nvfuser-cu121-torch25 0.2.25.dev20250201__cp310-cp310-manylinux_2_28_x86_64.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (242) hide show
  1. nvfuser/_C.cpython-310-x86_64-linux-gnu.so +0 -0
  2. nvfuser/__init__.py +618 -0
  3. nvfuser/__init__.pyi +4 -0
  4. nvfuser/contrib/__init__.py +9 -0
  5. nvfuser/contrib/nn/__init__.py +13 -0
  6. nvfuser/contrib/nn/normalization.py +725 -0
  7. nvfuser/include/nvfuser/alias_analysis.h +116 -0
  8. nvfuser/include/nvfuser/bfs.h +929 -0
  9. nvfuser/include/nvfuser/codegen.h +26 -0
  10. nvfuser/include/nvfuser/compute_at.h +28 -0
  11. nvfuser/include/nvfuser/compute_at_map.h +394 -0
  12. nvfuser/include/nvfuser/contiguity.h +351 -0
  13. nvfuser/include/nvfuser/cuda_utils.h +50 -0
  14. nvfuser/include/nvfuser/debug.h +50 -0
  15. nvfuser/include/nvfuser/device_lower/analysis/bank_conflict.h +53 -0
  16. nvfuser/include/nvfuser/device_lower/analysis/circular_buffer.h +109 -0
  17. nvfuser/include/nvfuser/device_lower/analysis/device_version.h +65 -0
  18. nvfuser/include/nvfuser/device_lower/analysis/divisible_split.h +28 -0
  19. nvfuser/include/nvfuser/device_lower/analysis/fused_reduction.h +36 -0
  20. nvfuser/include/nvfuser/device_lower/analysis/index_compute.h +322 -0
  21. nvfuser/include/nvfuser/device_lower/analysis/predicate_elimination.h +71 -0
  22. nvfuser/include/nvfuser/device_lower/analysis/sync_information.h +47 -0
  23. nvfuser/include/nvfuser/device_lower/analysis/tensor_memory.h +65 -0
  24. nvfuser/include/nvfuser/device_lower/analysis/thread_predicate.h +158 -0
  25. nvfuser/include/nvfuser/device_lower/analysis/tma.h +93 -0
  26. nvfuser/include/nvfuser/device_lower/analysis/trivial_broadcast.h +75 -0
  27. nvfuser/include/nvfuser/device_lower/id_model_options.h +135 -0
  28. nvfuser/include/nvfuser/device_lower/lower2device.h +391 -0
  29. nvfuser/include/nvfuser/device_lower/pass/alias_memory.h +37 -0
  30. nvfuser/include/nvfuser/device_lower/pass/allocation.h +32 -0
  31. nvfuser/include/nvfuser/device_lower/pass/circular_buffer.h +191 -0
  32. nvfuser/include/nvfuser/device_lower/pass/expr_sort.h +17 -0
  33. nvfuser/include/nvfuser/device_lower/pass/fusion_simplifier.h +21 -0
  34. nvfuser/include/nvfuser/device_lower/pass/grid_serialization.h +26 -0
  35. nvfuser/include/nvfuser/device_lower/pass/index.h +200 -0
  36. nvfuser/include/nvfuser/device_lower/pass/inline_ptx.h +16 -0
  37. nvfuser/include/nvfuser/device_lower/pass/insert_syncs.h +39 -0
  38. nvfuser/include/nvfuser/device_lower/pass/instrument.h +24 -0
  39. nvfuser/include/nvfuser/device_lower/pass/loop_rotation.h +150 -0
  40. nvfuser/include/nvfuser/device_lower/pass/loops.h +68 -0
  41. nvfuser/include/nvfuser/device_lower/pass/magic_zero.h +86 -0
  42. nvfuser/include/nvfuser/device_lower/pass/misaligned_vectorization.h +118 -0
  43. nvfuser/include/nvfuser/device_lower/pass/predicate.h +23 -0
  44. nvfuser/include/nvfuser/device_lower/pass/replace_size.h +24 -0
  45. nvfuser/include/nvfuser/device_lower/pass/scalar_hoist.h +115 -0
  46. nvfuser/include/nvfuser/device_lower/pass/unroll.h +98 -0
  47. nvfuser/include/nvfuser/device_lower/pass/vectorize_welford.h +45 -0
  48. nvfuser/include/nvfuser/device_lower/pass/warp_reduce.h +23 -0
  49. nvfuser/include/nvfuser/device_lower/utils.h +382 -0
