numba-cuda 0.21.1__cp313-cp313-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- _numba_cuda_redirector.pth +4 -0
- _numba_cuda_redirector.py +89 -0
- numba_cuda/VERSION +1 -0
- numba_cuda/__init__.py +6 -0
- numba_cuda/_version.py +11 -0
- numba_cuda/numba/cuda/__init__.py +70 -0
- numba_cuda/numba/cuda/_internal/cuda_bf16.py +16394 -0
- numba_cuda/numba/cuda/_internal/cuda_fp16.py +8112 -0
- numba_cuda/numba/cuda/api.py +577 -0
- numba_cuda/numba/cuda/api_util.py +76 -0
- numba_cuda/numba/cuda/args.py +72 -0
- numba_cuda/numba/cuda/bf16.py +397 -0
- numba_cuda/numba/cuda/cache_hints.py +287 -0
- numba_cuda/numba/cuda/cext/__init__.py +2 -0
- numba_cuda/numba/cuda/cext/_devicearray.cp313-win_amd64.pyd +0 -0
- numba_cuda/numba/cuda/cext/_devicearray.cpp +159 -0
- numba_cuda/numba/cuda/cext/_devicearray.h +29 -0
- numba_cuda/numba/cuda/cext/_dispatcher.cp313-win_amd64.pyd +0 -0
- numba_cuda/numba/cuda/cext/_dispatcher.cpp +1098 -0
- numba_cuda/numba/cuda/cext/_hashtable.cpp +532 -0
- numba_cuda/numba/cuda/cext/_hashtable.h +135 -0
- numba_cuda/numba/cuda/cext/_helperlib.c +71 -0
- numba_cuda/numba/cuda/cext/_helperlib.cp313-win_amd64.pyd +0 -0
- numba_cuda/numba/cuda/cext/_helpermod.c +82 -0
- numba_cuda/numba/cuda/cext/_pymodule.h +38 -0
- numba_cuda/numba/cuda/cext/_typeconv.cp313-win_amd64.pyd +0 -0
- numba_cuda/numba/cuda/cext/_typeconv.cpp +206 -0
- numba_cuda/numba/cuda/cext/_typeof.cpp +1159 -0
- numba_cuda/numba/cuda/cext/_typeof.h +19 -0
- numba_cuda/numba/cuda/cext/capsulethunk.h +111 -0
- numba_cuda/numba/cuda/cext/mviewbuf.c +385 -0
- numba_cuda/numba/cuda/cext/mviewbuf.cp313-win_amd64.pyd +0 -0
- numba_cuda/numba/cuda/cext/typeconv.cpp +212 -0
- numba_cuda/numba/cuda/cext/typeconv.hpp +101 -0
- numba_cuda/numba/cuda/cg.py +67 -0
- numba_cuda/numba/cuda/cgutils.py +1294 -0
- numba_cuda/numba/cuda/cloudpickle/__init__.py +21 -0
- numba_cuda/numba/cuda/cloudpickle/cloudpickle.py +1598 -0
- numba_cuda/numba/cuda/cloudpickle/cloudpickle_fast.py +17 -0
- numba_cuda/numba/cuda/codegen.py +541 -0
- numba_cuda/numba/cuda/compiler.py +1396 -0
- numba_cuda/numba/cuda/core/analysis.py +758 -0
- numba_cuda/numba/cuda/core/annotations/__init__.py +0 -0
- numba_cuda/numba/cuda/core/annotations/pretty_annotate.py +288 -0
- numba_cuda/numba/cuda/core/annotations/type_annotations.py +305 -0
- numba_cuda/numba/cuda/core/base.py +1332 -0
- numba_cuda/numba/cuda/core/boxing.py +1411 -0
- numba_cuda/numba/cuda/core/bytecode.py +728 -0
- numba_cuda/numba/cuda/core/byteflow.py +2346 -0
- numba_cuda/numba/cuda/core/caching.py +744 -0
- numba_cuda/numba/cuda/core/callconv.py +392 -0
- numba_cuda/numba/cuda/core/codegen.py +171 -0
- numba_cuda/numba/cuda/core/compiler.py +199 -0
- numba_cuda/numba/cuda/core/compiler_lock.py +85 -0
- numba_cuda/numba/cuda/core/compiler_machinery.py +497 -0
- numba_cuda/numba/cuda/core/config.py +650 -0
- numba_cuda/numba/cuda/core/consts.py +124 -0
- numba_cuda/numba/cuda/core/controlflow.py +989 -0
- numba_cuda/numba/cuda/core/entrypoints.py +57 -0
- numba_cuda/numba/cuda/core/environment.py +66 -0
- numba_cuda/numba/cuda/core/errors.py +917 -0
- numba_cuda/numba/cuda/core/event.py +511 -0
- numba_cuda/numba/cuda/core/funcdesc.py +330 -0
- numba_cuda/numba/cuda/core/generators.py +387 -0
- numba_cuda/numba/cuda/core/imputils.py +509 -0
- numba_cuda/numba/cuda/core/inline_closurecall.py +1787 -0
- numba_cuda/numba/cuda/core/interpreter.py +3617 -0
- numba_cuda/numba/cuda/core/ir.py +1812 -0
- numba_cuda/numba/cuda/core/ir_utils.py +2638 -0
- numba_cuda/numba/cuda/core/optional.py +129 -0
- numba_cuda/numba/cuda/core/options.py +262 -0
- numba_cuda/numba/cuda/core/postproc.py +249 -0
- numba_cuda/numba/cuda/core/pythonapi.py +1859 -0
- numba_cuda/numba/cuda/core/registry.py +46 -0
- numba_cuda/numba/cuda/core/removerefctpass.py +123 -0
- numba_cuda/numba/cuda/core/rewrites/__init__.py +26 -0
- numba_cuda/numba/cuda/core/rewrites/ir_print.py +91 -0
- numba_cuda/numba/cuda/core/rewrites/registry.py +104 -0
- numba_cuda/numba/cuda/core/rewrites/static_binop.py +41 -0
- numba_cuda/numba/cuda/core/rewrites/static_getitem.py +189 -0
- numba_cuda/numba/cuda/core/rewrites/static_raise.py +100 -0
- numba_cuda/numba/cuda/core/sigutils.py +68 -0
- numba_cuda/numba/cuda/core/ssa.py +498 -0
- numba_cuda/numba/cuda/core/targetconfig.py +330 -0
- numba_cuda/numba/cuda/core/tracing.py +231 -0
- numba_cuda/numba/cuda/core/transforms.py +956 -0
- numba_cuda/numba/cuda/core/typed_passes.py +867 -0
- numba_cuda/numba/cuda/core/typeinfer.py +1950 -0
- numba_cuda/numba/cuda/core/unsafe/__init__.py +0 -0
- numba_cuda/numba/cuda/core/unsafe/bytes.py +67 -0
- numba_cuda/numba/cuda/core/unsafe/eh.py +67 -0
- numba_cuda/numba/cuda/core/unsafe/refcount.py +98 -0
- numba_cuda/numba/cuda/core/untyped_passes.py +1979 -0
- numba_cuda/numba/cuda/cpython/builtins.py +1153 -0
- numba_cuda/numba/cuda/cpython/charseq.py +1218 -0
- numba_cuda/numba/cuda/cpython/cmathimpl.py +560 -0
- numba_cuda/numba/cuda/cpython/enumimpl.py +103 -0
- numba_cuda/numba/cuda/cpython/iterators.py +167 -0
- numba_cuda/numba/cuda/cpython/listobj.py +1326 -0
- numba_cuda/numba/cuda/cpython/mathimpl.py +499 -0
- numba_cuda/numba/cuda/cpython/numbers.py +1475 -0
- numba_cuda/numba/cuda/cpython/rangeobj.py +289 -0
- numba_cuda/numba/cuda/cpython/slicing.py +322 -0
- numba_cuda/numba/cuda/cpython/tupleobj.py +456 -0
- numba_cuda/numba/cuda/cpython/unicode.py +2865 -0
- numba_cuda/numba/cuda/cpython/unicode_support.py +1597 -0
- numba_cuda/numba/cuda/cpython/unsafe/__init__.py +0 -0
- numba_cuda/numba/cuda/cpython/unsafe/numbers.py +64 -0
- numba_cuda/numba/cuda/cpython/unsafe/tuple.py +92 -0
- numba_cuda/numba/cuda/cuda_paths.py +691 -0
- numba_cuda/numba/cuda/cudadecl.py +556 -0
- numba_cuda/numba/cuda/cudadrv/__init__.py +14 -0
- numba_cuda/numba/cuda/cudadrv/devicearray.py +951 -0
- numba_cuda/numba/cuda/cudadrv/devices.py +249 -0
- numba_cuda/numba/cuda/cudadrv/driver.py +3222 -0
- numba_cuda/numba/cuda/cudadrv/drvapi.py +435 -0
- numba_cuda/numba/cuda/cudadrv/dummyarray.py +558 -0
- numba_cuda/numba/cuda/cudadrv/enums.py +613 -0
- numba_cuda/numba/cuda/cudadrv/error.py +48 -0
- numba_cuda/numba/cuda/cudadrv/libs.py +220 -0
- numba_cuda/numba/cuda/cudadrv/linkable_code.py +184 -0
- numba_cuda/numba/cuda/cudadrv/mappings.py +14 -0
- numba_cuda/numba/cuda/cudadrv/ndarray.py +26 -0
- numba_cuda/numba/cuda/cudadrv/nvrtc.py +193 -0
- numba_cuda/numba/cuda/cudadrv/nvvm.py +756 -0
- numba_cuda/numba/cuda/cudadrv/rtapi.py +13 -0
- numba_cuda/numba/cuda/cudadrv/runtime.py +34 -0
- numba_cuda/numba/cuda/cudaimpl.py +995 -0
- numba_cuda/numba/cuda/cudamath.py +149 -0
- numba_cuda/numba/cuda/datamodel/__init__.py +7 -0
- numba_cuda/numba/cuda/datamodel/cuda_manager.py +66 -0
- numba_cuda/numba/cuda/datamodel/cuda_models.py +1446 -0
- numba_cuda/numba/cuda/datamodel/cuda_packer.py +224 -0
- numba_cuda/numba/cuda/datamodel/cuda_registry.py +22 -0
- numba_cuda/numba/cuda/datamodel/cuda_testing.py +153 -0
- numba_cuda/numba/cuda/datamodel/manager.py +11 -0
- numba_cuda/numba/cuda/datamodel/models.py +9 -0
- numba_cuda/numba/cuda/datamodel/packer.py +9 -0
- numba_cuda/numba/cuda/datamodel/registry.py +11 -0
- numba_cuda/numba/cuda/datamodel/testing.py +11 -0
- numba_cuda/numba/cuda/debuginfo.py +903 -0
- numba_cuda/numba/cuda/decorators.py +294 -0
- numba_cuda/numba/cuda/descriptor.py +35 -0
- numba_cuda/numba/cuda/device_init.py +158 -0
- numba_cuda/numba/cuda/deviceufunc.py +1021 -0
- numba_cuda/numba/cuda/dispatcher.py +2463 -0
- numba_cuda/numba/cuda/errors.py +72 -0
- numba_cuda/numba/cuda/extending.py +697 -0
- numba_cuda/numba/cuda/flags.py +178 -0
- numba_cuda/numba/cuda/fp16.py +357 -0
- numba_cuda/numba/cuda/include/12/cuda_bf16.h +5118 -0
- numba_cuda/numba/cuda/include/12/cuda_bf16.hpp +3865 -0
- numba_cuda/numba/cuda/include/12/cuda_fp16.h +5363 -0
- numba_cuda/numba/cuda/include/12/cuda_fp16.hpp +3483 -0
- numba_cuda/numba/cuda/include/13/cuda_bf16.h +5118 -0
- numba_cuda/numba/cuda/include/13/cuda_bf16.hpp +3865 -0
- numba_cuda/numba/cuda/include/13/cuda_fp16.h +5363 -0
- numba_cuda/numba/cuda/include/13/cuda_fp16.hpp +3483 -0
- numba_cuda/numba/cuda/initialize.py +24 -0
- numba_cuda/numba/cuda/intrinsic_wrapper.py +41 -0
- numba_cuda/numba/cuda/intrinsics.py +382 -0
- numba_cuda/numba/cuda/itanium_mangler.py +214 -0
- numba_cuda/numba/cuda/kernels/__init__.py +2 -0
- numba_cuda/numba/cuda/kernels/reduction.py +265 -0
- numba_cuda/numba/cuda/kernels/transpose.py +65 -0
- numba_cuda/numba/cuda/libdevice.py +3386 -0
- numba_cuda/numba/cuda/libdevicedecl.py +20 -0
- numba_cuda/numba/cuda/libdevicefuncs.py +1060 -0
- numba_cuda/numba/cuda/libdeviceimpl.py +88 -0
- numba_cuda/numba/cuda/locks.py +19 -0
- numba_cuda/numba/cuda/lowering.py +1951 -0
- numba_cuda/numba/cuda/mathimpl.py +374 -0
- numba_cuda/numba/cuda/memory_management/__init__.py +4 -0
- numba_cuda/numba/cuda/memory_management/memsys.cu +99 -0
- numba_cuda/numba/cuda/memory_management/memsys.cuh +22 -0
- numba_cuda/numba/cuda/memory_management/nrt.cu +212 -0
- numba_cuda/numba/cuda/memory_management/nrt.cuh +48 -0
- numba_cuda/numba/cuda/memory_management/nrt.py +390 -0
- numba_cuda/numba/cuda/memory_management/nrt_context.py +438 -0
- numba_cuda/numba/cuda/misc/appdirs.py +594 -0
- numba_cuda/numba/cuda/misc/cffiimpl.py +24 -0
- numba_cuda/numba/cuda/misc/coverage_support.py +43 -0
- numba_cuda/numba/cuda/misc/dump_style.py +41 -0
- numba_cuda/numba/cuda/misc/findlib.py +75 -0
- numba_cuda/numba/cuda/misc/firstlinefinder.py +96 -0
- numba_cuda/numba/cuda/misc/gdb_hook.py +240 -0
- numba_cuda/numba/cuda/misc/literal.py +28 -0
- numba_cuda/numba/cuda/misc/llvm_pass_timings.py +412 -0
- numba_cuda/numba/cuda/misc/special.py +94 -0
- numba_cuda/numba/cuda/models.py +56 -0
- numba_cuda/numba/cuda/np/arraymath.py +5130 -0
- numba_cuda/numba/cuda/np/arrayobj.py +7635 -0
- numba_cuda/numba/cuda/np/extensions.py +11 -0
- numba_cuda/numba/cuda/np/linalg.py +3087 -0
- numba_cuda/numba/cuda/np/math/__init__.py +0 -0
- numba_cuda/numba/cuda/np/math/cmathimpl.py +558 -0
- numba_cuda/numba/cuda/np/math/mathimpl.py +487 -0
- numba_cuda/numba/cuda/np/math/numbers.py +1461 -0
- numba_cuda/numba/cuda/np/npdatetime.py +969 -0
- numba_cuda/numba/cuda/np/npdatetime_helpers.py +217 -0
- numba_cuda/numba/cuda/np/npyfuncs.py +1808 -0
- numba_cuda/numba/cuda/np/npyimpl.py +1027 -0
