ocf-data-sampler 0.0.24__py3-none-any.whl → 0.0.26__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ocf-data-sampler might be problematic. Click here for more details.
- ocf_data_sampler/config/model.py +84 -87
- ocf_data_sampler/load/load_dataset.py +55 -0
- ocf_data_sampler/load/nwp/providers/ecmwf.py +5 -2
- ocf_data_sampler/load/site.py +30 -0
- ocf_data_sampler/numpy_batch/__init__.py +1 -0
- ocf_data_sampler/numpy_batch/site.py +29 -0
- ocf_data_sampler/select/__init__.py +8 -1
- ocf_data_sampler/select/dropout.py +2 -1
- ocf_data_sampler/select/geospatial.py +43 -1
- ocf_data_sampler/select/select_spatial_slice.py +8 -2
- ocf_data_sampler/select/spatial_slice_for_dataset.py +53 -0
- ocf_data_sampler/select/time_slice_for_dataset.py +124 -0
- ocf_data_sampler/time_functions.py +11 -0
- ocf_data_sampler/torch_datasets/process_and_combine.py +153 -0
- ocf_data_sampler/torch_datasets/pvnet_uk_regional.py +8 -418
- ocf_data_sampler/torch_datasets/site.py +196 -0
- ocf_data_sampler/torch_datasets/valid_time_periods.py +108 -0
- {ocf_data_sampler-0.0.24.dist-info → ocf_data_sampler-0.0.26.dist-info}/METADATA +1 -1
- {ocf_data_sampler-0.0.24.dist-info → ocf_data_sampler-0.0.26.dist-info}/RECORD +28 -16
- {ocf_data_sampler-0.0.24.dist-info → ocf_data_sampler-0.0.26.dist-info}/WHEEL +1 -1
- {ocf_data_sampler-0.0.24.dist-info → ocf_data_sampler-0.0.26.dist-info}/top_level.txt +1 -0
- scripts/refactor_site.py +50 -0
- tests/config/test_config.py +9 -6
- tests/conftest.py +62 -0
- tests/load/test_load_sites.py +14 -0
- tests/torch_datasets/test_pvnet_uk_regional.py +4 -4
- tests/torch_datasets/test_site.py +85 -0
- {ocf_data_sampler-0.0.24.dist-info → ocf_data_sampler-0.0.26.dist-info}/LICENSE +0 -0
ocf_data_sampler/config/model.py
CHANGED
|
@@ -14,7 +14,7 @@ import logging
|
|
|
14
14
|
from typing import Dict, List, Optional
|
|
15
15
|
from typing_extensions import Self
|
|
16
16
|
|
|
17
|
-
from pydantic import BaseModel, Field, RootModel, field_validator,
|
|
17
|
+
from pydantic import BaseModel, Field, RootModel, field_validator, model_validator
|
|
18
18
|
from ocf_data_sampler.constants import NWP_PROVIDERS
|
|
19
19
|
|
|
20
20
|
logger = logging.getLogger(__name__)
|
|
@@ -34,27 +34,12 @@ class Base(BaseModel):
|
|
|
34
34
|
class General(Base):
|
|
35
35
|
"""General pydantic model"""
|
|
36
36
|
|
|
37
|
-
name: str = Field("example", description="The name of this configuration file
|
|
37
|
+
name: str = Field("example", description="The name of this configuration file")
|
|
38
38
|
description: str = Field(
|
|
39
39
|
"example configuration", description="Description of this configuration file"
|
|
40
40
|
)
|
|
41
41
|
|
|
42
42
|
|
|
43
|
-
class DataSourceMixin(Base):
|
|
44
|
-
"""Mixin class, to add forecast and history minutes"""
|
|
45
|
-
|
|
46
|
-
forecast_minutes: int = Field(
|
|
47
|
-
...,
|
|
48
|
-
ge=0,
|
|
49
|
-
description="how many minutes to forecast in the future. ",
|
|
50
|
-
)
|
|
51
|
-
history_minutes: int = Field(
|
|
52
|
-
...,
|
|
53
|
-
ge=0,
|
|
54
|
-
description="how many historic minutes to use. ",
