nystrom-ncut 0.0.1__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- nystrom_ncut/__init__.py +22 -0
- nystrom_ncut/ncut_pytorch.py +561 -0
- nystrom_ncut/new_ncut_pytorch.py +241 -0
- nystrom_ncut/nystrom.py +170 -0
- nystrom_ncut/propagation_utils.py +371 -0
- nystrom_ncut/visualize_utils.py +655 -0
- nystrom_ncut-0.0.1.dist-info/LICENSE +19 -0
- nystrom_ncut-0.0.1.dist-info/METADATA +164 -0
- nystrom_ncut-0.0.1.dist-info/RECORD +11 -0
- nystrom_ncut-0.0.1.dist-info/WHEEL +5 -0
- nystrom_ncut-0.0.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,655 @@
|
|
1
|
+
import logging
|
2
|
+
from typing import Any, Callable, Dict, Literal, Tuple
|
3
|
+
|
4
|
+
import numpy as np
|
5
|
+
import torch
|
6
|
+
import torch.nn.functional as F
|
7
|
+
from sklearn.base import BaseEstimator
|
8
|
+
|
9
|
+
from .propagation_utils import (
|
10
|
+
run_subgraph_sampling,
|
11
|
+
propagate_knn,
|
12
|
+
propagate_eigenvectors,
|
13
|
+
check_if_normalized,
|
14
|
+
quantile_min_max,
|
15
|
+
quantile_normalize
|
16
|
+
)
|
17
|
+
|
18
|
+
|
19
|
+
def _identity(X: torch.Tensor) -> torch.Tensor:
|
20
|
+
return X
|
21
|
+
|
22
|
+
|
23
|
+
def eigenvector_to_rgb(
|
24
|
+
eigen_vector: torch.Tensor,
|
25
|
+
method: Literal["tsne_2d", "tsne_3d", "umap_sphere", "umap_2d", "umap_3d"] = "tsne_3d",
|
26
|
+
num_sample: int = 1000,
|
27
|
+
perplexity: int = 150,
|
28
|
+
n_neighbors: int = 150,
|
29
|
+
min_distance: float = 0.1,
|
30
|
+
metric: Literal["cosine", "euclidean"] = "cosine",
|
31
|
+
device: str = None,
|
32
|
+
q: float = 0.95,
|
33
|
+
knn: int = 10,
|
34
|
+
seed: int = 0,
|
35
|
+
):
|
36
|
+
"""Use t-SNE or UMAP to convert eigenvectors (more than 3) to RGB color (3D RGB CUBE).
|
37
|
+
|
38
|
+
Args:
|
39
|
+
eigen_vector (torch.Tensor): eigenvectors, shape (n_samples, num_eig)
|
40
|
+
method (str): method to convert eigenvectors to RGB,
|
41
|
+
choices are: ['tsne_2d', 'tsne_3d', 'umap_sphere', 'umap_2d', 'umap_3d']
|
42
|
+
num_sample (int): number of samples for Nystrom-like approximation, increase for better approximation
|
43
|
+
perplexity (int): perplexity for t-SNE, increase for more global structure
|
44
|
+
n_neighbors (int): number of neighbors for UMAP, increase for more global structure
|
45
|
+
min_distance (float): minimum distance for UMAP
|
46
|
+
metric (str): distance metric, default 'cosine'
|
47
|
+
device (str): device to use for computation, if None, will not change device
|
48
|
+
q (float): quantile for RGB normalization, default 0.95. lower q results in more sharp colors
|
49
|
+
knn (int): number of KNN for propagating eigenvectors from subgraph to full graph,
|
50
|
+
smaller knn result in more sharp colors, default 1. knn>1 will smooth-out the embedding
|
51
|
+
in the t-SNE or UMAP space.
