items():
135
+ if isinstance(v, np.ndarray) and np.issubdtype(v.dtype, np.number):
136
+ if np.isnan(v).any():
137
+ batch[k] = np.nan_to_num(v, copy=False, nan=0.0)
138
+
139
+ # Recursion is included to reach NWP arrays in subdict
140
+ elif isinstance(v, dict):
141
+ fill_nans_in_arrays(v)
142
+
143
+ return batch
144
+
145
+
146
+ def compute(xarray_dict: dict) -> dict:
147
+ """Eagerly load a nested dictionary of xarray DataArrays"""
148
+ for k, v in xarray_dict.items():
149
+ if isinstance(v, dict):
150
+ xarray_dict[k] = compute(v)
151
+ else:
152
+ xarray_dict[k] = v.compute(scheduler="single-threaded")
153
+ return xarray_dict