nv-ingest-api 26.1.0rc4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nv-ingest-api might be problematic. Click here for more details.
- nv_ingest_api/__init__.py +3 -0
- nv_ingest_api/interface/__init__.py +218 -0
- nv_ingest_api/interface/extract.py +977 -0
- nv_ingest_api/interface/mutate.py +154 -0
- nv_ingest_api/interface/store.py +200 -0
- nv_ingest_api/interface/transform.py +382 -0
- nv_ingest_api/interface/utility.py +186 -0
- nv_ingest_api/internal/__init__.py +0 -0
- nv_ingest_api/internal/enums/__init__.py +3 -0
- nv_ingest_api/internal/enums/common.py +550 -0
- nv_ingest_api/internal/extract/__init__.py +3 -0
- nv_ingest_api/internal/extract/audio/__init__.py +3 -0
- nv_ingest_api/internal/extract/audio/audio_extraction.py +202 -0
- nv_ingest_api/internal/extract/docx/__init__.py +5 -0
- nv_ingest_api/internal/extract/docx/docx_extractor.py +232 -0
- nv_ingest_api/internal/extract/docx/engines/__init__.py +0 -0
- nv_ingest_api/internal/extract/docx/engines/docxreader_helpers/__init__.py +3 -0
- nv_ingest_api/internal/extract/docx/engines/docxreader_helpers/docx_helper.py +127 -0
- nv_ingest_api/internal/extract/docx/engines/docxreader_helpers/docxreader.py +971 -0
- nv_ingest_api/internal/extract/html/__init__.py +3 -0
- nv_ingest_api/internal/extract/html/html_extractor.py +84 -0
- nv_ingest_api/internal/extract/image/__init__.py +3 -0
- nv_ingest_api/internal/extract/image/chart_extractor.py +375 -0
- nv_ingest_api/internal/extract/image/image_extractor.py +208 -0
- nv_ingest_api/internal/extract/image/image_helpers/__init__.py +3 -0
- nv_ingest_api/internal/extract/image/image_helpers/common.py +433 -0
- nv_ingest_api/internal/extract/image/infographic_extractor.py +290 -0
- nv_ingest_api/internal/extract/image/ocr_extractor.py +407 -0
- nv_ingest_api/internal/extract/image/table_extractor.py +391 -0
- nv_ingest_api/internal/extract/pdf/__init__.py +3 -0
- nv_ingest_api/internal/extract/pdf/engines/__init__.py +19 -0
- nv_ingest_api/internal/extract/pdf/engines/adobe.py +484 -0
- nv_ingest_api/internal/extract/pdf/engines/llama.py +246 -0
- nv_ingest_api/internal/extract/pdf/engines/nemotron_parse.py +598 -0
- nv_ingest_api/internal/extract/pdf/engines/pdf_helpers/__init__.py +166 -0
- nv_ingest_api/internal/extract/pdf/engines/pdfium.py +652 -0
- nv_ingest_api/internal/extract/pdf/engines/tika.py +96 -0
- nv_ingest_api/internal/extract/pdf/engines/unstructured_io.py +426 -0
- nv_ingest_api/internal/extract/pdf/pdf_extractor.py +74 -0
- nv_ingest_api/internal/extract/pptx/__init__.py +5 -0
- nv_ingest_api/internal/extract/pptx/engines/__init__.py +0 -0
- nv_ingest_api/internal/extract/pptx/engines/pptx_helper.py +968 -0
- nv_ingest_api/internal/extract/pptx/pptx_extractor.py +210 -0
- nv_ingest_api/internal/meta/__init__.py +3 -0
- nv_ingest_api/internal/meta/udf.py +232 -0
- nv_ingest_api/internal/mutate/__init__.py +3 -0
- nv_ingest_api/internal/mutate/deduplicate.py +110 -0
- nv_ingest_api/internal/mutate/filter.py +133 -0
- nv_ingest_api/internal/primitives/__init__.py +0 -0
- nv_ingest_api/internal/primitives/control_message_task.py +16 -0
- nv_ingest_api/internal/primitives/ingest_control_message.py +307 -0
- nv_ingest_api/internal/primitives/nim/__init__.py +9 -0
- nv_ingest_api/internal/primitives/nim/default_values.py +14 -0
- nv_ingest_api/internal/primitives/nim/model_interface/__init__.py +3 -0
- nv_ingest_api/internal/primitives/nim/model_interface/cached.py +274 -0
- nv_ingest_api/internal/primitives/nim/model_interface/decorators.py +56 -0
- nv_ingest_api/internal/primitives/nim/model_interface/deplot.py +270 -0
- nv_ingest_api/internal/primitives/nim/model_interface/helpers.py +338 -0
- nv_ingest_api/internal/primitives/nim/model_interface/nemotron_parse.py +239 -0
- nv_ingest_api/internal/primitives/nim/model_interface/ocr.py +776 -0
- nv_ingest_api/internal/primitives/nim/model_interface/parakeet.py +367 -0
- nv_ingest_api/internal/primitives/nim/model_interface/text_embedding.py +129 -0
- nv_ingest_api/internal/primitives/nim/model_interface/vlm.py +177 -0
- nv_ingest_api/internal/primitives/nim/model_interface/yolox.py +1681 -0
- nv_ingest_api/internal/primitives/nim/nim_client.py +801 -0
- nv_ingest_api/internal/primitives/nim/nim_model_interface.py +126 -0
- nv_ingest_api/internal/primitives/tracing/__init__.py +0 -0
- nv_ingest_api/internal/primitives/tracing/latency.py +69 -0
- nv_ingest_api/internal/primitives/tracing/logging.py +96 -0
- nv_ingest_api/internal/primitives/tracing/tagging.py +288 -0
- nv_ingest_api/internal/schemas/__init__.py +3 -0
- nv_ingest_api/internal/schemas/extract/__init__.py +3 -0
- nv_ingest_api/internal/schemas/extract/extract_audio_schema.py +133 -0
- nv_ingest_api/internal/schemas/extract/extract_chart_schema.py +144 -0
- nv_ingest_api/internal/schemas/extract/extract_docx_schema.py +129 -0
- nv_ingest_api/internal/schemas/extract/extract_html_schema.py +34 -0
- nv_ingest_api/internal/schemas/extract/extract_image_schema.py +126 -0
- nv_ingest_api/internal/schemas/extract/extract_infographic_schema.py +137 -0
- nv_ingest_api/internal/schemas/extract/extract_ocr_schema.py +137 -0
- nv_ingest_api/internal/schemas/extract/extract_pdf_schema.py +220 -0
- nv_ingest_api/internal/schemas/extract/extract_pptx_schema.py +128 -0
- nv_ingest_api/internal/schemas/extract/extract_table_schema.py +137 -0
- nv_ingest_api/internal/schemas/message_brokers/__init__.py +3 -0
- nv_ingest_api/internal/schemas/message_brokers/message_broker_client_schema.py +37 -0
- nv_ingest_api/internal/schemas/message_brokers/request_schema.py +34 -0
- nv_ingest_api/internal/schemas/message_brokers/response_schema.py +19 -0
- nv_ingest_api/internal/schemas/meta/__init__.py +3 -0
- nv_ingest_api/internal/schemas/meta/base_model_noext.py +11 -0
- nv_ingest_api/internal/schemas/meta/ingest_job_schema.py +355 -0
- nv_ingest_api/internal/schemas/meta/metadata_schema.py +394 -0
- nv_ingest_api/internal/schemas/meta/udf.py +23 -0
- nv_ingest_api/internal/schemas/mixins.py +39 -0
- nv_ingest_api/internal/schemas/mutate/__init__.py +3 -0