|
52
|
+
seed (int): random seed for t-SNE or UMAP
|
53
|
+
|
54
|
+
Examples:
|
55
|
+
>>> from ncut_pytorch import eigenvector_to_rgb
|
56
|
+
>>> X_3d, rgb = eigenvector_to_rgb(eigenvectors, method='tsne_3d')
|
57
|
+
>>> print(X_3d.shape, rgb.shape)
|
58
|
+
>>> # (10000, 3) (10000, 3)
|
59
|
+
|
60
|
+
Returns:
|
61
|
+
(torch.Tensor): t-SNE or UMAP embedding, shape (n_samples, 2) or (n_samples, 3)
|
62
|
+
(torch.Tensor): RGB color for each data sample, shape (n_samples, 3)
|
63
|
+
"""
|
64
|
+
kwargs = {
|
65
|
+
"num_sample": num_sample,
|
66
|
+
"perplexity": perplexity,
|
67
|
+
"n_neighbors": n_neighbors,
|
68
|
+
"min_distance": min_distance,
|
69
|
+
"metric": metric,
|
70
|
+
"device": device,
|
71
|
+
"q": q,
|
72
|
+
"knn": knn,
|
73
|
+
"seed": seed,
|
74
|
+
}
|
75
|
+
|
76
|
+
if method == "tsne_2d":
|
77
|
+
embed, rgb = rgb_from_tsne_2d(eigen_vector, **kwargs)
|
78
|
+
elif method == "tsne_3d":
|
79
|
+
embed, rgb = rgb_from_tsne_3d(eigen_vector, **kwargs)
|
80
|
+
elif method == "umap_sphere":
|
81
|
+
embed, rgb = rgb_from_umap_sphere(eigen_vector, **kwargs)
|
82
|
+
elif method == "umap_2d":
|
83
|
+
embed, rgb = rgb_from_umap_2d(eigen_vector, **kwargs)
|
84
|
+
elif method == "umap_3d":
|
85
|
+
embed, rgb = rgb_from_umap_3d(eigen_vector, **kwargs)
|
86
|
+
else:
|
87
|
+
raise ValueError("method should be 'tsne_2d', 'tsne_3d' or 'umap_sphere'")
|
88
|
+
|
89
|
+
return embed, rgb
|
90
|
+
|
91
|
+
|
92
|
+
def _rgb_with_dimensionality_reduction(
|
93
|
+
features: torch.Tensor,
|
94
|
+
num_sample: int,
|
95
|
+
metric: Literal["cosine", "euclidean"],
|
96
|
+
rgb_func: Callable[[torch.Tensor, float], torch.Tensor],
|
97
|
+
q: float, knn: int,
|
98
|
+
seed: int, device: str,
|
99
|
+
reduction: Callable[..., BaseEstimator],
|
100
|
+
reduction_dim: int,
|
101
|
+
reduction_kwargs: Dict[str, Any],
|
102
|
+
transform_func: Callable[[torch.Tensor], torch.Tensor] = _identity,
|
103
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
104
|
+
subgraph_indices = run_subgraph_sampling(
|
105
|
+
features,
|
106
|
+
num_sample=num_sample,
|
107
|
+
sample_method="farthest",
|
108
|
+
)
|
109
|
+
|
110
|
+
_inp = features[subgraph_indices].cpu().numpy()
|
111
|
+
_subgraph_embed = reduction(
|
112
|
+
n_components=reduction_dim,
|
113
|
+
metric=metric,
|
114
|
+
random_state=seed,
|
115
|
+
**reduction_kwargs
|
116
|
+
).fit_transform(_inp)
|
117
|
+
|
118
|
+
_subgraph_embed = torch.tensor(_subgraph_embed, dtype=torch.float32)
|
119
|
+
X_nd = transform_func(propagate_knn(
|
120
|
+
_subgraph_embed,
|
121
|
+
features,
|
122
|
+
features[subgraph_indices],
|
123
|
+
distance=metric,
|
124
|
+
knn=knn,
|
125
|
+
device=device,
|
126
|
+
move_output_to_cpu=True,
|
127
|
+
))
|
128
|
+
rgb = rgb_func(X_nd, q)
|
129
|
+
return X_nd.numpy(force=True), rgb
|
130
|
+
|
131
|
+
|
132
|
+
def rgb_from_tsne_2d(
|
133
|
+
features: torch.Tensor,
|
134
|
+
num_sample: int = 1000,
|
135
|
+
perplexity: int = 150,
|
136
|
+
metric: Literal["cosine", "euclidean"] = "cosine",
|
137
|
+
device: str = None,
|
138
|
+
seed: int = 0,
|
139
|
+