  50. nvfuser/include/nvfuser/device_lower/validation.h +74 -0
  51. nvfuser/include/nvfuser/disjoint_set.h +556 -0
  52. nvfuser/include/nvfuser/dispatch.h +334 -0
  53. nvfuser/include/nvfuser/driver_api.h +49 -0
  54. nvfuser/include/nvfuser/dynamic_transform.h +316 -0
  55. nvfuser/include/nvfuser/dynamic_type/C++20/type_traits +37 -0
  56. nvfuser/include/nvfuser/dynamic_type/dynamic_type.h +969 -0
  57. nvfuser/include/nvfuser/dynamic_type/error.h +24 -0
  58. nvfuser/include/nvfuser/dynamic_type/type_traits.h +703 -0
  59. nvfuser/include/nvfuser/evaluator_common.h +295 -0
  60. nvfuser/include/nvfuser/exceptions.h +283 -0
  61. nvfuser/include/nvfuser/expr_evaluator.h +125 -0
  62. nvfuser/include/nvfuser/expr_simplifier.h +218 -0
  63. nvfuser/include/nvfuser/flatbuffers/allocator.h +68 -0
  64. nvfuser/include/nvfuser/flatbuffers/array.h +253 -0
  65. nvfuser/include/nvfuser/flatbuffers/base.h +486 -0
  66. nvfuser/include/nvfuser/flatbuffers/buffer.h +154 -0
  67. nvfuser/include/nvfuser/flatbuffers/buffer_ref.h +53 -0
  68. nvfuser/include/nvfuser/flatbuffers/code_generator.h +80 -0
  69. nvfuser/include/nvfuser/flatbuffers/code_generators.h +234 -0
  70. nvfuser/include/nvfuser/flatbuffers/default_allocator.h +64 -0
  71. nvfuser/include/nvfuser/flatbuffers/detached_buffer.h +114 -0
  72. nvfuser/include/nvfuser/flatbuffers/flatbuffer_builder.h +1225 -0
  73. nvfuser/include/nvfuser/flatbuffers/flatbuffers.h +272 -0
  74. nvfuser/include/nvfuser/flatbuffers/flatc.h +130 -0
  75. nvfuser/include/nvfuser/flatbuffers/flex_flat_util.h +36 -0
  76. nvfuser/include/nvfuser/flatbuffers/flexbuffers.h +1889 -0
  77. nvfuser/include/nvfuser/flatbuffers/grpc.h +300 -0
  78. nvfuser/include/nvfuser/flatbuffers/hash.h +127 -0
  79. nvfuser/include/nvfuser/flatbuffers/idl.h +1359 -0
  80. nvfuser/include/nvfuser/flatbuffers/minireflect.h +420 -0
  81. nvfuser/include/nvfuser/flatbuffers/reflection.h +522 -0
  82. nvfuser/include/nvfuser/flatbuffers/reflection_generated.h +1471 -0
  83. nvfuser/include/nvfuser/flatbuffers/registry.h +128 -0
  84. nvfuser/include/nvfuser/flatbuffers/stl_emulation.h +513 -0
  85. nvfuser/include/nvfuser/flatbuffers/string.h +64 -0
  86. nvfuser/include/nvfuser/flatbuffers/struct.h +53 -0
  87. nvfuser/include/nvfuser/flatbuffers/table.h +168 -0
  88. nvfuser/include/nvfuser/flatbuffers/util.h +731 -0
  89. nvfuser/include/nvfuser/flatbuffers/vector.h +393 -0
  90. nvfuser/include/nvfuser/flatbuffers/vector_downward.h +273 -0
  91. nvfuser/include/nvfuser/flatbuffers/verifier.h +317 -0
  92. nvfuser/include/nvfuser/fusion.h +511 -0
  93. nvfuser/include/nvfuser/fusion_guard.h +37 -0
  94. nvfuser/include/nvfuser/fusion_profiler.h +311 -0
  95. nvfuser/include/nvfuser/fusion_segmenter.h +751 -0
  96. nvfuser/include/nvfuser/global_allocator.h +27 -0
  97. nvfuser/include/nvfuser/grouped_reduction.h +47 -0
  98. nvfuser/include/nvfuser/host_ir/container.h +60 -0
  99. nvfuser/include/nvfuser/host_ir/executor.h +152 -0
  100. nvfuser/include/nvfuser/host_ir/host_ir.h +320 -0
  101. nvfuser/include/nvfuser/host_ir/lower.h +35 -0
  102. nvfuser/include/nvfuser/id_model/circular_buffer_indexing.h +56 -0
  103. nvfuser/include/nvfuser/id_model/contiguity.h +166 -0
  104. nvfuser/include/nvfuser/id_model/id_model.h +359 -0