- numba_cuda/numba/cuda/np/numpy_support.py +798 -0
- numba_cuda/numba/cuda/np/polynomial/__init__.py +4 -0
- numba_cuda/numba/cuda/np/polynomial/polynomial_core.py +242 -0
- numba_cuda/numba/cuda/np/polynomial/polynomial_functions.py +380 -0
- numba_cuda/numba/cuda/np/ufunc/__init__.py +4 -0
- numba_cuda/numba/cuda/np/ufunc/decorators.py +203 -0
- numba_cuda/numba/cuda/np/ufunc/sigparse.py +68 -0
- numba_cuda/numba/cuda/np/ufunc/ufuncbuilder.py +65 -0
- numba_cuda/numba/cuda/np/ufunc_db.py +1282 -0
- numba_cuda/numba/cuda/np/unsafe/__init__.py +0 -0
- numba_cuda/numba/cuda/np/unsafe/ndarray.py +84 -0
- numba_cuda/numba/cuda/nvvmutils.py +254 -0
- numba_cuda/numba/cuda/printimpl.py +126 -0
- numba_cuda/numba/cuda/random.py +308 -0
- numba_cuda/numba/cuda/reshape_funcs.cu +156 -0
- numba_cuda/numba/cuda/serialize.py +267 -0
- numba_cuda/numba/cuda/simulator/__init__.py +63 -0
- numba_cuda/numba/cuda/simulator/_internal/__init__.py +4 -0
- numba_cuda/numba/cuda/simulator/_internal/cuda_bf16.py +2 -0
- numba_cuda/numba/cuda/simulator/api.py +179 -0
- numba_cuda/numba/cuda/simulator/bf16.py +4 -0
- numba_cuda/numba/cuda/simulator/compiler.py +38 -0
- numba_cuda/numba/cuda/simulator/cudadrv/__init__.py +11 -0
- numba_cuda/numba/cuda/simulator/cudadrv/devicearray.py +462 -0
- numba_cuda/numba/cuda/simulator/cudadrv/devices.py +122 -0
- numba_cuda/numba/cuda/simulator/cudadrv/driver.py +66 -0
- numba_cuda/numba/cuda/simulator/cudadrv/drvapi.py +7 -0
- numba_cuda/numba/cuda/simulator/cudadrv/dummyarray.py +7 -0
- numba_cuda/numba/cuda/simulator/cudadrv/error.py +10 -0
- numba_cuda/numba/cuda/simulator/cudadrv/libs.py +10 -0
- numba_cuda/numba/cuda/simulator/cudadrv/linkable_code.py +61 -0
- numba_cuda/numba/cuda/simulator/cudadrv/nvrtc.py +11 -0
- numba_cuda/numba/cuda/simulator/cudadrv/nvvm.py +32 -0
- numba_cuda/numba/cuda/simulator/cudadrv/runtime.py +22 -0
- numba_cuda/numba/cuda/simulator/dispatcher.py +11 -0
- numba_cuda/numba/cuda/simulator/kernel.py +320 -0
- numba_cuda/numba/cuda/simulator/kernelapi.py +509 -0
- numba_cuda/numba/cuda/simulator/memory_management/__init__.py +4 -0
- numba_cuda/numba/cuda/simulator/memory_management/nrt.py +21 -0
- numba_cuda/numba/cuda/simulator/reduction.py +19 -0
- numba_cuda/numba/cuda/simulator/tests/support.py +4 -0
- numba_cuda/numba/cuda/simulator/vector_types.py +65 -0
- numba_cuda/numba/cuda/simulator_init.py +18 -0
- numba_cuda/numba/cuda/stubs.py +635 -0
- numba_cuda/numba/cuda/target.py +505 -0
- numba_cuda/numba/cuda/testing.py +347 -0
- numba_cuda/numba/cuda/tests/__init__.py +62 -0
- numba_cuda/numba/cuda/tests/benchmarks/__init__.py +0 -0
- numba_cuda/numba/cuda/tests/benchmarks/test_kernel_launch.py +119 -0
- numba_cuda/numba/cuda/tests/cloudpickle_main_class.py +9 -0
- numba_cuda/numba/cuda/tests/core/serialize_usecases.py +113 -0
- numba_cuda/numba/cuda/tests/core/test_itanium_mangler.py +83 -0
- numba_cuda/numba/cuda/tests/core/test_serialize.py +371 -0
- numba_cuda/numba/cuda/tests/cudadrv/__init__.py +9 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_array_attr.py +147 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_context_stack.py +161 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_array_slicing.py +397 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_auto_context.py +24 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_devicerecord.py +180 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_driver.py +313 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_memory.py +187 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_ndarray.py +621 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_deallocations.py +247 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_detect.py +100 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_emm_plugins.py +198 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_events.py +53 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_host_alloc.py +72 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_init.py +138 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_inline_ptx.py +43 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_is_fp16.py +15 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_linkable_code.py +58 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_linker.py +348 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_managed_alloc.py +128 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_module_callbacks.py +301 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_nvjitlink.py +174 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_nvrtc.py +28 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_nvvm_driver.py +185 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_pinned.py +39 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_profiler.py +23 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_reset_device.py +38 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_runtime.py +48 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_select_device.py +44 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_streams.py +127 -0
- numba_cuda/numba/cuda/tests/cudapy/__init__.py +9 -0
- numba_cuda/numba/cuda/tests/cudapy/cache_usecases.py +231 -0
- numba_cuda/numba/cuda/tests/cudapy/cache_with_cpu_usecases.py +50 -0
- numba_cuda/numba/cuda/tests/cudapy/cg_cache_usecases.py +36 -0
- numba_cuda/numba/cuda/tests/cudapy/complex_usecases.py +116 -0
- numba_cuda/numba/cuda/tests/cudapy/enum_usecases.py +59 -0
- numba_cuda/numba/cuda/tests/cudapy/extensions_usecases.py +62 -0
- numba_cuda/numba/cuda/tests/cudapy/jitlink.ptx +28 -0
- numba_cuda/numba/cuda/tests/cudapy/overload_usecases.py +33 -0
- numba_cuda/numba/cuda/tests/cudapy/recursion_usecases.py +104 -0
- numba_cuda/numba/cuda/tests/cudapy/test_alignment.py +47 -0
- numba_cuda/numba/cuda/tests/cudapy/test_analysis.py +1122 -0
- numba_cuda/numba/cuda/tests/cudapy/test_array.py +344 -0
- numba_cuda/numba/cuda/tests/cudapy/test_array_alignment.py +268 -0
- numba_cuda/numba/cuda/tests/cudapy/test_array_args.py +203 -0
- numba_cuda/numba/cuda/tests/cudapy/test_array_methods.py +63 -0
- numba_cuda/numba/cuda/tests/cudapy/test_array_reductions.py +360 -0
- numba_cuda/numba/cuda/tests/cudapy/test_atomics.py +1815 -0
- numba_cuda/numba/cuda/tests/cudapy/test_bfloat16.py +599 -0
- numba_cuda/numba/cuda/tests/cudapy/test_bfloat16_bindings.py +377 -0
- numba_cuda/numba/cuda/tests/cudapy/test_blackscholes.py +160 -0
- numba_cuda/numba/cuda/tests/cudapy/test_boolean.py +27 -0
- numba_cuda/numba/cuda/tests/cudapy/test_byteflow.py +98 -0
- numba_cuda/numba/cuda/tests/cudapy/test_cache_hints.py +210 -0
- numba_cuda/numba/cuda/tests/cudapy/test_caching.py +683 -0
- numba_cuda/numba/cuda/tests/cudapy/test_casting.py +265 -0
- numba_cuda/numba/cuda/tests/cudapy/test_cffi.py +42 -0
- numba_cuda/numba/cuda/tests/cudapy/test_compiler.py +718 -0
- numba_cuda/numba/cuda/tests/cudapy/test_complex.py +370 -0
- numba_cuda/numba/cuda/tests/cudapy/test_complex_kernel.py +23 -0
- numba_cuda/numba/cuda/tests/cudapy/test_const_string.py +142 -0
- numba_cuda/numba/cuda/tests/cudapy/test_constmem.py +178 -0
- numba_cuda/numba/cuda/tests/cudapy/test_cooperative_groups.py +193 -0
- numba_cuda/numba/cuda/tests/cudapy/test_copy_propagate.py +131 -0
- numba_cuda/numba/cuda/tests/cudapy/test_cuda_array_interface.py +438 -0
- numba_cuda/numba/cuda/tests/cudapy/test_cuda_jit_no_types.py +94 -0
- numba_cuda/numba/cuda/tests/cudapy/test_datetime.py +101 -0
- numba_cuda/numba/cuda/tests/cudapy/test_debug.py +105 -0
- numba_cuda/numba/cuda/tests/cudapy/test_debuginfo.py +889 -0
- numba_cuda/numba/cuda/tests/cudapy/test_debuginfo_types.py +476 -0
- numba_cuda/numba/cuda/tests/cudapy/test_device_func.py +500 -0
- numba_cuda/numba/cuda/tests/cudapy/test_dispatcher.py +820 -0
- numba_cuda/numba/cuda/tests/cudapy/test_enums.py +152 -0
- numba_cuda/numba/cuda/tests/cudapy/test_errors.py +111 -0
- numba_cuda/numba/cuda/tests/cudapy/test_exception.py +170 -0
- numba_cuda/numba/cuda/tests/cudapy/test_extending.py +1088 -0
- numba_cuda/numba/cuda/tests/cudapy/test_extending_types.py +71 -0
- numba_cuda/numba/cuda/tests/cudapy/test_fastmath.py +265 -0
- numba_cuda/numba/cuda/tests/cudapy/test_flow_control.py +1433 -0
- numba_cuda/numba/cuda/tests/cudapy/test_forall.py +57 -0
- numba_cuda/numba/cuda/tests/cudapy/test_freevar.py +34 -0
- numba_cuda/numba/cuda/tests/cudapy/test_frexp_ldexp.py +69 -0
- numba_cuda/numba/cuda/tests/cudapy/test_globals.py +62 -0
- numba_cuda/numba/cuda/tests/cudapy/test_gufunc.py +474 -0
- numba_cuda/numba/cuda/tests/cudapy/test_gufunc_scalar.py +167 -0
- numba_cuda/numba/cuda/tests/cudapy/test_gufunc_scheduling.py +92 -0
- numba_cuda/numba/cuda/tests/cudapy/test_idiv.py +39 -0
- numba_cuda/numba/cuda/tests/cudapy/test_inline.py +170 -0
- numba_cuda/numba/cuda/tests/cudapy/test_inspect.py +255 -0
- numba_cuda/numba/cuda/tests/cudapy/test_intrinsics.py +1219 -0
- numba_cuda/numba/cuda/tests/cudapy/test_ipc.py +263 -0
- numba_cuda/numba/cuda/tests/cudapy/test_ir.py +598 -0
- numba_cuda/numba/cuda/tests/cudapy/test_ir_utils.py +276 -0
- numba_cuda/numba/cuda/tests/cudapy/test_iterators.py +101 -0
- numba_cuda/numba/cuda/tests/cudapy/test_lang.py +68 -0
- numba_cuda/numba/cuda/tests/cudapy/test_laplace.py +123 -0
- numba_cuda/numba/cuda/tests/cudapy/test_libdevice.py +194 -0
- numba_cuda/numba/cuda/tests/cudapy/test_lineinfo.py +220 -0
- numba_cuda/numba/cuda/tests/cudapy/test_localmem.py +173 -0
- numba_cuda/numba/cuda/tests/cudapy/test_make_function_to_jit_function.py +364 -0
- numba_cuda/numba/cuda/tests/cudapy/test_mandel.py +47 -0
- numba_cuda/numba/cuda/tests/cudapy/test_math.py +842 -0
- numba_cuda/numba/cuda/tests/cudapy/test_matmul.py +76 -0
- numba_cuda/numba/cuda/tests/cudapy/test_minmax.py +78 -0
- numba_cuda/numba/cuda/tests/cudapy/test_montecarlo.py +25 -0
- numba_cuda/numba/cuda/tests/cudapy/test_multigpu.py +145 -0
- numba_cuda/numba/cuda/tests/cudapy/test_multiprocessing.py +39 -0
- numba_cuda/numba/cuda/tests/cudapy/test_multithreads.py +82 -0
- numba_cuda/numba/cuda/tests/cudapy/test_nondet.py +53 -0
- numba_cuda/numba/cuda/tests/cudapy/test_operator.py +504 -0
- numba_cuda/numba/cuda/tests/cudapy/test_optimization.py +93 -0
- numba_cuda/numba/cuda/tests/cudapy/test_overload.py +402 -0
- numba_cuda/numba/cuda/tests/cudapy/test_powi.py +128 -0
- numba_cuda/numba/cuda/tests/cudapy/test_print.py +193 -0