q: float = 0.95,
|
140
|
+
knn: int = 10,
|
141
|
+
**kwargs: Any,
|
142
|
+
):
|
143
|
+
"""
|
144
|
+
Returns:
|
145
|
+
(torch.Tensor): Embedding in 2D, shape (n_samples, 2)
|
146
|
+
(torch.Tensor): RGB color for each data sample, shape (n_samples, 3)
|
147
|
+
"""
|
148
|
+
try:
|
149
|
+
from sklearn.manifold import TSNE
|
150
|
+
except ImportError:
|
151
|
+
raise ImportError(
|
152
|
+
"sklearn import failed, please install `pip install scikit-learn`"
|
153
|
+
)
|
154
|
+
num_sample = min(num_sample, features.shape[0])
|
155
|
+
if perplexity > num_sample // 2:
|
156
|
+
logging.warning(
|
157
|
+
f"perplexity is larger than num_sample, set perplexity to {num_sample // 2}"
|
158
|
+
)
|
159
|
+
perplexity = num_sample // 2
|
160
|
+
|
161
|
+
x2d, rgb = _rgb_with_dimensionality_reduction(
|
162
|
+
features=features,
|
163
|
+
num_sample=num_sample,
|
164
|
+
metric=metric,
|
165
|
+
rgb_func=rgb_from_2d_colormap,
|
166
|
+
q=q, knn=knn,
|
167
|
+
seed=seed, device=device,
|
168
|
+
reduction=TSNE, reduction_dim=2, reduction_kwargs={
|
169
|
+
"perplexity": perplexity,
|
170
|
+
},
|
171
|
+
)
|
172
|
+
|
173
|
+
return x2d, rgb
|
174
|
+
|
175
|
+
|
176
|
+
def rgb_from_tsne_3d(
|
177
|
+
features: torch.Tensor,
|
178
|
+
num_sample: int = 1000,
|
179
|
+
perplexity: int = 150,
|
180
|
+
metric: Literal["cosine", "euclidean"] = "cosine",
|
181
|
+
device: str = None,
|
182
|
+
seed: int = 0,
|
183
|
+
q: float = 0.95,
|
184
|
+
knn: int = 10,
|
185
|
+
**kwargs: Any,
|
186
|
+
):
|
187
|
+
"""
|
188
|
+
Returns:
|
189
|
+
(torch.Tensor): Embedding in 3D, shape (n_samples, 3)
|
190
|
+
(torch.Tensor): RGB color for each data sample, shape (n_samples, 3)
|
191
|
+
"""
|
192
|
+
try:
|
193
|
+
from sklearn.manifold import TSNE
|
194
|
+
except ImportError:
|
195
|
+
raise ImportError(
|
196
|
+
"sklearn import failed, please install `pip install scikit-learn`"
|
197
|
+
)
|
198
|
+
num_sample = min(num_sample, features.shape[0])
|
199
|
+
if perplexity > num_sample // 2:
|
200
|
+
logging.warning(
|
201
|
+
f"perplexity is larger than num_sample, set perplexity to {num_sample // 2}"
|
202
|
+
)
|
203
|
+
perplexity = num_sample // 2
|
204
|
+
|
205
|
+
x3d, rgb = _rgb_with_dimensionality_reduction(
|
206
|
+
features=features,
|
207
|
+
num_sample=num_sample,
|
208
|
+
metric=metric,
|
209
|
+
rgb_func=rgb_from_3d_rgb_cube,
|
210
|
+
q=q, knn=knn,
|
211
|
+
seed=seed, device=device,
|
212
|
+
reduction=TSNE, reduction_dim=3, reduction_kwargs={
|
213
|
+
"perplexity": perplexity,
|
214
|
+
},
|
215
|
+
)
|
216
|
+
|
217
|
+
return x3d, rgb
|
218
|
+
|
219
|
+
|
220
|
+
def rgb_from_cosine_tsne_3d(
|
221
|
+
features: torch.Tensor,
|
222
|
+
num_sample: int = 1000,
|
223
|
+
perplexity: int = 150,
|
224
|
+
device: str = None,
|
225
|
+
seed: int = 0,
|
226
|
+
q: float = 0.95,
|
227
|
+
knn: int = 10,
|
228
|
+
**kwargs: Any,
|
229
|
+
):
|
230
|
+
"""
|
231
|
+
Returns:
|
232
|
+
(torch.Tensor): Embedding in 3D, shape (n_samples, 3)
|
233
|
+
(torch.Tensor): RGB color for each data sample, shape (n_samples, 3)
|
234
|
+
"""
|
235
|
+
try:
|
236
|
+