|
|
55
|
-
)
|
|
56
|
-
|
|
57
|
-
|
|
58
43
|
# noinspection PyMethodParameters
|
|
59
44
|
class DropoutMixin(Base):
|
|
60
45
|
"""Mixin class, to add dropout minutes"""
|
|
@@ -65,7 +50,12 @@ class DropoutMixin(Base):
|
|
|
65
50
|
"negative or zero.",
|
|
66
51
|
)
|
|
67
52
|
|
|
68
|
-
dropout_fraction: float = Field(
|
|
53
|
+
dropout_fraction: float = Field(
|
|
54
|
+
default=0,
|
|
55
|
+
description="Chance of dropout being applied to each sample",
|
|
56
|
+
ge=0,
|
|
57
|
+
le=1,
|
|
58
|
+
)
|
|
69
59
|
|
|
70
60
|
@field_validator("dropout_timedeltas_minutes")
|
|
71
61
|
def dropout_timedeltas_minutes_negative(cls, v: List[int]) -> List[int]:
|
|
@@ -75,12 +65,6 @@ class DropoutMixin(Base):
|
|
|
75
65
|
assert m <= 0, "Dropout timedeltas must be negative"
|
|
76
66
|
return v
|
|
77
67
|
|
|
78
|
-
@field_validator("dropout_fraction")
|
|
79
|
-
def dropout_fraction_valid(cls, v: float) -> float:
|
|
80
|
-
"""Validate 'dropout_fraction'"""
|
|
81
|
-
assert 0 <= v <= 1, "Dropout fraction must be between 0 and 1"
|
|
82
|
-
return v
|
|
83
|
-
|
|
84
68
|
@model_validator(mode="after")
|
|
85
69
|
def dropout_instructions_consistent(self) -> Self:
|
|
86
70
|
if self.dropout_fraction == 0:
|
|
@@ -93,36 +77,67 @@ class DropoutMixin(Base):
|
|
|
93
77
|
|
|
94
78
|
|
|
95
79
|
# noinspection PyMethodParameters
|
|
96
|
-
class
|
|
80
|
+
class TimeWindowMixin(Base):
|
|
97
81
|
"""Time resolution mix in"""
|
|
98
82
|
|
|
99
83
|
time_resolution_minutes: int = Field(
|
|
100
84
|
...,
|
|
85
|
+
gt=0,
|
|
101
86
|
description="The temporal resolution of the data in minutes",
|
|
102
87
|
)
|
|
103
88
|
|
|
89
|
+
forecast_minutes: int = Field(
|
|
90
|
+
...,
|
|
91
|
+
ge=0,
|
|
92
|
+
description="how many minutes to forecast in the future",
|
|
93
|
+
)
|
|
94
|
+
history_minutes: int = Field(
|
|
95
|
+
...,
|
|
96
|
+
ge=0,
|
|
97
|
+
description="how many historic minutes to use",
|
|
98
|
+
)
|
|
104
99
|
|
|
105
|
-
|
|
106
|
-
|
|
100
|
+
@field_validator("forecast_minutes")
|
|
101
|
+
def forecast_minutes_divide_by_time_resolution(cls, v, values) -> int:
|
|
102
|
+
if v % values.data["time_resolution_minutes"] != 0:
|
|
103
|
+
message = "Forecast duration must be divisible by time resolution"
|
|
104
|
+
logger.error(message)
|
|
105
|
+
raise Exception(message)
|
|
106
|
+
return v
|
|
107
107
|
|
|
108
|
-
|
|
109
|
-
|
|
108
|
+
@field_validator("history_minutes")
|
|
109
|
+
def history_minutes_divide_by_time_resolution(cls, v, values) -> int:
|
|
110
|
+
if v % values.data["time_resolution_minutes"] != 0:
|
|
111
|
+
message = "History duration must be divisible by time resolution"
|
|
112
|
+
logger.error(message)
|
|
113
|
+
raise Exception(message)
|
|
114
|
+
return v
|
|
115
|
+
|
|
116
|
+
|
|
117
|
+
class SpatialWindowMixin(Base):
|
|
118
|
+
"""Mixin class, to add path and image size"""
|
|
119
|
+
|
|
120
|
+
image_size_pixels_height: int = Field(
|
|
110
121
|
...,
|
|
111
|
-
description="The
|
|
112
|
-
)
|
|
113
|
-
satellite_channels: list[str] = Field(
|
|
114
|
-
..., description="the satellite channels that are used"