- numba_cuda/numba/cuda/tests/cudapy/test_py2_div_issue.py +37 -0
- numba_cuda/numba/cuda/tests/cudapy/test_random.py +117 -0
- numba_cuda/numba/cuda/tests/cudapy/test_record_dtype.py +614 -0
- numba_cuda/numba/cuda/tests/cudapy/test_recursion.py +130 -0
- numba_cuda/numba/cuda/tests/cudapy/test_reduction.py +94 -0
- numba_cuda/numba/cuda/tests/cudapy/test_retrieve_autoconverted_arrays.py +83 -0
- numba_cuda/numba/cuda/tests/cudapy/test_serialize.py +86 -0
- numba_cuda/numba/cuda/tests/cudapy/test_slicing.py +40 -0
- numba_cuda/numba/cuda/tests/cudapy/test_sm.py +457 -0
- numba_cuda/numba/cuda/tests/cudapy/test_sm_creation.py +233 -0
- numba_cuda/numba/cuda/tests/cudapy/test_ssa.py +454 -0
- numba_cuda/numba/cuda/tests/cudapy/test_stream_api.py +56 -0
- numba_cuda/numba/cuda/tests/cudapy/test_sync.py +277 -0
- numba_cuda/numba/cuda/tests/cudapy/test_tracing.py +200 -0
- numba_cuda/numba/cuda/tests/cudapy/test_transpose.py +90 -0
- numba_cuda/numba/cuda/tests/cudapy/test_typeconv.py +333 -0
- numba_cuda/numba/cuda/tests/cudapy/test_typeinfer.py +538 -0
- numba_cuda/numba/cuda/tests/cudapy/test_ufuncs.py +585 -0
- numba_cuda/numba/cuda/tests/cudapy/test_userexc.py +42 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vector_type.py +485 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vectorize.py +312 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vectorize_complex.py +23 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vectorize_decor.py +183 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vectorize_device.py +40 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vectorize_scalar_arg.py +40 -0
- numba_cuda/numba/cuda/tests/cudapy/test_warning.py +206 -0
- numba_cuda/numba/cuda/tests/cudapy/test_warp_ops.py +331 -0
- numba_cuda/numba/cuda/tests/cudasim/__init__.py +9 -0
- numba_cuda/numba/cuda/tests/cudasim/support.py +9 -0
- numba_cuda/numba/cuda/tests/cudasim/test_cudasim_issues.py +111 -0
- numba_cuda/numba/cuda/tests/data/__init__.py +2 -0
- numba_cuda/numba/cuda/tests/data/cta_barrier.cu +28 -0
- numba_cuda/numba/cuda/tests/data/cuda_include.cu +10 -0
- numba_cuda/numba/cuda/tests/data/error.cu +12 -0
- numba_cuda/numba/cuda/tests/data/include/add.cuh +8 -0
- numba_cuda/numba/cuda/tests/data/jitlink.cu +28 -0
- numba_cuda/numba/cuda/tests/data/jitlink.ptx +49 -0
- numba_cuda/numba/cuda/tests/data/warn.cu +12 -0
- numba_cuda/numba/cuda/tests/doc_examples/__init__.py +9 -0
- numba_cuda/numba/cuda/tests/doc_examples/ffi/__init__.py +2 -0
- numba_cuda/numba/cuda/tests/doc_examples/ffi/functions.cu +54 -0
- numba_cuda/numba/cuda/tests/doc_examples/ffi/include/mul.cuh +8 -0
- numba_cuda/numba/cuda/tests/doc_examples/ffi/saxpy.cu +14 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_cg.py +86 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_cpointer.py +68 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_cpu_gpu_compat.py +81 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_ffi.py +141 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_laplace.py +160 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_matmul.py +180 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_montecarlo.py +119 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_random.py +66 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_reduction.py +80 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_sessionize.py +206 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_ufunc.py +53 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_vecadd.py +76 -0
- numba_cuda/numba/cuda/tests/nocuda/__init__.py +9 -0
- numba_cuda/numba/cuda/tests/nocuda/test_dummyarray.py +391 -0
- numba_cuda/numba/cuda/tests/nocuda/test_function_resolution.py +48 -0
- numba_cuda/numba/cuda/tests/nocuda/test_import.py +63 -0
- numba_cuda/numba/cuda/tests/nocuda/test_library_lookup.py +252 -0
- numba_cuda/numba/cuda/tests/nocuda/test_nvvm.py +59 -0
- numba_cuda/numba/cuda/tests/nrt/__init__.py +9 -0
- numba_cuda/numba/cuda/tests/nrt/test_nrt.py +387 -0
- numba_cuda/numba/cuda/tests/nrt/test_nrt_refct.py +124 -0
- numba_cuda/numba/cuda/tests/support.py +900 -0
- numba_cuda/numba/cuda/typeconv/__init__.py +4 -0
- numba_cuda/numba/cuda/typeconv/castgraph.py +137 -0
- numba_cuda/numba/cuda/typeconv/rules.py +63 -0
- numba_cuda/numba/cuda/typeconv/typeconv.py +121 -0
- numba_cuda/numba/cuda/types/__init__.py +233 -0
- numba_cuda/numba/cuda/types/__init__.pyi +167 -0
- numba_cuda/numba/cuda/types/abstract.py +9 -0
- numba_cuda/numba/cuda/types/common.py +9 -0
- numba_cuda/numba/cuda/types/containers.py +9 -0
- numba_cuda/numba/cuda/types/cuda_abstract.py +533 -0
- numba_cuda/numba/cuda/types/cuda_common.py +110 -0
- numba_cuda/numba/cuda/types/cuda_containers.py +971 -0
- numba_cuda/numba/cuda/types/cuda_function_type.py +230 -0
- numba_cuda/numba/cuda/types/cuda_functions.py +798 -0
- numba_cuda/numba/cuda/types/cuda_iterators.py +120 -0
- numba_cuda/numba/cuda/types/cuda_misc.py +569 -0
- numba_cuda/numba/cuda/types/cuda_npytypes.py +690 -0
- numba_cuda/numba/cuda/types/cuda_scalars.py +280 -0
- numba_cuda/numba/cuda/types/ext_types.py +101 -0
- numba_cuda/numba/cuda/types/function_type.py +11 -0
- numba_cuda/numba/cuda/types/functions.py +9 -0
- numba_cuda/numba/cuda/types/iterators.py +9 -0
- numba_cuda/numba/cuda/types/misc.py +9 -0
- numba_cuda/numba/cuda/types/npytypes.py +9 -0
- numba_cuda/numba/cuda/types/scalars.py +9 -0
- numba_cuda/numba/cuda/typing/__init__.py +19 -0
- numba_cuda/numba/cuda/typing/arraydecl.py +939 -0
- numba_cuda/numba/cuda/typing/asnumbatype.py +130 -0
- numba_cuda/numba/cuda/typing/bufproto.py +70 -0
- numba_cuda/numba/cuda/typing/builtins.py +1209 -0
- numba_cuda/numba/cuda/typing/cffi_utils.py +219 -0
- numba_cuda/numba/cuda/typing/cmathdecl.py +47 -0
- numba_cuda/numba/cuda/typing/collections.py +138 -0
- numba_cuda/numba/cuda/typing/context.py +782 -0
- numba_cuda/numba/cuda/typing/ctypes_utils.py +125 -0
- numba_cuda/numba/cuda/typing/dictdecl.py +63 -0
- numba_cuda/numba/cuda/typing/enumdecl.py +74 -0
- numba_cuda/numba/cuda/typing/listdecl.py +147 -0
- numba_cuda/numba/cuda/typing/mathdecl.py +158 -0
- numba_cuda/numba/cuda/typing/npdatetime.py +322 -0
- numba_cuda/numba/cuda/typing/npydecl.py +749 -0
- numba_cuda/numba/cuda/typing/setdecl.py +115 -0
- numba_cuda/numba/cuda/typing/templates.py +1446 -0
- numba_cuda/numba/cuda/typing/typeof.py +301 -0
- numba_cuda/numba/cuda/ufuncs.py +746 -0
- numba_cuda/numba/cuda/utils.py +724 -0
- numba_cuda/numba/cuda/vector_types.py +214 -0
- numba_cuda/numba/cuda/vectorizers.py +260 -0
- numba_cuda-0.21.1.dist-info/METADATA +109 -0
- numba_cuda-0.21.1.dist-info/RECORD +488 -0
- numba_cuda-0.21.1.dist-info/WHEEL +5 -0
- numba_cuda-0.21.1.dist-info/licenses/LICENSE +26 -0
- numba_cuda-0.21.1.dist-info/licenses/LICENSE.numba +24 -0
- numba_cuda-0.21.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1219 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: BSD-2-Clause
|
|
3
|
+
|
|
4
|
+
import itertools
|
|
5
|
+
import numpy as np
|
|
6
|
+
import operator
|
|
7
|
+
import re
|
|
8
|
+
from numba import cuda
|
|
9
|
+
from numba.cuda import int64
|
|
10
|
+
from numba.cuda import HAS_NUMBA
|
|
11
|
+
|
|
12
|
+
if HAS_NUMBA:
|
|
13
|
+
from numba.core.errors import TypingError
|
|
14
|
+
else:
|
|
15
|
+
from numba.cuda.core.errors import TypingError
|
|
16
|
+
from numba.cuda.types import f2
|
|
17
|
+
from numba.cuda.testing import (
|
|
18
|
+
unittest,
|
|
19
|
+
CUDATestCase,
|
|
20
|
+
skip_on_cudasim,
|
|
21
|
+
skip_unless_cc_53,
|
|
22
|
+
skip_if_nvjitlink_missing,
|
|
23
|
+
)
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
def simple_threadidx(ary):
|
|
27
|
+
i = cuda.threadIdx.x
|
|
28
|
+
ary[0] = i
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def fill_threadidx(ary):
|
|
32
|
+
i = cuda.threadIdx.x
|
|
33
|
+
ary[i] = i
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
def fill3d_threadidx(ary):
|
|
37
|
+
i = cuda.threadIdx.x
|
|
38
|
+
j = cuda.threadIdx.y
|
|
39
|
+
k = cuda.threadIdx.z
|
|
40
|
+
|
|
41
|
+
ary[i, j, k] = (i + 1) * (j + 1) * (k + 1)
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
def simple_grid1d(ary):
|
|
45
|
+
i = cuda.grid(1)
|
|
46
|
+
ary[i] = i
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def simple_grid2d(ary):
|
|
50
|
+
i, j = cuda.grid(2)
|
|
51
|
+
ary[i, j] = i + j
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def simple_gridsize1d(ary):
|
|
55
|
+
i = cuda.grid(1)
|
|
56
|
+
x = cuda.gridsize(1)
|
|
57
|
+
if i == 0:
|
|
58
|
+
ary[0] = x
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def simple_gridsize2d(ary):
|
|
62
|
+
i, j = cuda.grid(2)
|
|
63
|
+
x, y = cuda.gridsize(2)
|
|
64
|
+
if i == 0 and j == 0:
|
|
65
|
+
ary[0] = x
|
|
66
|
+
ary[1] = y
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
def intrinsic_forloop_step(c):
|
|
70
|
+
startX, startY = cuda.grid(2)
|
|
71
|
+
gridX = cuda.gridDim.x * cuda.blockDim.x
|
|
72
|
+
gridY = cuda.gridDim.y * cuda.blockDim.y
|
|
73
|
+
height, width = c.shape
|
|
74
|
+
|
|
75
|
+
for x in range(startX, width, gridX):
|
|
76
|
+
for y in range(startY, height, gridY):
|
|
77
|
+
c[y, x] = x + y
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
def simple_popc(ary, c):
|
|
81
|
+
ary[0] = cuda.popc(c)
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
def simple_bit_count(ary, c):
|
|
85
|
+
ary[0] = c.bit_count()
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
def simple_fma(ary, a, b, c):
|
|
89
|
+
ary[0] = cuda.fma(a, b, c)
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
def simple_hadd(ary, a, b):
|
|
93
|
+
ary[0] = cuda.fp16.hadd(a[0], b[0])
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
def simple_hadd_scalar(ary, a, b):
|
|
97
|
+
ary[0] = cuda.fp16.hadd(a, b)
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
def simple_hfma(ary, a, b, c):
|
|
101
|
+
ary[0] = cuda.fp16.hfma(a[0], b[0], c[0])
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
def simple_hfma_scalar(ary, a, b, c):
|
|
105
|
+
ary[0] = cuda.fp16.hfma(a, b, c)
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
def simple_hsub(ary, a, b):
|
|
109
|
+
ary[0] = cuda.fp16.hsub(a[0], b[0])
|
|
110
|
+
|
|
111
|
+
|
|
112
|
+
def simple_hsub_scalar(ary, a, b):
|
|
113
|
+
ary[0] = cuda.fp16.hsub(a, b)
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+