from sklearn.manifold import TSNE
|
237
|
+
except ImportError:
|
238
|
+
raise ImportError(
|
239
|
+
"sklearn import failed, please install `pip install scikit-learn`"
|
240
|
+
)
|
241
|
+
num_sample = min(num_sample, features.shape[0])
|
242
|
+
if perplexity > num_sample // 2:
|
243
|
+
logging.warning(
|
244
|
+
f"perplexity is larger than num_sample, set perplexity to {num_sample // 2}"
|
245
|
+
)
|
246
|
+
perplexity = num_sample // 2
|
247
|
+
|
248
|
+
|
249
|
+
def cosine_to_rbf(X: torch.Tensor) -> torch.Tensor: # [B... x N x 3]
|
250
|
+
normalized_X = X / torch.norm(X, p=2, dim=-1, keepdim=True) # [B... x N x 3]
|
251
|
+
D = 1 - normalized_X @ normalized_X.mT # [B... x N x N]
|
252
|
+
|
253
|
+
G = (D[..., :1, 1:] ** 2 + D[..., 1:, :1] ** 2 - D[..., 1:, 1:] ** 2) / 2 # [B... x (N - 1) x (N - 1)]
|
254
|
+
L, V = torch.linalg.eigh(G) # [B... x (N - 1)], [B... x (N - 1) x (N - 1)]
|
255
|
+
sqrtG = V[..., -3:] * (L[..., None, -3:] ** 0.5) # [B... x (N - 1) x 3]
|
256
|
+
|
257
|
+
Y = torch.cat((torch.zeros_like(sqrtG[..., :1, :]), sqrtG), dim=-2) # [B... x N x 3]
|
258
|
+
Y = Y - torch.mean(Y, dim=-2, keepdim=True)
|
259
|
+
return Y
|
260
|
+
|
261
|
+
def rgb_from_cosine(X_3d: torch.Tensor, q: float) -> torch.Tensor:
|
262
|
+
return rgb_from_3d_rgb_cube(cosine_to_rbf(X_3d), q=q)
|
263
|
+
|
264
|
+
x3d, rgb = _rgb_with_dimensionality_reduction(
|
265
|
+
features=features,
|
266
|
+
num_sample=num_sample,
|
267
|
+
metric="cosine",
|
268
|
+
rgb_func=rgb_from_cosine,
|
269
|
+
q=q, knn=knn,
|
270
|
+
seed=seed, device=device,
|
271
|
+
reduction=TSNE, reduction_dim=3, reduction_kwargs={
|
272
|
+
"perplexity": perplexity,
|
273
|
+
},
|
274
|
+
)
|
275
|
+
|
276
|
+
return x3d, rgb
|
277
|
+
|
278
|
+
|
279
|
+
def rgb_from_umap_2d(
|
280
|
+
features: torch.Tensor,
|
281
|
+
num_sample: int = 1000,
|
282
|
+
n_neighbors: int = 150,
|
283
|
+
min_dist: float = 0.1,
|
284
|
+
metric: Literal["cosine", "euclidean"] = "cosine",
|
285
|
+
device: str = None,
|
286
|
+
seed: int = 0,
|
287
|
+
q: float = 0.95,
|
288
|
+
knn: int = 10,
|
289
|
+
**kwargs: Any,
|
290
|
+
):
|
291
|
+
"""
|
292
|
+
Returns:
|
293
|
+
(torch.Tensor): Embedding in 2D, shape (n_samples, 2)
|
294
|
+
(torch.Tensor): RGB color for each data sample, shape (n_samples, 3)
|
295
|
+
"""
|
296
|
+
try:
|
297
|
+
from umap import UMAP
|
298
|
+
except ImportError:
|
299
|
+
raise ImportError("umap import failed, please install `pip install umap-learn`")
|
300
|
+
|
301
|
+
x2d, rgb = _rgb_with_dimensionality_reduction(
|
302
|
+
features=features,
|
303
|
+
num_sample=num_sample,
|
304
|
+
metric=metric,
|
305
|
+
rgb_func=rgb_from_2d_colormap,
|
306
|
+
q=q, knn=knn,
|
307
|
+
seed=seed, device=device,
|
308
|
+
reduction=UMAP, reduction_dim=2, reduction_kwargs={
|
309
|
+
"n_neighbors": n_neighbors,
|
310
|
+
"min_dist": min_dist,
|
311
|
+
},
|
312
|
+
)
|
313
|
+
|
314
|
+
return x2d, rgb
|
315
|
+
|
316
|
+
|
317
|
+
def rgb_from_umap_sphere(
|
318
|
+
features: torch.Tensor,
|
319
|
+
num_sample: int = 1000,
|
320
|
+
n_neighbors: int = 150,
|
321
|
+
min_dist: float = 0.1,
