nvfuser-cu121-torch25 0.2.25.dev20250201__cp310-cp310-manylinux_2_28_x86_64.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (242) hide show
  1. nvfuser/_C.cpython-310-x86_64-linux-gnu.so +0 -0
  2. nvfuser/__init__.py +618 -0
  3. nvfuser/__init__.pyi +4 -0
  4. nvfuser/contrib/__init__.py +9 -0
  5. nvfuser/contrib/nn/__init__.py +13 -0
  6. nvfuser/contrib/nn/normalization.py +725 -0
  7. nvfuser/include/nvfuser/alias_analysis.h +116 -0
  8. nvfuser/include/nvfuser/bfs.h +929 -0
  9. nvfuser/include/nvfuser/codegen.h +26 -0
  10. nvfuser/include/nvfuser/compute_at.h +28 -0
  11. nvfuser/include/nvfuser/compute_at_map.h +394 -0
  12. nvfuser/include/nvfuser/contiguity.h +351 -0
  13. nvfuser/include/nvfuser/cuda_utils.h +50 -0
  14. nvfuser/include/nvfuser/debug.h +50 -0
  15. nvfuser/include/nvfuser/device_lower/analysis/bank_conflict.h +53 -0
  16. nvfuser/include/nvfuser/device_lower/analysis/circular_buffer.h +109 -0
  17. nvfuser/include/nvfuser/device_lower/analysis/device_version.h +65 -0
  18. nvfuser/include/nvfuser/device_lower/analysis/divisible_split.h +28 -0
  19. nvfuser/include/nvfuser/device_lower/analysis/fused_reduction.h +36 -0
  20. nvfuser/include/nvfuser/device_lower/analysis/index_compute.h +322 -0
  21. nvfuser/include/nvfuser/device_lower/analysis/predicate_elimination.h +71 -0
  22. nvfuser/include/nvfuser/device_lower/analysis/sync_information.h +47 -0
  23. nvfuser/include/nvfuser/device_lower/analysis/tensor_memory.h +65 -0
  24. nvfuser/include/nvfuser/device_lower/analysis/thread_predicate.h +158 -0
  25. nvfuser/include/nvfuser/device_lower/analysis/tma.h +93 -0
  26. nvfuser/include/nvfuser/device_lower/analysis/trivial_broadcast.h +75 -0
  27. nvfuser/include/nvfuser/device_lower/id_model_options.h +135 -0
  28. nvfuser/include/nvfuser/device_lower/lower2device.h +391 -0
  29. nvfuser/include/nvfuser/device_lower/pass/alias_memory.h +37 -0
  30. nvfuser/include/nvfuser/device_lower/pass/allocation.h +32 -0
  31. nvfuser/include/nvfuser/device_lower/pass/circular_buffer.h +191 -0
  32. nvfuser/include/nvfuser/device_lower/pass/expr_sort.h +17 -0
  33. nvfuser/include/nvfuser/device_lower/pass/fusion_simplifier.h +21 -0
  34. nvfuser/include/nvfuser/device_lower/pass/grid_serialization.h +26 -0
  35. nvfuser/include/nvfuser/device_lower/pass/index.h +200 -0
  36. nvfuser/include/nvfuser/device_lower/pass/inline_ptx.h +16 -0
  37. nvfuser/include/nvfuser/device_lower/pass/insert_syncs.h +39 -0
  38. nvfuser/include/nvfuser/device_lower/pass/instrument.h +24 -0
  39. nvfuser/include/nvfuser/device_lower/pass/loop_rotation.h +150 -0
  40. nvfuser/include/nvfuser/device_lower/pass/loops.h +68 -0
  41. nvfuser/include/nvfuser/device_lower/pass/magic_zero.h +86 -0
  42. nvfuser/include/nvfuser/device_lower/pass/misaligned_vectorization.h +118 -0
  43. nvfuser/include/nvfuser/device_lower/pass/predicate.h +23 -0
  44. nvfuser/include/nvfuser/device_lower/pass/replace_size.h +24 -0
  45. nvfuser/include/nvfuser/device_lower/pass/scalar_hoist.h +115 -0
  46. nvfuser/include/nvfuser/device_lower/pass/unroll.h +98 -0
  47. nvfuser/include/nvfuser/device_lower/pass/vectorize_welford.h +45 -0
  48. nvfuser/include/nvfuser/device_lower/pass/warp_reduce.h +23 -0
  49. nvfuser/include/nvfuser/device_lower/utils.h +382 -0
  50. nvfuser/include/nvfuser/device_lower/validation.h +74 -0
  51. nvfuser/include/nvfuser/disjoint_set.h +556 -0
  52. nvfuser/include/nvfuser/dispatch.h +334 -0
  53. nvfuser/include/nvfuser/driver_api.h +49 -0
  54. nvfuser/include/nvfuser/dynamic_transform.h +316 -0
  55. nvfuser/include/nvfuser/dynamic_type/C++20/type_traits +37 -0
  56. nvfuser/include/nvfuser/dynamic_type/dynamic_type.h +969 -0
  57. nvfuser/include/nvfuser/dynamic_type/error.h +24 -0