def simple_hmul(ary, a, b):
|
|
117
|
+
ary[0] = cuda.fp16.hmul(a[0], b[0])
|
|
118
|
+
|
|
119
|
+
|
|
120
|
+
def simple_hmul_scalar(ary, a, b):
|
|
121
|
+
ary[0] = cuda.fp16.hmul(a, b)
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
def simple_hdiv_scalar(ary, a, b):
|
|
125
|
+
ary[0] = cuda.fp16.hdiv(a, b)
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
def simple_hdiv_kernel(ary, array_a, array_b):
|
|
129
|
+
i = cuda.grid(1)
|
|
130
|
+
if i < ary.size:
|
|
131
|
+
a = array_a[i]
|
|
132
|
+
b = array_b[i]
|
|
133
|
+
ary[i] = cuda.fp16.hdiv(a, b)
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
def simple_hneg(ary, a):
|
|
137
|
+
ary[0] = cuda.fp16.hneg(a[0])
|
|
138
|
+
|
|
139
|
+
|
|
140
|
+
def simple_hneg_scalar(ary, a):
|
|
141
|
+
ary[0] = cuda.fp16.hneg(a)
|
|
142
|
+
|
|
143
|
+
|
|
144
|
+
def simple_habs(ary, a):
|
|
145
|
+
ary[0] = cuda.fp16.habs(a[0])
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
def simple_habs_scalar(ary, a):
|
|
149
|
+
ary[0] = cuda.fp16.habs(a)
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
def simple_heq_scalar(ary, a, b):
|
|
153
|
+
ary[0] = cuda.fp16.heq(a, b)
|
|
154
|
+
|
|
155
|
+
|
|
156
|
+
def simple_hne_scalar(ary, a, b):
|
|
157
|
+
ary[0] = cuda.fp16.hne(a, b)
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
def simple_hge_scalar(ary, a, b):
|
|
161
|
+
ary[0] = cuda.fp16.hge(a, b)
|
|
162
|
+
|
|
163
|
+
|
|
164
|
+
def simple_hgt_scalar(ary, a, b):
|
|
165
|
+
ary[0] = cuda.fp16.hgt(a, b)
|
|
166
|
+
|
|
167
|
+
|
|
168
|
+
def simple_hle_scalar(ary, a, b):
|
|
169
|
+
ary[0] = cuda.fp16.hle(a, b)
|
|
170
|
+
|
|
171
|
+
|
|
172
|
+
def simple_hlt_scalar(ary, a, b):
|
|
173
|
+
ary[0] = cuda.fp16.hlt(a, b)
|
|
174
|
+
|
|
175
|
+
|
|
176
|
+
@cuda.jit(device=True)
|
|
177
|
+
def hlt_func_1(x, y):
|
|
178
|
+
return cuda.fp16.hlt(x, y)
|
|
179
|
+
|
|
180
|
+
|
|
181
|
+
@cuda.jit(device=True)
|
|
182
|
+
def hlt_func_2(x, y):
|
|
183
|
+
return cuda.fp16.hlt(x, y)
|
|
184
|
+
|
|
185
|
+
|
|
186
|
+
def multiple_hcmp_1(r, a, b, c):
|
|
187
|
+
# float16 predicates used in two separate functions
|
|
188
|
+
r[0] = hlt_func_1(a, b) and hlt_func_2(b, c)
|
|
189
|
+
|
|
190
|
+
|
|
191
|
+
def multiple_hcmp_2(r, a, b, c):
|
|
192
|
+
# The same float16 predicate used in the caller and callee
|
|
193
|
+
r[0] = hlt_func_1(a, b) and cuda.fp16.hlt(b, c)
|
|
194
|
+
|
|
195
|
+
|
|
196
|
+
def multiple_hcmp_3(r, a, b, c):
|
|
197
|
+
# Different float16 predicates used in the caller and callee
|
|
198
|
+
r[0] = hlt_func_1(a, b) and cuda.fp16.hge(c, b)
|
|
199
|
+
|
|
200
|
+
|
|
201
|
+
def multiple_hcmp_4(r, a, b, c):
|
|
202
|
+
# The same float16 predicates used twice in a function
|
|
203
|
+
r[0] = cuda.fp16.hlt(a, b) and cuda.fp16.hlt(b, c)
|
|
204
|
+
|
|
205
|
+
|
|
206
|
+
def multiple_hcmp_5(r, a, b, c):
|
|
207
|
+
# Different float16 predicates used in a function
|
|
208
|
+
r[0] = cuda.fp16.hlt(a, b) and cuda.fp16.hge(c, b)
|
|
209
|
+
|
|
210
|
+
|
|
211
|
+
def simple_hmax_scalar(ary, a, b):
|
|
212
|
+
ary[0] = cuda.fp16.hmax(a, b)
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
def simple_hmin_scalar(ary, a, b):
|
|
216
|
+
ary[0] = cuda.fp16.hmin(a, b)
|
|
217
|
+
|
|
218
|
+
|
|
219
|
+
def simple_hsin(r, x):
|
|
220
|
+
i = cuda.grid(1)
|
|
221
|
+
|
|
222
|
+
if i < len(r):
|
|
223
|
+
r[i] = cuda.fp16.hsin(x[i])
|
|
224
|
+
|
|
225
|
+
|
|
226
|
+
def simple_hcos(r, x):
|
|
227
|
+
i = cuda.grid(1)
|
|
228
|
+
|
|
229
|
+
if i < len(r):
|
|
230
|
+
r[i] = cuda.fp16.hcos(x[i])
|
|
231
|
+
|
|
232
|
+
|
|
233
|
+
def simple_hlog(r, x):
|
|
234
|
+
i = cuda.grid(1)
|
|
235
|
+
|
|
236
|
+
if i < len(r):
|
|
237
|
+
r[i] = cuda.fp16.hlog(x[i])
|
|
238
|
+
|
|
239
|
+
|
|
240
|
+
def simple_hlog2(r, x):
|
|
241
|
+
i = cuda.grid(1)
|
|
242
|
+
|
|
243
|
+
if i < len(r):
|
|
244
|
+
r[i] = cuda.fp16.hlog2(x[i])
|
|
245
|
+
|
|
246
|
+
|
|
247
|
+
def simple_hlog10(r, x):
|
|
248
|
+
i = cuda.grid(1)
|
|
249
|
+
|
|
250
|
+
if i < len(r):
|
|
251
|
+
r[i] = cuda.fp16.hlog10(x[i])
|
|
252
|
+
|
|
253
|
+
|
|
254
|
+
def simple_hexp(r, x):
|
|
255
|
+
i = cuda.grid(1)
|
|
256
|
+
|
|
257
|
+
if i < len(r):
|
|
258
|
+
r[i] = cuda.fp16.hexp(x[i])
|
|
259
|
+
|
|
260
|
+
|
|
261
|
+
def simple_hexp2(r, x):
|
|
262
|
+
i = cuda.grid(1)
|
|
263
|
+
|
|
264
|
+
if i < len(r):
|
|
265
|
+
r[i] = cuda.fp16.hexp2(x[i])
|
|
266
|
+
|
|
267
|
+
|
|
268
|
+
def simple_hsqrt(r, x):
|
|
269
|
+
i = cuda.grid(1)
|
|
270
|
+
|
|
271
|
+
if i < len(r):
|
|
272
|
+
r[i] = cuda.fp16.hsqrt(x[i])
|
|
273
|
+
|
|
274
|
+
|
|
275
|
+
def simple_hrsqrt(r, x):
|
|
276
|
+
i = cuda.grid(1)
|
|
277
|
+
|
|
278
|
+
if i < len(r):
|
|
279
|
+
r[i] = cuda.fp16.hrsqrt(x[i])
|
|
280
|
+
|
|
281
|
+
|
|
282
|
+
def numpy_hrsqrt(x, dtype):
|
|
283
|
+
return x**-0.5
|
|
284
|
+
|
|
285
|
+
|
|
286
|
+
def simple_hceil(r, x):
|
|
287
|
+
i = cuda.grid(1)
|
|
288
|
+
|
|
289
|
+
if i < len(r):
|
|
290
|
+
r[i] = cuda.fp16.hceil(x[i])
|
|
291
|
+
|
|
292
|
+
|
|
293
|
+
def simple_hfloor(r, x):
|
|
294
|
+
i = cuda.grid(1)
|
|
295
|
+
|
|
296
|
+
if i < len(r):
|
|
297
|
+
r[i] = cuda.fp16.hfloor(x[i])
|
|
298
|
+
|
|
299
|
+
|
|
300
|
+
def simple_hrcp(r, x):
|
|
301
|
+
i = cuda.grid(1)
|
|
302
|
+
|
|
303
|
+
if i < len(r):
|
|
304
|
+
r[i] = cuda.fp16.hrcp(x[i])
|
|
305
|
+
|
|
306
|
+
|
|
307
|
+
def simple_htrunc(r, x):
|
|
308
|
+
i = cuda.grid(1)
|
|
309
|
+
|
|
310
|
+
if i < len(r):
|
|
311
|
+
r[i] = cuda.fp16.htrunc(x[i])
|
|
312
|
+
|
|
313
|
+
|
|
314
|
+
def simple_hrint(r, x):
|
|
315
|
+
i = cuda.grid(1)
|
|
316
|
+
|
|
317
|
+
if i < len(r):
|
|
318
|
+
r[i] = cuda.fp16.hrint(x[i])
|
|
319
|
+
|
|
320
|
+
|
|
321
|
+
def simple_cbrt(ary, a):
|
|
322
|
+
ary[0] = cuda.cbrt(a)
|
|
323
|
+
|
|
324
|
+
|
|
325
|
+
def simple_brev(ary, c):
|
|
326
|
+
ary[0] = cuda.brev(c)
|
|
327
|
+
|
|
328
|
+
|
|
329
|
+
def simple_clz(ary, c):
|
|
330
|
+
ary[0] = cuda.clz(c)
|
|
331
|
+
|
|
332
|
+
|
|
333
|
+
def simple_ffs(ary, c):
|
|
334
|
+
ary[0] = cuda.ffs(c)
|
|
335
|
+
|
|
336
|
+
|
|
337
|
+
def simple_round(ary, c):
|
|
338
|
+
ary[0] = round(c)
|
|
339
|
+
|
|
340
|
+
|
|
341
|
+
def simple_round_to(ary, c, ndigits):
|
|
342
|
+
ary[0] = round(c, ndigits)
|
|
343
|
+
|
|
344
|
+
|
|
345
|
+
def branching_with_ifs(a, b, c):
|
|
346
|
+
i = cuda.grid(1)
|
|
347
|
+
|
|
348
|
+
if a[i] > 4:
|
|
349
|
+
if b % 2 == 0:
|
|
350
|
+
a[i] = c[i]
|
|
351
|
+
else:
|
|
352
|
+
a[i] = 13
|
|
353
|
+
else:
|
|
354
|
+
a[i] = 3
|
|
355
|
+
|
|
356
|
+
|
|
357
|
+
def branching_with_selps(a, b, c):
|
|
358
|
+
i = cuda.grid(1)
|
|
359
|
+
|
|
360
|
+
inner = cuda.selp(b % 2 == 0, c[i], 13)
|
|
361
|
+
a[i] = cuda.selp(a[i] > 4, inner, 3)
|
|
362
|
+
|
|
363
|
+
|
|
364
|
+
def simple_laneid(ary):
|
|
365
|
+
i = cuda.grid(1)
|
|
366
|
+
ary[i] = cuda.laneid
|
|
367
|
+
|
|
368
|
+
|
|
369
|
+
def simple_warpsize(ary):
|
|
370
|
+
ary[0] = cuda.warpsize
|
|
371
|
+
|
|
372
|
+
|
|
373
|
+
def nonliteral_grid(x):
|
|
374
|
+
cuda.grid(x)
|
|
375
|
+
|
|
376
|
+
|
|
377
|
+
def nonliteral_gridsize(x):
|
|
378
|
+
cuda.gridsize(x)
|
|
379
|
+
|
|
380
|
+
|
|
381
|
+
class TestCudaIntrinsic(CUDATestCase):
|
|
382
|
+
def setUp(self):
|
|
383
|
+
super().setUp()
|
|
384
|
+
np.random.seed(0)
|
|
385
|
+
|
|
386
|
+
def test_simple_threadidx(self):
|
|
387
|
+
compiled = cuda.jit("void(int32[:])")(simple_threadidx)
|
|
388
|
+
ary = np.ones(1, dtype=np.int32)
|
|
389
|
+
compiled[1, 1](ary)
|
|
390
|
+
self.assertTrue(ary[0] == 0)
|
|
391
|
+
|
|
392
|
+
def test_fill_threadidx(self):
|
|
393
|
+
compiled = cuda.jit("void(int32[:])")(fill_threadidx)
|
|
394
|
+
N = 10
|
|
395
|
+
ary = np.ones(N, dtype=np.int32)
|
|
396
|
+
exp = np.arange(N, dtype=np.int32)
|
|
397
|
+
compiled[1, N](ary)
|
|
398
|
+
self.assertTrue(np.all(ary == exp))
|
|
399
|
+
|
|
400
|
+
def test_fill3d_threadidx(self):
|
|
401
|
+
X, Y, Z = 4, 5, 6
|
|
402
|
+
|
|
403
|
+
def c_contigous():
|
|
404
|
+
compiled = cuda.jit("void(int32[:,:,::1])")(fill3d_threadidx)
|
|
405
|
+
ary = np.zeros((X, Y, Z), dtype=np.int32)
|
|
406
|
+
compiled[1, (X, Y, Z)](ary)
|
|
407
|
+
return ary
|
|
408
|
+
|
|
409
|
+
def f_contigous():
|
|
410
|
+
compiled = cuda.jit("void(int32[::1,:,:])")(fill3d_threadidx)
|
|
411
|
+
ary = np.asfortranarray(np.zeros((X, Y, Z), dtype=np.int32))
|
|
412
|
+
compiled[1, (X, Y, Z)](ary)
|
|
413
|
+
return ary
|
|
414
|
+
|
|
415
|
+
c_res = c_contigous()
|
|
416
|
+
f_res = f_contigous()
|
|
417
|
+
self.assertTrue(np.all(c_res == f_res))
|
|
418
|
+
|
|
419
|
+
@skip_on_cudasim("Cudasim does not check types")
|
|
420
|
+
def test_nonliteral_grid_error(self):
|
|
421
|
+
with self.assertRaisesRegex(TypingError, "RequireLiteralValue"):
|
|
422
|
+
cuda.jit("void(int32)")(nonliteral_grid)
|
|
423
|
+
|
|
424
|
+
@skip_on_cudasim("Cudasim does not check types")
|
|
425
|
+
def test_nonliteral_gridsize_error(self):
|
|
426
|
+
with self.assertRaisesRegex(TypingError, "RequireLiteralValue"):
|
|
427
|
+
cuda.jit("void(int32)")(nonliteral_gridsize)
|
|
428
|
+
|
|
429
|
+
def test_simple_grid1d(self):
|
|
430
|
+
compiled = cuda.jit("void(int32[::1])")(simple_grid1d)
|
|
431
|
+
ntid, nctaid = 3, 7
|
|
432
|
+
nelem = ntid * nctaid
|
|
433
|
+
ary = np.empty(nelem, dtype=np.int32)
|
|
434
|
+
compiled[nctaid, ntid](ary)
|
|
435
|
+
self.assertTrue(np.all(ary == np.arange(nelem)))
|
|
436
|
+
|
|
437
|
+
def test_simple_grid2d(self):
|
|
438
|
+
compiled = cuda.jit("void(int32[:,::1])")(simple_grid2d)
|
|
439
|
+
ntid = (4, 3)
|
|
440
|
+
nctaid = (5, 6)
|
|
441
|
+
shape = (ntid[0] * nctaid[0], ntid[1] * nctaid[1])
|
|
442
|
+
ary = np.empty(shape, dtype=np.int32)
|
|
443
|
+
exp = ary.copy()
|
|
444
|
+
compiled[nctaid, ntid](ary)
|
|
445
|
+
|
|
446
|
+
for i in range(ary.shape[0]):
|
|
447
|
+
for j in range(ary.shape[1]):
|
|
448
|
+
exp[i, j] = i + j
|
|
449
|
+
|
|
450
|
+
self.assertTrue(np.all(ary == exp))
|
|
451
|
+
|
|
452
|
+
def test_simple_gridsize1d(self):
|
|
453
|
+
compiled = cuda.jit("void(int32[::1])")(simple_gridsize1d)
|
|
454
|
+
ntid, nctaid = 3, 7
|
|
455
|
+
ary = np.zeros(1, dtype=np.int32)
|
|
456
|
+
compiled[nctaid, ntid](ary)
|
|
457
|
+
self.assertEqual(ary[0], nctaid * ntid)
|
|
458
|
+
|
|
459
|
+
@skip_on_cudasim("Requires too many threads")
|
|
460
|
+
def test_issue_9229(self):