|
|
122
|
+
description="The number of pixels of the height of the region of interest",
|
|
115
123
|
)
|
|
116
|
-
|
|
124
|
+
|
|
125
|
+
image_size_pixels_width: int = Field(
|
|
117
126
|
...,
|
|
118
|
-
description="The number of pixels of the
|
|
119
|
-
" for non-HRV satellite channels.",
|
|
127
|
+
description="The number of pixels of the width of the region of interest",
|
|
120
128
|
)
|
|
121
129
|
|
|
122
|
-
|
|
130
|
+
|
|
131
|
+
class Satellite(TimeWindowMixin, DropoutMixin, SpatialWindowMixin):
|
|
132
|
+
"""Satellite configuration model"""
|
|
133
|
+
|
|
134
|
+
zarr_path: str | tuple[str] | list[str] = Field(
|
|
123
135
|
...,
|
|
124
|
-
description="The
|
|
125
|
-
|
|
136
|
+
description="The path or list of paths which hold the data zarr",
|
|
137
|
+
)
|
|
138
|
+
|
|
139
|
+
channels: list[str] = Field(
|
|
140
|
+
..., description="the satellite channels that are used"
|
|
126
141
|
)
|
|
127
142
|
|
|
128
143
|
live_delay_minutes: int = Field(
|
|
@@ -131,21 +146,21 @@ class Satellite(DataSourceMixin, TimeResolutionMixin, DropoutMixin):
|
|
|
131
146
|
|
|
132
147
|
|
|
133
148
|
# noinspection PyMethodParameters
|
|
134
|
-
class NWP(
|
|
149
|
+
class NWP(TimeWindowMixin, DropoutMixin, SpatialWindowMixin):
|
|
135
150
|
"""NWP configuration model"""
|
|
136
|
-
|
|
137
|
-
|
|
151
|
+
|
|
152
|
+
zarr_path: str | tuple[str] | list[str] = Field(
|
|
138
153
|
...,
|
|
139
|
-
description="The path which
|
|
154
|
+
description="The path or list of paths which hold the data zarr",
|
|
140
155
|
)
|
|
141
|
-
|
|
156
|
+
|
|
157
|
+
channels: list[str] = Field(
|
|
142
158
|
..., description="the channels used in the nwp data"
|
|
143
159
|
)
|
|
144
|
-
nwp_accum_channels: list[str] = Field([], description="the nwp channels which need to be diffed")
|
|
145
|
-
nwp_image_size_pixels_height: int = Field(..., description="The size of NWP spacial crop in pixels")
|
|
146
|
-
nwp_image_size_pixels_width: int = Field(..., description="The size of NWP spacial crop in pixels")
|
|
147
160
|
|
|
148
|
-
|
|
161
|
+
provider: str = Field(..., description="The provider of the NWP data")
|
|
162
|
+
|
|
163
|
+
accum_channels: list[str] = Field([], description="the nwp channels which need to be diffed")
|
|
149
164
|
|
|
150
165
|
max_staleness_minutes: Optional[int] = Field(
|
|
151
166
|
None,
|
|
@@ -154,33 +169,15 @@ class NWP(DataSourceMixin, TimeResolutionMixin, DropoutMixin):
|
|
|
154
169
|
" the maximum forecast horizon of the NWP and the requested forecast length.",
|
|
155
170
|
)
|
|
156
171
|
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
"""Validate 'nwp_provider'"""
|
|
172
|
+
@field_validator("provider")
|
|
173
|
+
def validate_provider(cls, v: str) -> str:
|
|
174
|
+
"""Validate 'provider'"""
|
|
161
175
|
if v.lower() not in NWP_PROVIDERS:
|
|
162
176
|
message = f"NWP provider {v} is not in {NWP_PROVIDERS}"
|
|
163
177
|
logger.warning(message)
|
|
164
178
|
raise Exception(message)
|
|
165
179
|
return v
|
|
166
180
|
|
|
167
|
-
# Todo: put into time mixin when moving intervals there
|