- nv_ingest_api/internal/schemas/mutate/mutate_image_dedup_schema.py +16 -0
- nv_ingest_api/internal/schemas/store/__init__.py +3 -0
- nv_ingest_api/internal/schemas/store/store_embedding_schema.py +28 -0
- nv_ingest_api/internal/schemas/store/store_image_schema.py +45 -0
- nv_ingest_api/internal/schemas/transform/__init__.py +3 -0
- nv_ingest_api/internal/schemas/transform/transform_image_caption_schema.py +36 -0
- nv_ingest_api/internal/schemas/transform/transform_image_filter_schema.py +17 -0
- nv_ingest_api/internal/schemas/transform/transform_text_embedding_schema.py +48 -0
- nv_ingest_api/internal/schemas/transform/transform_text_splitter_schema.py +24 -0
- nv_ingest_api/internal/store/__init__.py +3 -0
- nv_ingest_api/internal/store/embed_text_upload.py +236 -0
- nv_ingest_api/internal/store/image_upload.py +251 -0
- nv_ingest_api/internal/transform/__init__.py +3 -0
- nv_ingest_api/internal/transform/caption_image.py +219 -0
- nv_ingest_api/internal/transform/embed_text.py +702 -0
- nv_ingest_api/internal/transform/split_text.py +182 -0
- nv_ingest_api/util/__init__.py +3 -0
- nv_ingest_api/util/control_message/__init__.py +0 -0
- nv_ingest_api/util/control_message/validators.py +47 -0
- nv_ingest_api/util/converters/__init__.py +0 -0
- nv_ingest_api/util/converters/bytetools.py +78 -0
- nv_ingest_api/util/converters/containers.py +65 -0
- nv_ingest_api/util/converters/datetools.py +90 -0
- nv_ingest_api/util/converters/dftools.py +127 -0
- nv_ingest_api/util/converters/formats.py +64 -0
- nv_ingest_api/util/converters/type_mappings.py +27 -0
- nv_ingest_api/util/dataloader/__init__.py +9 -0
- nv_ingest_api/util/dataloader/dataloader.py +409 -0
- nv_ingest_api/util/detectors/__init__.py +5 -0
- nv_ingest_api/util/detectors/language.py +38 -0
- nv_ingest_api/util/exception_handlers/__init__.py +0 -0
- nv_ingest_api/util/exception_handlers/converters.py +72 -0
- nv_ingest_api/util/exception_handlers/decorators.py +429 -0
- nv_ingest_api/util/exception_handlers/detectors.py +74 -0
- nv_ingest_api/util/exception_handlers/pdf.py +116 -0
- nv_ingest_api/util/exception_handlers/schemas.py +68 -0
- nv_ingest_api/util/image_processing/__init__.py +5 -0
- nv_ingest_api/util/image_processing/clustering.py +260 -0
- nv_ingest_api/util/image_processing/processing.py +177 -0
- nv_ingest_api/util/image_processing/table_and_chart.py +504 -0
- nv_ingest_api/util/image_processing/transforms.py +850 -0
- nv_ingest_api/util/imports/__init__.py +3 -0
- nv_ingest_api/util/imports/callable_signatures.py +108 -0
- nv_ingest_api/util/imports/dynamic_resolvers.py +158 -0
- nv_ingest_api/util/introspection/__init__.py +3 -0
- nv_ingest_api/util/introspection/class_inspect.py +145 -0
- nv_ingest_api/util/introspection/function_inspect.py +65 -0
- nv_ingest_api/util/logging/__init__.py +0 -0
- nv_ingest_api/util/logging/configuration.py +102 -0
- nv_ingest_api/util/logging/sanitize.py +84 -0
- nv_ingest_api/util/message_brokers/__init__.py +3 -0
- nv_ingest_api/util/message_brokers/qos_scheduler.py +283 -0
- nv_ingest_api/util/message_brokers/simple_message_broker/__init__.py +9 -0
- nv_ingest_api/util/message_brokers/simple_message_broker/broker.py +465 -0
- nv_ingest_api/util/message_brokers/simple_message_broker/ordered_message_queue.py +71 -0
- nv_ingest_api/util/message_brokers/simple_message_broker/simple_client.py +455 -0
- nv_ingest_api/util/metadata/__init__.py +5 -0
- nv_ingest_api/util/metadata/aggregators.py +516 -0
- nv_ingest_api/util/multi_processing/__init__.py +8 -0
- nv_ingest_api/util/multi_processing/mp_pool_singleton.py +200 -0
- nv_ingest_api/util/nim/__init__.py +161 -0
- nv_ingest_api/util/pdf/__init__.py +3 -0
- nv_ingest_api/util/pdf/pdfium.py +428 -0
- nv_ingest_api/util/schema/__init__.py +3 -0
- nv_ingest_api/util/schema/schema_validator.py +10 -0
- nv_ingest_api/util/service_clients/__init__.py +3 -0
- nv_ingest_api/util/service_clients/client_base.py +86 -0
- nv_ingest_api/util/service_clients/kafka/__init__.py +3 -0
- nv_ingest_api/util/service_clients/redis/__init__.py +3 -0
- nv_ingest_api/util/service_clients/redis/redis_client.py +983 -0
- nv_ingest_api/util/service_clients/rest/__init__.py +0 -0
- nv_ingest_api/util/service_clients/rest/rest_client.py +595 -0
- nv_ingest_api/util/string_processing/__init__.py +51 -0
- nv_ingest_api/util/string_processing/configuration.py +682 -0
- nv_ingest_api/util/string_processing/yaml.py +109 -0
- nv_ingest_api/util/system/__init__.py +0 -0
- nv_ingest_api/util/system/hardware_info.py +594 -0
- nv_ingest_api-26.1.0rc4.dist-info/METADATA +237 -0
- nv_ingest_api-26.1.0rc4.dist-info/RECORD +177 -0
- nv_ingest_api-26.1.0rc4.dist-info/WHEEL +5 -0
- nv_ingest_api-26.1.0rc4.dist-info/licenses/LICENSE +201 -0
- nv_ingest_api-26.1.0rc4.dist-info/top_level.txt +2 -0
- udfs/__init__.py +5 -0
- udfs/llm_summarizer_udf.py +259 -0
|
@@ -0,0 +1,850 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES.
|
|
2
|
+
# All rights reserved.
|
|
3
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
4
|
+
|
|
5
|
+
import logging
|
|
6
|
+
from math import ceil
|
|
7
|
+
from math import floor
|
|
8
|
+
from typing import Optional
|
|
9
|
+
from typing import Tuple
|
|
10
|
+
|
|
11
|
+
import cv2
|
|
12
|
+
import numpy as np
|
|
13
|
+
from io import BytesIO
|
|
14
|
+
from PIL import Image
|
|
15
|
+
|
|
16
|
+
from nv_ingest_api.util.converters import bytetools
|
|
17
|
+
|
|
18
|
+
# Configure OpenCV to use a single thread for image processing
|
|
19
|
+
cv2.setNumThreads(1)
|
|
20
|
+
DEFAULT_MAX_WIDTH = 1024
|
|
21
|
+
DEFAULT_MAX_HEIGHT = 1280
|
|
22
|
+
|
|
23
|
+
# Workaround for PIL.Image.DecompressionBombError
|
|
24
|
+
Image.MAX_IMAGE_PIXELS = None
|
|
25
|
+
|
|
26
|
+
logger = logging.getLogger(__name__)
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def _resize_image_opencv(
|
|
30
|
+
array: np.ndarray, target_size: Tuple[int, int], interpolation=cv2.INTER_LANCZOS4
|
|
31
|
+
) -> np.ndarray:
|
|
32
|
+
"""
|
|
33
|
+
Resizes a NumPy array representing an image using OpenCV.