|
|
461
|
+
# Ensure that grid and grid size are correct - #9229 showed that they
|
|
462
|
+
# overflowed an int32.
|
|
463
|
+
@cuda.jit
|
|
464
|
+
def f(grid_error, gridsize_error):
|
|
465
|
+
i1 = cuda.grid(1)
|
|
466
|
+
i2 = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x
|
|
467
|
+
gs1 = cuda.gridsize(1)
|
|
468
|
+
gs2 = cuda.blockDim.x * cuda.gridDim.x
|
|
469
|
+
if i1 != i2:
|
|
470
|
+
grid_error[0] = 1
|
|
471
|
+
if gs1 != gs2:
|
|
472
|
+
gridsize_error[0] = 1
|
|
473
|
+
|
|
474
|
+
grid_error = np.zeros(1, dtype=np.uint64)
|
|
475
|
+
gridsize_error = np.zeros(1, dtype=np.uint64)
|
|
476
|
+
|
|
477
|
+
# A large enough grid for thread IDs to overflow an int32
|
|
478
|
+
# (22121216 * 256 = 5663031296, which is greater than 2 ** 32)
|
|
479
|
+
f[22121216, 256](grid_error, gridsize_error)
|
|
480
|
+
|
|
481
|
+
self.assertEqual(grid_error[0], 0)
|
|
482
|
+
self.assertEqual(gridsize_error[0], 0)
|
|
483
|
+
|
|
484
|
+
@skip_on_cudasim("Tests PTX emission")
|
|
485
|
+
def test_selp(self):
|
|
486
|
+
sig = (int64[:], int64, int64[:])
|
|
487
|
+
cu_branching_with_ifs = cuda.jit(sig)(branching_with_ifs)
|
|
488
|
+
cu_branching_with_selps = cuda.jit(sig)(branching_with_selps)
|
|
489
|
+
|
|
490
|
+
n = 32
|
|
491
|
+
b = 6
|
|
492
|
+
c = np.full(shape=32, fill_value=17, dtype=np.int64)
|
|
493
|
+
|
|
494
|
+
expected = c.copy()
|
|
495
|
+
expected[:5] = 3
|
|
496
|
+
|
|
497
|
+
a = np.arange(n, dtype=np.int64)
|
|
498
|
+
cu_branching_with_ifs[n, 1](a, b, c)
|
|
499
|
+
ptx = cu_branching_with_ifs.inspect_asm(sig)
|
|
500
|
+
self.assertEqual(2, len(re.findall(r"\s+bra\s+", ptx)))
|
|
501
|
+
np.testing.assert_array_equal(a, expected, err_msg="branching")
|
|
502
|
+
|
|
503
|
+
a = np.arange(n, dtype=np.int64)
|
|
504
|
+
cu_branching_with_selps[n, 1](a, b, c)
|
|
505
|
+
ptx = cu_branching_with_selps.inspect_asm(sig)
|
|
506
|
+
self.assertEqual(0, len(re.findall(r"\s+bra\s+", ptx)))
|
|
507
|
+
np.testing.assert_array_equal(a, expected, err_msg="selp")
|
|
508
|
+
|
|
509
|
+
def test_simple_gridsize2d(self):
|
|
510
|
+
compiled = cuda.jit("void(int32[::1])")(simple_gridsize2d)
|
|
511
|
+
ntid = (4, 3)
|
|
512
|
+
nctaid = (5, 6)
|
|
513
|
+
ary = np.zeros(2, dtype=np.int32)
|
|
514
|
+
compiled[nctaid, ntid](ary)
|
|
515
|
+
|
|
516
|
+
self.assertEqual(ary[0], nctaid[0] * ntid[0])
|
|
517
|
+
self.assertEqual(ary[1], nctaid[1] * ntid[1])
|
|
518
|
+
|
|
519
|
+
def test_intrinsic_forloop_step(self):
|
|
520
|
+
compiled = cuda.jit("void(int32[:,::1])")(intrinsic_forloop_step)
|
|
521
|
+
ntid = (4, 3)
|
|
522
|
+
nctaid = (5, 6)
|
|
523
|
+
shape = (ntid[0] * nctaid[0], ntid[1] * nctaid[1])
|
|
524
|
+
ary = np.empty(shape, dtype=np.int32)
|
|
525
|
+
|
|
526
|
+
compiled[nctaid, ntid](ary)
|
|
527
|
+
|
|
528
|
+
gridX, gridY = shape
|
|
529
|
+
height, width = ary.shape
|
|
530
|
+
for i, j in zip(range(ntid[0]), range(ntid[1])):
|
|
531
|
+
startX, startY = gridX + i, gridY + j
|
|
532
|
+
for x in range(startX, width, gridX):
|
|
533
|
+
for y in range(startY, height, gridY):
|
|
534
|
+
self.assertTrue(ary[y, x] == x + y, (ary[y, x], x + y))
|
|
535
|
+
|
|
536
|
+
def test_3dgrid(self):
|
|
537
|
+
@cuda.jit
|
|
538
|
+
def foo(out):
|
|
539
|
+
x, y, z = cuda.grid(3)
|
|
540
|
+
a, b, c = cuda.gridsize(3)
|
|
541
|
+
out[x, y, z] = a * b * c
|
|
542
|
+
|
|
543
|
+
arr = np.zeros(9**3, dtype=np.int32).reshape(9, 9, 9)
|
|
544
|
+
foo[(3, 3, 3), (3, 3, 3)](arr)
|
|
545
|
+
|
|
546
|
+
np.testing.assert_equal(arr, 9**3)
|
|
547
|
+
|
|
548
|
+
def test_3dgrid_2(self):
|
|
549
|
+
@cuda.jit
|
|
550
|
+
def foo(out):
|
|
551
|
+
x, y, z = cuda.grid(3)
|
|
552
|
+
a, b, c = cuda.gridsize(3)
|
|
553
|
+
grid_is_right = (
|
|
554
|
+
x == cuda.threadIdx.x + cuda.blockIdx.x * cuda.blockDim.x
|
|
555
|
+
and y == cuda.threadIdx.y + cuda.blockIdx.y * cuda.blockDim.y
|
|
556
|
+
and z == cuda.threadIdx.z + cuda.blockIdx.z * cuda.blockDim.z
|
|
557
|
+
)
|
|
558
|
+
gridsize_is_right = (
|
|
559
|
+
a == cuda.blockDim.x * cuda.gridDim.x
|
|
560
|
+
and b == cuda.blockDim.y * cuda.gridDim.y
|
|
561
|
+
and c == cuda.blockDim.z * cuda.gridDim.z
|
|
562
|
+
)
|
|
563
|
+
out[x, y, z] = grid_is_right and gridsize_is_right
|
|
564
|
+
|
|
565
|
+
x, y, z = (4 * 3, 3 * 2, 2 * 4)
|
|
566
|
+
arr = np.zeros((x * y * z), dtype=np.bool_).reshape(x, y, z)
|
|
567
|
+
foo[(4, 3, 2), (3, 2, 4)](arr)
|
|
568
|
+
|
|
569
|
+
self.assertTrue(np.all(arr))
|
|
570
|
+
|
|
571
|
+
def test_popc_u1(self):
|
|
572
|
+
compiled = cuda.jit("void(int32[:], uint8)")(simple_popc)
|
|
573
|
+
ary = np.zeros(1, dtype=np.int32)
|
|
574
|
+
compiled[1, 1](ary, np.uint8(0xFF))
|
|
575
|
+
self.assertEqual(ary[0], 8)
|
|
576
|
+
|
|
577
|
+
def test_popc_u2(self):
|
|
578
|
+
compiled = cuda.jit("void(int32[:], uint16)")(simple_popc)
|
|
579
|
+
ary = np.zeros(1, dtype=np.int32)
|
|
580
|
+
compiled[1, 1](ary, np.uint16(0xFFFF))
|
|
581
|
+
self.assertEqual(ary[0], 16)
|
|
582
|
+
|
|
583
|
+
def test_popc_u4(self):
|
|
584
|
+
compiled = cuda.jit("void(int32[:], uint32)")(simple_popc)
|
|
585
|
+
ary = np.zeros(1, dtype=np.int32)
|
|
586
|
+
compiled[1, 1](ary, np.uint32(0xFFFFFFFF))
|
|
587
|
+
self.assertEqual(ary[0], 32)
|
|
588
|
+
|
|
589
|
+
def test_popc_u8(self):
|
|
590
|
+
compiled = cuda.jit("void(int32[:], uint64)")(simple_popc)
|
|
591
|
+
ary = np.zeros(1, dtype=np.int32)
|
|
592
|
+
compiled[1, 1](ary, np.uint64(0xFFFFFFFFFFFFFFFF))
|
|
593
|
+
self.assertEqual(ary[0], 64)
|
|
594
|
+
|
|
595
|
+
def test_bit_count_u1(self):
|
|
596
|
+
compiled = cuda.jit("void(int32[:], uint8)")(simple_bit_count)
|
|
597
|
+
ary = np.zeros(1, dtype=np.int32)
|
|
598
|
+
compiled[1, 1](ary, np.uint8(0xFF))
|
|
599
|
+
self.assertEqual(ary[0], 8)
|
|
600
|
+
|
|
601
|
+
def test_bit_count_u2(self):
|
|
602
|
+
compiled = cuda.jit("void(int32[:], uint16)")(simple_bit_count)
|
|
603
|
+
ary = np.zeros(1, dtype=np.int32)
|
|
604
|
+
compiled[1, 1](ary, np.uint16(0xFFFF))
|
|
605
|
+
self.assertEqual(ary[0], 16)
|
|
606
|
+
|
|
607
|
+
def test_bit_count_u4(self):
|
|
608
|
+
compiled = cuda.jit("void(int32[:], uint32)")(simple_bit_count)
|
|
609
|
+
ary = np.zeros(1, dtype=np.int32)
|
|
610
|
+
compiled[1, 1](ary, np.uint32(0xFFFFFFFF))
|
|
611
|
+
self.assertEqual(ary[0], 32)
|
|
612
|
+
|
|
613
|
+
def test_bit_count_u8(self):
|
|
614
|
+
compiled = cuda.jit("void(int32[:], uint64)")(simple_bit_count)
|
|
615
|
+
ary = np.zeros(1, dtype=np.int32)
|
|
616
|
+
compiled[1, 1](ary, np.uint64(0xFFFFFFFFFFFFFFFF))
|
|
617
|
+
self.assertEqual(ary[0], 64)
|
|
618
|
+
|
|
619
|
+
def test_fma_f4(self):
|
|
620
|
+
compiled = cuda.jit("void(f4[:], f4, f4, f4)")(simple_fma)
|
|
621
|
+
ary = np.zeros(1, dtype=np.float32)
|
|
622
|
+
compiled[1, 1](ary, 2.0, 3.0, 4.0)
|
|
623
|
+
np.testing.assert_allclose(ary[0], 2 * 3 + 4)
|
|
624
|
+
|
|
625
|
+
def test_fma_f8(self):
|
|
626
|
+
compiled = cuda.jit("void(f8[:], f8, f8, f8)")(simple_fma)
|
|
627
|
+
ary = np.zeros(1, dtype=np.float64)
|
|
628
|
+
compiled[1, 1](ary, 2.0, 3.0, 4.0)
|
|
629
|
+
np.testing.assert_allclose(ary[0], 2 * 3 + 4)
|
|
630
|
+
|
|
631
|
+
@skip_unless_cc_53
|
|
632
|
+
def test_hadd(self):
|
|
633
|
+
compiled = cuda.jit("void(f2[:], f2[:], f2[:])")(simple_hadd)
|
|
634
|
+
ary = np.zeros(1, dtype=np.float16)
|
|
635
|
+
arg1 = np.array([3.0], dtype=np.float16)
|
|
636
|
+
arg2 = np.array([4.0], dtype=np.float16)
|
|
637
|
+
compiled[1, 1](ary, arg1, arg2)
|
|
638
|
+
np.testing.assert_allclose(ary[0], arg1 + arg2, rtol=self.FLOAT16_RTOL)
|
|
639
|
+
|
|
640
|
+
@skip_unless_cc_53
|
|
641
|
+
def test_hadd_scalar(self):
|
|
642
|
+