|
168
|
-
@field_validator("forecast_minutes")
|
|
169
|
-
def forecast_minutes_divide_by_time_resolution(cls, v: int, info: ValidationInfo) -> int:
|
|
170
|
-
if v % info.data["time_resolution_minutes"] != 0:
|
|
171
|
-
message = "Forecast duration must be divisible by time resolution"
|
|
172
|
-
logger.error(message)
|
|
173
|
-
raise Exception(message)
|
|
174
|
-
return v
|
|
175
|
-
|
|
176
|
-
@field_validator("history_minutes")
|
|
177
|
-
def history_minutes_divide_by_time_resolution(cls, v: int, info: ValidationInfo) -> int:
|
|
178
|
-
if v % info.data["time_resolution_minutes"] != 0:
|
|
179
|
-
message = "History duration must be divisible by time resolution"
|
|
180
|
-
logger.error(message)
|
|
181
|
-
raise Exception(message)
|
|
182
|
-
return v
|
|
183
|
-
|
|
184
181
|
|
|
185
182
|
class MultiNWP(RootModel):
|
|
186
183
|
"""Configuration for multiple NWPs"""
|
|
@@ -208,27 +205,26 @@ class MultiNWP(RootModel):
|
|
|
208
205
|
return self.root.items()
|
|
209
206
|
|
|
210
207
|
|
|
211
|
-
|
|
212
|
-
class GSP(DataSourceMixin, TimeResolutionMixin, DropoutMixin):
|
|
208
|
+
class GSP(TimeWindowMixin, DropoutMixin):
|
|
213
209
|
"""GSP configuration model"""
|
|
214
210
|
|
|
215
|
-
|
|
211
|
+
zarr_path: str = Field(..., description="The path which holds the GSP zarr")
|
|
216
212
|
|
|
217
|
-
@field_validator("forecast_minutes")
|
|
218
|
-
def forecast_minutes_divide_by_time_resolution(cls, v: int, info: ValidationInfo) -> int:
|
|
219
|
-
if v % info.data["time_resolution_minutes"] != 0:
|
|
220
|
-
message = "Forecast duration must be divisible by time resolution"
|
|
221
|
-
logger.error(message)
|
|
222
|
-
raise Exception(message)
|
|
223
|
-
return v
|
|
224
213
|
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
|
|
214
|
+
class Site(TimeWindowMixin, DropoutMixin):
|
|
215
|
+
"""Site configuration model"""
|
|
216
|
+
|
|
217
|
+
file_path: str = Field(
|
|
218
|
+
...,
|
|
219
|
+
description="The NetCDF files holding the power timeseries.",
|
|
220
|
+
)
|
|
221
|
+
metadata_file_path: str = Field(
|
|
222
|
+
...,
|
|
223
|
+
description="The CSV files describing power system",
|
|
224
|
+
)
|
|
225
|
+
|
|
226
|
+
# TODO validate the netcdf for sites
|
|
227
|
+
# TODO validate the csv for metadata
|
|
232
228
|
|
|
233
229
|
|
|
234
230
|
# noinspection PyPep8Naming
|
|
@@ -240,10 +236,11 @@ class InputData(Base):
|
|
|
240
236
|
satellite: Optional[Satellite] = None
|
|
241
237
|
nwp: Optional[MultiNWP] = None
|
|
242
238
|
gsp: Optional[GSP] = None
|
|
239
|
+
site: Optional[Site] = None
|
|
243
240
|
|
|
244
241
|
|
|
245
242
|
class Configuration(Base):
|
|
246
243
|
"""Configuration model for the dataset"""
|
|
247
244
|
|
|
248
245
|
general: General = General()
|
|
249
|
-
input_data: InputData = InputData()
|
|
246
|
+
input_data: InputData = InputData()
|
|
@@ -0,0 +1,55 @@
|
|
|
1
|
+
""" Loads all data sources """
|
|
2
|
+
import xarray as xr
|
|
3
|
+
|
|
4
|
+
from ocf_data_sampler.config import Configuration
|
|
5
|
+
from ocf_data_sampler.load.gsp import open_gsp
|
|
6
|