|
|
34
|
+
|
|
35
|
+
Parameters
|
|
36
|
+
----------
|
|
37
|
+
array : np.ndarray
|
|
38
|
+
The input image as a NumPy array.
|
|
39
|
+
target_size : Tuple[int, int]
|
|
40
|
+
The target size as (width, height).
|
|
41
|
+
interpolation : int, optional
|
|
42
|
+
OpenCV interpolation method. Defaults to cv2.INTER_LANCZOS4.
|
|
43
|
+
|
|
44
|
+
Returns
|
|
45
|
+
-------
|
|
46
|
+
np.ndarray
|
|
47
|
+
The resized image as a NumPy array.
|
|
48
|
+
"""
|
|
49
|
+
return cv2.resize(array, target_size, interpolation=interpolation)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def rgba_to_rgb_white_bg(rgba_image):
|
|
53
|
+
"""
|
|
54
|
+
Convert RGBA image to RGB by blending with a white background.
|
|
55
|
+
|
|
56
|
+
This function properly handles transparency by alpha-blending transparent
|
|
57
|
+
and semi-transparent pixels with a white background, producing visually
|
|
58
|
+
accurate results that match how the image would appear when displayed.
|
|
59
|
+
|
|
60
|
+
Parameters
|
|
61
|
+
----------
|
|
62
|
+
rgba_image : numpy.ndarray
|
|
63
|
+
Input image array with shape (height, width, 4) where the channels
|
|
64
|
+
are Red, Green, Blue, Alpha. Alpha values can be in range [0, 1]
|
|
65
|
+
(float) or [0, 255] (uint8).
|
|
66
|
+
|
|
67
|
+
Returns
|
|
68
|
+
-------
|
|
69
|
+
numpy.ndarray
|
|
70
|
+
RGB image array with shape (height, width, 3) and dtype uint8.
|
|
71
|
+
Values are in range [0, 255] representing Red, Green, Blue channels.
|
|
72
|
+
|
|
73
|
+
Notes
|
|
74
|
+
-----
|
|
75
|
+
The alpha blending formula used is:
|
|
76
|
+
RGB_out = RGB_in * alpha + background * (1 - alpha)
|
|
77
|
+
|
|
78
|
+
Where background is white (255, 255, 255).
|
|
79
|
+
|
|
80
|
+
For pixels with alpha = 1.0 (fully opaque), the original RGB values
|
|
81
|
+
are preserved. For pixels with alpha = 0.0 (fully transparent), the
|
|
82
|
+
result is white. Semi-transparent pixels are blended proportionally.
|
|
83
|
+
|
|
84
|
+
Examples
|
|
85
|
+
--------
|
|
86
|
+
>>> import numpy as np
|
|
87
|
+
>>> # Create a sample RGBA image with some transparency
|
|
88
|
+
>>> rgba = np.random.randint(0, 256, (100, 100, 4), dtype=np.uint8)
|
|
89
|
+
>>> rgb = rgba_to_rgb_white_bg(rgba)
|
|
90
|
+
>>> print(rgb.shape) # (100, 100, 3)
|
|
91
|
+
>>> print(rgb.dtype) # uint8
|
|
92
|
+
|
|
93
|
+
>>> # Example with float alpha values [0, 1]
|
|
94
|
+
>>> rgba_float = np.random.rand(50, 50, 4).astype(np.float32)
|
|
95
|
+
>>> rgb_float = rgba_to_rgb_white_bg(rgba_float)
|
|
96
|
+
>>> print(rgb_float.dtype) # uint8
|
|
97
|
+
"""
|
|
98
|
+
# Extract RGB and alpha channels
|
|
99
|
+
rgb = rgba_image[:, :, :3] # RGB channels (H, W, 3)
|
|
100
|
+
alpha = rgba_image[:, :, 3:4] # Alpha channel (H, W, 1)
|
|
101
|
+
|
|
102
|
+
# Normalize alpha to [0, 1] range if it's in [0, 255] range
|
|
103
|
+
if alpha.max() > 1.0:
|
|
104
|
+
alpha = alpha / 255.0
|
|
105
|
+
|
|
106
|
+
# Alpha blend with white background using the formula:
|
|
107
|
+
# result = foreground * alpha + background * (1 - alpha)
|
|
108
|
+
rgb_image = rgb * alpha + 255 * (1 - alpha)
|
|
109
|
+
|
|
110
|
+
# Convert to uint8 format for standard image representation
|
|
111
|
+
return rgb_image.astype(np.uint8)
|
|
112
|
+
|
|
113
|
+
|
|
114
|
+
def scale_image_to_encoding_size(
|
|
115
|
+
base64_image: str, max_base64_size: int = 180_000, initial_reduction: float = 0.9, format: str = "PNG", **kwargs
|
|
116
|
+
) -> Tuple[str, Tuple[int, int]]:
|
|
117
|
+
"""
|
|
118
|
+
Decodes a base64-encoded image, resizes it if needed, and re-encodes it as base64.
|
|
119
|
+
Ensures the final image size is within the specified limit.
|
|
120
|
+
|
|
121
|
+
Parameters
|
|
122
|
+
----------
|
|
123
|
+
base64_image : str
|
|
124
|
+
Base64-encoded image string.
|
|
125
|
+
max_base64_size : int, optional
|
|
126
|
+
Maximum allowable size for the base64-encoded image, by default 180,000 characters.
|
|
127
|
+
initial_reduction : float, optional
|
|
128
|
+
Initial reduction step for resizing, by default 0.9.
|
|
129
|
+
format : str, optional
|
|
130
|
+
The image format to use for encoding. Supported formats are "PNG" and "JPEG".
|
|
131
|
+
Defaults to "PNG".
|
|
132
|
+
**kwargs
|
|
133
|
+
Additional keyword arguments passed to the format-specific encoding function.
|
|
134
|
+
For JPEG: quality (int, default=100) - JPEG quality (1-100).
|
|
135
|
+
For PNG: compression (int, default=3) - PNG compression level (0-9).
|
|
136
|
+
|
|
137
|
+
Returns
|
|
138
|
+
-------
|
|
139
|
+
Tuple[str, Tuple[int, int]]
|
|
140
|
+
A tuple containing:
|
|
141
|
+
- Base64-encoded image string in the specified format, resized if necessary.
|
|
142
|
+
- The new size as a tuple (width, height).
|
|
143
|
+
|
|
144
|
+
Raises
|
|
145
|
+
------
|
|
146
|
+
Exception
|
|
147
|
+
If the image cannot be resized below the specified max_base64_size.
|
|
148
|
+
"""
|
|
149
|
+
try:
|
|
150
|
+
# Decode the base64 image using OpenCV (returns RGB format)
|
|
151
|
+
img_array = base64_to_numpy(base64_image)
|
|
152
|
+
|
|
153
|
+
# Initial image size (height, width, channels) -> (width, height)
|
|
154
|
+
original_size = (img_array.shape[1], img_array.shape[0])
|
|
155
|
+
|
|
156
|
+
# Check initial size
|
|
157
|
+
if len(base64_image) <= max_base64_size:
|
|
158
|
+
return numpy_to_base64(img_array, format=format, **kwargs), original_size
|
|
159
|
+
|
|
160
|
+
# Initial reduction step
|
|
161
|
+
reduction_step = initial_reduction
|
|
162
|
+
new_size = original_size
|
|
163
|
+
current_img = img_array.copy()
|
|
164
|
+
original_width, original_height = original_size
|
|
165
|
+
|
|
166
|
+
while len(base64_image) > max_base64_size:
|
|
167
|
+
new_size = (int(original_width * reduction_step), int(original_height * reduction_step))
|
|
168
|
+
if new_size[0] < 1 or new_size[1] < 1:
|
|
169
|
+
raise ValueError("Image cannot be resized further without becoming too small.")