|
322
|
+
metric: Literal["cosine", "euclidean"] = "cosine",
|
323
|
+
device: str = None,
|
324
|
+
seed: int = 0,
|
325
|
+
q: float = 0.95,
|
326
|
+
knn: int = 10,
|
327
|
+
**kwargs: Any,
|
328
|
+
):
|
329
|
+
"""
|
330
|
+
Returns:
|
331
|
+
(torch.Tensor): Embedding in 2D, shape (n_samples, 2)
|
332
|
+
(torch.Tensor): RGB color for each data sample, shape (n_samples, 3)
|
333
|
+
"""
|
334
|
+
try:
|
335
|
+
from umap import UMAP
|
336
|
+
except ImportError:
|
337
|
+
raise ImportError("umap import failed, please install `pip install umap-learn`")
|
338
|
+
|
339
|
+
def transform_func(X: torch.Tensor) -> torch.Tensor:
|
340
|
+
return torch.stack((
|
341
|
+
torch.sin(X[:, 0]) * torch.cos(X[:, 1]),
|
342
|
+
torch.sin(X[:, 0]) * torch.sin(X[:, 1]),
|
343
|
+
torch.cos(X[:, 0]),
|
344
|
+
), dim=1)
|
345
|
+
|
346
|
+
x3d, rgb = _rgb_with_dimensionality_reduction(
|
347
|
+
features=features,
|
348
|
+
num_sample=num_sample,
|
349
|
+
metric=metric,
|
350
|
+
rgb_func=rgb_from_3d_rgb_cube,
|
351
|
+
q=q, knn=knn,
|
352
|
+
seed=seed, device=device,
|
353
|
+
reduction=UMAP, reduction_dim=2, reduction_kwargs={
|
354
|
+
"n_neighbors": n_neighbors,
|
355
|
+
"min_dist": min_dist,
|
356
|
+
"output_metric": "haversine",
|
357
|
+
},
|
358
|
+
transform_func=transform_func
|
359
|
+
)
|
360
|
+
|
361
|
+
return x3d, rgb
|
362
|
+
|
363
|
+
|
364
|
+
def rgb_from_umap_3d(
|
365
|
+
features: torch.Tensor,
|
366
|
+
num_sample: int = 1000,
|
367
|
+
n_neighbors: int = 150,
|
368
|
+
min_dist: float = 0.1,
|
369
|
+
metric: Literal["cosine", "euclidean"] = "cosine",
|
370
|
+
device: str = None,
|
371
|
+
seed: int = 0,
|
372
|
+
q: float = 0.95,
|
373
|
+
knn: int = 10,
|
374
|
+
**kwargs: Any,
|
375
|
+
):
|
376
|
+
"""
|
377
|
+
Returns:
|
378
|
+
(torch.Tensor): Embedding in 2D, shape (n_samples, 2)
|
379
|
+
(torch.Tensor): RGB color for each data sample, shape (n_samples, 3)
|
380
|
+
"""
|
381
|
+
try:
|
382
|
+
from umap import UMAP
|
383
|
+
except ImportError:
|
384
|
+
raise ImportError("umap import failed, please install `pip install umap-learn`")
|
385
|
+
|
386
|
+
x3d, rgb = _rgb_with_dimensionality_reduction(
|
387
|
+
features=features,
|
388
|
+
num_sample=num_sample,
|
389
|
+
metric=metric,
|
390
|
+
rgb_func=rgb_from_3d_rgb_cube,
|
391
|
+
q=q, knn=knn,
|
392
|
+
seed=seed, device=device,
|
393
|
+
reduction=UMAP, reduction_dim=3, reduction_kwargs={
|
394
|
+
"n_neighbors": n_neighbors,
|
395
|
+
"min_dist": min_dist,
|
396
|
+
},
|
397
|
+
)
|
398
|
+
|
399
|
+
return x3d, rgb
|
400
|
+
|
401
|
+
|
402
|
+
def flatten_sphere(X_3d):
|
403
|
+
x = np.arctan2(X_3d[:, 0], X_3d[:, 1])
|
404
|
+
y = -np.arccos(X_3d[:, 2])
|
405
|
+
X_2d = np.stack([x, y], axis=1)
|
406
|
+
return X_2d
|
407
|
+
|
408
|
+
|
409
|
+
def rotate_rgb_cube(rgb, position=1):
|
410
|
+
"""rotate RGB cube to different position
|
411
|
+
|
412
|
+
Args:
|
413
|
+
rgb (torch.Tensor): RGB color space [0, 1], shape (*, 3)
|
414
|
+
position (int): position to rotate, 0, 1, 2, 3, 4, 5, 6
|
415
|
+
|
416
|
+
Returns:
|
417
|
+
torch.Tensor: RGB color space, shape (n_samples, 3)
