nystrom-ncut 0.0.1__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- nystrom_ncut/__init__.py +22 -0
- nystrom_ncut/ncut_pytorch.py +561 -0
- nystrom_ncut/new_ncut_pytorch.py +241 -0
- nystrom_ncut/nystrom.py +170 -0
- nystrom_ncut/propagation_utils.py +371 -0
- nystrom_ncut/visualize_utils.py +655 -0
- nystrom_ncut-0.0.1.dist-info/LICENSE +19 -0
- nystrom_ncut-0.0.1.dist-info/METADATA +164 -0
- nystrom_ncut-0.0.1.dist-info/RECORD +11 -0
- nystrom_ncut-0.0.1.dist-info/WHEEL +5 -0
- nystrom_ncut-0.0.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,241 @@
|
|
1
|
+
import logging
|
2
|
+
from typing import Literal, Tuple
|
3
|
+
|
4
|
+
import torch
|
5
|
+
|
6
|
+
from .nystrom import (
|
7
|
+
EigSolverOptions,
|
8
|
+
OnlineKernel,
|
9
|
+
OnlineNystrom,
|
10
|
+
solve_eig,
|
11
|
+
)
|
12
|
+
from .propagation_utils import (
|
13
|
+
affinity_from_features,
|
14
|
+
run_subgraph_sampling,
|
15
|
+
)
|
16
|
+
|
17
|
+
|
18
|
+
DistanceOptions = Literal["cosine", "euclidean", "rbf"]
|
19
|
+
|
20
|
+
|
21
|
+
class LaplacianKernel(OnlineKernel):
|
22
|
+
def __init__(
|
23
|
+
self,
|
24
|
+
affinity_focal_gamma: float,
|
25
|
+
distance: DistanceOptions,
|
26
|
+
eig_solver: EigSolverOptions,
|
27
|
+
):
|
28
|
+
self.affinity_focal_gamma = affinity_focal_gamma
|
29
|
+
self.distance: DistanceOptions = distance
|
30
|
+
self.eig_solver: EigSolverOptions = eig_solver
|
31
|
+
|
32
|
+
# Anchor matrices
|
33
|
+
self.anchor_features: torch.Tensor = None # [n x d]
|
34
|
+
self.A: torch.Tensor = None # [n x n]
|
35
|
+
self.Ainv: torch.Tensor = None # [n x n]
|
36
|
+
|
37
|
+
# Updated matrices
|
38
|
+
self.a_r: torch.Tensor = None # [n]
|
39
|
+
self.b_r: torch.Tensor = None # [n]
|
40
|
+
|
41
|
+
def fit(self, features: torch.Tensor) -> None:
|
42
|
+
self.anchor_features = features # [n x d]
|
43
|
+
self.A = affinity_from_features(
|
44
|
+
self.anchor_features, # [n x d]
|
45
|
+
affinity_focal_gamma=self.affinity_focal_gamma,
|
46
|
+
distance=self.distance,
|
47
|
+
fill_diagonal=False,
|
48
|
+
) # [n x n]
|
49
|
+
U, L = solve_eig(
|
50
|
+
self.A,
|
51
|
+
num_eig=features.shape[-1] + 1,
|
52
|
+
eig_solver=self.eig_solver,
|
53
|
+
) # [n x (d + 1)], [d + 1]
|
54
|
+
self.Ainv = U @ torch.diag(1 / L) @ U.mT # [n x n]
|
55
|
+
self.a_r = torch.sum(self.A, dim=-1) # [n]
|
56
|
+
self.b_r = torch.zeros_like(self.a_r) # [n]
|
57
|
+
|
58
|
+
def update(self, features: torch.Tensor) -> torch.Tensor:
|
59
|
+
B = affinity_from_features(
|
60
|
+
self.anchor_features, # [n x d]
|
61
|
+
features, # [m x d]
|
62
|