|
|
170
|
+
|
|
171
|
+
# Resize the image using OpenCV
|
|
172
|
+
current_img = _resize_image_opencv(img_array, new_size)
|
|
173
|
+
|
|
174
|
+
# Re-encode as base64 using the specified format
|
|
175
|
+
base64_image = numpy_to_base64(current_img, format=format, **kwargs)
|
|
176
|
+
|
|
177
|
+
# Adjust the reduction step if necessary
|
|
178
|
+
if len(base64_image) > max_base64_size:
|
|
179
|
+
reduction_step *= 0.95 # Reduce size further if needed
|
|
180
|
+
|
|
181
|
+
return base64_image, new_size
|
|
182
|
+
|
|
183
|
+
except Exception as e:
|
|
184
|
+
logger.error(f"Error resizing the image: {e}")
|
|
185
|
+
raise
|
|
186
|
+
|
|
187
|
+
|
|
188
|
+
def _detect_base64_image_format(base64_string: str) -> Optional[str]:
|
|
189
|
+
"""
|
|
190
|
+
Detects the format of a base64-encoded image using Pillow.
|
|
191
|
+
|
|
192
|
+
Parameters
|
|
193
|
+
----------
|
|
194
|
+
base64_string : str
|
|
195
|
+
Base64-encoded image string.
|
|
196
|
+
|
|
197
|
+
Returns
|
|
198
|
+
-------
|
|
199
|
+
The detected format ("PNG", "JPEG", "UNKNOWN")
|
|
200
|
+
"""
|
|
201
|
+
try:
|
|
202
|
+
image_bytes = bytetools.bytesfrombase64(base64_string)
|
|
203
|
+
except Exception as e:
|
|
204
|
+
logger.error(f"Invalid base64 string: {e}")
|
|
205
|
+
raise ValueError(f"Invalid base64 string: {e}") from e
|
|
206
|
+
|
|
207
|
+
try:
|
|
208
|
+
with Image.open(BytesIO(image_bytes)) as img:
|
|
209
|
+
return img.format.upper()
|
|
210
|
+
except ImportError:
|
|
211
|
+
raise ImportError("Pillow library not available")
|
|
212
|
+
except Exception as e:
|
|
213
|
+
logger.error(f"Error detecting image format: {e}")
|
|
214
|
+
return "UNKNOWN"
|
|
215
|
+
|
|
216
|
+
|
|
217
|
+
def ensure_base64_format(base64_image: str, target_format: str = "PNG", **kwargs) -> str:
|
|
218
|
+
"""
|
|
219
|
+
Ensures the given base64-encoded image is in the specified format. Converts if necessary.
|
|
220
|
+
Skips conversion if the image is already in the target format.
|
|
221
|
+
|
|
222
|
+
Parameters
|
|
223
|
+
----------
|
|
224
|
+
base64_image : str
|
|
225
|
+
Base64-encoded image string.
|
|
226
|
+
target_format : str, optional
|
|
227
|
+
The target image format. Supported formats are "PNG", "JPEG"/"JPG". Defaults to "PNG".
|
|
228
|
+
**kwargs
|
|
229
|
+
Additional keyword arguments passed to the format-specific encoding function.
|
|
230
|
+
For JPEG: quality (int, default=100) - JPEG quality (1-100).
|
|
231
|
+
For PNG: compression (int, default=3) - PNG compression level (0-9).
|
|
232
|
+
|
|
233
|
+
Returns
|
|
234
|
+
-------
|
|
235
|
+
str
|
|
236
|
+
Base64-encoded image string in the specified format.
|
|
237
|
+
|
|
238
|
+
Raises
|
|
239
|
+
------
|
|
240
|
+
ValueError
|
|
241
|
+
If there is an error during format conversion or if an unsupported format is provided.
|
|
242
|
+
"""
|
|
243
|
+
# Quick format normalization
|
|
244
|
+
target_format = target_format.upper().strip()
|
|
245
|
+
if target_format == "JPG":
|
|
246
|
+
target_format = "JPEG"
|
|
247
|
+
|
|
248
|
+
current_format = _detect_base64_image_format(base64_image)
|
|
249
|
+
if current_format == "UNKNOWN":
|
|
250
|
+
raise ValueError(
|
|
251
|
+
f"Unable to decode image from base64 string: {base64_image}, because current format could not be detected."
|
|
252
|
+
)
|
|
253
|
+
if current_format == target_format:
|
|
254
|
+
logger.debug(f"Image already in {target_format} format, skipping conversion")
|
|
255
|
+
return base64_image
|
|
256
|
+
|
|
257
|
+
try:
|
|
258
|
+
# Decode the base64 image using OpenCV (returns RGB format)
|
|
259
|
+
img_array = base64_to_numpy(base64_image)
|
|
260
|
+
# Re-encode in the target format
|
|
261
|
+
return numpy_to_base64(img_array, format=target_format, **kwargs)
|
|
262
|
+
except ImportError as e:
|
|
263
|
+
raise e
|
|
264
|
+
except Exception as e:
|
|
265
|
+
logger.error(f"Error converting image to {target_format} format: {e}")
|
|
266
|
+
raise ValueError(f"Failed to convert image to {target_format} format: {e}") from e
|
|
267
|
+
|
|
268
|
+
|
|
269
|
+
def pad_image(
|
|
270
|
+
array: np.ndarray,
|
|
271
|
+
target_width: int = DEFAULT_MAX_WIDTH,
|
|
272
|
+
target_height: int = DEFAULT_MAX_HEIGHT,
|
|
273
|
+
background_color: int = 255,
|
|
274
|
+
dtype=np.uint8,
|
|
275
|
+
how: str = "center",
|
|
276
|
+
) -> Tuple[np.ndarray, Tuple[int, int]]:
|
|
277
|
+
"""
|
|
278
|
+
Pads a NumPy array representing an image to the specified target dimensions.
|
|
279
|
+
|
|
280
|
+
If the target dimensions are smaller than the image dimensions, no padding will be applied
|
|
281
|
+
in that dimension. If the target dimensions are larger, the image will be centered within the
|
|
282
|
+
canvas of the specified target size, with the remaining space filled with white padding.
|
|
283
|
+
|
|
284
|
+
The padding can be done around the center (how="center"), or to the bottom right (how="bottom_right").
|
|
285
|
+
|
|
286
|
+
Parameters
|
|
287
|
+
----------
|
|
288
|
+
array : np.ndarray
|
|
289
|
+
The input image as a NumPy array of shape (H, W, C).
|
|
290
|
+
target_width : int, optional
|
|
291
|
+
The desired target width of the padded image. Defaults to DEFAULT_MAX_WIDTH.
|
|
292
|
+
target_height : int, optional
|
|
293
|
+
The desired target height of the padded image. Defaults to DEFAULT_MAX_HEIGHT.
|
|
294
|
+
how : str, optional
|
|
295
|
+
The method to pad the image. Defaults to "center".
|
|
296
|
+
|
|
297
|
+
Returns
|
|
298
|
+
-------
|
|
299
|
+
padded_array : np.ndarray
|
|
300
|
+
The padded image as a NumPy array of shape (target_height, target_width, C).
|
|
301
|
+
padding_offsets : Tuple[int, int]
|
|
302
|
+
A tuple containing the horizontal and vertical offsets (pad_width, pad_height) applied to center the image.