|
418
|
+
"""
|
419
|
+
assert position in range(0, 7), "position should be 0, 1, 2, 3, 4, 5, 6"
|
420
|
+
rotation_matrix = torch.tensor(
|
421
|
+
[
|
422
|
+
[0, 1, 0],
|
423
|
+
[0, 0, 1],
|
424
|
+
[1, 0, 0],
|
425
|
+
]
|
426
|
+
).float()
|
427
|
+
n_mul = position % 3
|
428
|
+
rotation_matrix = torch.matrix_power(rotation_matrix, n_mul)
|
429
|
+
rgb = rgb @ rotation_matrix
|
430
|
+
if position > 3:
|
431
|
+
rgb = 1 - rgb
|
432
|
+
return rgb
|
433
|
+
|
434
|
+
|
435
|
+
def rgb_from_3d_rgb_cube(X_3d, q=0.95):
|
436
|
+
"""convert 3D t-SNE to RGB color space
|
437
|
+
|
438
|
+
Args:
|
439
|
+
X_3d (torch.Tensor): 3D t-SNE embedding, shape (n_samples, 3)
|
440
|
+
q (float): quantile, default 0.95
|
441
|
+
|
442
|
+
Returns:
|
443
|
+
torch.Tensor: RGB color space, shape (n_samples, 3)
|
444
|
+
"""
|
445
|
+
assert X_3d.shape[1] == 3, "input should be (n_samples, 3)"
|
446
|
+
assert len(X_3d.shape) == 2, "input should be (n_samples, 3)"
|
447
|
+
rgb = []
|
448
|
+
for i in range(3):
|
449
|
+
rgb.append(quantile_normalize(X_3d[:, i], q=q))
|
450
|
+
rgb = torch.stack(rgb, dim=-1)
|
451
|
+
return rgb
|
452
|
+
|
453
|
+
|
454
|
+
def convert_to_lab_color(rgb, full_range=True):
|
455
|
+
from skimage import color
|
456
|
+
import copy
|
457
|
+
|
458
|
+
if isinstance(rgb, torch.Tensor):
|
459
|
+
rgb = rgb.cpu().numpy()
|
460
|
+
_rgb = copy.deepcopy(rgb)
|
461
|
+
_rgb[..., 0] = _rgb[..., 0] * 100
|
462
|
+
if full_range:
|
463
|
+
_rgb[..., 1] = _rgb[..., 1] * 255 - 128
|
464
|
+
_rgb[..., 2] = _rgb[..., 2] * 255 - 128
|
465
|
+
else:
|
466
|
+
_rgb[..., 1] = _rgb[..., 1] * 100 - 50
|
467
|
+
_rgb[..., 2] = _rgb[..., 2] * 100 - 50
|
468
|
+
lab_rgb = color.lab2rgb(_rgb)
|
469
|
+
return lab_rgb
|
470
|
+
|
471
|
+
|
472
|
+
def rgb_from_2d_colormap(X_2d, q=0.95):
|
473
|
+
xy = X_2d.clone()
|
474
|
+
for i in range(2):
|
475
|
+
xy[:, i] = quantile_normalize(xy[:, i], q=q)
|
476
|
+
|
477
|
+
try:
|
478
|
+
from pycolormap_2d import (
|
479
|
+
ColorMap2DBremm,
|
480
|
+
ColorMap2DZiegler,
|
481
|
+
ColorMap2DCubeDiagonal,
|
482
|
+
ColorMap2DSchumann,
|
483
|
+
)
|
484
|
+
except ImportError:
|
485
|
+
raise ImportError(
|
486
|
+
"pycolormap_2d import failed, please install `pip install pycolormap-2d`"
|
487
|
+
)
|
488
|
+
|
489
|
+
cmap = ColorMap2DCubeDiagonal()
|
490
|
+
xy = xy.cpu().numpy()
|
491
|
+
len_x, len_y = cmap._cmap_data.shape[:2]
|
492
|
+
x = (xy[:, 0] * (len_x - 1)).astype(int)
|
493
|
+
y = (xy[:, 1] * (len_y - 1)).astype(int)
|
494
|
+
rgb = cmap._cmap_data[x, y]
|
495
|
+
rgb = torch.tensor(rgb, dtype=torch.float32) / 255
|
496
|
+
return rgb
|
497
|
+
|
498
|
+
|
499
|
+
def propagate_rgb_color(
|
500
|
+
rgb: torch.Tensor,
|
501
|
+
eigenvectors: torch.Tensor,
|
502
|
+
new_eigenvectors: torch.Tensor,
|
503
|
+
knn: int = 10,
|
504
|
+
num_sample: int = 1000,
|
505
|
+
sample_method: Literal["farthest", "random"] = "farthest",
|
506
|
+
chunk_size: int = 8096,
|
507
|
+
device: str = None,
|
508
|
+
use_tqdm: bool = False,
|
509
|
+
):
|
510
|
+
"""Propagate RGB color to new nodes using KNN.