  58. nvfuser/include/nvfuser/dynamic_type/type_traits.h +703 -0
  59. nvfuser/include/nvfuser/evaluator_common.h +295 -0
  60. nvfuser/include/nvfuser/exceptions.h +283 -0
  61. nvfuser/include/nvfuser/expr_evaluator.h +125 -0
  62. nvfuser/include/nvfuser/expr_simplifier.h +218 -0
  63. nvfuser/include/nvfuser/flatbuffers/allocator.h +68 -0
  64. nvfuser/include/nvfuser/flatbuffers/array.h +253 -0
  65. nvfuser/include/nvfuser/flatbuffers/base.h +486 -0
  66. nvfuser/include/nvfuser/flatbuffers/buffer.h +154 -0
  67. nvfuser/include/nvfuser/flatbuffers/buffer_ref.h +53 -0
  68. nvfuser/include/nvfuser/flatbuffers/code_generator.h +80 -0
  69. nvfuser/include/nvfuser/flatbuffers/code_generators.h +234 -0
  70. nvfuser/include/nvfuser/flatbuffers/default_allocator.h +64 -0
  71. nvfuser/include/nvfuser/flatbuffers/detached_buffer.h +114 -0
  72. nvfuser/include/nvfuser/flatbuffers/flatbuffer_builder.h +1225 -0
  73. nvfuser/include/nvfuser/flatbuffers/flatbuffers.h +272 -0
  74. nvfuser/include/nvfuser/flatbuffers/flatc.h +130 -0
  75. nvfuser/include/nvfuser/flatbuffers/flex_flat_util.h +36 -0
  76. nvfuser/include/nvfuser/flatbuffers/flexbuffers.h +1889 -0
  77. nvfuser/include/nvfuser/flatbuffers/grpc.h +300 -0
  78. nvfuser/include/nvfuser/flatbuffers/hash.h +127 -0
  79. nvfuser/include/nvfuser/flatbuffers/idl.h +1359 -0
  80. nvfuser/include/nvfuser/flatbuffers/minireflect.h +420 -0
  81. nvfuser/include/nvfuser/flatbuffers/reflection.h +522 -0
  82. nvfuser/include/nvfuser/flatbuffers/reflection_generated.h +1471 -0
  83. nvfuser/include/nvfuser/flatbuffers/registry.h +128 -0
  84. nvfuser/include/nvfuser/flatbuffers/stl_emulation.h +513 -0
  85. nvfuser/include/nvfuser/flatbuffers/string.h +64 -0
  86. nvfuser/include/nvfuser/flatbuffers/struct.h +53 -0
  87. nvfuser/include/nvfuser/flatbuffers/table.h +168 -0
  88. nvfuser/include/nvfuser/flatbuffers/util.h +731 -0
  89. nvfuser/include/nvfuser/flatbuffers/vector.h +393 -0
  90. nvfuser/include/nvfuser/flatbuffers/vector_downward.h +273 -0
  91. nvfuser/include/nvfuser/flatbuffers/verifier.h +317 -0
  92. nvfuser/include/nvfuser/fusion.h +511 -0
  93. nvfuser/include/nvfuser/fusion_guard.h +37 -0
  94. nvfuser/include/nvfuser/fusion_profiler.h +311 -0
  95. nvfuser/include/nvfuser/fusion_segmenter.h +751 -0
  96. nvfuser/include/nvfuser/global_allocator.h +27 -0
  97. nvfuser/include/nvfuser/grouped_reduction.h +47 -0
  98. nvfuser/include/nvfuser/host_ir/container.h +60 -0
  99. nvfuser/include/nvfuser/host_ir/executor.h +152 -0
  100. nvfuser/include/nvfuser/host_ir/host_ir.h +320 -0
  101. nvfuser/include/nvfuser/host_ir/lower.h +35 -0
  102. nvfuser/include/nvfuser/id_model/circular_buffer_indexing.h +56 -0
  103. nvfuser/include/nvfuser/id_model/contiguity.h +166 -0
  104. nvfuser/include/nvfuser/id_model/id_model.h +359 -0
  105. nvfuser/include/nvfuser/id_model/id_model_index_compute.h +81 -0
  106. nvfuser/include/nvfuser/id_model/indexing.h +208 -0
  107. nvfuser/include/nvfuser/id_model/indexing_traversal.h +72 -0
  108. nvfuser/include/nvfuser/id_model/indexing_utils.h +62 -0
  109. nvfuser/include/nvfuser/id_model/loop_promotion.h +180 -0
  110. nvfuser/include/nvfuser/id_model/predicate_indexing.h +104 -0
  111. nvfuser/include/nvfuser/id_model/schedule.h +54 -0
  112. nvfuser/include/nvfuser/id_model/to_string.h +87 -0
  113. nvfuser/include/nvfuser/id_model/transform_replay.h +58 -0
  114. nvfuser/include/nvfuser/id_model/utils.h +176 -0
  115. nvfuser/include/nvfuser/id_model/validation_utils.h +55 -0
  116. nvfuser/include/nvfuser/index_compute.h +651 -0
  117. nvfuser/include/nvfuser/instrumentation.h +107 -0
  118. nvfuser/include/nvfuser/ir/all_nodes.h +14 -0
  119. nvfuser/include/nvfuser/ir/base_nodes.h +687 -0
  120. nvfuser/include/nvfuser/ir/builder.h +215 -0