|
|
303
|
+
|
|
304
|
+
Notes
|
|
305
|
+
-----
|
|
306
|
+
If the target dimensions are smaller than the current image dimensions, no padding will be applied
|
|
307
|
+
in that dimension, and the image will retain its original size in that dimension.
|
|
308
|
+
|
|
309
|
+
Examples
|
|
310
|
+
--------
|
|
311
|
+
>>> image = np.random.randint(0, 255, (600, 800, 3), dtype=np.uint8)
|
|
312
|
+
>>> padded_image, offsets = pad_image(image, target_width=1000, target_height=1000)
|
|
313
|
+
>>> padded_image.shape
|
|
314
|
+
(1000, 1000, 3)
|
|
315
|
+
>>> offsets
|
|
316
|
+
(100, 200)
|
|
317
|
+
"""
|
|
318
|
+
height, width = array.shape[:2]
|
|
319
|
+
|
|
320
|
+
# Determine final canvas size (may be equal to original if target is smaller)
|
|
321
|
+
final_height = max(height, target_height)
|
|
322
|
+
final_width = max(width, target_width)
|
|
323
|
+
|
|
324
|
+
# Create the canvas and place the original image on it
|
|
325
|
+
canvas = background_color * np.ones((final_height, final_width, array.shape[2]), dtype=dtype)
|
|
326
|
+
|
|
327
|
+
# Determine the padding needed, if any, while ensuring no padding is applied if the target is smaller
|
|
328
|
+
if how == "center":
|
|
329
|
+
pad_height = max((target_height - height) // 2, 0)
|
|
330
|
+
pad_width = max((target_width - width) // 2, 0)
|
|
331
|
+
|
|
332
|
+
canvas[pad_height : pad_height + height, pad_width : pad_width + width] = array # noqa: E203
|
|
333
|
+
elif how == "bottom_right":
|
|
334
|
+
pad_height, pad_width = 0, 0
|
|
335
|
+
|
|
336
|
+
canvas[:height, :width] = array # noqa: E203
|
|
337
|
+
|
|
338
|
+
return canvas, (pad_width, pad_height)
|
|
339
|
+
|
|
340
|
+
|
|
341
|
+
def check_numpy_image_size(image: np.ndarray, min_height: int, min_width: int) -> bool:
|
|
342
|
+
"""
|
|
343
|
+
Checks if the height and width of the image are larger than the specified minimum values.
|
|
344
|
+
|
|
345
|
+
Parameters:
|
|
346
|
+
image (np.ndarray): The image array (assumed to be in shape (H, W, C) or (H, W)).
|
|
347
|
+
min_height (int): The minimum height required.
|
|
348
|
+
min_width (int): The minimum width required.
|
|
349
|
+
|
|
350
|
+
Returns:
|
|
351
|
+
bool: True if the image dimensions are larger than or equal to the minimum size, False otherwise.
|
|
352
|
+
"""
|
|
353
|
+
# Check if the image has at least 2 dimensions
|
|
354
|
+
if image.ndim < 2:
|
|
355
|
+
raise ValueError("The input array does not have sufficient dimensions for an image.")
|
|
356
|
+
|
|
357
|
+
height, width = image.shape[:2]
|
|
358
|
+
return height >= min_height and width >= min_width
|
|
359
|
+
|
|
360
|
+
|
|
361
|
+
def crop_image(
|
|
362
|
+
array: np.array, bbox: Tuple[int, int, int, int], min_width: int = 1, min_height: int = 1
|
|
363
|
+
) -> Optional[np.ndarray]:
|
|
364
|
+
"""
|
|
365
|
+
Crops a NumPy array representing an image according to the specified bounding box.
|
|
366
|
+
|
|
367
|
+
Parameters
|
|
368
|
+
----------
|
|
369
|
+
array : np.array
|
|
370
|
+
The image as a NumPy array.
|
|
371
|
+
bbox : Tuple[int, int, int, int]
|
|
372
|
+
The bounding box to crop the image to, given as (w1, h1, w2, h2).
|
|
373
|
+
min_width : int, optional
|
|
374
|
+
The minimum allowable width for the cropped image. If the cropped width is smaller than this value,
|
|
375
|
+
the function returns None. Default is 1.
|
|
376
|
+
min_height : int, optional
|
|
377
|
+
The minimum allowable height for the cropped image. If the cropped height is smaller than this value,
|
|
378
|
+
the function returns None. Default is 1.
|
|
379
|
+
|
|
380
|
+
Returns
|
|
381
|
+
-------
|
|
382
|
+
Optional[np.ndarray]
|
|
383
|
+
The cropped image as a NumPy array, or None if the bounding box is invalid.
|
|
384
|
+
"""
|
|
385
|
+
w1, h1, w2, h2 = bbox
|
|
386
|
+
h1 = max(floor(h1), 0)
|
|
387
|
+
h2 = min(ceil(h2), array.shape[0])
|
|
388
|
+
w1 = max(floor(w1), 0)
|
|
389
|
+
w2 = min(ceil(w2), array.shape[1])
|
|
390
|
+
|
|
391
|
+
if (w2 - w1 < min_width) or (h2 - h1 < min_height):
|
|
392
|
+
return None
|
|
393
|
+
|
|
394
|
+
# Crop the image using the bounding box
|
|
395
|
+
cropped = array[h1:h2, w1:w2]
|
|
396
|
+
|
|
397
|
+
return cropped
|
|
398
|
+
|
|
399
|
+
|
|
400
|
+
def normalize_image(
|
|
401
|
+
array: np.ndarray,
|
|
402
|
+
r_mean: float = 0.485,
|
|
403
|
+
g_mean: float = 0.456,
|
|
404
|
+
b_mean: float = 0.406,
|
|
405
|
+
r_std: float = 0.229,
|
|
406
|
+
g_std: float = 0.224,
|
|
407
|
+
b_std: float = 0.225,
|
|
408
|
+
) -> np.ndarray:
|
|
409
|
+
"""
|
|
410
|
+
Normalizes an RGB image by applying a mean and standard deviation to each channel.
|
|
411
|
+
|
|
412
|
+
Parameters:
|
|
413
|
+
----------
|
|
414
|
+
array : np.ndarray
|
|
415
|
+
The input image array, which can be either grayscale or RGB. The image should have a shape of
|
|
416
|
+
(height, width, 3) for RGB images, or (height, width) or (height, width, 1) for grayscale images.
|
|
417
|
+
If a grayscale image is provided, it will be converted to RGB format by repeating the grayscale values
|
|
418
|
+
across all three channels (R, G, B).
|
|
419
|
+
r_mean : float, optional
|
|
420
|
+
The mean to be subtracted from the red channel (default is 0.485).
|
|
421
|
+
g_mean : float, optional
|
|
422
|
+
The mean to be subtracted from the green channel (default is 0.456).
|
|
423
|
+
b_mean : float, optional
|
|
424
|
+
The mean to be subtracted from the blue channel (default is 0.406).
|
|
425
|
+
r_std : float, optional
|
|
426
|
+
The standard deviation to divide the red channel by (default is 0.229).
|
|
427
|
+
g_std : float, optional
|
|
428
|
+
The standard deviation to divide the green channel by (default is 0.224).
|
|
429
|
+
b_std : float, optional
|
|
430
|
+
The standard deviation to divide the blue channel by (default is 0.225).
|
|
431
|
+
|
|
432
|
+
Returns:
|
|
433
|
+
-------
|
|
434
|
+
np.ndarray
|
|
435
|
+
A normalized image array with the same shape as the input, where the RGB channels have been normalized
|
|
436
|
+
by the given means and standard deviations.