+
from ocf_data_sampler.load.nwp import open_nwp
|
|
7
|
+
from ocf_data_sampler.load.satellite import open_sat_data
|
|
8
|
+
from ocf_data_sampler.load.site import open_site
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def get_dataset_dict(config: Configuration) -> dict[str, dict[xr.DataArray]]:
|
|
12
|
+
"""Construct dictionary of all of the input data sources
|
|
13
|
+
|
|
14
|
+
Args:
|
|
15
|
+
config: Configuration file
|
|
16
|
+
"""
|
|
17
|
+
|
|
18
|
+
in_config = config.input_data
|
|
19
|
+
|
|
20
|
+
datasets_dict = {}
|
|
21
|
+
|
|
22
|
+
# Load GSP data unless the path is None
|
|
23
|
+
if in_config.gsp and in_config.gsp.zarr_path:
|
|
24
|
+
da_gsp = open_gsp(zarr_path=in_config.gsp.zarr_path).compute()
|
|
25
|
+
|
|
26
|
+
# Remove national GSP
|
|
27
|
+
datasets_dict["gsp"] = da_gsp.sel(gsp_id=slice(1, None))
|
|
28
|
+
|
|
29
|
+
# Load NWP data if in config
|
|
30
|
+
if in_config.nwp:
|
|
31
|
+
|
|
32
|
+
datasets_dict["nwp"] = {}
|
|
33
|
+
for nwp_source, nwp_config in in_config.nwp.items():
|
|
34
|
+
|
|
35
|
+
da_nwp = open_nwp(nwp_config.zarr_path, provider=nwp_config.provider)
|
|
36
|
+
|
|
37
|
+
da_nwp = da_nwp.sel(channel=list(nwp_config.channels))
|
|
38
|
+
|
|
39
|
+
datasets_dict["nwp"][nwp_source] = da_nwp
|
|
40
|
+
|
|
41
|
+
# Load satellite data if in config
|
|
42
|
+
if in_config.satellite:
|
|
43
|
+
sat_config = config.input_data.satellite
|
|
44
|
+
|
|
45
|
+
da_sat = open_sat_data(sat_config.zarr_path)
|
|
46
|
+
|
|
47
|
+
da_sat = da_sat.sel(channel=list(sat_config.channels))
|
|
48
|
+
|
|
49
|
+
datasets_dict["sat"] = da_sat
|
|
50
|
+
|
|
51
|
+
if in_config.site:
|
|
52
|
+
da_sites = open_site(in_config.site)
|
|
53
|
+
datasets_dict["site"] = da_sites
|
|
54
|
+
|
|
55
|
+
return datasets_dict
|
|
@@ -9,7 +9,6 @@ from ocf_data_sampler.load.utils import (
|
|
|
9
9
|
)
|
|
10
10
|
|
|
11
11
|
|
|
12
|
-
|
|
13
12
|
def open_ifs(zarr_path: Path | str | list[Path] | list[str]) -> xr.DataArray:
|
|
14
13
|
"""
|
|
15
14
|
Opens the ECMWF IFS NWP data
|
|
@@ -27,10 +26,14 @@ def open_ifs(zarr_path: Path | str | list[Path] | list[str]) -> xr.DataArray:
|
|
|
27
26
|
ds = ds.rename(
|
|
28
27
|
{
|
|
29
28
|
"init_time": "init_time_utc",
|
|
30
|
-
"variable": "channel",
|
|
31
29
|
}
|
|
32
30
|
)
|
|
33
31
|
|
|
32
|
+
# LEGACY SUPPORT
|
|
33
|
+
# rename variable to channel if it exists
|
|
34
|
+
if "variable" in ds:
|
|
35
|
+
ds = ds.rename({"variable": "channel"})
|
|
36
|
+
|
|
34
37
|
# Check the timestamps are unique and increasing
|
|
35
38
|
check_time_unique_increasing(ds.init_time_utc)
|
|
36
39
|
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
import xarray as xr
|
|
3
|
+
import numpy as np
|
|
4
|
+
|
|
5
|
+
from ocf_data_sampler.config.model import Site
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def open_site(sites_config: Site) -> xr.DataArray:
|
|
9
|
+
|
|
10
|
+
# Load site generation xr.Dataset
|
|
11
|
+
data_ds = xr.open_dataset(sites_config.file_path)
|
|
12
|
+
|
|
13
|
+
# Load site generation data
|
|
14
|
+