  121. nvfuser/include/nvfuser/ir/builder_passkey.h +29 -0
  122. nvfuser/include/nvfuser/ir/cloner.h +185 -0
  123. nvfuser/include/nvfuser/ir/container.h +226 -0
  124. nvfuser/include/nvfuser/ir/graphviz.h +119 -0
  125. nvfuser/include/nvfuser/ir/interface_nodes.h +957 -0
  126. nvfuser/include/nvfuser/ir/internal_base_nodes.h +744 -0
  127. nvfuser/include/nvfuser/ir/internal_nodes.h +2792 -0
  128. nvfuser/include/nvfuser/ir/iostream.h +98 -0
  129. nvfuser/include/nvfuser/ir/printer.h +57 -0
  130. nvfuser/include/nvfuser/ir/utils.h +801 -0
  131. nvfuser/include/nvfuser/iter_visitor.h +661 -0
  132. nvfuser/include/nvfuser/kernel.h +299 -0
  133. nvfuser/include/nvfuser/kernel_db/kernel_db.h +109 -0
  134. nvfuser/include/nvfuser/kernel_db/utils.h +37 -0
  135. nvfuser/include/nvfuser/kernel_ir.h +1457 -0
  136. nvfuser/include/nvfuser/kernel_ir_dispatch.h +147 -0
  137. nvfuser/include/nvfuser/linked_hash_map.h +97 -0
  138. nvfuser/include/nvfuser/logical_domain_map.h +577 -0
  139. nvfuser/include/nvfuser/macros.h +23 -0
  140. nvfuser/include/nvfuser/mma_type.h +257 -0
  141. nvfuser/include/nvfuser/multidevice/c10d_mock.h +175 -0
  142. nvfuser/include/nvfuser/multidevice/communication.h +232 -0
  143. nvfuser/include/nvfuser/multidevice/communicator.h +179 -0
  144. nvfuser/include/nvfuser/multidevice/device_mesh.h +95 -0
  145. nvfuser/include/nvfuser/multidevice/executor.h +107 -0
  146. nvfuser/include/nvfuser/multidevice/multidevice.h +18 -0
  147. nvfuser/include/nvfuser/multidevice/utils.h +187 -0
  148. nvfuser/include/nvfuser/non_divisible_split.h +86 -0
  149. nvfuser/include/nvfuser/opaque_type.h +129 -0
  150. nvfuser/include/nvfuser/ops/alias.h +192 -0
  151. nvfuser/include/nvfuser/ops/all_ops.h +13 -0
  152. nvfuser/include/nvfuser/ops/arith.h +712 -0
  153. nvfuser/include/nvfuser/ops/composite.h +130 -0
  154. nvfuser/include/nvfuser/ops/indexing.h +55 -0
  155. nvfuser/include/nvfuser/ops/normalization.h +263 -0
  156. nvfuser/include/nvfuser/ops/utils.h +127 -0
  157. nvfuser/include/nvfuser/options.h +313 -0
  158. nvfuser/include/nvfuser/parallel_dimension_map.h +95 -0
  159. nvfuser/include/nvfuser/parallel_type_bitmap.h +365 -0
  160. nvfuser/include/nvfuser/polymorphic_value.h +432 -0
  161. nvfuser/include/nvfuser/predicate_compute.h +213 -0
  162. nvfuser/include/nvfuser/python_frontend/distributed_tensor.h +50 -0
  163. nvfuser/include/nvfuser/python_frontend/fusion_cache.h +298 -0
  164. nvfuser/include/nvfuser/python_frontend/fusion_definition.h +372 -0
  165. nvfuser/include/nvfuser/python_frontend/fusion_record.h +3124 -0
  166. nvfuser/include/nvfuser/python_frontend/fusion_state.h +143 -0
  167. nvfuser/include/nvfuser/python_frontend/python_bindings.h +27 -0
  168. nvfuser/include/nvfuser/python_frontend/segmentation.h +246 -0
  169. nvfuser/include/nvfuser/python_frontend/translation.h +20 -0
  170. nvfuser/include/nvfuser/python_frontend/translation_utils.h +308 -0
  171. nvfuser/include/nvfuser/scheduler/all_schedulers.h +17 -0
  172. nvfuser/include/nvfuser/scheduler/ampere_multi_matmul.h +206 -0
  173. nvfuser/include/nvfuser/scheduler/cache_policy_refiner.h +19 -0
  174. nvfuser/include/nvfuser/scheduler/compile_time_info.h +322 -0
  175. nvfuser/include/nvfuser/scheduler/debug_utils.h +68 -0
  176. nvfuser/include/nvfuser/scheduler/expr_eval_sched.h +45 -0
  177. nvfuser/include/nvfuser/scheduler/heuristic.h +113 -0
  178. nvfuser/include/nvfuser/scheduler/hopper_multi_matmul.h +204 -0
  179. nvfuser/include/nvfuser/scheduler/mark_aliases.h +19 -0
  180. nvfuser/include/nvfuser/scheduler/matmul.h +40 -0
  181. nvfuser/include/nvfuser/scheduler/matmul_heuristic.h +293 -0
  182. nvfuser/include/nvfuser/scheduler/matmul_heuristic_plugin.h +65 -0