|
|
437
|
+
|
|
438
|
+
Notes:
|
|
439
|
+
-----
|
|
440
|
+
The input pixel values should be in the range [0, 255], and the function scales these values to [0, 1]
|
|
441
|
+
before applying normalization.
|
|
442
|
+
|
|
443
|
+
If the input image is grayscale, it is converted to an RGB image by duplicating the grayscale values
|
|
444
|
+
across the three color channels.
|
|
445
|
+
"""
|
|
446
|
+
# If the input is a grayscale image with shape (height, width) or (height, width, 1),
|
|
447
|
+
# convert it to RGB with shape (height, width, 3).
|
|
448
|
+
if array.ndim == 2 or array.shape[2] == 1:
|
|
449
|
+
array = np.dstack((array, 255 * np.ones_like(array), 255 * np.ones_like(array)))
|
|
450
|
+
|
|
451
|
+
height, width = array.shape[:2]
|
|
452
|
+
|
|
453
|
+
mean = np.array([r_mean, g_mean, b_mean]).reshape((1, 1, 3)).astype(np.float32)
|
|
454
|
+
std = np.array([r_std, g_std, b_std]).reshape((1, 1, 3)).astype(np.float32)
|
|
455
|
+
output_array = (array.astype("float32") / 255.0 - mean) / std
|
|
456
|
+
|
|
457
|
+
return output_array
|
|
458
|
+
|
|
459
|
+
|
|
460
|
+
def _preprocess_numpy_array(array: np.ndarray) -> np.ndarray:
|
|
461
|
+
"""
|
|
462
|
+
Preprocesses a NumPy array for image encoding by ensuring proper format and data type.
|
|
463
|
+
Also handles color space conversion for OpenCV encoding.
|
|
464
|
+
|
|
465
|
+
Parameters
|
|
466
|
+
----------
|
|
467
|
+
array : np.ndarray
|
|
468
|
+
The input image as a NumPy array.
|
|
469
|
+
|
|
470
|
+
Returns
|
|
471
|
+
-------
|
|
472
|
+
np.ndarray
|
|
473
|
+
The preprocessed array in uint8 format, ready for OpenCV encoding (BGR color order for color images).
|
|
474
|
+
|
|
475
|
+
Raises
|
|
476
|
+
------
|
|
477
|
+
ValueError
|
|
478
|
+
If the input array cannot be converted into a valid image format.
|
|
479
|
+
"""
|
|
480
|
+
# Check if the array is valid and can be converted to an image
|
|
481
|
+
try:
|
|
482
|
+
# If the array represents a grayscale image, drop the redundant axis in
|
|
483
|
+
# (h, w, 1). cv2 expects (h, w) for grayscale.
|
|
484
|
+
if array.ndim == 3 and array.shape[2] == 1:
|
|
485
|
+
array = np.squeeze(array, axis=2)
|
|
486
|
+
|
|
487
|
+
# Ensure uint8 data type
|
|
488
|
+
processed_array = array.astype(np.uint8)
|
|
489
|
+
|
|
490
|
+
# OpenCV uses BGR color order, so convert RGB to BGR if needed
|
|
491
|
+
if processed_array.ndim == 3 and processed_array.shape[2] == 3:
|
|
492
|
+
# Assume input is RGB and convert to BGR for OpenCV
|
|
493
|
+
processed_array = cv2.cvtColor(processed_array, cv2.COLOR_RGB2BGR)
|
|
494
|
+
|
|
495
|
+
return processed_array
|
|
496
|
+
except Exception as e:
|
|
497
|
+
raise ValueError(f"Failed to preprocess NumPy array for image encoding: {e}")
|
|
498
|
+
|
|
499
|
+
|
|
500
|
+
def _encode_opencv_jpeg(array: np.ndarray, *, quality: int = 100) -> bytes:
|
|
501
|
+
"""NumPy array -> JPEG bytes using OpenCV."""
|
|
502
|
+
ok, buf = cv2.imencode(".jpg", array, [int(cv2.IMWRITE_JPEG_QUALITY), quality])
|
|
503
|
+
if not ok:
|
|
504
|
+
raise RuntimeError("cv2.imencode failed")
|
|
505
|
+
return buf.tobytes()
|
|
506
|
+
|
|
507
|
+
|
|
508
|
+
def _encode_opencv_png(array: np.ndarray, *, compression: int = 6) -> bytes:
|
|
509
|
+
"""NumPy array -> PNG bytes using OpenCV"""
|
|
510
|
+
encode_params = [
|
|
511
|
+
cv2.IMWRITE_PNG_COMPRESSION,
|
|
512
|
+
compression,
|
|
513
|
+
cv2.IMWRITE_PNG_STRATEGY,
|
|
514
|
+
cv2.IMWRITE_PNG_STRATEGY_DEFAULT,
|
|
515
|
+
]
|
|
516
|
+
ok, buf = cv2.imencode(".png", array, encode_params)
|
|
517
|
+
if not ok:
|
|
518
|
+
raise RuntimeError("cv2.imencode(.png) failed")
|
|
519
|
+
return buf.tobytes()
|
|
520
|
+
|
|
521
|
+
|
|
522
|
+
def numpy_to_base64_png(array: np.ndarray) -> str:
|
|
523
|
+
"""
|
|
524
|
+
Converts a preprocessed NumPy array representing an image to a base64-encoded PNG string using OpenCV.
|
|
525
|
+
|
|
526
|
+
Parameters
|
|
527
|
+
----------
|
|
528
|
+
array : np.ndarray
|
|
529
|
+
The preprocessed input image as a NumPy array. Must have a shape compatible with image data.
|
|
530
|
+
|
|
531
|
+
Returns
|
|
532
|
+
-------
|
|
533
|
+
str
|
|
534
|
+
The base64-encoded PNG string representation of the input NumPy array.
|
|
535
|
+
|
|
536
|
+
Raises
|
|
537
|
+
------
|
|
538
|
+
RuntimeError
|
|
539
|
+
If there is an issue during the image conversion or base64 encoding process.
|
|
540
|
+
"""
|
|
541
|
+
try:
|
|
542
|
+
# Encode to PNG bytes using OpenCV
|
|
543
|
+
png_bytes = _encode_opencv_png(array)
|
|
544
|
+
|
|
545
|
+
# Convert to base64
|
|
546
|
+
base64_img = bytetools.base64frombytes(png_bytes)
|
|
547
|
+
except Exception as e:
|
|
548
|
+
raise RuntimeError(f"Failed to encode image to base64 PNG: {e}")
|
|
549
|
+
|
|
550
|
+
return base64_img
|
|
551
|
+
|
|
552
|
+
|
|
553
|
+
def numpy_to_base64_jpeg(array: np.ndarray, quality: int = 100) -> str:
|
|
554
|
+
"""
|
|
555
|
+
Converts a preprocessed NumPy array representing an image to a base64-encoded JPEG string using OpenCV.
|
|
556
|
+
|
|
557
|
+
Parameters
|
|
558
|
+
----------
|
|
559
|
+
array : np.ndarray
|
|
560
|
+
The preprocessed input image as a NumPy array. Must have a shape compatible with image data.
|
|
561
|
+
quality : int, optional
|
|
562
|
+
JPEG quality (1-100), by default 100. Higher values mean better quality but larger file size.
|
|
563
|
+
|
|
564
|
+
Returns
|
|
565
|
+
-------
|
|
566
|
+
str
|
|
567
|
+
The base64-encoded JPEG string representation of the input NumPy array.
|
|
568
|
+
|
|
569
|
+
Raises
|
|
570
|
+
------
|
|
571
|
+
RuntimeError
|
|
572
|
+
If there is an issue during the image conversion or base64 encoding process.