  105. nvfuser/include/nvfuser/id_model/id_model_index_compute.h +81 -0
  106. nvfuser/include/nvfuser/id_model/indexing.h +208 -0
  107. nvfuser/include/nvfuser/id_model/indexing_traversal.h +72 -0
  108. nvfuser/include/nvfuser/id_model/indexing_utils.h +62 -0
  109. nvfuser/include/nvfuser/id_model/loop_promotion.h +180 -0
  110. nvfuser/include/nvfuser/id_model/predicate_indexing.h +104 -0
  111. nvfuser/include/nvfuser/id_model/schedule.h +54 -0
  112. nvfuser/include/nvfuser/id_model/to_string.h +87 -0
  113. nvfuser/include/nvfuser/id_model/transform_replay.h +58 -0
  114. nvfuser/include/nvfuser/id_model/utils.h +176 -0
  115. nvfuser/include/nvfuser/id_model/validation_utils.h +55 -0
  116. nvfuser/include/nvfuser/index_compute.h +651 -0
  117. nvfuser/include/nvfuser/instrumentation.h +107 -0
  118. nvfuser/include/nvfuser/ir/all_nodes.h +14 -0
  119. nvfuser/include/nvfuser/ir/base_nodes.h +687 -0
  120. nvfuser/include/nvfuser/ir/builder.h +215 -0
  121. nvfuser/include/nvfuser/ir/builder_passkey.h +29 -0
  122. nvfuser/include/nvfuser/ir/cloner.h +185 -0
  123. nvfuser/include/nvfuser/ir/container.h +226 -0
  124. nvfuser/include/nvfuser/ir/graphviz.h +119 -0
  125. nvfuser/include/nvfuser/ir/interface_nodes.h +957 -0
  126. nvfuser/include/nvfuser/ir/internal_base_nodes.h +744 -0
  127. nvfuser/include/nvfuser/ir/internal_nodes.h +2792 -0
  128. nvfuser/include/nvfuser/ir/iostream.h +98 -0
  129. nvfuser/include/nvfuser/ir/printer.h +57 -0
  130. nvfuser/include/nvfuser/ir/utils.h +801 -0
  131. nvfuser/include/nvfuser/iter_visitor.h +661 -0
  132. nvfuser/include/nvfuser/kernel.h +299 -0
  133. nvfuser/include/nvfuser/kernel_db/kernel_db.h +109 -0
  134. nvfuser/include/nvfuser/kernel_db/utils.h +37 -0
  135. nvfuser/include/nvfuser/kernel_ir.h +1457 -0
  136. nvfuser/include/nvfuser/kernel_ir_dispatch.h +147 -0
  137. nvfuser/include/nvfuser/linked_hash_map.h +97 -0
  138. nvfuser/include/nvfuser/logical_domain_map.h +577 -0
  139. nvfuser/include/nvfuser/macros.h +23 -0
  140. nvfuser/include/nvfuser/mma_type.h +257 -0
  141. nvfuser/include/nvfuser/multidevice/c10d_mock.h +175 -0
  142. nvfuser/include/nvfuser/multidevice/communication.h +232 -0
  143. nvfuser/include/nvfuser/multidevice/communicator.h +179 -0
  144. nvfuser/include/nvfuser/multidevice/device_mesh.h +95 -0
  145. nvfuser/include/nvfuser/multidevice/executor.h +107 -0
  146. nvfuser/include/nvfuser/multidevice/multidevice.h +18 -0
  147. nvfuser/include/nvfuser/multidevice/utils.h +187 -0
  148. nvfuser/include/nvfuser/non_divisible_split.h +86 -0
  149. nvfuser/include/nvfuser/opaque_type.h +129 -0
  150. nvfuser/include/nvfuser/ops/alias.h +192 -0
  151. nvfuser/include/nvfuser/ops/all_ops.h +13 -0
  152. nvfuser/include/nvfuser/ops/arith.h +712 -0
  153. nvfuser/include/nvfuser/ops/composite.h +130 -0
  154. nvfuser/include/nvfuser/ops/indexing.h +55 -0
  155. nvfuser/include/nvfuser/ops/normalization.h +263 -0
  156. nvfuser/include/nvfuser/ops/utils.h +127 -0
  157. nvfuser/include/nvfuser/options.h +313 -0
  158. nvfuser/include/nvfuser/parallel_dimension_map.h +95 -0
  159. nvfuser/include/nvfuser/parallel_type_bitmap.h +365 -0
  160. nvfuser/include/nvfuser/polymorphic_value.h +432 -0
  161. nvfuser/include/nvfuser/predicate_compute.h +213 -0