  183. nvfuser/include/nvfuser/scheduler/matmul_heuristic_plugin_api.h +99 -0
  184. nvfuser/include/nvfuser/scheduler/matmul_utils.h +54 -0
  185. nvfuser/include/nvfuser/scheduler/mma_utils.h +500 -0
  186. nvfuser/include/nvfuser/scheduler/multi_matmul.h +74 -0
  187. nvfuser/include/nvfuser/scheduler/no_op.h +48 -0
  188. nvfuser/include/nvfuser/scheduler/normalization_inner.h +49 -0
  189. nvfuser/include/nvfuser/scheduler/normalization_inner_outer.h +51 -0
  190. nvfuser/include/nvfuser/scheduler/normalization_outer.h +48 -0
  191. nvfuser/include/nvfuser/scheduler/normalization_utils.h +379 -0
  192. nvfuser/include/nvfuser/scheduler/pointwise.h +183 -0
  193. nvfuser/include/nvfuser/scheduler/pointwise_heuristic.h +118 -0
  194. nvfuser/include/nvfuser/scheduler/pointwise_utils.h +24 -0
  195. nvfuser/include/nvfuser/scheduler/reduction.h +43 -0
  196. nvfuser/include/nvfuser/scheduler/reduction_heuristic.h +339 -0
  197. nvfuser/include/nvfuser/scheduler/reduction_utils.h +159 -0
  198. nvfuser/include/nvfuser/scheduler/registry.h +97 -0
  199. nvfuser/include/nvfuser/scheduler/registry_utils.h +111 -0
  200. nvfuser/include/nvfuser/scheduler/resize.h +41 -0
  201. nvfuser/include/nvfuser/scheduler/resize_heuristic.h +67 -0
  202. nvfuser/include/nvfuser/scheduler/runtime_info.h +166 -0
  203. nvfuser/include/nvfuser/scheduler/scheduler_types.h +80 -0
  204. nvfuser/include/nvfuser/scheduler/transpose.h +114 -0
  205. nvfuser/include/nvfuser/scheduler/transpose_heuristic.h +164 -0
  206. nvfuser/include/nvfuser/scheduler/utils.h +771 -0
  207. nvfuser/include/nvfuser/scheduler/vectorize_helper.h +349 -0
  208. nvfuser/include/nvfuser/serde/factory.h +55 -0
  209. nvfuser/include/nvfuser/serde/fusion_cache_generated.h +4319 -0
  210. nvfuser/include/nvfuser/serde/fusion_record.h +124 -0
  211. nvfuser/include/nvfuser/serde/polymorphic_value.h +52 -0
  212. nvfuser/include/nvfuser/serde/utils.h +34 -0
  213. nvfuser/include/nvfuser/struct.inl +127 -0
  214. nvfuser/include/nvfuser/swizzle.h +54 -0
  215. nvfuser/include/nvfuser/sys_utils.h +40 -0
  216. nvfuser/include/nvfuser/tensor_metadata.h +118 -0
  217. nvfuser/include/nvfuser/tma.h +124 -0
  218. nvfuser/include/nvfuser/transform_iter.h +522 -0
  219. nvfuser/include/nvfuser/transform_replay.h +297 -0
  220. nvfuser/include/nvfuser/transform_rfactor.h +33 -0
  221. nvfuser/include/nvfuser/transform_view.h +136 -0
  222. nvfuser/include/nvfuser/type.h +1125 -0
  223. nvfuser/include/nvfuser/type_promotion.h +61 -0
  224. nvfuser/include/nvfuser/utils.h +619 -0
  225. nvfuser/include/nvfuser/val_graph.h +446 -0
  226. nvfuser/include/nvfuser/val_graph_visitor.h +259 -0
  227. nvfuser/include/nvfuser/validator_utils.h +92 -0
  228. nvfuser/include/nvfuser/vectorization_info.h +31 -0
  229. nvfuser/include/nvfuser/visibility.h +21 -0
  230. nvfuser/lib/libnvfuser_codegen.so +0 -0
  231. nvfuser/nvfuser_version.py +69 -0
  232. nvfuser/pytorch_utils.py +184 -0
  233. nvfuser/share/cmake/nvfuser/NvfuserConfig-release.cmake +20 -0
  234. nvfuser/share/cmake/nvfuser/NvfuserConfig.cmake +106 -0
  235. nvfuser/utils.py +18 -0
  236. nvfuser/version.py +1 -0
  237. nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/LICENSE +976 -0
  238. nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/METADATA +20 -0
  239. nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/RECORD +242 -0
  240. nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/WHEEL +5 -0
  241. nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/top_level.txt +1 -0
  242. nvfuser_cu121_torch25.libs/libnvToolsExt-847d78f2.so.1.0.0 +0 -0
@@ -0,0 +1,183 @@
1
+ // clang-format off
2
+ /*
3
+ * SPDX-FileCopyrightText: Copyright (c) 2023-present NVIDIA CORPORATION & AFFILIATES.