|
|
573
|
+
"""
|
|
574
|
+
try:
|
|
575
|
+
# Encode to JPEG bytes using OpenCV
|
|
576
|
+
jpeg_bytes = _encode_opencv_jpeg(array, quality=quality)
|
|
577
|
+
|
|
578
|
+
# Convert to base64
|
|
579
|
+
base64_img = bytetools.base64frombytes(jpeg_bytes)
|
|
580
|
+
except Exception as e:
|
|
581
|
+
raise RuntimeError(f"Failed to encode image to base64 JPEG: {e}")
|
|
582
|
+
|
|
583
|
+
return base64_img
|
|
584
|
+
|
|
585
|
+
|
|
586
|
+
def numpy_to_base64(array: np.ndarray, format: str = "PNG", **kwargs) -> str:
|
|
587
|
+
"""
|
|
588
|
+
Converts a NumPy array representing an image to a base64-encoded string.
|
|
589
|
+
|
|
590
|
+
The function takes a NumPy array, preprocesses it, and then encodes
|
|
591
|
+
the image in the specified format as a base64 string. The input array is expected
|
|
592
|
+
to be in a format that can be converted to a valid image, such as having a shape
|
|
593
|
+
of (H, W, C) where C is the number of channels (e.g., 3 for RGB).
|
|
594
|
+
|
|
595
|
+
Parameters
|
|
596
|
+
----------
|
|
597
|
+
array : np.ndarray
|
|
598
|
+
The input image as a NumPy array. Must have a shape compatible with image data.
|
|
599
|
+
format : str, optional
|
|
600
|
+
The image format to use for encoding. Supported formats are "PNG" and "JPEG".
|
|
601
|
+
Defaults to "PNG".
|
|
602
|
+
**kwargs
|
|
603
|
+
Additional keyword arguments passed to the format-specific encoding function.
|
|
604
|
+
For JPEG: quality (int, default=100) - JPEG quality (1-100).
|
|
605
|
+
|
|
606
|
+
Returns
|
|
607
|
+
-------
|
|
608
|
+
str
|
|
609
|
+
The base64-encoded string representation of the input NumPy array in the specified format.
|
|
610
|
+
|
|
611
|
+
Raises
|
|
612
|
+
------
|
|
613
|
+
ValueError
|
|
614
|
+
If the input array cannot be converted into a valid image format, or if an
|
|
615
|
+
unsupported format is specified.
|
|
616
|
+
RuntimeError
|
|
617
|
+
If there is an issue during the image conversion or base64 encoding process.
|
|
618
|
+
|
|
619
|
+
Examples
|
|
620
|
+
--------
|
|
621
|
+
>>> array = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
|
|
622
|
+
>>> encoded_str = numpy_to_base64(array, format="PNG")
|
|
623
|
+
>>> isinstance(encoded_str, str)
|
|
624
|
+
True
|
|
625
|
+
>>> encoded_str_jpeg = numpy_to_base64(array, format="JPEG", quality=90)
|
|
626
|
+
>>> isinstance(encoded_str_jpeg, str)
|
|
627
|
+
True
|
|
628
|
+
"""
|
|
629
|
+
# Centralized preprocessing of the numpy array
|
|
630
|
+
processed_array = _preprocess_numpy_array(array)
|
|
631
|
+
|
|
632
|
+
# Quick format normalization
|
|
633
|
+
format = format.upper().strip()
|
|
634
|
+
if format == "JPG":
|
|
635
|
+
format = "JPEG"
|
|
636
|
+
|
|
637
|
+
if format == "PNG":
|
|
638
|
+
return numpy_to_base64_png(processed_array)
|
|
639
|
+
elif format == "JPEG":
|
|
640
|
+
quality = kwargs.get("quality", 100)
|
|
641
|
+
return numpy_to_base64_jpeg(processed_array, quality=quality)
|
|
642
|
+
else:
|
|
643
|
+
raise ValueError(f"Unsupported format: {format}. Supported formats are 'PNG' and 'JPEG'.")
|
|
644
|
+
|
|
645
|
+
|
|
646
|
+
def base64_to_numpy(base64_string: str) -> np.ndarray:
|
|
647
|
+
"""
|
|
648
|
+
Convert a base64-encoded image string to a NumPy array using OpenCV.
|
|
649
|
+
Returns images in RGB format for consistency.
|
|
650
|
+
|
|
651
|
+
Parameters
|
|
652
|
+
----------
|
|
653
|
+
base64_string : str
|
|
654
|
+
Base64-encoded string representing an image.
|
|
655
|
+
|
|
656
|
+
Returns
|
|
657
|
+
-------
|
|
658
|
+
numpy.ndarray
|
|
659
|
+
NumPy array representation of the decoded image in RGB format (for color images).
|
|
660
|
+
Grayscale images are returned as-is.
|
|
661
|
+
|
|
662
|
+
Raises
|
|
663
|
+
------
|
|
664
|
+
ValueError
|
|
665
|
+
If the base64 string is invalid or cannot be decoded into an image.
|
|
666
|
+
|
|
667
|
+
Examples
|
|
668
|
+
--------
|
|
669
|
+
>>> base64_str = '/9j/4AAQSkZJRgABAQAAAQABAAD/2wBD...'
|
|
670
|
+
>>> img_array = base64_to_numpy(base64_str)
|
|
671
|
+
>>> # img_array is now in RGB format (for color images)
|
|
672
|
+
"""
|
|
673
|
+
try:
|
|
674
|
+
# Decode the base64 string to bytes using bytetools
|
|
675
|
+
image_bytes = bytetools.bytesfrombase64(base64_string)
|
|
676
|
+
except Exception as e:
|
|
677
|
+
raise ValueError("Invalid base64 string") from e
|
|
678
|
+
|
|
679
|
+
# Create numpy buffer from bytes and decode using OpenCV
|
|
680
|
+
buf = np.frombuffer(image_bytes, dtype=np.uint8)
|
|
681
|
+
try:
|
|
682
|
+
img = cv2.imdecode(buf, cv2.IMREAD_UNCHANGED)
|
|
683
|
+
if img is None:
|
|
684
|
+
raise ValueError("OpenCV failed to decode image")
|
|
685
|
+
|
|
686
|
+
# Convert 4 channel to 3 channel if necessary
|
|
687
|
+
if img.shape[2] == 4:
|
|
688
|
+
img = rgba_to_rgb_white_bg(img)
|
|
689
|
+
|
|
690
|
+
# Convert BGR to RGB for consistent processing (OpenCV loads as BGR)
|
|
691
|
+
# Only convert if it's a 3-channel color image
|
|
692
|
+
if img.ndim == 3 and img.shape[2] == 3:
|
|
693
|
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
694
|
+
except ImportError:
|
|
695
|
+
raise
|
|
696
|
+
except Exception as e:
|
|
697
|
+
raise ValueError("Unable to decode image from base64 string") from e
|
|
698
|
+
|
|
699
|
+
# Convert to numpy array
|
|
700
|
+
img = np.array(img)
|
|
701
|
+
# Assert that 3-channel images are in RGB format after conversion
|
|
702
|
+
assert img.ndim <= 3, f"Image has unexpected number of dimensions: {img.ndim}"
|
|
703
|
+
assert img.ndim != 3 or img.shape[2] == 3, f"3-channel image should have 3 channels, got: {img.shape[2]}"
|
|
704
|
+
|
|
705
|
+
return img
|
|
706
|
+
|
|
707
|
+
|
|
708
|
+
def scale_numpy_image(
|
|
709
|
+
img_arr: np.ndarray, scale_tuple: Optional[Tuple[int, int]] = None, interpolation=Image.LANCZOS
|
|
710
|
+
) -> np.ndarray:
|
|
711
|
+
"""
|
|
712
|
+
Scales a NumPy image array using OpenCV with aspect ratio preservation.