compiled = cuda.jit("void(f2[:], f2, f2)")(simple_hadd_scalar)
|
|
643
|
+
ary = np.zeros(1, dtype=np.float16)
|
|
644
|
+
arg1 = np.float16(3.1415926)
|
|
645
|
+
arg2 = np.float16(3.0)
|
|
646
|
+
compiled[1, 1](ary, arg1, arg2)
|
|
647
|
+
ref = arg1 + arg2
|
|
648
|
+
np.testing.assert_allclose(ary[0], ref, rtol=self.FLOAT16_RTOL)
|
|
649
|
+
|
|
650
|
+
@skip_on_cudasim("Compilation unsupported in the simulator")
|
|
651
|
+
@skip_if_nvjitlink_missing("Numbast generated bindings")
|
|
652
|
+
def test_hadd_ptx(self):
|
|
653
|
+
compiled = cuda.jit("void(f2[:], f2, f2)", lto=True)(simple_hadd_scalar)
|
|
654
|
+
args = (f2[:], f2, f2)
|
|
655
|
+
ptx = compiled.inspect_lto_ptx(args)
|
|
656
|
+
self.assertIn("add.f16", ptx)
|
|
657
|
+
|
|
658
|
+
@skip_unless_cc_53
|
|
659
|
+
def test_hfma(self):
|
|
660
|
+
compiled = cuda.jit("void(f2[:], f2[:], f2[:], f2[:])")(simple_hfma)
|
|
661
|
+
ary = np.zeros(1, dtype=np.float16)
|
|
662
|
+
arg1 = np.array([2.0], dtype=np.float16)
|
|
663
|
+
arg2 = np.array([3.0], dtype=np.float16)
|
|
664
|
+
arg3 = np.array([4.0], dtype=np.float16)
|
|
665
|
+
compiled[1, 1](ary, arg1, arg2, arg3)
|
|
666
|
+
np.testing.assert_allclose(
|
|
667
|
+
ary[0], arg1 * arg2 + arg3, rtol=self.FLOAT16_RTOL
|
|
668
|
+
)
|
|
669
|
+
|
|
670
|
+
@skip_unless_cc_53
|
|
671
|
+
def test_hfma_scalar(self):
|
|
672
|
+
compiled = cuda.jit("void(f2[:], f2, f2, f2)")(simple_hfma_scalar)
|
|
673
|
+
ary = np.zeros(1, dtype=np.float16)
|
|
674
|
+
arg1 = np.float16(2.0)
|
|
675
|
+
arg2 = np.float16(3.0)
|
|
676
|
+
arg3 = np.float16(4.0)
|
|
677
|
+
compiled[1, 1](ary, arg1, arg2, arg3)
|
|
678
|
+
ref = arg1 * arg2 + arg3
|
|
679
|
+
np.testing.assert_allclose(ary[0], ref, rtol=self.FLOAT16_RTOL)
|
|
680
|
+
|
|
681
|
+
@skip_on_cudasim("Compilation unsupported in the simulator")
|
|
682
|
+
@skip_if_nvjitlink_missing("Numbast generated bindings")
|
|
683
|
+
def test_hfma_ptx(self):
|
|
684
|
+
compiled = cuda.jit("void(f2[:], f2, f2, f2)", lto=True)(
|
|
685
|
+
simple_hfma_scalar
|
|
686
|
+
)
|
|
687
|
+
args = (f2[:], f2, f2, f2)
|
|
688
|
+
ptx = compiled.inspect_lto_ptx(args)
|
|
689
|
+
self.assertIn("fma.rn.f16", ptx)
|
|
690
|
+
|
|
691
|
+
@skip_unless_cc_53
|
|
692
|
+
def test_hsub(self):
|
|
693
|
+
compiled = cuda.jit("void(f2[:], f2[:], f2[:])")(simple_hsub)
|
|
694
|
+
ary = np.zeros(1, dtype=np.float16)
|
|
695
|
+
arg1 = np.array([3.0], dtype=np.float16)
|
|
696
|
+
arg2 = np.array([4.0], dtype=np.float16)
|
|
697
|
+
compiled[1, 1](ary, arg1, arg2)
|
|
698
|
+
np.testing.assert_allclose(ary[0], arg1 - arg2, rtol=self.FLOAT16_RTOL)
|
|
699
|
+
|
|
700
|
+
@skip_unless_cc_53
|
|
701
|
+
def test_hsub_scalar(self):
|
|
702
|
+
compiled = cuda.jit("void(f2[:], f2, f2)")(simple_hsub_scalar)
|
|
703
|
+
ary = np.zeros(1, dtype=np.float16)
|
|
704
|
+
arg1 = np.float16(3.1415926)
|
|
705
|
+
arg2 = np.float16(1.57)
|
|
706
|
+
compiled[1, 1](ary, arg1, arg2)
|
|
707
|
+
ref = arg1 - arg2
|
|
708
|
+
np.testing.assert_allclose(ary[0], ref, rtol=self.FLOAT16_RTOL)
|
|
709
|
+
|
|
710
|
+
@skip_on_cudasim("Compilation unsupported in the simulator")
|
|
711
|
+
@skip_if_nvjitlink_missing("Numbast generated bindings")
|
|
712
|
+
def test_hsub_ptx(self):
|
|
713
|
+
compiled = cuda.jit("void(f2[:], f2, f2)", lto=True)(simple_hsub_scalar)
|
|
714
|
+
args = (f2[:], f2, f2)
|
|
715
|
+
ptx = compiled.inspect_lto_ptx(args)
|
|
716
|
+
self.assertIn("sub.f16", ptx)
|
|
717
|
+
|
|
718
|
+
@skip_unless_cc_53
|
|
719
|
+
def test_hmul(self):
|
|
720
|
+
compiled = cuda.jit(simple_hmul)
|
|
721
|
+
ary = np.zeros(1, dtype=np.float16)
|
|
722
|
+
arg1 = np.array([3.0], dtype=np.float16)
|
|
723
|
+
arg2 = np.array([4.0], dtype=np.float16)
|
|
724
|
+
compiled[1, 1](ary, arg1, arg2)
|
|
725
|
+
np.testing.assert_allclose(ary[0], arg1 * arg2, rtol=self.FLOAT16_RTOL)
|
|
726
|
+
|
|
727
|
+
@skip_unless_cc_53
|
|
728
|
+
def test_hmul_scalar(self):
|
|
729
|
+
compiled = cuda.jit("void(f2[:], f2, f2)")(simple_hmul_scalar)
|
|
730
|
+
ary = np.zeros(1, dtype=np.float16)
|
|
731
|
+
arg1 = np.float16(3.1415926)
|
|
732
|
+
arg2 = np.float16(1.57)
|
|
733
|
+
compiled[1, 1](ary, arg1, arg2)
|
|
734
|
+
ref = arg1 * arg2
|
|
735
|
+
np.testing.assert_allclose(ary[0], ref, rtol=self.FLOAT16_RTOL)
|
|
736
|
+
|
|
737
|
+
@skip_on_cudasim("Compilation unsupported in the simulator")
|
|
738
|
+
@skip_if_nvjitlink_missing("Numbast generated bindings")
|
|
739
|
+
def test_hmul_ptx(self):
|
|
740
|
+
compiled = cuda.jit("void(f2[:], f2, f2)", lto=True)(simple_hmul_scalar)
|
|
741
|
+
args = (f2[:], f2, f2)
|
|
742
|
+
ptx = compiled.inspect_lto_ptx(args)
|
|
743
|
+
self.assertIn("mul.f16", ptx)
|
|
744
|
+
|
|
745
|
+
@skip_unless_cc_53
|
|
746
|
+
def test_hdiv_scalar(self):
|
|
747
|
+
compiled = cuda.jit("void(f2[:], f2, f2)")(simple_hdiv_scalar)
|
|
748
|
+
ary = np.zeros(1, dtype=np.float16)
|
|
749
|
+
arg1 = np.float16(3.1415926)
|
|
750
|
+
arg2 = np.float16(1.57)
|
|
751
|
+
|
|
752
|
+
compiled[1, 1](ary, arg1, arg2)
|
|
753
|
+
ref = arg1 / arg2
|
|
754
|
+
np.testing.assert_allclose(ary[0], ref, rtol=self.FLOAT16_RTOL)
|
|
755
|
+
|
|
756
|
+
@skip_unless_cc_53
|
|
757
|
+
def test_hdiv(self):
|
|
758
|
+
compiled = cuda.jit("void(f2[:], f2[:], f2[:])")(simple_hdiv_kernel)
|
|
759
|
+
arry1 = np.random.randint(-65504, 65505, size=500).astype(np.float16)
|
|
760
|
+
arry2 = np.random.randint(-65504, 65505, size=500).astype(np.float16)
|
|
761
|
+
ary = np.zeros_like(arry1, dtype=np.float16)
|
|
762
|
+
|
|
763
|
+
compiled.forall(ary.size)(ary, arry1, arry2)
|
|
764
|
+
ref = arry1 / arry2
|
|
765
|
+
np.testing.assert_allclose(ary, ref, rtol=self.FLOAT16_RTOL)
|
|
766
|
+
|
|
767
|
+
@skip_unless_cc_53
|
|
768
|
+
def test_hneg(self):
|
|
769
|
+
compiled = cuda.jit("void(f2[:], f2[:])")(simple_hneg)
|
|
770
|
+
ary = np.zeros(1, dtype=np.float16)
|
|
771
|
+
arg1 = np.array([3.0], dtype=np.float16)
|
|
772
|
+
compiled[1, 1](ary, arg1)
|
|
773
|
+
np.testing.assert_allclose(ary[0], -arg1, rtol=self.FLOAT16_RTOL)
|
|
774
|
+
|
|
775
|
+
@skip_unless_cc_53
|
|
776
|
+
def test_hneg_scalar(self):
|
|
777
|
+
compiled = cuda.jit("void(f2[:], f2)")(simple_hneg_scalar)
|
|
778
|
+
ary = np.zeros(1, dtype=np.float16)
|
|
779
|
+
arg1 = np.float16(3.1415926)
|
|
780
|
+
compiled[1, 1](ary, arg1)
|
|
781
|
+
ref = -arg1
|
|
782
|
+
np.testing.assert_allclose(ary[0], ref, rtol=self.FLOAT16_RTOL)
|
|
783
|
+
|
|
784
|
+
@skip_on_cudasim("Compilation unsupported in the simulator")
|
|
785
|
+
@skip_if_nvjitlink_missing("Numbast generated bindings")
|
|
786
|
+
def test_hneg_ptx(self):
|
|
787
|
+
compiled = cuda.jit("void(f2[:], f2)", lto=True)(simple_hneg_scalar)
|
|
788
|
+
args = (f2[:], f2)
|
|
789
|
+
ptx = compiled.inspect_lto_ptx(args)
|
|
790
|
+
self.assertIn("neg.f16", ptx)
|
|
791
|
+
|
|
792
|
+
@skip_unless_cc_53
|
|
793
|
+
def test_habs(self):
|
|
794
|
+
compiled = cuda.jit(simple_habs)
|
|
795
|
+
ary = np.zeros(1, dtype=np.float16)
|
|
796
|
+
arg1 = np.array([-3.0], dtype=np.float16)
|
|
797
|
+
compiled[1, 1](ary, arg1)
|
|
798
|
+
np.testing.assert_allclose(ary[0], abs(arg1), rtol=self.FLOAT16_RTOL)
|
|
799
|
+
|
|
800
|
+
@skip_unless_cc_53
|
|
801
|
+
def test_habs_scalar(self):
|
|
802
|
+
compiled = cuda.jit("void(f2[:], f2)")(simple_habs_scalar)
|
|
803
|
+
ary = np.zeros(1, dtype=np.float16)
|
|
804
|
+
arg1 = np.float16(-3.1415926)
|
|
805
|
+
compiled[1, 1](ary, arg1)
|
|
806
|
+
ref = abs(arg1)
|
|
807
|
+
np.testing.assert_allclose(ary[0], ref, rtol=self.FLOAT16_RTOL)
|
|
808
|
+
|
|
809
|
+
@skip_on_cudasim("Compilation unsupported in the simulator")
|
|
810
|
+
@skip_if_nvjitlink_missing("Numbast generated bindings")