4
+ * All rights reserved.
5
+ * SPDX-License-Identifier: BSD-3-Clause
6
+ */
7
+ // clang-format on
8
+ #pragma once
9
+
10
+ #include <ATen/core/ivalue.h>
11
+ #include <exceptions.h>
12
+ #include <fusion.h>
13
+ #include <scheduler/pointwise_heuristic.h>
14
+ #include <scheduler/registry.h>
15
+ #include <visibility.h>
16
+
17
+ namespace nvfuser {
18
+
19
+ /*
20
+ * The 2D pointwise scheduling logic is a bit interesting. We'll start by giving
21
+ * motivation for what the scheduling is attempting to do. What we're going to
22
+ * do with the scheduling is attempt to make it two dimensional in a way that
23
+ * minimizes the refetching of broadcasted dimensions. If we think of the
24
+ * trivial case:
25
+ * T0[i0, b1]
26
+ * T1[b0, i1]
27
+ * T2[i0, i1] = T0 + T1
28
+ * If we scheduled T2 as 1-dimensional we would do something along the lines of
29
+ * merging i0 and i1 then splitting out a block and thread dimension. If i1 is
30
+ * greater than the thread dimension, then all threads would pull the same value
31
+ * from T0. However, they would all be pulling different values from T1. In this
32
+ * case we have perfect reuse of the broadcast dimension T0 but potentially no
33
+ * reuse of the broadcast dimension of T1. "Potentially" because if i1 isn't too
34
+ * big it should be efficiently cached in L2. If i1 is big, then by the time we
35
+ * increment the i0 dimension the i1 dimension will be pushed out of cache.
36
+ *
37
+ * Instead what we do is we map this to a two dimensional problem. Instead of
38
+ * having the schedule that merges the two dimensions, we'll actually leave the
39
+ * dimensions separate and we'll take i0, split it to BIDy, TIDy, and take i1
40
+ * and split it to BIDx and TIDx. Therefore we'll have a parallelization on T2
41
+ * like [BIDy, TIDy | BIDx, TIDx], where | denotes the separation of the
42
+ * original i0 and i1. This helps because all threads in the TIDx dimension will
43
+ * reuse the same value in the i0 dimension (holding BIDy and TIDy constant),
44
+ * all the threads in the TIDy dimension (holding BIDx, and TIDx constant) will
45
+ * reuse the same value in the i1 dimension. This reuse of values reduces the
46
+ * number of redundant values pulled from T0 and T1. The same thing can be said
47
+ * for when incrementing BIDy, but since BIDy is strided on BIDx there's no
48
+ * effective increment of BIDy without incrementing BIDx. Since all threads are
49
+ * executed within a block we can effectively consider the block incrementing
50
+ * TIDx BDIMx times while holding TIDy constant and incrementing TIDy BDIMy
51
+ * times while holding TIDx constant. Since multiple BIDx's are running at the
52
+ * same time on the device we can consider a wave on the GPU of incrementing
53
+ * BIDx (wave number of times), while holding TIDy constant BDIMy * wave number
54
+ * of times.
55
+ *
56
+ * If instead we have a situation like:
57
+ * T0[i0, i1, b2]
58
+ * T1[i0, b1, i2]
59
+ * T2[i0, i1, i2] = T0 + T1
60
+ * It makes sense that the break point would be in position 2, between i1 and
61
+ * i2. This is because when we map [i0, i1 | i2] to [BIDy, TIDy| BIDx, TIDx]
62
+ * BIDx, and TIDx will access the same elements of T0 on b2, and TIDy will
63
+ * likely access the same elements of T1 (as long as i1 > BDIMy). Even if i1 on
64
+ * the order of BDIMy we'll only access ~two unique elements per increment of
65
+ * BIDx or TIDx. This means we'll still reuse many of the same values and limit
66
+ * the amount we need to read duplicate values in T0 and T1.