+
affinity_focal_gamma=self.affinity_focal_gamma,
|
63
|
+
distance=self.distance,
|
64
|
+
fill_diagonal=False,
|
65
|
+
) # [n x m]
|
66
|
+
b_r = torch.sum(B, dim=-1) # [n]
|
67
|
+
b_c = torch.sum(B, dim=-2) # [m]
|
68
|
+
self.b_r = self.b_r + b_r # [n]
|
69
|
+
|
70
|
+
rowscale = self.a_r + self.b_r # [n]
|
71
|
+
colscale = b_c + B.mT @ self.Ainv @ self.b_r # [m]
|
72
|
+
scale = (rowscale[:, None] * colscale) ** -0.5 # [n x m]
|
73
|
+
return (B * scale).mT # [m x n]
|
74
|
+
|
75
|
+
def transform(self, features: torch.Tensor = None) -> torch.Tensor:
|
76
|
+
rowscale = self.a_r + self.b_r # [n]
|
77
|
+
if features is None:
|
78
|
+
B = self.A # [n x n]
|
79
|
+
colscale = rowscale # [n]
|
80
|
+
else:
|
81
|
+
B = affinity_from_features(
|
82
|
+
self.anchor_features, # [n x d]
|
83
|
+
features, # [m x d]
|
84
|
+
affinity_focal_gamma=self.affinity_focal_gamma,
|
85
|
+
distance=self.distance,
|
86
|
+
fill_diagonal=False,
|
87
|
+
) # [n x m]
|
88
|
+
b_c = torch.sum(B, dim=-2) # [m]
|
89
|
+
colscale = b_c + B.mT @ self.Ainv @ self.b_r # [m]
|
90
|
+
scale = (rowscale[:, None] * colscale) ** -0.5 # [n x m]
|
91
|
+
return (B * scale).mT # [m x n]
|
92
|
+
|
93
|
+
|
94
|
+
class NewNCUT(OnlineNystrom):
|
95
|
+
"""Nystrom Normalized Cut for large scale graph."""
|
96
|
+
|
97
|
+
def __init__(
|
98
|
+
self,
|
99
|
+
num_eig: int = 100,
|
100
|
+
affinity_focal_gamma: float = 1.0,
|
101
|
+
num_sample: int = 10000,
|
102
|
+
sample_method: Literal["farthest", "random"] = "farthest",
|
103
|
+
distance: DistanceOptions = "cosine",
|
104
|
+
eig_solver: EigSolverOptions = "svd_lowrank",
|
105
|
+
normalize_features: bool = None,
|
106
|
+
device: str = None,
|
107
|
+
move_output_to_cpu: bool = False,
|
108
|
+
matmul_chunk_size: int = 8096,
|
109
|
+
):
|
110
|
+
"""
|
111
|
+
Args:
|
112
|
+
num_eig (int): number of top eigenvectors to return
|
113
|
+
affinity_focal_gamma (float): affinity matrix temperature, lower t reduce the not-so-connected edge weights,
|
114
|
+
smaller t result in more sharp eigenvectors.
|
115
|
+
num_sample (int): number of samples for Nystrom-like approximation,
|
116
|
+
reduce only if memory is not enough, increase for better approximation
|
117
|
+
sample_method (str): subgraph sampling, ['farthest', 'random'].
|
118
|
+
farthest point sampling is recommended for better Nystrom-approximation accuracy
|
119
|
+
distance (str): distance metric for affinity matrix, ['cosine', 'euclidean', 'rbf'].
|
120
|
+
eig_solver (str): eigen decompose solver, ['svd_lowrank', 'lobpcg', 'svd', 'eigh'].