|
|
811
|
+
def test_habs_ptx(self):
|
|
812
|
+
compiled = cuda.jit("void(f2[:], f2)", lto=True)(simple_habs_scalar)
|
|
813
|
+
args = (f2[:], f2)
|
|
814
|
+
ptx = compiled.inspect_lto_ptx(args)
|
|
815
|
+
self.assertIn("abs.f16", ptx)
|
|
816
|
+
|
|
817
|
+
@skip_unless_cc_53
|
|
818
|
+
def test_fp16_intrinsics_common(self):
|
|
819
|
+
kernels = (
|
|
820
|
+
simple_hsin,
|
|
821
|
+
simple_hcos,
|
|
822
|
+
simple_hlog,
|
|
823
|
+
simple_hlog2,
|
|
824
|
+
simple_hlog10,
|
|
825
|
+
simple_hsqrt,
|
|
826
|
+
simple_hceil,
|
|
827
|
+
simple_hfloor,
|
|
828
|
+
simple_hrcp,
|
|
829
|
+
simple_htrunc,
|
|
830
|
+
simple_hrint,
|
|
831
|
+
simple_hrsqrt,
|
|
832
|
+
)
|
|
833
|
+
exp_kernels = (simple_hexp, simple_hexp2)
|
|
834
|
+
expected_functions = (
|
|
835
|
+
np.sin,
|
|
836
|
+
np.cos,
|
|
837
|
+
np.log,
|
|
838
|
+
np.log2,
|
|
839
|
+
np.log10,
|
|
840
|
+
np.sqrt,
|
|
841
|
+
np.ceil,
|
|
842
|
+
np.floor,
|
|
843
|
+
np.reciprocal,
|
|
844
|
+
np.trunc,
|
|
845
|
+
np.rint,
|
|
846
|
+
numpy_hrsqrt,
|
|
847
|
+
)
|
|
848
|
+
expected_exp_functions = (np.exp, np.exp2)
|
|
849
|
+
|
|
850
|
+
# Generate random data
|
|
851
|
+
N = 32
|
|
852
|
+
np.random.seed(1)
|
|
853
|
+
x = np.random.randint(1, 65505, size=N).astype(np.float16)
|
|
854
|
+
r = np.zeros_like(x)
|
|
855
|
+
for kernel, fn in zip(kernels, expected_functions):
|
|
856
|
+
with self.subTest(fn=fn):
|
|
857
|
+
kernel = cuda.jit("void(f2[:], f2[:])")(kernel)
|
|
858
|
+
kernel[1, N](r, x)
|
|
859
|
+
expected = fn(x, dtype=np.float16)
|
|
860
|
+
np.testing.assert_allclose(r, expected, rtol=self.FLOAT16_RTOL)
|
|
861
|
+
|
|
862
|
+
x2 = np.random.randint(1, 10, size=N).astype(np.float16)
|
|
863
|
+
for kernel, fn in zip(exp_kernels, expected_exp_functions):
|
|
864
|
+
with self.subTest(fn=fn):
|
|
865
|
+
kernel = cuda.jit("void(f2[:], f2[:])")(kernel)
|
|
866
|
+
kernel[1, N](r, x2)
|
|
867
|
+
expected = fn(x2, dtype=np.float16)
|
|
868
|
+
np.testing.assert_allclose(r, expected, rtol=self.FLOAT16_RTOL)
|
|
869
|
+
|
|
870
|
+
@skip_unless_cc_53
|
|
871
|
+
def test_hexp10(self):
|
|
872
|
+
@cuda.jit()
|
|
873
|
+
def hexp10_vectors(r, x):
|
|
874
|
+
i = cuda.grid(1)
|
|
875
|
+
|
|
876
|
+
if i < len(r):
|
|
877
|
+
r[i] = cuda.fp16.hexp10(x[i])
|
|
878
|
+
|
|
879
|
+
# Generate random data
|
|
880
|
+
N = 32
|
|
881
|
+
np.random.seed(1)
|
|
882
|
+
x = np.random.rand(N).astype(np.float16)
|
|
883
|
+
r = np.zeros_like(x)
|
|
884
|
+
|
|
885
|
+
# Run the kernel
|
|
886
|
+
hexp10_vectors[1, N](r, x)
|
|
887
|
+
np.testing.assert_allclose(r, 10**x, rtol=self.FLOAT16_RTOL)
|
|
888
|
+
|
|
889
|
+
@skip_unless_cc_53
|
|
890
|
+
def test_fp16_comparison(self):
|
|
891
|
+
fns = (
|
|
892
|
+
simple_heq_scalar,
|
|
893
|
+
simple_hne_scalar,
|
|
894
|
+
simple_hge_scalar,
|
|
895
|
+
simple_hgt_scalar,
|
|
896
|
+
simple_hle_scalar,
|
|
897
|
+
simple_hlt_scalar,
|
|
898
|
+
)
|
|
899
|
+
ops = (
|
|
900
|
+
operator.eq,
|
|
901
|
+
operator.ne,
|
|
902
|
+
operator.ge,
|
|
903
|
+
operator.gt,
|
|
904
|
+
operator.le,
|
|
905
|
+
operator.lt,
|
|
906
|
+
)
|
|
907
|
+
|
|
908
|
+
for fn, op in zip(fns, ops):
|
|
909
|
+
with self.subTest(op=op):
|
|
910
|
+
kernel = cuda.jit("void(b1[:], f2, f2)")(fn)
|
|
911
|
+
|
|
912
|
+
expected = np.zeros(1, dtype=np.bool_)
|
|
913
|
+
got = np.zeros(1, dtype=np.bool_)
|
|
914
|
+
arg2 = np.float16(2)
|
|
915
|
+
arg3 = np.float16(3)
|
|
916
|
+
arg4 = np.float16(4)
|
|
917
|
+
|
|
918
|
+
# Check with equal arguments
|
|
919
|
+
kernel[1, 1](got, arg3, arg3)
|
|
920
|
+
expected = op(arg3, arg3)
|
|
921
|
+
self.assertEqual(expected, got[0])
|
|
922
|
+
|
|
923
|
+
# Check with LHS < RHS
|
|
924
|
+
kernel[1, 1](got, arg3, arg4)
|
|
925
|
+
expected = op(arg3, arg4)
|
|
926
|
+
self.assertEqual(expected, got[0])
|
|
927
|
+
|
|
928
|
+
# Check with LHS > RHS
|
|
929
|
+
kernel[1, 1](got, arg3, arg2)
|
|
930
|
+
expected = op(arg3, arg2)
|
|
931
|
+
self.assertEqual(expected, got[0])
|
|
932
|
+
|
|
933
|
+
@skip_unless_cc_53
|
|
934
|
+
def test_multiple_float16_comparisons(self):
|
|
935
|
+
functions = (
|
|
936
|
+
multiple_hcmp_1,
|
|
937
|
+
multiple_hcmp_2,
|
|
938
|
+
multiple_hcmp_3,
|
|
939
|
+
multiple_hcmp_4,
|
|
940
|
+
multiple_hcmp_5,
|
|
941
|
+
)
|
|
942
|
+
for fn in functions:
|
|
943
|
+
with self.subTest(fn=fn):
|
|
944
|
+
compiled = cuda.jit("void(b1[:], f2, f2, f2)")(fn)
|
|
945
|
+
ary = np.zeros(1, dtype=np.bool_)
|
|
946
|
+
arg1 = np.float16(2.0)
|
|
947
|
+
arg2 = np.float16(3.0)
|
|
948
|
+
arg3 = np.float16(4.0)
|
|
949
|
+
compiled[1, 1](ary, arg1, arg2, arg3)
|
|
950
|
+
self.assertTrue(ary[0])
|
|
951
|
+
|
|
952
|
+
@skip_unless_cc_53
|
|
953
|
+
def test_hmax(self):
|
|
954
|
+
compiled = cuda.jit("void(f2[:], f2, f2)")(simple_hmax_scalar)
|
|
955
|
+
ary = np.zeros(1, dtype=np.float16)
|
|
956
|
+
arg1 = np.float16(3.0)
|
|
957
|
+
arg2 = np.float16(4.0)
|
|
958
|
+
compiled[1, 1](ary, arg1, arg2)
|
|
959
|
+
np.testing.assert_allclose(ary[0], arg2, rtol=self.FLOAT16_RTOL)
|
|
960
|
+
arg1 = np.float16(5.0)
|
|
961
|
+
compiled[1, 1](ary, arg1, arg2)
|
|
962
|
+
np.testing.assert_allclose(ary[0], arg1, rtol=self.FLOAT16_RTOL)
|
|
963
|
+
|
|
964
|
+
@skip_unless_cc_53
|
|
965
|
+
def test_hmin(self):
|
|
966
|
+
compiled = cuda.jit("void(f2[:], f2, f2)")(simple_hmin_scalar)
|
|
967
|
+
ary = np.zeros(1, dtype=np.float16)
|
|
968
|
+
arg1 = np.float16(3.0)
|
|
969
|
+
arg2 = np.float16(4.0)
|
|
970
|
+
compiled[1, 1](ary, arg1, arg2)
|
|
971
|
+
np.testing.assert_allclose(ary[0], arg1, rtol=self.FLOAT16_RTOL)
|
|
972
|
+
arg1 = np.float16(5.0)
|
|
973
|
+
compiled[1, 1](ary, arg1, arg2)
|
|
974
|
+
np.testing.assert_allclose(ary[0], arg2, rtol=self.FLOAT16_RTOL)
|
|
975
|
+
|
|
976
|
+
def test_cbrt_f32(self):
|
|
977
|
+
compiled = cuda.jit("void(float32[:], float32)")(simple_cbrt)
|
|
978
|
+
ary = np.zeros(1, dtype=np.float32)
|
|
979
|
+
cbrt_arg = 2.0
|
|
980
|
+
compiled[1, 1](ary, cbrt_arg)
|
|
981
|
+
np.testing.assert_allclose(ary[0], cbrt_arg ** (1 / 3))
|
|
982
|
+
|
|
983
|
+
def test_cbrt_f64(self):
|
|
984
|
+
compiled = cuda.jit("void(float64[:], float64)")(simple_cbrt)
|
|
985
|
+
ary = np.zeros(1, dtype=np.float64)
|
|
986
|
+
cbrt_arg = 6.0
|
|
987
|
+
compiled[1, 1](ary, cbrt_arg)
|
|
988
|
+
np.testing.assert_allclose(ary[0], cbrt_arg ** (1 / 3))
|
|
989
|
+
|
|
990
|
+
def test_brev_u4(self):
|
|
991
|
+
compiled = cuda.jit("void(uint32[:], uint32)")(simple_brev)
|
|
992
|
+
ary = np.zeros(1, dtype=np.uint32)
|
|
993
|
+
compiled[1, 1](ary, 0x000030F0)
|
|
994
|
+
self.assertEqual(ary[0], 0x0F0C0000)
|
|
995
|
+
|
|
996
|
+
@skip_on_cudasim('only get given a Python "int", assumes 32 bits')
|
|
997
|
+
def test_brev_u8(self):
|
|
998
|
+
compiled = cuda.jit("void(uint64[:], uint64)")(simple_brev)
|
|
999
|
+
ary = np.zeros(1, dtype=np.uint64)
|
|
1000
|
+
compiled[1, 1](ary, 0x000030F0000030F0)
|
|
1001
|
+
self.assertEqual(ary[0], 0x0F0C00000F0C0000)
|
|
1002
|
+
|
|
1003
|
+
def test_clz_i4(self):
|
|
1004
|
+
compiled = cuda.jit("void(int32[:], int32)")(simple_clz)
|
|
1005
|
+
ary = np.zeros(1, dtype=np.int32)
|
|
1006
|
+
compiled[1, 1](ary, 0x00100000)
|
|
1007
|
+
self.assertEqual(ary[0], 11)
|
|
1008
|
+
|
|
1009
|
+
def test_clz_u4(self):
|
|
1010
|
+
"""
|
|
1011
|
+
Although the CUDA Math API
|
|
1012
|
+
(http://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__INTRINSIC__INT.html)
|
|
1013
|
+
only says int32 & int64 arguments are supported in C code, the LLVM
|
|
1014
|
+
IR input supports i8, i16, i32 & i64 (LLVM doesn't have a concept of
|
|
1015
|
+
unsigned integers, just unsigned operations on integers).