|
|
713
|
+
|
|
714
|
+
This function provides OpenCV-based image scaling that mimics PIL's thumbnail behavior
|
|
715
|
+
by maintaining aspect ratio and scaling to fit within the specified dimensions.
|
|
716
|
+
|
|
717
|
+
Parameters
|
|
718
|
+
----------
|
|
719
|
+
img_arr : np.ndarray
|
|
720
|
+
The input image as a NumPy array.
|
|
721
|
+
scale_tuple : Optional[Tuple[int, int]], optional
|
|
722
|
+
A tuple (width, height) to resize the image to. If provided, the image
|
|
723
|
+
will be resized to fit within these dimensions while maintaining aspect ratio
|
|
724
|
+
(similar to PIL's thumbnail method). Defaults to None.
|
|
725
|
+
interpolation : int, optional
|
|
726
|
+
OpenCV interpolation method. Defaults to cv2.INTER_LANCZOS4.
|
|
727
|
+
|
|
728
|
+
Returns
|
|
729
|
+
-------
|
|
730
|
+
np.ndarray
|
|
731
|
+
A NumPy array representing the scaled image data.
|
|
732
|
+
"""
|
|
733
|
+
# Apply scaling using OpenCV if specified
|
|
734
|
+
# Using PIL for scaling as CV2 seems to lead to different results
|
|
735
|
+
# TODO: Remove when we move to YOLOX Ensemble Models
|
|
736
|
+
if scale_tuple:
|
|
737
|
+
image = Image.fromarray(img_arr)
|
|
738
|
+
image.thumbnail(scale_tuple, interpolation)
|
|
739
|
+
img_arr = np.array(image)
|
|
740
|
+
# Ensure we return a copy
|
|
741
|
+
return img_arr.copy()
|
|
742
|
+
|
|
743
|
+
|
|
744
|
+
def base64_to_disk(base64_string: str, output_path: str) -> bool:
|
|
745
|
+
"""
|
|
746
|
+
Write base64-encoded image data directly to disk without conversion.
|
|
747
|
+
|
|
748
|
+
This function performs efficient base64 decoding and direct file writing,
|
|
749
|
+
preserving the original image format without unnecessary decode/encode cycles.
|
|
750
|
+
Used as the foundation for higher-level image saving operations.
|
|
751
|
+
|
|
752
|
+
Parameters
|
|
753
|
+
----------
|
|
754
|
+
base64_string : str
|
|
755
|
+
Base64-encoded image data. May include data URL prefix.
|
|
756
|
+
output_path : str
|
|
757
|
+
Path where the image should be saved.
|
|
758
|
+
|
|
759
|
+
Returns
|
|
760
|
+
-------
|
|
761
|
+
bool
|
|
762
|
+
True if successful, False otherwise.
|
|
763
|
+
|
|
764
|
+
Examples
|
|
765
|
+
--------
|
|
766
|
+
>>> success = base64_to_disk(image_b64, "/path/to/output.jpeg")
|
|
767
|
+
>>> if success:
|
|
768
|
+
... print("Image saved successfully")
|
|
769
|
+
"""
|
|
770
|
+
try:
|
|
771
|
+
# Validate input
|
|
772
|
+
if not base64_string or not base64_string.strip():
|
|
773
|
+
return False
|
|
774
|
+
|
|
775
|
+
# Strip data URL prefix if present (e.g., "data:image/jpeg;base64,")
|
|
776
|
+
if "," in base64_string:
|
|
777
|
+
base64_string = base64_string.split(",")[1]
|
|
778
|
+
|
|
779
|
+
# Decode and write directly using bytetools (consistent with rest of codebase)
|
|
780
|
+
image_bytes = bytetools.bytesfrombase64(base64_string)
|
|
781
|
+
|
|
782
|
+
# Validate we actually have image data
|
|
783
|
+
if not image_bytes:
|
|
784
|
+
return False
|
|
785
|
+
|
|
786
|
+
with open(output_path, "wb") as f:
|
|
787
|
+
f.write(image_bytes)
|
|
788
|
+
return True
|
|
789
|
+
|
|
790
|
+
except Exception as e:
|
|
791
|
+
logger.error(f"Failed to write base64 image to disk: {e}")
|
|
792
|
+
return False
|
|
793
|
+
|
|
794
|
+
|
|
795
|
+
def save_image_to_disk(base64_content: str, output_path: str, target_format: str = "auto", **kwargs) -> bool:
|
|
796
|
+
"""
|
|
797
|
+
Save base64 image to disk with optional format conversion.
|
|
798
|
+
|
|
799
|
+
This function provides a high-level interface for saving images that combines
|
|
800
|
+
format conversion capabilities with efficient disk writing. It automatically
|
|
801
|
+
chooses between direct writing (when no conversion needed) and format conversion
|
|
802
|
+
to optimize performance while maintaining flexibility.
|
|
803
|
+
|
|
804
|
+
Parameters
|
|
805
|
+
----------
|
|
806
|
+
base64_content : str
|
|
807
|
+
Base64-encoded image data.
|
|
808
|
+
output_path : str
|
|
809
|
+
Path where the image should be saved.
|
|
810
|
+
target_format : str, optional
|
|
811
|
+
Target format ("PNG", "JPEG", "auto"). Default is "auto" (preserve original).
|
|
812
|
+
Use "auto" to preserve the original format for maximum speed.
|
|
813
|
+
**kwargs
|
|
814
|
+
Additional arguments passed to ensure_base64_format() for conversion.
|
|
815
|
+
For JPEG: quality (int, default=100) - JPEG quality (1-100).
|
|
816
|
+
For PNG: compression (int, default=3) - PNG compression level (0-9).
|
|
817
|
+
|
|
818
|
+
Returns
|
|
819
|
+
-------
|
|
820
|
+
bool
|
|
821
|
+
True if successful, False otherwise.
|
|
822
|
+
|
|
823
|
+
Examples
|
|
824
|
+
--------
|
|
825
|
+
>>> # Preserve original format (fastest)
|
|
826
|
+
>>> success = save_image_to_disk(image_b64, "/path/to/output.jpeg", "auto")
|
|
827
|
+
>>>
|
|
828
|
+
>>> # Convert to JPEG with specific quality
|
|
829
|
+
>>> success = save_image_to_disk(image_b64, "/path/to/output.jpeg", "JPEG", quality=85)
|
|
830
|
+
"""
|
|
831
|
+
try:
|
|
832
|
+
# Quick format normalization
|
|
833
|
+
target_format = target_format.lower().strip()
|
|
834
|
+
if target_format in ["jpg"]:
|
|
835
|
+
target_format = "jpeg"
|
|
836
|
+
|
|
837
|
+
# Handle format conversion if needed
|
|
838
|
+
if target_format == "auto":
|
|
839
|
+
# Preserve original format - no conversion needed
|
|
840
|
+
formatted_b64 = base64_content
|
|
841
|
+
else:
|
|
842
|
+
# Use API's smart format conversion
|
|
843
|
+
formatted_b64 = ensure_base64_format(base64_content, target_format, **kwargs)
|
|
844
|
+
|
|
845
|
+
# Direct write - no round trips
|
|
846
|
+
return base64_to_disk(formatted_b64, output_path)
|
|
847
|
+
|
|
848
|
+
except Exception as e:
|
|
849
|
+
logger.error(f"Failed to save image to disk: {e}")
|
|
850
|
+
return False
|