67
+ *
68
+ * If instead we have:
69
+ * T0[i0, b1, i2]
70
+ * T1[b0, i1, i2]
71
+ * T2[i0, i1, i2] = T0 + T1
72
+ * The analysis gets a bit more complicated. First if i2 is very large and i0
73
+ * and i1 are relatively small it would make sense to have [i0, i1 | i2]. If b0
74
+ * is very small it's unlikely beneficial to have [i0 | i1, i2] as there would
75
+ * be small reuse on b0, and potentially no reuse on b1. If i2 is very small it
76
+ * may be worthwhile to have [i0 | i1, i2]. If i1 and i2 are not small, and
77
+ * their product is relatively large (i.e. you can't fit T2[i, :, :] in L2) then
78
+ * it's unlikely we'll get any significant reuse across i0.
79
+ *
80
+ * What we should (but don't due to complexity) assume then, is that we will get
81
+ * strong reuse across TIDx and TIDy for dimensions that are on the inner
82
+ * portion of the 2D tile.
83
+ *
84
+ * For example if we have:
85
+ * T0[i0, b1, i2]
86
+ * T1[b0, b1, i2]
87
+ * T2[b0, i1, i2]
88
+ * T3[i0, i1, i2] = T0 + T1 + T2
89
+ * We may want to break point at position 1 or position 2 (i.e. [i0 | i1, i2] or
90
+ * [i0, i1 | i2]). We can't immediately tell from the structure.
91
+ *
92
+ * If we choose [i0, i1 | i2] then we'll get:
93
+ * Strong reuse of T0 on TIDy (b1 dim)
94
+ * Perfect reuse across T1 on TIDy (b0 and b1)
95
+ * If BIDx is bound to the LHS of the tile we'll get:
96
+ * Maybe strong reuse of T0 on BIDx (b1 dim if it's large)
97
+ * Perfect reuse across T1 on BIDx
98
+ * Potentially no reuse on T2 if i1 is very large
99
+ *
100
+ * If we pick [i0 | i1, i2], then we'll get:
101
+ * We'll perfect reuse across TIDy on T1 and T2 on b0
102
+ * Some reuse on T0 and T1 on b1 across BIDx if i2 is relatively small and BIDx
103
+ * is bound to the RHS of the 2D schedule Perfect reuse on T1 and T2 on b0
104
+ * across BIDx if BIDx is bound to the LHS of the 2D schedule
105
+ *
106
+ * Materializing these benefits is dependent on the decisions the scheduler
107
+ * makes when parallelizing the problem. The heuristics logic at the moment is
108
+ * fairly simplistic where it assumes that there's only reuse across the break
109
+ * points for tensors that have no iteration domain on the entire side of the
110
+ * breakpoint. This is not optimal but for the time being it seems sufficient.
111
+ * We would ideally take into consideration the parallelization scheme and
112
+ * partial broadcasting on the lhs or rhs.
113
+ *
114
+ * An example of how this analysis is done is given the DAG:
115
+ * T0[i0, i1, b2] float
116
+ * T1[i0, b1, i2] half
117
+ * T2[i0, b1, i2] = cast(T1, float)
118
+ * T4[i0, i1, i2] float = T0 + T2
119
+ * With values of 10, 100, 1000 as [i0, i1, i2]
120
+ * Our break point analysis for positions 0, 1, 2, 3 will be:
121
+ *
122
+ * 0: 10*10 * 100*10 * 1000*10 = 1e9
123
+ * 1: 10*10 * 100*10 * 1000*10 = 1e9
124
+ * 2: 10*10 * 100*10 * 1000*6 = 6e8
125
+ * 3: 10*10 * 100*10 * 1000*10 = 1e9
126
+ *
127
+ * Where for each computation the LHS of the * pairs is the number of elements
128
+ * in that dimension on the reference and the RHS of the * pairs is the
129
+ * broadcast multiple where any tensor that has all broadcasts on the rhs or lhs
130
+ * of the break point doesn't contribute to the broadcast multiple of the rhs or
131
+ * lhs.
132
+ *
133
+ * So we'll pick position 2 since we're confident we can get broadcast reuse on
134
+ * the rhs of tensor 0. As already mentioned this is a pretty big
135
+ * simplification/assumption and in reality it may be harder/easier to take
136
+ * advantage of broadcast on the inner or outer dimension. This is a reasonable
137
+ * way to make relative decisions on break points, however, this computation is
138
+ * ont doing an effective estimate of actual DRAM transfers which it should be
139
+ * modified to do so.
140
+ *
141
+ * For view schedules there can be some incoherent break points for example:
142
+ * T1[i0, i1*i2] = view(T0[i0, i1, i2])
143
+ * would make the position 2 "incoherent". In otherwords we cannot replay
144
+ * through the view a schedule that tries to merge i0 and i1, without i2. So for
145
+ * positions that are incoherent we won't consider break point positions there.