  162. nvfuser/include/nvfuser/python_frontend/distributed_tensor.h +50 -0
  163. nvfuser/include/nvfuser/python_frontend/fusion_cache.h +298 -0
  164. nvfuser/include/nvfuser/python_frontend/fusion_definition.h +372 -0
  165. nvfuser/include/nvfuser/python_frontend/fusion_record.h +3124 -0
  166. nvfuser/include/nvfuser/python_frontend/fusion_state.h +143 -0
  167. nvfuser/include/nvfuser/python_frontend/python_bindings.h +27 -0
  168. nvfuser/include/nvfuser/python_frontend/segmentation.h +246 -0
  169. nvfuser/include/nvfuser/python_frontend/translation.h +20 -0
  170. nvfuser/include/nvfuser/python_frontend/translation_utils.h +308 -0
  171. nvfuser/include/nvfuser/scheduler/all_schedulers.h +17 -0
  172. nvfuser/include/nvfuser/scheduler/ampere_multi_matmul.h +206 -0
  173. nvfuser/include/nvfuser/scheduler/cache_policy_refiner.h +19 -0
  174. nvfuser/include/nvfuser/scheduler/compile_time_info.h +322 -0
  175. nvfuser/include/nvfuser/scheduler/debug_utils.h +68 -0
  176. nvfuser/include/nvfuser/scheduler/expr_eval_sched.h +45 -0
  177. nvfuser/include/nvfuser/scheduler/heuristic.h +113 -0
  178. nvfuser/include/nvfuser/scheduler/hopper_multi_matmul.h +204 -0
  179. nvfuser/include/nvfuser/scheduler/mark_aliases.h +19 -0
  180. nvfuser/include/nvfuser/scheduler/matmul.h +40 -0
  181. nvfuser/include/nvfuser/scheduler/matmul_heuristic.h +293 -0
  182. nvfuser/include/nvfuser/scheduler/matmul_heuristic_plugin.h +65 -0
  183. nvfuser/include/nvfuser/scheduler/matmul_heuristic_plugin_api.h +99 -0
  184. nvfuser/include/nvfuser/scheduler/matmul_utils.h +54 -0
  185. nvfuser/include/nvfuser/scheduler/mma_utils.h +500 -0
  186. nvfuser/include/nvfuser/scheduler/multi_matmul.h +74 -0
  187. nvfuser/include/nvfuser/scheduler/no_op.h +48 -0
  188. nvfuser/include/nvfuser/scheduler/normalization_inner.h +49 -0
  189. nvfuser/include/nvfuser/scheduler/normalization_inner_outer.h +51 -0
  190. nvfuser/include/nvfuser/scheduler/normalization_outer.h +48 -0
  191. nvfuser/include/nvfuser/scheduler/normalization_utils.h +379 -0
  192. nvfuser/include/nvfuser/scheduler/pointwise.h +183 -0
  193. nvfuser/include/nvfuser/scheduler/pointwise_heuristic.h +118 -0
  194. nvfuser/include/nvfuser/scheduler/pointwise_utils.h +24 -0
  195. nvfuser/include/nvfuser/scheduler/reduction.h +43 -0
  196. nvfuser/include/nvfuser/scheduler/reduction_heuristic.h +339 -0
  197. nvfuser/include/nvfuser/scheduler/reduction_utils.h +159 -0
  198. nvfuser/include/nvfuser/scheduler/registry.h +97 -0
  199. nvfuser/include/nvfuser/scheduler/registry_utils.h +111 -0
  200. nvfuser/include/nvfuser/scheduler/resize.h +41 -0
  201. nvfuser/include/nvfuser/scheduler/resize_heuristic.h +67 -0
  202. nvfuser/include/nvfuser/scheduler/runtime_info.h +166 -0
  203. nvfuser/include/nvfuser/scheduler/scheduler_types.h +80 -0
  204. nvfuser/include/nvfuser/scheduler/transpose.h +114 -0
  205. nvfuser/include/nvfuser/scheduler/transpose_heuristic.h +164 -0
  206. nvfuser/include/nvfuser/scheduler/utils.h +771 -0
  207. nvfuser/include/nvfuser/scheduler/vectorize_helper.h +349 -0
  208. nvfuser/include/nvfuser/serde/factory.h +55 -0
  209. nvfuser/include/nvfuser/serde/fusion_cache_generated.h +4319 -0
  210. nvfuser/include/nvfuser/serde/fusion_record.h +124 -0
  211. nvfuser/include/nvfuser/serde/polymorphic_value.h +52 -0