metadata_df = pd.read_csv(sites_config.metadata_file_path, index_col="site_id")
|
|
15
|
+
|
|
16
|
+
# Add coordinates
|
|
17
|
+
ds = data_ds.assign_coords(
|
|
18
|
+
latitude=(metadata_df.latitude.to_xarray()),
|
|
19
|
+
longitude=(metadata_df.longitude.to_xarray()),
|
|
20
|
+
capacity_kwp=data_ds.capacity_kwp,
|
|
21
|
+
)
|
|
22
|
+
|
|
23
|
+
# Sanity checks
|
|
24
|
+
assert np.isfinite(data_ds.capacity_kwp.values).all()
|
|
25
|
+
assert (data_ds.capacity_kwp.values > 0).all()
|
|
26
|
+
assert metadata_df.index.is_unique
|
|
27
|
+
|
|
28
|
+
return ds.generation_kw
|
|
29
|
+
|
|
30
|
+
|
|
@@ -4,4 +4,5 @@ from .gsp import convert_gsp_to_numpy_batch, GSPBatchKey
|
|
|
4
4
|
from .nwp import convert_nwp_to_numpy_batch, NWPBatchKey
|
|
5
5
|
from .satellite import convert_satellite_to_numpy_batch, SatelliteBatchKey
|
|
6
6
|
from .sun_position import make_sun_position_numpy_batch
|
|
7
|
+
from .site import convert_site_to_numpy_batch
|
|
7
8
|
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
"""Convert site to Numpy Batch"""
|
|
2
|
+
|
|
3
|
+
import xarray as xr
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class SiteBatchKey:
|
|
7
|
+
|
|
8
|
+
generation = "site"
|
|
9
|
+
site_capacity_kwp = "site_capacity_kwp"
|
|
10
|
+
site_time_utc = "site_time_utc"
|
|
11
|
+
site_t0_idx = "site_t0_idx"
|
|
12
|
+
site_solar_azimuth = "site_solar_azimuth"
|
|
13
|
+
site_solar_elevation = "site_solar_elevation"
|
|
14
|
+
site_id = "site_id"
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def convert_site_to_numpy_batch(da: xr.DataArray, t0_idx: int | None = None) -> dict:
|
|
18
|
+
"""Convert from Xarray to NumpyBatch"""
|
|
19
|
+
|
|
20
|
+
example = {
|
|
21
|
+
SiteBatchKey.generation: da.values,
|
|
22
|
+
SiteBatchKey.site_capacity_kwp: da.isel(time_utc=0)["capacity_kwp"].values,
|
|
23
|
+
SiteBatchKey.site_time_utc: da["time_utc"].values.astype(float),
|
|
24
|
+
}
|
|
25
|
+
|
|
26
|
+
if t0_idx is not None:
|
|
27
|
+
example[SiteBatchKey.site_t0_idx] = t0_idx
|
|
28
|
+
|
|
29
|
+
return example
|
|
@@ -1 +1,8 @@
|
|
|
1
|
-
|
|
1
|
+
from .fill_time_periods import fill_time_periods
|
|
2
|
+
from .find_contiguous_time_periods import (
|
|
3
|
+
find_contiguous_t0_periods,
|
|
4
|
+
intersection_of_multiple_dataframes_of_periods,
|
|
5
|
+
)
|
|
6
|
+
from .location import Location
|
|
7
|
+
from .spatial_slice_for_dataset import slice_datasets_by_space
|
|
8
|
+
from .time_slice_for_dataset import slice_datasets_by_time
|
|
@@ -1,3 +1,4 @@
|
|
|
1
|
+
""" Functions for simulating dropout in time series data """
|
|
1
2
|
import numpy as np
|
|
2
3
|
import pandas as pd
|
|
3
4
|
import xarray as xr
|
|
@@ -5,7 +6,7 @@ import xarray as xr
|
|
|
5
6
|
|
|
6
7
|
def draw_dropout_time(
|
|
7
8
|
t0: pd.Timestamp,
|
|
8
|
-
dropout_timedeltas: list[pd.Timedelta] | None,
|
|
9
|
+
dropout_timedeltas: list[pd.Timedelta] | pd.Timedelta | None,
|
|
9
10
|
dropout_frac: float = 0,
|
|
10
11
|
):
|
|
11
12
|
|
|
@@ -55,6 +55,23 @@ def lon_lat_to_osgb(
|
|
|
55
55
|
return _lon_lat_to_osgb(xx=x, yy=y)
|
|
56
56
|
|
|
57
57
|
|
|
58
|
+