|
511
|
+
Args:
|
512
|
+
rgb (torch.Tensor): RGB color for each data sample, shape (n_samples, 3)
|
513
|
+
features (torch.Tensor): features from existing nodes, shape (n_samples, n_features)
|
514
|
+
new_features (torch.Tensor): features from new nodes, shape (n_new_samples, n_features)
|
515
|
+
knn (int): number of KNN to propagate RGB color, default 1
|
516
|
+
num_sample (int): number of samples for subgraph sampling, default 50000
|
517
|
+
sample_method (str): sample method, 'farthest' (default) or 'random'
|
518
|
+
chunk_size (int): chunk size for matrix multiplication, default 8096
|
519
|
+
device (str): device to use for computation, if None, will not change device
|
520
|
+
use_tqdm (bool): show progress bar when propagating RGB color from subgraph to full graph
|
521
|
+
|
522
|
+
Returns:
|
523
|
+
torch.Tensor: propagated RGB color for each data sample, shape (n_new_samples, 3)
|
524
|
+
|
525
|
+
Examples:
|
526
|
+
>>> old_rgb = torch.randn(3000, 3)
|
527
|
+
>>> old_eigenvectors = torch.randn(3000, 20)
|
528
|
+
>>> new_eigenvectors = torch.randn(200, 20)
|
529
|
+
>>> new_rgb = propagate_rgb_color(old_rgb, new_eigenvectors, old_eigenvectors)
|
530
|
+
>>> # new_eigenvectors.shape = (200, 3)
|
531
|
+
"""
|
532
|
+
return propagate_eigenvectors(
|
533
|
+
eigenvectors=rgb,
|
534
|
+
features=eigenvectors,
|
535
|
+
new_features=new_eigenvectors,
|
536
|
+
knn=knn,
|
537
|
+
num_sample=num_sample,
|
538
|
+
sample_method=sample_method,
|
539
|
+
chunk_size=chunk_size,
|
540
|
+
device=device,
|
541
|
+
use_tqdm=use_tqdm,
|
542
|
+
)
|
543
|
+
|
544
|
+
|
545
|
+
# application: get segmentation mask fron a reference eigenvector (point prompt)
|
546
|
+
def _transform_heatmap(heatmap, gamma=1.0):
|
547
|
+
"""Transform the heatmap using gamma, normalize and min-max normalization.
|
548
|
+
|
549
|
+
Args:
|
550
|
+
heatmap (torch.Tensor): distance heatmap, shape (B, H, W)
|
551
|
+
gamma (float, optional): scaling factor, higher means smaller mask. Defaults to 1.0.
|
552
|
+
|
553
|
+
Returns:
|
554
|
+
torch.Tensor: transformed heatmap, shape (B, H, W)
|
555
|
+
"""
|
556
|
+
# normalize the heatmap
|
557
|
+
heatmap = (heatmap - heatmap.mean()) / heatmap.std()
|
558
|
+
heatmap = torch.exp(heatmap)
|
559
|
+
# transform the heatmap using gamma
|
560
|
+
# large gamma means more focus on the high values, hence smaller mask
|
561
|
+
heatmap = 1 / heatmap ** gamma
|
562
|
+
# min-max normalization [0, 1]
|
563
|
+
vmin, vmax = quantile_min_max(heatmap.flatten())
|
564
|
+
heatmap = (heatmap - vmin) / (vmax - vmin)
|
565
|
+
return heatmap
|
566
|
+
|
567
|
+
|
568
|
+
def _clean_mask(mask, min_area=500):
|
569
|
+
"""clean the binary mask by removing small connected components.
|
570
|
+
|
571
|
+
Args:
|
572
|
+
- mask: A numpy image of a binary mask with 255 for the object and 0 for the background.
|
573
|
+
- min_area: Minimum area for a connected component to be considered valid (default 500).
|
574
|
+
|
575
|
+
Returns:
|
576
|
+
- bounding_boxes: List of bounding boxes for valid objects (x, y, width, height).
|
577
|
+
- cleaned_pil_mask: A Pillow image of the cleaned mask, with small components removed.
|
578
|
+
"""
|
579
|
+
|
580
|
+
import cv2
|
581
|
+
# Find connected components in the cleaned mask
|
582
|
+
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(mask, connectivity=8)
|
583
|
+
|
584
|
+
# Initialize an empty mask to store the final cleaned mask
|
585
|
+
final_cleaned_mask = np.zeros_like(mask)
|
586
|
+
|
587
|
+
# Collect bounding boxes for components that are larger than the threshold and update the cleaned mask
|
588
|
+
bounding_boxes = []
|
589
|
+
for i in range(1, num_labels): # Skip label 0 (background)
|
590
|
+
x, y, w, h, area = stats[i]
|
591
|
+
if area >= min_area:
|
592
|
+
# Add the bounding box of the valid component
|
593
|
+
bounding_boxes.append((x, y, w, h))
|
594
|
+
# Keep the valid components in the final cleaned mask
|
595
|
+
final_cleaned_mask[labels == i] = 255
|
596
|
+
|
597
|
+
return final_cleaned_mask, bounding_boxes
|
598
|
+
|
599
|
+
|
600
|
+
def get_mask(
|
601
|
+
all_eigvecs: torch.Tensor, prompt_eigvec: torch.Tensor,
|
602
|
+
threshold: float = 0.5, gamma: float = 1.0,
|
603
|
+
denoise: bool = True, denoise_area_th: int = 3):
|
604
|
+
"""Segmentation mask from one prompt eigenvector (at a clicked latent pixel).