  212. nvfuser/include/nvfuser/serde/utils.h +34 -0
  213. nvfuser/include/nvfuser/struct.inl +127 -0
  214. nvfuser/include/nvfuser/swizzle.h +54 -0
  215. nvfuser/include/nvfuser/sys_utils.h +40 -0
  216. nvfuser/include/nvfuser/tensor_metadata.h +118 -0
  217. nvfuser/include/nvfuser/tma.h +124 -0
  218. nvfuser/include/nvfuser/transform_iter.h +522 -0
  219. nvfuser/include/nvfuser/transform_replay.h +297 -0
  220. nvfuser/include/nvfuser/transform_rfactor.h +33 -0
  221. nvfuser/include/nvfuser/transform_view.h +136 -0
  222. nvfuser/include/nvfuser/type.h +1125 -0
  223. nvfuser/include/nvfuser/type_promotion.h +61 -0
  224. nvfuser/include/nvfuser/utils.h +619 -0
  225. nvfuser/include/nvfuser/val_graph.h +446 -0
  226. nvfuser/include/nvfuser/val_graph_visitor.h +259 -0
  227. nvfuser/include/nvfuser/validator_utils.h +92 -0
  228. nvfuser/include/nvfuser/vectorization_info.h +31 -0
  229. nvfuser/include/nvfuser/visibility.h +21 -0
  230. nvfuser/lib/libnvfuser_codegen.so +0 -0
  231. nvfuser/nvfuser_version.py +69 -0
  232. nvfuser/pytorch_utils.py +184 -0
  233. nvfuser/share/cmake/nvfuser/NvfuserConfig-release.cmake +20 -0
  234. nvfuser/share/cmake/nvfuser/NvfuserConfig.cmake +106 -0
  235. nvfuser/utils.py +18 -0
  236. nvfuser/version.py +1 -0
  237. nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/LICENSE +976 -0
  238. nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/METADATA +20 -0
  239. nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/RECORD +242 -0
  240. nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/WHEEL +5 -0
  241. nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/top_level.txt +1 -0
  242. nvfuser_cu121_torch25.libs/libnvToolsExt-847d78f2.so.1.0.0 +0 -0
@@ -0,0 +1,129 @@
1
+ // clang-format off
2
+ /*
3
+ * SPDX-FileCopyrightText: Copyright (c) 2023-present NVIDIA CORPORATION & AFFILIATES.
4
+ * All rights reserved.
5
+ * SPDX-License-Identifier: BSD-3-Clause
6
+ */
7
+ // clang-format on
8
+ #pragma once
9
+
10
+ #include <dynamic_type/type_traits.h>
11
+
12
+ #include <any>
13
+ #include <cstddef>
14
+ #include <cstring>
15
+ #include <functional>
16
+ #include <ostream>
17
+
18
+ namespace nvfuser {
19
+
20
+ class Opaque;
21
+
22
+ template <typename T>
23
+ struct OpaqueEquals {
24
+ bool operator()(const Opaque& a, const Opaque& b) const;
25
+ };
26
+
27
+ template <typename T>
28
+ struct OpaqueToBytes {
29
+ std::vector<std::byte> operator()(const Opaque& a) const;
30
+ };
31
+
32
+ class Opaque {
33
+ std::any value_;
34
+ std::function<bool(const Opaque&, const Opaque&)> equals_;
35
+ std::function<std::vector<std::byte>(const Opaque&)> to_bytes_;
36
+ size_t size_;
37
+
38
+ public:
39
+ template <typename T>
40
+ explicit Opaque(T value)
41
+ : value_(std::move(value)),
42
+ equals_(OpaqueEquals<T>{}),
43
+ to_bytes_(OpaqueToBytes<T>{}),
44
+ size_(sizeof(T)) {}
45
+
46
+ bool operator==(const Opaque& other) const {
47
+ if (this == &other) {
48
+ return true;
49
+ }
50
+ if (value_.type() != other.value_.type()) {
51
+ // Note that because C++ is a statically typed language, there is no way
52
+ // to completely accurately compare equality of opaque values. The
53
+ // behavior here is just an approximation. For example 1 == 1.0 but
54
+ // Opaque(1) != Opaque(1.0).