|
121
|
+
normalize_features (bool): normalize input features before computing affinity matrix,
|
122
|
+
default 'None' is True for cosine distance, False for euclidean distance and rbf
|
123
|
+
device (str): device to use for eigen computation,
|
124
|
+
move to GPU to speeds up a bit (~5x faster)
|
125
|
+
move_output_to_cpu (bool): move output to CPU, set to True if you have memory issue
|
126
|
+
matmul_chunk_size (int): chunk size for large-scale matrix multiplication
|
127
|
+
"""
|
128
|
+
OnlineNystrom.__init__(
|
129
|
+
self,
|
130
|
+
n_components=num_eig,
|
131
|
+
kernel=LaplacianKernel(affinity_focal_gamma, distance, eig_solver),
|
132
|
+
eig_solver=eig_solver,
|
133
|
+
chunk_size=matmul_chunk_size,
|
134
|
+
)
|
135
|
+
self.num_sample = num_sample
|
136
|
+
self.sample_method = sample_method
|
137
|
+
self.distance = distance
|
138
|
+
self.normalize_features = normalize_features
|
139
|
+
if self.normalize_features is None:
|
140
|
+
if distance in ["cosine"]:
|
141
|
+
self.normalize_features = True
|
142
|
+
if distance in ["euclidean", "rbf"]:
|
143
|
+
self.normalize_features = False
|
144
|
+
|
145
|
+
self.device = device
|
146
|
+
self.move_output_to_cpu = move_output_to_cpu
|
147
|
+
self.matmul_chunk_size = matmul_chunk_size
|
148
|
+
|
149
|
+
def _fit_helper(
|
150
|
+
self,
|
151
|
+
features: torch.Tensor,
|
152
|
+
precomputed_sampled_indices: torch.Tensor,
|
153
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
154
|
+
# move subgraph gpu to speed up
|
155
|
+
original_device = features.device
|
156
|
+
device = original_device if self.device is None else self.device
|
157
|
+
|
158
|
+
_n = features.shape[0]
|
159
|
+
if self.num_sample >= _n:
|
160
|
+
logging.info(
|
161
|
+
f"NCUT nystrom num_sample is larger than number of input samples, nyström approximation is not needed, setting num_sample={_n}"
|
162
|
+
)
|
163
|
+
self.num_sample = _n
|
164
|
+
|
165
|
+
# check if features dimension greater than num_eig
|
166
|
+
if self.eig_solver in ["svd_lowrank", "lobpcg"]:
|
167
|
+
assert (
|
168
|
+
_n >= self.n_components * 2
|
169
|
+
), "number of nodes should be greater than 2*num_eig"
|
170
|
+
elif self.eig_solver in ["svd", "eigh"]:
|
171
|
+
assert (
|
172
|
+
_n >= self.n_components
|
173
|
+
), "number of nodes should be greater than num_eig"
|
174
|
+
|
175
|
+
assert self.distance in ["cosine", "euclidean", "rbf"], "distance should be 'cosine', 'euclidean', 'rbf'"
|
176
|
+
|
177
|
+
if self.normalize_features:
|
178
|
+
# features need to be normalized for affinity matrix computation (cosine distance)
|
179
|
+
features = torch.nn.functional.normalize(features, dim=-1)
|
180
|
+
|
181
|
+
if precomputed_sampled_indices is not None:
|
182
|
+
sampled_indices = precomputed_sampled_indices
|
183
|
+
else:
|
184
|
+
sampled_indices = run_subgraph_sampling(
|
185
|
+
features,
|
186
|
+
num_sample=self.num_sample,
|
187
|
+
sample_method=self.sample_method,
|
188
|
+
)
|
189
|
+
sampled_features = features[sampled_indices].to(device)
|
190
|
+
OnlineNystrom.fit(self, sampled_features)
|
191
|
+
|
192
|
+
_n_not_sampled = _n - len(sampled_features)
|
193
|
+
if _n_not_sampled > 0:
|
194
|
+
unsampled_indices = torch.full((_n,), True).scatter(0, sampled_indices, False)
|
195
|
+
unsampled_features = features[unsampled_indices].to(device)
|
196
|
+
V_unsampled, _ = OnlineNystrom.update(self, unsampled_features)
|
197
|
+
else:
|
198
|
+
unsampled_indices = V_unsampled = None
|
199
|
+
return unsampled_indices, V_unsampled
|
200
|
+
|
201
|
+
def fit(
|
202
|
+
self,
|
203
|
+
features: torch.Tensor,
|
204
|
+
precomputed_sampled_indices: torch.Tensor = None,
|
205
|
+
):
|
206
|
+
"""Fit Nystrom Normalized Cut on the input features.