def lon_lat_to_geostationary_area_coords(
|
|
59
|
+
longitude: Union[Number, np.ndarray],
|
|
60
|
+
latitude: Union[Number, np.ndarray],
|
|
61
|
+
xr_data: xr.DataArray,
|
|
62
|
+
) -> tuple[Union[Number, np.ndarray], Union[Number, np.ndarray]]:
|
|
63
|
+
"""Loads geostationary area and transformation from lat-lon to geostationary coords
|
|
64
|
+
|
|
65
|
+
Args:
|
|
66
|
+
longitude: longitude
|
|
67
|
+
latitude: latitude
|
|
68
|
+
xr_data: xarray object with geostationary area
|
|
69
|
+
|
|
70
|
+
Returns:
|
|
71
|
+
Geostationary coords: x, y
|
|
72
|
+
"""
|
|
73
|
+
return coordinates_to_geostationary_area_coords(longitude, latitude, xr_data, WGS84)
|
|
74
|
+
|
|
58
75
|
def osgb_to_geostationary_area_coords(
|
|
59
76
|
x: Union[Number, np.ndarray],
|
|
60
77
|
y: Union[Number, np.ndarray],
|
|
@@ -70,6 +87,31 @@ def osgb_to_geostationary_area_coords(
|
|
|
70
87
|
Returns:
|
|
71
88
|
Geostationary coords: x, y
|
|
72
89
|
"""
|
|
90
|
+
|
|
91
|
+
return coordinates_to_geostationary_area_coords(x, y, xr_data, OSGB36)
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
def coordinates_to_geostationary_area_coords(
|
|
96
|
+
x: Union[Number, np.ndarray],
|
|
97
|
+
y: Union[Number, np.ndarray],
|
|
98
|
+
xr_data: xr.DataArray,
|
|
99
|
+
crs_from: int
|
|
100
|
+
) -> tuple[Union[Number, np.ndarray], Union[Number, np.ndarray]]:
|
|
101
|
+
"""Loads geostationary area and transformation from respective coordiates to geostationary coords
|
|
102
|
+
|
|
103
|
+
Args:
|
|
104
|
+
x: osgb east-west, or latitude
|
|
105
|
+
y: osgb north-south, or longitude
|
|
106
|
+
xr_data: xarray object with geostationary area
|
|
107
|
+
crs_from: the cordiates system of x,y
|
|
108
|
+
|
|
109
|
+
Returns:
|
|
110
|
+
Geostationary coords: x, y
|
|
111
|
+
"""
|
|
112
|
+
|
|
113
|
+
assert crs_from in [OSGB36, WGS84], f"Unrecognized coordinate system: {crs_from}"
|
|
114
|
+
|
|
73
115
|
# Only load these if using geostationary projection
|
|
74
116
|
import pyresample
|
|
75
117
|
|
|
@@ -80,7 +122,7 @@ def osgb_to_geostationary_area_coords(
|
|
|
80
122
|
)
|
|
81
123
|
geostationary_crs = geostationary_area_definition.crs
|
|
82
124
|
osgb_to_geostationary = pyproj.Transformer.from_crs(
|
|
83
|
-
crs_from=
|
|
125
|
+
crs_from=crs_from, crs_to=geostationary_crs, always_xy=True
|
|
84
126
|
).transform
|
|
85
127
|
return osgb_to_geostationary(xx=x, yy=y)
|
|
86
128
|
|
|
@@ -8,6 +8,7 @@ import xarray as xr
|
|
|
8
8
|
from ocf_data_sampler.select.location import Location
|
|
9
9
|
from ocf_data_sampler.select.geospatial import (
|
|
10
10
|
lon_lat_to_osgb,
|
|
11
|
+
lon_lat_to_geostationary_area_coords,
|
|
11
12
|
osgb_to_geostationary_area_coords,
|
|
12
13
|
osgb_to_lon_lat,
|
|
13
14
|
spatial_coord_type,
|
|
@@ -101,7 +102,7 @@ def _get_idx_of_pixel_closest_to_poi(
|
|
|
101
102
|
|
|
102
103
|
def _get_idx_of_pixel_closest_to_poi_geostationary(
|
|
103
104
|
da: xr.DataArray,
|
|
104
|
-
|
|
105
|
+
center: Location,
|
|
105
106
|
) -> Location:
|
|
106
107
|
"""
|
|
107
108
|
Return x and y index location of pixel at center of region of interest.