146
+ *
147
+ * See FusionBroadcastViewMultiples_CUDA for what we expect with view handling.
148
+ * Shortly any dimensions that are inputs or outputs of view transformations are
149
+ * considered together, since it's hard to account for partial dimensions that
150
+ * are being broadcasted. So for view it's primarily an all or nothing situation
151
+ * when it comes to the 2D pointwise scheduler.
152
+ *
153
+ * DID axes, which are not allocated, are ignored in the analysis.
154
+ * Specifically, two fusions that only differ by DID axes result in
155
+ * the same scheduling decisions.
156
+ */
157
+
158
+ class SchedulerRuntimeInfo;
159
+ class HeuristicDataCache;
160
+
161
+ class PointWiseScheduler : public SchedulerEntry {
162
+ public:
163
+ bool canScheduleCompileTime(Fusion* fusion) override;
164
+ bool canScheduleRunTime(
165
+ Fusion* fusion,
166
+ SchedulerRuntimeInfo& runtime_info,
167
+ HeuristicDataCache* data_cache = nullptr) override {
168
+ return true;
169
+ }
170
+
171
+ std::unique_ptr<HeuristicParams> computeHeuristics(
172
+ Fusion* fusion,
173
+ SchedulerRuntimeInfo& runtime_info,
174
+ HeuristicDataCache* data_cache) override;
175
+
176
+ void schedule(Fusion* fusion, const HeuristicParams* params) override;
177
+
178
+ constexpr static SchedulerType schedulerType() {
179
+ return SchedulerType::PointWise;
180
+ }
181
+ };
182
+
183
+ } // namespace nvfuser
@@ -0,0 +1,118 @@
1
+ // clang-format off
2
+ /*
3
+ * SPDX-FileCopyrightText: Copyright (c) 2023-present NVIDIA CORPORATION & AFFILIATES.
4
+ * All rights reserved.
5
+ * SPDX-License-Identifier: BSD-3-Clause
6
+ */
7
+ // clang-format on
8
+ #pragma once
9
+
10
+ #include <scheduler/heuristic.h>
11
+
12
+ #include <sstream>
13
+
14
+ namespace nvfuser {
15
+
16
+ // Parameters of the pointwise heuristic to describe the optimial schedule.
17
+ // Warning: equal operator is intended for use in caching the kernel associated
18
+ // with these pointwise parameters. It does not check if the launch parameters
19
+ // are equivelent!
20
+ class PointwiseParams : public HeuristicParams {
21
+ public:
22
+ PointwiseParams() : HeuristicParams(SchedulerType::PointWise) {};
23
+
24
+ // Treat pointwise operation as 2-Dimensional, this is the location where we
25
+ // split from left side of the domain to right. i.e. 0 means problem is
26
+ // treated as 1-D, 1 of 3 would mean we treat the first dimension as the outer
27
+ // dimension, and all the others as an inner dimension.
28
+ int64_t break_point = 0;
29
+
30
+ // Split block across left and right dimension
31
+ bool split_block = false;
32
+
33
+ // Split grid y dimension, if otherwise it would be too large
34
+ bool split_grid_y_dim = false;
35
+
36
+ // For many instances having BIDx on the inner most dimension is the most
37
+ // performant parallel binding. However, if we're broadcasting the outer
38
+ // dimension with a large inner dimension, it can be more performant to bind
39
+ // BIDy on the inner most dimension.
40
+ bool flip_grid_binding = false;
41
+
42
+ // vectorization factor
43
+ int64_t vectorization_factor = 1;
44
+
45
+ // Unroll on top of vectorization
46
+ // In the 2D scheduler, unroll the outer dimension to reuse loaded data across
47
+ // rows, reducing loaded bytes by the unroll factor.
48
+ // Always equals 1 for 1D scheduler.
49
+ int64_t unroll_factor_outer = 1;
50
+
51
+ // In the 2D scheduler, unroll the inner dimension to reuse loaded data across
52
+ // cols, reducing loaded bytes by the unroll factor.
53
+ // Also used in 1D scheduler.
54
+ int64_t unroll_factor_inner = 1;
55
+
56
+ using HeuristicParams::HeuristicParams;
57
+
58
+ // Warning: Does not check launch parameters!