|
207
|
+
Args:
|
208
|
+
features (torch.Tensor): input features, shape (n_samples, n_features)
|
209
|
+
precomputed_sampled_indices (torch.Tensor): precomputed sampled indices, shape (num_sample,)
|
210
|
+
override the sample_method, if not None
|
211
|
+
Returns:
|
212
|
+
(NCUT): self
|
213
|
+
"""
|
214
|
+
NewNCUT._fit_helper(self, features, precomputed_sampled_indices)
|
215
|
+
return self
|
216
|
+
|
217
|
+
def fit_transform(
|
218
|
+
self,
|
219
|
+
features: torch.Tensor,
|
220
|
+
precomputed_sampled_indices: torch.Tensor = None,
|
221
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
222
|
+
"""
|
223
|
+
Args:
|
224
|
+
features (torch.Tensor): input features, shape (n_samples, n_features)
|
225
|
+
precomputed_sampled_indices (torch.Tensor): precomputed sampled indices, shape (num_sample,)
|
226
|
+
override the sample_method, if not None
|
227
|
+
|
228
|
+
Returns:
|
229
|
+
(torch.Tensor): eigen_vectors, shape (n_samples, num_eig)
|
230
|
+
(torch.Tensor): eigen_values, sorted in descending order, shape (num_eig,)
|
231
|
+
"""
|
232
|
+
unsampled_indices, V_unsampled = NewNCUT._fit_helper(self, features, precomputed_sampled_indices)
|
233
|
+
V_sampled, L = OnlineNystrom.transform(self)
|
234
|
+
|
235
|
+
if unsampled_indices is not None:
|
236
|
+
V = torch.zeros((len(unsampled_indices), self.n_components))
|
237
|
+
V[~unsampled_indices] = V_sampled
|
238
|
+
V[unsampled_indices] = V_unsampled
|
239
|
+
else:
|
240
|
+
V = V_sampled
|
241
|
+
return V, L
|
nystrom_ncut/nystrom.py
ADDED
@@ -0,0 +1,170 @@
|
|
1
|
+
from typing import Literal, Tuple
|
2
|
+
|
3
|
+
import torch
|
4
|
+
|
5
|
+
|
6
|
+
EigSolverOptions = Literal["svd_lowrank", "lobpcg", "svd", "eigh"]
|
7
|
+
|
8
|
+
|
9
|
+
class OnlineKernel:
|
10
|
+
def fit(self, features: torch.Tensor) -> None: # [n x d]
|
11
|
+
raise NotImplementedError()
|
12
|
+
|
13
|
+
def update(self, features: torch.Tensor) -> torch.Tensor: # [m x d] -> [m x n]
|
14
|
+
raise NotImplementedError()
|
15
|
+
|
16
|
+
def transform(self, features: torch.Tensor = None) -> torch.Tensor: # [m x d] -> [m x n]
|
17
|
+
raise NotImplementedError()
|
18
|
+
|
19
|
+
|
20
|
+
class OnlineNystrom:
|
21
|
+
def __init__(
|
22
|
+
self,
|
23
|
+
n_components: int,
|
24
|
+
kernel: OnlineKernel,
|
25
|
+
eig_solver: EigSolverOptions,
|
26
|
+
chunk_size: int = 8192,
|
27
|
+
):
|
28
|
+
"""
|
29
|
+
Args:
|
30
|
+
n_components (int): number of top eigenvectors to return
|
31
|
+
kernel (OnlineKernel): Online kernel that computes pairwise matrix entries from input features and allows updates
|
32
|
+
eig_solver (str): eigen decompose solver, ['svd_lowrank', 'lobpcg', 'svd', 'eigh'].