55
+ return false;
56
+ }
57
+ return equals_(*this, other);
58
+ }
59
+
60
+ bool operator!=(const Opaque& other) const {
61
+ return !(*this == other);
62
+ }
63
+
64
+ const std::any& any() const {
65
+ return value_;
66
+ }
67
+
68
+ template <typename T>
69
+ const T& as() const {
70
+ return std::any_cast<const T&>(value_);
71
+ }
72
+
73
+ template <typename T>
74
+ T& as() {
75
+ return std::any_cast<T&>(value_);
76
+ }
77
+
78
+ std::vector<std::byte> bytes() const {
79
+ return to_bytes_(*this);
80
+ }
81
+
82
+ size_t size() const {
83
+ return size_;
84
+ }
85
+ };
86
+
87
+ template <typename T>
88
+ bool OpaqueEquals<T>::operator()(const Opaque& a, const Opaque& b) const {
89
+ if constexpr (dynamic_type::opcheck<T> == dynamic_type::opcheck<T>) {
90
+ // If T == T exists, use it
91
+ return a.as<T>() == b.as<T>();
92
+ } else {
93
+ // Otherwise, do bitwise compare. Note that bitwise comparison is not always
94
+ // correct. So this is only an approximation. For example:
95
+ // struct A {
96
+ // int64_t x;
97
+ // std::vector<float> y;
98
+ // };
99
+ // Opaque(A{1, {2.0}}) != Opaque(A{1, {2.0}});
100
+ // Another example:
101
+ // struct A {
102
+ // int32_t i;
103
+ // double d;
104
+ // };
105
+ // /*maybe:*/ Opaque(A{1, 2.0}) == Opaque(A{1, 2.0});
106
+ // /*maybe:*/ Opaque(A{1, 2.0}) != Opaque(A{1, 2.0});
107
+ // Because the struct is not packed, usually C++ compiler will allocate A as
108
+ // something like below:
109
+ // [=== i (32bits) ===][=== empty (32bits) ===][====== d (64bits) ======]
110
+ // The padding bits are not initialized and can be different between two
111
+ // instances of A. So the comparison result is not even deterministic.
112
+ // This path should only be used for packed POD structs. For other types,
113
+ // the user should provide an overloaded operator==.
114
+ return std::memcmp(&a.as<T>(), &b.as<T>(), sizeof(T)) == 0;
115
+ }
116
+ }
117
+
118
+ template <typename T>
119
+ std::vector<std::byte> OpaqueToBytes<T>::operator()(const Opaque& a) const {
120
+ return std::vector<std::byte>(
121
+ (const std::byte*)&a.as<T>(), (const std::byte*)(&a.as<T>() + 1));
122
+ }
123
+
124
+ inline std::ostream& operator<<(std::ostream& os, const Opaque& opaque) {
125
+ os << "Opaque<" << opaque.any().type().name() << ">";
126
+ return os;
127
+ }
128
+
129
+ } // namespace nvfuser
@@ -0,0 +1,192 @@
1
+ // clang-format off
2
+ /*
3
+ * SPDX-FileCopyrightText: Copyright (c) 2023-present NVIDIA CORPORATION & AFFILIATES.
4
+ * All rights reserved.
5
+ * SPDX-License-Identifier: BSD-3-Clause
6
+ */
7
+ // clang-format on
8
+ #pragma once
9
+
10
+ #include <exceptions.h>
11
+ #include <visibility.h>
12
+
13
+ #include <ir/interface_nodes.h>
14
+ #include <type.h>
15
+
16
+ //
17
+ // The operations defined in this header is intended as user facing functions.
18
+ // The user will provide the necessary input TensorViews and the function will
19
+ // create the correct intermediate nodes and return the output TensorViews.