|
|
@@ -116,7 +117,12 @@ def _get_idx_of_pixel_closest_to_poi_geostationary(
|
|
|
116
117
|
|
|
117
118
|
_, x_dim, y_dim = spatial_coord_type(da)
|
|
118
119
|
|
|
119
|
-
|
|
120
|
+
if center.coordinate_system == 'osgb':
|
|
121
|
+
x, y = osgb_to_geostationary_area_coords(x=center.x, y=center.y, xr_data=da)
|
|
122
|
+
elif center.coordinate_system == 'lon_lat':
|
|
123
|
+
x, y = lon_lat_to_geostationary_area_coords(longitude=center.x, latitude=center.y, xr_data=da)
|
|
124
|
+
else:
|
|
125
|
+
x,y = center.x, center.y
|
|
120
126
|
center_geostationary = Location(x=x, y=y, coordinate_system="geostationary")
|
|
121
127
|
|
|
122
128
|
# Check that the requested point lies within the data
|
|
@@ -0,0 +1,53 @@
|
|
|
1
|
+
""" Functions for selecting data around a given location """
|
|
2
|
+
from ocf_data_sampler.config import Configuration
|
|
3
|
+
from ocf_data_sampler.select.location import Location
|
|
4
|
+
from ocf_data_sampler.select.select_spatial_slice import select_spatial_slice_pixels
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
def slice_datasets_by_space(
|
|
8
|
+
datasets_dict: dict,
|
|
9
|
+
location: Location,
|
|
10
|
+
config: Configuration,
|
|
11
|
+
) -> dict:
|
|
12
|
+
"""Slice the dictionary of input data sources around a given location
|
|
13
|
+
|
|
14
|
+
Args:
|
|
15
|
+
datasets_dict: Dictionary of the input data sources
|
|
16
|
+
location: The location to sample around
|
|
17
|
+
config: Configuration object.
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
assert set(datasets_dict.keys()).issubset({"nwp", "sat", "gsp", "site"})
|
|
21
|
+
|
|
22
|
+
sliced_datasets_dict = {}
|
|
23
|
+
|
|
24
|
+
if "nwp" in datasets_dict:
|
|
25
|
+
|
|
26
|
+
sliced_datasets_dict["nwp"] = {}
|
|
27
|
+
|
|
28
|
+
for nwp_key, nwp_config in config.input_data.nwp.items():
|
|
29
|
+
|
|
30
|
+
sliced_datasets_dict["nwp"][nwp_key] = select_spatial_slice_pixels(
|
|
31
|
+
datasets_dict["nwp"][nwp_key],
|
|
32
|
+
location,
|
|
33
|
+
height_pixels=nwp_config.image_size_pixels_height,
|
|
34
|
+
width_pixels=nwp_config.image_size_pixels_width,
|
|
35
|
+
)
|
|
36
|
+
|
|
37
|
+
if "sat" in datasets_dict:
|
|
38
|
+
sat_config = config.input_data.satellite
|
|
39
|
+
|
|
40
|
+
sliced_datasets_dict["sat"] = select_spatial_slice_pixels(
|
|
41
|
+
datasets_dict["sat"],
|
|
42
|
+
location,
|
|
43
|
+
height_pixels=sat_config.image_size_pixels_height,
|
|
44
|
+
width_pixels=sat_config.image_size_pixels_width,
|
|
45
|
+
)
|
|
46
|
+
|
|
47
|
+
if "gsp" in datasets_dict:
|
|
48
|
+
sliced_datasets_dict["gsp"] = datasets_dict["gsp"].sel(gsp_id=location.id)
|
|
49
|
+
|
|
50
|
+
if "site" in datasets_dict:
|
|
51
|
+
sliced_datasets_dict["site"] = datasets_dict["site"].sel(site_id=location.id)
|
|
52
|
+
|
|
53
|
+
return sliced_datasets_dict
|