|
33
|
+
"""
|
34
|
+
self.n_components: int = n_components
|
35
|
+
self.kernel: OnlineKernel = kernel
|
36
|
+
self.eig_solver: EigSolverOptions = eig_solver
|
37
|
+
self.inverse_approximation_dim: int = None
|
38
|
+
|
39
|
+
self.chunk_size = chunk_size
|
40
|
+
|
41
|
+
# Anchor matrices
|
42
|
+
self.anchor_features: torch.Tensor = None # [n x d]
|
43
|
+
self.A: torch.Tensor = None # [n x n]
|
44
|
+
self.Ahinv: torch.Tensor = None # [n x n]
|
45
|
+
self.Ahinv_UL: torch.Tensor = None # [n x indirect_pca_dim]
|
46
|
+
self.Ahinv_VT: torch.Tensor = None # [indirect_pca_dim x n]
|
47
|
+
|
48
|
+
# Updated matrices
|
49
|
+
self.S: torch.Tensor = None # [n x n]
|
50
|
+
self.transform_matrix: torch.Tensor = None # [n x n_components]
|
51
|
+
self.LS: torch.Tensor = None # [n]
|
52
|
+
|
53
|
+
def fit(self, features: torch.Tensor):
|
54
|
+
OnlineNystrom.fit_transform(self, features)
|
55
|
+
return self
|
56
|
+
|
57
|
+
def fit_transform(self, features: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
58
|
+
self.anchor_features = features
|
59
|
+
|
60
|
+
self.kernel.fit(self.anchor_features)
|
61
|
+
self.A = self.S = self.kernel.transform() # [n x n]
|
62
|
+
|
63
|
+
self.inverse_approximation_dim = max(self.n_components, features.shape[-1]) + 1
|
64
|
+
U, L = solve_eig(
|
65
|
+
self.A,
|
66
|
+
num_eig=self.inverse_approximation_dim,
|
67
|
+
eig_solver=self.eig_solver,
|
68
|
+
) # [n x (? + 1)], [? + 1]
|
69
|
+
self.Ahinv_UL = U * (L ** -0.5) # [n x (? + 1)]
|
70
|
+
self.Ahinv_VT = U.mT # [(? + 1) x n]
|
71
|
+
self.Ahinv = self.Ahinv_UL @ self.Ahinv_VT # [n x n]
|
72
|
+
|
73
|
+
self.transform_matrix = (U / L)[:, :self.n_components] # [n x n_components]
|
74
|
+
self.LS = L[:self.n_components] # [n_components]
|
75
|
+
return U[:, :self.n_components], L[:self.n_components] # [n x n_components], [n_components]
|
76
|
+
|
77
|
+
def update(self, features: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
78
|
+
n_chunks = -(-len(features) // self.chunk_size)
|
79
|
+
if n_chunks > 1:
|
80
|
+
""" Chunked version """
|
81
|
+
chunks = torch.chunk(features, n_chunks, dim=0)
|
82
|
+
for chunk in chunks:
|
83
|
+
self.kernel.update(chunk)
|
84
|
+
|
85
|
+
compressed_BBT = torch.zeros((self.inverse_approximation_dim, self.inverse_approximation_dim)) # [(? + 1) x (? + 1))]
|
86
|
+
for i, chunk in enumerate(chunks):
|
87
|
+
_B = self.kernel.transform(chunk).mT # [n x _m]
|
88
|
+
_compressed_B = self.Ahinv_VT @ _B # [(? + 1) x _m]
|
89
|
+
compressed_BBT = compressed_BBT + _compressed_B @ _compressed_B.mT # [(? + 1) x (? + 1)]
|
90
|
+
self.S = self.S + self.Ahinv_UL @ compressed_BBT @ self.Ahinv_UL.mT # [n x n]
|
91
|
+
US, self.LS = solve_eig(self.S, self.n_components, self.eig_solver) # [n x n_components], [n_components]
|
92
|
+
self.transform_matrix = self.Ahinv @ US * (self.LS ** -0.5) # [n x n_components]
|
93
|
+
|
94
|
+
VS = []
|
95
|
+
for chunk in chunks:
|
96
|
+
VS.append(self.kernel.transform(chunk) @ self.transform_matrix) # [_m x n_components]
|
97
|
+
VS = torch.cat(VS, dim=0)
|
98
|
+
return VS, self.LS # [m x n_components], [n_components]
|
99
|
+
else:
|
100
|
+
""" Unchunked version """
|
101
|
+
B = self.kernel.update(features).mT # [n x m]
|
102
|
+