20
+ //
21
+
22
+ namespace nvfuser {
23
+
24
+ NVF_API Val* set(Val*);
25
+ NVF_API TensorView* set(TensorView*);
26
+
27
+ // segment_set hints segmenter to break kernel
28
+ NVF_API Val* segment_set(Val*);
29
+ NVF_API TensorView* segment_set(TensorView*);
30
+
31
+ NVF_API TensorView* view(TensorView* x, DataType dtype);
32
+
33
+ NVF_API TensorView* reshape(
34
+ TensorView* x,
35
+ const std::vector<int64_t>& original_sizes,
36
+ const std::vector<int64_t>& new_sizes);
37
+
38
+ //! Dynamic version of reshape. The number of dimensions is statically
39
+ //! fixed as the length of the new_sizes vector, but the size Vals can be
40
+ //! symbolic, which are then concretized at run time with actual
41
+ //! fusion inputs.
42
+ NVF_API TensorView* reshape(TensorView* x, const std::vector<Val*>& new_sizes);
43
+
44
+ NVF_API TensorView* flatten(
45
+ TensorView* x,
46
+ int64_t start_dim = 0,
47
+ int64_t end_dim = -1);
48
+
49
+ //! Squeeze the selected dimensions.
50
+ //!
51
+ //! NOTE: This function throws an error when encountering an unsqueezable
52
+ //! dimension. This behavior differs from PyTorch.
53
+ NVF_API TensorView* squeeze(
54
+ TensorView* x,
55
+ const std::vector<int64_t>& dims,
56
+ bool squeeze_expanded = false);
57
+
58
+ TensorView* squeeze(TensorView* x, std::initializer_list<int64_t> dims);
59
+
60
+ //! Squeeze the dimensions corresponding to "true" in to_squeeze, i.e. remove
61
+ //! those broadcasted dimensions.
62
+ //!
63
+ //! NOTE: This function throws an error when encountering an unsqueezable
64
+ //! dimension. This behavior differs from PyTorch.
65
+ //!
66
+ //! If squeeze_expanded is true, then expanded Broadcasts will be removed just
67
+ //! as if they were not expanded. If squeeze_expanded is false, then it is an
68
+ //! error for an expanded broadcast to have a corresponding "true" value in
69
+ //! to_squeeze.
70
+ NVF_API TensorView* squeeze(
71
+ TensorView* x,
72
+ const std::vector<bool>& to_squeeze,
73
+ bool squeeze_expanded = false);
74
+
75
+ NVF_API TensorView* unsqueeze(TensorView* x, int64_t dim);
76
+
77
+ //! Permute a tensor as specified by axis mappings.
78
+ //!
79
+ //! The transposition mapping is specified with a list of pairs from
80
+ //! new to old positions. Positions are relative to the noReduction
81
+ //! domain.
82
+ //!
83
+ //! \param x Tensor to transpose
84
+ //! \param new2old vector mapping from new to old positions.
85
+ NVF_API TensorView* permute(TensorView* x, const std::vector<int64_t>& new2old);
86
+ NVF_API TensorView* permute(
87
+ TensorView* x,
88
+ const std::initializer_list<int64_t>& new2old);
89
+
90
+ //! Same as above, but with the TensorView::reorder-like API.
91
+ NVF_API TensorView* permute(
92
+ TensorView* x,
93
+ const std::unordered_map<int64_t, int64_t>& old2new);
94
+ NVF_API TensorView* permute(
95
+ TensorView* x,
96
+ const std::initializer_list<std::pair<const int64_t, int64_t>>& old2new);
97
+
98
+ //! Transpose a tensor by swapping the two dimensions.
99
+ NVF_API TensorView* transpose(TensorView* x, int64_t dim0, int64_t dim1);
100
+
101
+ //! Transpose a 2D tensor.
102
+ NVF_API TensorView* transpose(TensorView* x);
103
+
104
+ //! Pad a tensor by given widths by specified value. Similar to torch.pad, the
105
+ //! pad_widths vector specifies the padding widths of the innermost N
106
+ //! dimensions, where N is half the size of the width vector. If value is
107
+ //! omitted, a default value of zero is assumed. The provied value will be cast
108
+ //! to the dtype of the argument x.
109
+ //! TODO: Support other padding types
110
+ NVF_API TensorView* pad(
111
+ TensorView* x,
112
+ const std::vector<Val*>& pad_widths,
113
+ Val* value = nullptr,
114
+ std::optional<IterType> iter_type_opt = std::nullopt);
115
+
116
+ //! Concatenate tensors in the given dimension
117
+ //!
118
+ //! * manual_padding is a flag to skip the pad operation in the cat composite
119
+ //! operation.