|
|
1016
|
+
http://docs.nvidia.com/cuda/nvvm-ir-spec/index.html#bit-manipulations-intrinics
|
|
1017
|
+
"""
|
|
1018
|
+
compiled = cuda.jit("void(int32[:], uint32)")(simple_clz)
|
|
1019
|
+
ary = np.zeros(1, dtype=np.int32)
|
|
1020
|
+
compiled[1, 1](ary, 0x00100000)
|
|
1021
|
+
self.assertEqual(ary[0], 11)
|
|
1022
|
+
|
|
1023
|
+
def test_clz_i4_1s(self):
|
|
1024
|
+
compiled = cuda.jit("void(int32[:], int32)")(simple_clz)
|
|
1025
|
+
ary = np.zeros(1, dtype=np.int32)
|
|
1026
|
+
compiled[1, 1](ary, 0xFFFFFFFF)
|
|
1027
|
+
self.assertEqual(ary[0], 0)
|
|
1028
|
+
|
|
1029
|
+
def test_clz_i4_0s(self):
|
|
1030
|
+
compiled = cuda.jit("void(int32[:], int32)")(simple_clz)
|
|
1031
|
+
ary = np.zeros(1, dtype=np.int32)
|
|
1032
|
+
compiled[1, 1](ary, 0x0)
|
|
1033
|
+
self.assertEqual(ary[0], 32, "CUDA semantics")
|
|
1034
|
+
|
|
1035
|
+
@skip_on_cudasim('only get given a Python "int", assumes 32 bits')
|
|
1036
|
+
def test_clz_i8(self):
|
|
1037
|
+
compiled = cuda.jit("void(int32[:], int64)")(simple_clz)
|
|
1038
|
+
ary = np.zeros(1, dtype=np.int32)
|
|
1039
|
+
compiled[1, 1](ary, 0x000000000010000)
|
|
1040
|
+
self.assertEqual(ary[0], 47)
|
|
1041
|
+
|
|
1042
|
+
def test_ffs_i4(self):
|
|
1043
|
+
compiled = cuda.jit("void(int32[:], int32)")(simple_ffs)
|
|
1044
|
+
ary = np.zeros(1, dtype=np.int32)
|
|
1045
|
+
compiled[1, 1](ary, 0x00100000)
|
|
1046
|
+
self.assertEqual(ary[0], 21)
|
|
1047
|
+
compiled[1, 1](ary, 0x80000000)
|
|
1048
|
+
self.assertEqual(ary[0], 32)
|
|
1049
|
+
|
|
1050
|
+
def test_ffs_u4(self):
|
|
1051
|
+
compiled = cuda.jit("void(int32[:], uint32)")(simple_ffs)
|
|
1052
|
+
ary = np.zeros(1, dtype=np.int32)
|
|
1053
|
+
compiled[1, 1](ary, 0x00100000)
|
|
1054
|
+
self.assertEqual(ary[0], 21)
|
|
1055
|
+
compiled[1, 1](ary, 0x80000000)
|
|
1056
|
+
self.assertEqual(ary[0], 32)
|
|
1057
|
+
|
|
1058
|
+
def test_ffs_i4_1s(self):
|
|
1059
|
+
compiled = cuda.jit("void(int32[:], int32)")(simple_ffs)
|
|
1060
|
+
ary = np.zeros(1, dtype=np.int32)
|
|
1061
|
+
compiled[1, 1](ary, 0xFFFFFFFF)
|
|
1062
|
+
self.assertEqual(ary[0], 1)
|
|
1063
|
+
|
|
1064
|
+
def test_ffs_i4_0s(self):
|
|
1065
|
+
compiled = cuda.jit("void(int32[:], int32)")(simple_ffs)
|
|
1066
|
+
ary = np.zeros(1, dtype=np.int32)
|
|
1067
|
+
compiled[1, 1](ary, 0x0)
|
|
1068
|
+
self.assertEqual(ary[0], 0)
|
|
1069
|
+
|
|
1070
|
+
@skip_on_cudasim('only get given a Python "int", assumes 32 bits')
|
|
1071
|
+
def test_ffs_i8(self):
|
|
1072
|
+
compiled = cuda.jit("void(int32[:], int64)")(simple_ffs)
|
|
1073
|
+
ary = np.zeros(1, dtype=np.int32)
|
|
1074
|
+
compiled[1, 1](ary, 0x000000000010000)
|
|
1075
|
+
self.assertEqual(ary[0], 17)
|
|
1076
|
+
compiled[1, 1](ary, 0x100000000)
|
|
1077
|
+
self.assertEqual(ary[0], 33)
|
|
1078
|
+
|
|
1079
|
+
def test_simple_laneid(self):
|
|
1080
|
+
compiled = cuda.jit("void(int32[:])")(simple_laneid)
|
|
1081
|
+
count = 2
|
|
1082
|
+
ary = np.zeros(count * 32, dtype=np.int32)
|
|
1083
|
+
exp = np.tile(np.arange(32, dtype=np.int32), count)
|
|
1084
|
+
compiled[1, count * 32](ary)
|
|
1085
|
+
self.assertTrue(np.all(ary == exp))
|
|
1086
|
+
|
|
1087
|
+
def test_simple_warpsize(self):
|
|
1088
|
+
compiled = cuda.jit("void(int32[:])")(simple_warpsize)
|
|
1089
|
+
ary = np.zeros(1, dtype=np.int32)
|
|
1090
|
+
compiled[1, 1](ary)
|
|
1091
|
+
self.assertEqual(ary[0], 32, "CUDA semantics")
|
|
1092
|
+
|
|
1093
|
+
def test_round_f4(self):
|
|
1094
|
+
compiled = cuda.jit("void(int64[:], float32)")(simple_round)
|
|
1095
|
+
ary = np.zeros(1, dtype=np.int64)
|
|
1096
|
+
|
|
1097
|
+
for i in [-3.0, -2.5, -2.25, -1.5, 1.5, 2.25, 2.5, 2.75]:
|
|
1098
|
+
compiled[1, 1](ary, i)
|
|
1099
|
+
self.assertEqual(ary[0], round(i))
|
|
1100
|
+
|
|
1101
|
+
def test_round_f8(self):
|
|
1102
|
+
compiled = cuda.jit("void(int64[:], float64)")(simple_round)
|
|
1103
|
+
ary = np.zeros(1, dtype=np.int64)
|
|
1104
|
+
|
|
1105
|
+
for i in [-3.0, -2.5, -2.25, -1.5, 1.5, 2.25, 2.5, 2.75]:
|
|
1106
|
+
compiled[1, 1](ary, i)
|
|
1107
|
+
self.assertEqual(ary[0], round(i))
|
|
1108
|
+
|
|
1109
|
+
def test_round_to_f4(self):
|
|
1110
|
+
compiled = cuda.jit("void(float32[:], float32, int32)")(simple_round_to)
|
|
1111
|
+
ary = np.zeros(1, dtype=np.float32)
|
|
1112
|
+
np.random.seed(123)
|
|
1113
|
+
vals = np.random.random(32).astype(np.float32)
|
|
1114
|
+
np.concatenate((vals, np.array([np.inf, -np.inf, np.nan])))
|
|
1115
|
+
digits = (
|
|
1116
|
+
# Common case branch of round_to_impl
|
|
1117
|
+
-5,
|
|
1118
|
+
-4,
|
|
1119
|
+
-3,
|
|
1120
|
+
-2,
|
|
1121
|
+
-1,
|
|
1122
|
+
0,
|
|
1123
|
+
1,
|
|
1124
|
+
2,
|
|
1125
|
+
3,
|
|
1126
|
+
4,
|
|
1127
|
+
5,
|
|
1128
|
+
# The algorithm currently implemented can only round to 13 digits
|
|
1129
|
+
# with single precision. Note that this doesn't trigger the
|
|
1130
|
+
# "overflow safe" branch of the implementation, which can only be
|
|
1131
|
+
# hit when using double precision.
|
|
1132
|
+
13,
|
|
1133
|
+
)
|
|
1134
|
+
for val, ndigits in itertools.product(vals, digits):
|
|
1135
|
+
with self.subTest(val=val, ndigits=ndigits):
|
|
1136
|
+
compiled[1, 1](ary, val, ndigits)
|
|
1137
|
+
self.assertPreciseEqual(
|
|
1138
|
+
ary[0], round(val, ndigits), prec="single"
|
|
1139
|
+
)
|
|
1140
|
+
|
|
1141
|
+
# CPython on most platforms uses rounding based on dtoa.c, whereas the CUDA
|
|
1142
|
+
# round-to implementation uses CPython's fallback implementation, which has
|
|
1143
|
+
# slightly different behavior at the edges of the domain. Since the CUDA
|
|
1144
|
+
# simulator executes using CPython, we need to skip this test when the
|
|
1145
|
+
# simulator is active.
|
|
1146
|
+
@skip_on_cudasim("Overflow behavior differs on CPython")
|
|
1147
|
+
def test_round_to_f4_overflow(self):
|
|
1148
|
+
# Test that the input value is returned when y in round_ndigits
|
|
1149
|
+
# overflows.
|
|
1150
|
+
compiled = cuda.jit("void(float32[:], float32, int32)")(simple_round_to)
|
|
1151
|
+
ary = np.zeros(1, dtype=np.float32)
|
|
1152
|
+
val = np.finfo(np.float32).max
|
|
1153
|
+
# An unusually large number of digits is required to hit the "y
|
|
1154
|
+
# overflows" branch of the implementation because the typing results in
|
|
1155
|
+
# the computation of y as float64.
|
|
1156
|
+
ndigits = 300
|
|
1157
|
+
compiled[1, 1](ary, val, ndigits)
|
|
1158
|
+
self.assertEqual(ary[0], val)
|
|
1159
|
+
|
|
1160
|
+
def test_round_to_f4_halfway(self):
|
|
1161
|
+
compiled = cuda.jit("void(float32[:], float32, int32)")(simple_round_to)
|
|
1162
|
+
ary = np.zeros(1, dtype=np.float32)
|
|
1163
|
+
# Value chosen to trigger the "round to even" branch of the
|
|
1164
|
+
# implementation
|
|
1165
|
+
val = 0.3425
|
|
1166
|
+
ndigits = 3
|
|
1167
|
+
compiled[1, 1](ary, val, ndigits)
|
|
1168
|
+
self.assertPreciseEqual(ary[0], round(val, ndigits), prec="single")
|
|
1169
|
+
|
|
1170
|
+
def test_round_to_f8(self):
|
|
1171
|
+
compiled = cuda.jit("void(float64[:], float64, int32)")(simple_round_to)
|
|
1172
|
+
ary = np.zeros(1, dtype=np.float64)
|
|
1173
|
+
np.random.seed(123)
|
|
1174
|
+
vals = np.random.random(32)
|
|
1175
|
+
np.concatenate((vals, np.array([np.inf, -np.inf, np.nan])))
|
|
1176
|
+
digits = (-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5)
|
|
1177
|
+
|
|
1178
|
+
for val, ndigits in itertools.product(vals, digits):
|
|
1179
|
+
with self.subTest(val=val, ndigits=ndigits):
|
|
1180
|
+
compiled[1, 1](ary, val, ndigits)
|
|
1181
|
+
self.assertPreciseEqual(
|
|
1182
|
+
ary[0], round(val, ndigits), prec="exact"
|
|
1183
|
+
)
|
|
1184
|
+
|
|
1185
|
+
# Trigger the "overflow safe" branch of the implementation
|
|
1186
|
+
val = 0.12345678987654321 * 10e-15
|
|
1187
|
+
ndigits = 23
|
|
1188
|
+
with self.subTest(val=val, ndigits=ndigits):
|
|
1189
|
+
compiled[1, 1](ary, val, ndigits)
|
|
1190
|
+
self.assertPreciseEqual(ary[0], round(val, ndigits), prec="double")
|
|
1191
|
+
|
|
1192
|
+
# Skipped on cudasim for the same reasons as test_round_to_f4 above.
|
|
1193
|
+
@skip_on_cudasim("Overflow behavior differs on CPython")
|
|
1194
|
+
def test_round_to_f8_overflow(self):
|
|
1195
|
+
# Test that the input value is returned when y in round_ndigits
|
|
1196
|
+
# overflows.
|
|
1197
|
+
compiled = cuda.jit("void(float64[:], float64, int32)")(simple_round_to)
|
|
1198
|
+
ary = np.zeros(1, dtype=np.float64)
|
|
1199
|
+
val = np.finfo(np.float64).max
|
|
1200
|
+
# Unlike test_round_to_f4_overflow, a reasonable number of digits can
|
|
1201
|
+
# be used for this test to overflow y in round_ndigits.
|
|
1202
|
+
ndigits = 12
|
|
1203
|
+
compiled[1, 1](ary, val, ndigits)
|
|
1204
|
+
self.assertEqual(ary[0], val)
|
|
1205
|
+
|
|
1206
|
+
def test_round_to_f8_halfway(self):
|
|
1207
|
+
compiled = cuda.jit("void(float64[:], float64, int32)")(simple_round_to)
|
|
1208
|
+
ary = np.zeros(1, dtype=np.float64)
|
|
1209
|
+
# Value chosen to trigger the "round to even" branch of the
|
|
1210
|
+
# implementation, with a value that is not exactly representable with a
|
|
1211
|
+
# float32, but only a float64.
|
|
1212
|
+
val = 0.5425
|
|
1213
|
+
ndigits = 3
|
|
1214
|
+
compiled[1, 1](ary, val, ndigits)
|
|
1215
|
+
self.assertPreciseEqual(ary[0], round(val, ndigits), prec="double")
|
|
1216
|
+
|
|
1217
|
+
|
|
1218
|
+
if __name__ == "__main__":
|
|
1219
|
+
unittest.main()
|