compressed_B = self.Ahinv_VT @ B # [indirect_pca_dim x m]
|
103
|
+
|
104
|
+
self.S = self.S + self.Ahinv_UL @ (compressed_B @ compressed_B.mT) @ self.Ahinv_UL.mT # [n x n]
|
105
|
+
US, self.LS = solve_eig(self.S, self.n_components, self.eig_solver) # [n x n_components], [n_components]
|
106
|
+
self.transform_matrix = self.Ahinv @ US * (self.LS ** -0.5) # [n x n_components]
|
107
|
+
|
108
|
+
return B.mT @ self.transform_matrix, self.LS # [m x n_components], [n_components]
|
109
|
+
|
110
|
+
def transform(self, features: torch.Tensor = None) -> Tuple[torch.Tensor, torch.Tensor]:
|
111
|
+
if features is None:
|
112
|
+
VS = self.A @ self.transform_matrix # [n x n_components]
|
113
|
+
else:
|
114
|
+
n_chunks = -(-len(features) // self.chunk_size)
|
115
|
+
if n_chunks > 1:
|
116
|
+
""" Chunked version """
|
117
|
+
chunks = torch.chunk(features, n_chunks, dim=0)
|
118
|
+
VS = []
|
119
|
+
for chunk in chunks:
|
120
|
+
VS.append(self.kernel.transform(chunk) @ self.transform_matrix) # [_m x n_components]
|
121
|
+
VS = torch.cat(VS, dim=0)
|
122
|
+
else:
|
123
|
+
""" Unchunked version """
|
124
|
+
VS = self.kernel.transform(features) @ self.transform_matrix # [m x n_components]
|
125
|
+
return VS, self.LS # [m x n_components], [n_components]
|
126
|
+
|
127
|
+
|
128
|
+
def solve_eig(
|
129
|
+
A: torch.Tensor,
|
130
|
+
num_eig: int,
|
131
|
+
eig_solver: Literal["svd_lowrank", "lobpcg", "svd", "eigh"],
|
132
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
133
|
+
"""PyTorch implementation of Eigensolver cut without Nystrom-like approximation.
|
134
|
+
|
135
|
+
Args:
|
136
|
+
A (torch.Tensor): input matrix, shape (n_samples, n_samples)
|
137
|
+
num_eig (int): number of eigenvectors to return
|
138
|
+
eig_solver (str): eigen decompose solver, ['svd_lowrank', 'lobpcg', 'svd', 'eigh']
|
139
|
+
|
140
|
+
Returns:
|
141
|
+
(torch.Tensor): eigenvectors corresponding to the eigenvalues, shape (n_samples, num_eig)
|
142
|
+
(torch.Tensor): eigenvalues of the eigenvectors, sorted in descending order
|
143
|
+
"""
|
144
|
+
# compute eigenvectors
|
145
|
+
if eig_solver == "svd_lowrank": # default
|
146
|
+
# only top q eigenvectors, fastest
|
147
|
+
eigen_vector, eigen_value, _ = torch.svd_lowrank(A, q=num_eig)
|
148
|
+
elif eig_solver == "lobpcg":
|
149
|
+
# only top k eigenvectors, fast
|
150
|
+
eigen_value, eigen_vector = torch.lobpcg(A, k=num_eig)
|
151
|
+
elif eig_solver == "svd":
|
152
|
+
# all eigenvectors, slow
|
153
|
+
eigen_vector, eigen_value, _ = torch.svd(A)
|
154
|
+
elif eig_solver == "eigh":
|
155
|
+
# all eigenvectors, slow
|
156
|
+
eigen_value, eigen_vector = torch.linalg.eigh(A)
|
157
|
+
else:
|
158
|
+
raise ValueError(
|
159
|
+
"eigen_solver should be 'lobpcg', 'svd_lowrank', 'svd' or 'eigh'"
|
160
|
+
)
|
161
|
+
|
162
|
+
# sort eigenvectors by eigenvalues, take top (descending order)
|
163
|
+
eigen_value = eigen_value.real
|
164
|
+
eigen_vector = eigen_vector.real
|
165
|
+
eigen_value, indices = torch.topk(eigen_value, k=num_eig, dim=0)
|
166
|
+
eigen_vector = eigen_vector[:, indices]
|
167
|
+
|
168
|
+
# correct the random rotation (flipping sign) of eigenvectors
|
169
|
+
eigen_vector = eigen_vector * torch.sum(eigen_vector, dim=0).sign()
|
170
|
+
return eigen_vector, eigen_value
|