|
605
|
+
</br> The mask is computed by measuring the cosine similarity between the clicked eigenvector and all the eigenvectors in the latent space.
|
606
|
+
</br> 1. Compute the cosine similarity between the clicked eigenvector and all the eigenvectors in the latent space.
|
607
|
+
</br> 2. Transform the heatmap, normalize and apply scaling (gamma).
|
608
|
+
</br> 3. Threshold the heatmap to get the mask.
|
609
|
+
</br> 4. Optionally denoise the mask by removing small connected components
|
610
|
+
|
611
|
+
Args:
|
612
|
+
all_eigvecs (torch.Tensor): (B, H, W, num_eig)
|
613
|
+
prompt_eigvec (torch.Tensor): (num_eig,)
|
614
|
+
threshold (float, optional): mask threshold, higher means smaller mask. Defaults to 0.5.
|
615
|
+
gamma (float, optional): mask scaling factor, higher means smaller mask. Defaults to 1.0.
|
616
|
+
denoise (bool, optional): mask denoising flag. Defaults to True.
|
617
|
+
denoise_area_th (int, optional): mask denoising area threshold. higher means more aggressive denoising. Defaults to 3.
|
618
|
+
|
619
|
+
Returns:
|
620
|
+
np.ndarray: masks (B, H, W), 1 for object, 0 for background
|
621
|
+
|
622
|
+
Examples:
|
623
|
+
>>> all_eigvecs = torch.randn(10, 64, 64, 20)
|
624
|
+
>>> prompt_eigvec = all_eigvecs[0, 32, 32] # center pixel
|
625
|
+
>>> masks = get_mask(all_eigvecs, prompt_eigvec, threshold=0.5, gamma=1.0, denoise=True, denoise_area_th=3)
|
626
|
+
>>> # masks.shape = (10, 64, 64)
|
627
|
+
"""
|
628
|
+
|
629
|
+
# normalize the eigenvectors to unit norm, to compute cosine similarity
|
630
|
+
if not check_if_normalized(all_eigvecs.reshape(-1, all_eigvecs.shape[-1])):
|
631
|
+
all_eigvecs = F.normalize(all_eigvecs, p=2, dim=-1)
|
632
|
+
|
633
|
+
prompt_eigvec = F.normalize(prompt_eigvec, p=2, dim=-1)
|
634
|
+
|
635
|
+
# compute the cosine similarity
|
636
|
+
cos_sim = all_eigvecs @ prompt_eigvec.unsqueeze(-1) # (B, H, W, 1)
|
637
|
+
cos_sim = cos_sim.squeeze(-1) # (B, H, W)
|
638
|
+
|
639
|
+
heatmap = 1 - cos_sim
|
640
|
+
|
641
|
+
# transform the heatmap, normalize and apply scaling (gamma)
|
642
|
+
heatmap = _transform_heatmap(heatmap, gamma=gamma)
|
643
|
+
|
644
|
+
masks = heatmap > threshold
|
645
|
+
masks = masks.cpu().numpy().astype(np.uint8)
|
646
|
+
|
647
|
+
if denoise:
|
648
|
+
cleaned_masks = []
|
649
|
+
for mask in masks:
|
650
|
+
cleaned_mask, _ = _clean_mask(mask, min_area=denoise_area_th)
|
651
|
+
cleaned_masks.append(cleaned_mask)
|
652
|
+
cleaned_masks = np.stack(cleaned_masks)
|
653
|
+
return cleaned_masks
|
654
|
+
|
655
|
+
return masks
|
@@ -0,0 +1,19 @@
|
|
1
|
+
Copyright (c) 2018 The Python Packaging Authority
|
2
|
+
|
3
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
4
|
+
of this software and associated documentation files (the "Software"), to deal
|
5
|
+
in the Software without restriction, including without limitation the rights
|
6
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
7
|
+
copies of the Software, and to permit persons to whom the Software is
|
8
|
+
furnished to do so, subject to the following conditions:
|
9
|
+
|
10
|
+
The above copyright notice and this permission notice shall be included in all
|
11
|
+
copies or substantial portions of the Software.
|
12
|
+
|
13
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
14
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
15
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
16
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
17
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
18
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
19
|
+
SOFTWARE.
|