120
+ NVF_API TensorView* cat(
121
+ const std::vector<TensorView*>& inputs,
122
+ int64_t dim,
123
+ std::optional<IterType> iter_type_opt = std::nullopt,
124
+ bool manual_padding = false);
125
+
126
+ //! Return a tensor where each dimension is sliced as specified by the
127
+ //! ranges parameter. Stepping must be one at this moment. The semantics of
128
+ //! slicing with negative values and values >= extent follow those of numpy and
129
+ //! PyTorch.
130
+ //!
131
+ //! * manual_normalization is a flag to skip using the normalize_slice_range
132
+ //! lambda to normalize the ranges arguments for each tensor dimension.
133
+ NVF_API TensorView* slice(
134
+ TensorView* inp,
135
+ const std::vector<Slice>& ranges,
136
+ bool manual_normalization = false);
137
+
138
+ //! A variant of the above `slice` function. This is closer to the Python API.
139
+ NVF_API TensorView* slice(
140
+ TensorView* inp,
141
+ const std::vector<int64_t>& starts,
142
+ const std::vector<int64_t>& stops,
143
+ const std::vector<int64_t>& steps);
144
+
145
+ //! Same as above except that `steps` are all 1.
146
+ NVF_API TensorView* slice(
147
+ TensorView* inp,
148
+ const std::vector<int64_t>& starts,
149
+ const std::vector<int64_t>& stops);
150
+
151
+ // Splits `in`'s dimension `dim` into `chunks` chunks. All but the last chunk
152
+ // will be of size `ceil(dim_size/chunks)`. Unlike `torch.chunk` which returns
153
+ // only positive-size chunks and therefore may return fewer than `chunks` of
154
+ // them, this function returns exactly `chunks` chunks and a chunk of negative
155
+ // size will lead to a concretization error. This difference is because that we
156
+ // can't precompute the number of positive-size chunks when the dimension size
157
+ // is symbolic.
158
+ std::vector<TensorView*> chunk(TensorView* in, int64_t chunks, int64_t dim);
159
+
160
+ // Broadcasts inp based on bool vector. Size of broadcast bool vector should be
161
+ // the number of dims desired in the broadcasted tensor. This vector should be
162
+ // true if output dim should be a broadcasted dim, and false if it is not a
163
+ // broadcasted dim. Number of false entires must match the number of input dims.
164
+ NVF_API TensorView* broadcast(
165
+ TensorView* inp,
166
+ const std::vector<bool>& is_broadcast_dim);
167
+
168
+ // Expands input based on provided sizes. expand_sizes should be larger than
169
+ // the input's root domain (really rfactor) and will broadcast on inner
170
+ // dimensions. expand_sizes should be -1 for any dimension that should remain a
171
+ // symbolic size. For dimensions that remain broadcast after the expand should
172
+ // be set to 1, any dimension being expanded must be marked as a broadcast in
173
+ // the input and will be expanded to the provided constant size. Any dimension
174
+ // that's symbolic in the input but specified as a non -1 value will be set to
175
+ // that constant value.
176
+ NVF_API TensorView* expand(
177
+ TensorView* inp,
178
+ const std::vector<Val*>& expanded_sizes);
179
+
180
+ // Expands input based on other. For dimensions in inp that are broadcast with a
181
+ // matching entry in other that's either a broadcast with expanded extent or a
182
+ // non broadcasted iter domain, inp will be expanded to other's size.
183
+ NVF_API TensorView* expand_as(TensorView* inp, TensorView* other);
184
+
185
+ // Repeat each dimension for a given time. The repeat_times parameter
186
+ // must have the same number of elements as the dimensionality of the
187
+ // input tensor (excluding reduction IDs).
188
+ NVF_API TensorView* repeat(
189
+ TensorView* inp,
190
+ const std::vector<int64_t>& repeat_times);
191
+
192
+ } // namespace nvfuser
@@ -0,0 +1,13 @@
1
+ // clang-format off
2
+ /*
3
+ * SPDX-FileCopyrightText: Copyright (c) 2023-present NVIDIA CORPORATION & AFFILIATES.
4
+ * All rights reserved.
5
+ * SPDX-License-Identifier: BSD-3-Clause
6
+ */
7
+ // clang-format on
8
+ #pragma once
9
+ #include <ops/alias.h>
10
+ #include <ops/arith.h>
11
+ #include <ops/composite.h>
12
+ #include <ops/indexing.h>
13
+ #include <ops/normalization.h>