59
+ bool sameAs(const HeuristicParams* other_base) const override {
60
+ auto other = dynamic_cast<const PointwiseParams*>(other_base);
61
+ if (other == nullptr) {
62
+ return false;
63
+ }
64
+ bool attr_equal = other->cparams == cparams &&
65
+ other->vectorization_factor == vectorization_factor &&
66
+ other->break_point == break_point &&
67
+ other->split_block == split_block &&
68
+ other->split_grid_y_dim == split_grid_y_dim &&
69
+ other->unroll_factor_outer == unroll_factor_outer &&
70
+ other->unroll_factor_inner == unroll_factor_inner &&
71
+ other->flip_grid_binding == flip_grid_binding;
72
+ return attr_equal;
73
+ }
74
+
75
+ std::string toString() const override {
76
+ std::stringstream ss;
77
+ ss << "\n===== Pointwise Parameters ========\n"
78
+ << (tag.empty() ? "" : "Tag: ") << tag << " Pointwise Characteristics:\n"
79
+ << " Gridx: " << lparams.gdimx() << " BlckY: " << lparams.bdimy()
80
+ << " BlckX: " << lparams.bdimx() << "\n";
81
+ if (break_point) {
82
+ ss << "2D Schedule\n"
83
+ << " Bcast break point: " << break_point << "\n";
84
+ if (split_block) {
85
+ ss << "Split block into y-dim\n";
86
+ }
87
+ if (split_grid_y_dim) {
88
+ ss << " Split y grid dim\n";
89
+ }
90
+ }
91
+ ss << "vectorization_factor: " << vectorization_factor << "\n";
92
+ ss << "unroll_factor_outer: " << unroll_factor_outer << "\n";
93
+ ss << "unroll_factor_inner: " << unroll_factor_inner << "\n";
94
+ if (flip_grid_binding) {
95
+ ss << "Flip BIDx/BIDy bindings\n";
96
+ }
97
+ ss << "====================================\n";
98
+ return ss.str();
99
+ }
100
+
101
+ // Warning: Hash is not based on launch parameters!
102
+ size_t hash() const override {
103
+ size_t attr_hash = static_cast<size_t>(vectorization_factor) ^
104
+ static_cast<size_t>(break_point) << 4 ^
105
+ static_cast<size_t>(split_block) << 5 ^
106
+ static_cast<size_t>(split_grid_y_dim) << 6 ^
107
+ static_cast<size_t>(unroll_factor_outer) << 7 ^
108
+ static_cast<size_t>(unroll_factor_inner) << 9 ^
109
+ static_cast<size_t>(flip_grid_binding) << 10;
110
+ return attr_hash;
111
+ }
112
+
113
+ std::unique_ptr<HeuristicParams> clone() const override {
114
+ return std::make_unique<PointwiseParams>(*this);
115
+ }
116
+ };
117
+
118
+ } // namespace nvfuser
@@ -0,0 +1,24 @@
1
+ // clang-format off
2
+ /*
3
+ * SPDX-FileCopyrightText: Copyright (c) 2023-present NVIDIA CORPORATION & AFFILIATES.
4
+ * All rights reserved.
5
+ * SPDX-License-Identifier: BSD-3-Clause
6
+ */
7
+ // clang-format on
8
+ #pragma once
9
+
10
+ #include <compute_at_map.h>
11
+ #include <exceptions.h>
12
+ #include <ir/all_nodes.h>
13
+ #include <ir/utils.h>
14
+ #include <scheduler/tools/domain_map.h>
15
+ #include <scheduler/utils.h>
16
+
17
+ namespace nvfuser {
18
+ namespace pointwise_utils {
19
+
20
+ // Return reference tensor view.
21
+ TensorView* getReferenceTensor(Fusion* fusion);
22
+
23
+ } // namespace pointwise_utils
24
+ } // namespace nvfuser
@@ -0,0 +1,43 @@
1
+ // clang-format off
2
+ /*
3
+ * SPDX-FileCopyrightText: Copyright (c) 2023-present NVIDIA CORPORATION & AFFILIATES.
4
+ * All rights reserved.
5
+ * SPDX-License-Identifier: BSD-3-Clause
6
+ */
7
+ // clang-format on
8
+ #pragma once
9
+
10
+ #include <ATen/core/ivalue.h>
11
+ #include <exceptions.h>
12
+ #include <fusion.h>
13
+ #include <scheduler/reduction_heuristic.h>
14
+ #include <scheduler/registry.h>
15
+ #include <visibility.h>
16
+
17
+ namespace nvfuser {
18
+
19
+ class SchedulerRuntimeInfo;
20
+ class HeuristicDataCache;
21
+
22
+ class ReductionScheduler : public SchedulerEntry {
23
+ public:
24
+ bool canScheduleCompileTime(Fusion* fusion) override;
25
+
26
+ bool canScheduleRunTime(
27
+ Fusion* fusion,
28
+ SchedulerRuntimeInfo& runtime_info,
29
+ HeuristicDataCache* data_cache = nullptr) override;
30
+
31
+ std::unique_ptr<HeuristicParams> computeHeuristics(
32
+ Fusion* fusion,
33
+ SchedulerRuntimeInfo& runtime_info,
34
+ HeuristicDataCache* data_cache) override;
35
+
36
+ void schedule(Fusion* fusion, const HeuristicParams* params) override;
37
+
38
+ constexpr static SchedulerType schedulerType() {
39
+ return SchedulerType::Reduction;
40
+ }
41
+ };
42
+
43
+ } // namespace nvfuser