nucleardatapy 0.2.0__py3-none-any.whl → 0.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nucleardatapy/crust/setup_crust.py +46 -1
- nucleardatapy/data/crust/2018-PCPFDDG-BSK22.dat +83 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK24.dat +74 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK25.dat +130 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK26.dat +81 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-SM.dat +11 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-beta0.2.dat +11 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-beta0.4.dat +11 -0
- nucleardatapy/data/nuclei/masses/Theory/2023-BSkG3.txt +0 -4
- nucleardatapy/data/nuclei/masses/Theory/2025-BSkG4.txt +0 -1
- nucleardatapy/eos/setup_am.py +43 -31
- nucleardatapy/eos/setup_am_Beq.py +18 -12
- nucleardatapy/eos/setup_am_Leq.py +53 -47
- nucleardatapy/fig/__init__.py +15 -2
- nucleardatapy/fig/crust_setupCrust_fig.py +3 -3
- nucleardatapy/fig/eos_setupAMBeq_fig.py +866 -49
- nucleardatapy/fig/eos_setupAMLeq_fig.py +185 -53
- nucleardatapy/fig/eos_setupAM_e_asy_lep_fig.py +125 -0
- nucleardatapy/fig/eos_setupAM_e_asy_nuc_fig.py +115 -0
- nucleardatapy/fig/eos_setupAM_e_asy_tot_fig.py +117 -0
- nucleardatapy/fig/eos_setupAM_e_fig.py +173 -0
- nucleardatapy/fig/hnuc_setupRE1LExp_fig.py +1 -1
- nucleardatapy/fig/matter_ENM_fig.py +50 -41
- nucleardatapy/fig/matter_ESM_fig.py +60 -39
- nucleardatapy/fig/matter_Esym_fig.py +48 -36
- nucleardatapy/fig/matter_cs2_fig.py +83 -0
- nucleardatapy/fig/matter_preNM_fig.py +146 -0
- nucleardatapy/fig/matter_preSM_fig.py +144 -0
- nucleardatapy/fig/matter_setupFFGNuc_fig.py +2 -1
- nucleardatapy/fig/matter_setupMicroEsym_fig.py +50 -19
- nucleardatapy/fig/matter_setupMicro_band_fig.py +1 -0
- nucleardatapy/fig/matter_setupMicro_effmass_fig.py +59 -4
- nucleardatapy/fig/matter_setupMicro_fig.py +81 -79
- nucleardatapy/fig/matter_setupPhenoEsym_fig.py +28 -26
- nucleardatapy/fig/matter_setupPheno_fig.py +34 -24
- nucleardatapy/fig/nuc_setupBEExp_chart_fig.py +275 -0
- nucleardatapy/fig/nuc_setupBEExp_fig.py +225 -70
- nucleardatapy/fig/nuc_setupBETheo_fig.py +316 -0
- nucleardatapy/fig/nuc_setupISGMRExp_fig.py +59 -0
- nucleardatapy/fig/nuc_setupRchExp_fig.py +139 -0
- nucleardatapy/fig/nuc_setupRchTheo_fig.py +142 -0
- nucleardatapy/fig/nuc_setupRnpExp_fig.py +120 -0
- nucleardatapy/fig/nuc_setupRnpTheo_fig.py +134 -0
- nucleardatapy/hnuc/__init__.py +3 -3
- nucleardatapy/matter/__init__.py +1 -0
- nucleardatapy/matter/setup_check.py +97 -0
- nucleardatapy/matter/setup_ffg.py +15 -8
- nucleardatapy/matter/setup_micro.py +144 -79
- nucleardatapy/matter/setup_micro_band.py +6 -1
- nucleardatapy/matter/setup_micro_effmass.py +55 -2
- nucleardatapy/matter/setup_micro_esym.py +37 -30
- nucleardatapy/matter/setup_micro_gap.py +3 -3
- nucleardatapy/matter/setup_micro_lp.py +18 -17
- nucleardatapy/matter/setup_pheno.py +2 -2
- nucleardatapy/matter/setup_pheno_esym.py +13 -13
- nucleardatapy/nuc/__init__.py +2 -2
- nucleardatapy/nuc/setup_be_exp.py +90 -90
- nucleardatapy/nuc/setup_be_theo.py +112 -100
- nucleardatapy/nuc/setup_rch_exp.py +49 -6
- nucleardatapy/nuc/setup_rch_theo.py +72 -3
- nucleardatapy/nuc/{setup_nskin_exp.py → setup_rnp_exp.py} +58 -65
- nucleardatapy/nuc/{setup_nskin_theo.py → setup_rnp_theo.py} +34 -39
- nucleardatapy-0.2.1.dist-info/METADATA +521 -0
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-0.2.1.dist-info}/RECORD +86 -65
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-0.2.1.dist-info}/WHEEL +1 -1
- nucleardatapy/fig/eos_setupAM_fig.py +0 -81
- nucleardatapy-0.2.0.dist-info/METADATA +0 -115
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-AM.dat → 2006-BHF-Av18-E2A-AM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-NM.dat → 2006-BHF-Av18-E2A-NM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-SM.dat → 2006-BHF-Av18-E2A-SM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-Esym2-SM.dat → 2006-BHF-Av18-Esym2-SM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-NM-FreeSpectrum.dat → 2006-BHF-Av18-GAP-NM-FreeSpectrum.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-NM-SelfEnergy.dat → 2006-BHF-Av18-GAP-NM-SelfEnergy.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-SM-FreeSpectrum.dat → 2006-BHF-Av18-GAP-SM-FreeSpectrum.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-SM-SelfEnergy.dat → 2006-BHF-Av18-GAP-SM-SelfEnergy.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-NM-DHSL59.dat → 2019-MBPT-NM-DHSL59.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-NM-DHSL69.dat → 2019-MBPT-NM-DHSL69.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-SM-DHSL59.dat → 2019-MBPT-SM-DHSL59.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-SM-DHSL69.dat → 2019-MBPT-SM-DHSL69.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2023-MBPT-NM.csv → 2020-MBPT-NM.csv} +0 -0
- /nucleardatapy/data/matter/micro/{2023-MBPT-SM.csv → 2020-MBPT-SM.csv} +0 -0
- /nucleardatapy/data/nuclei/{nskin → rnp}/208Pb.dat +0 -0
- /nucleardatapy/data/nuclei/{nskin → rnp}/48Ca.dat +0 -0
- /nucleardatapy/hnuc/{setup_be1L_exp.py → setup_re1L_exp.py} +0 -0
- /nucleardatapy/hnuc/{setup_be1Xi_exp.py → setup_re1Xi_exp.py} +0 -0
- /nucleardatapy/hnuc/{setup_be2L_exp.py → setup_re2L_exp.py} +0 -0
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-0.2.1.dist-info/licenses}/LICENSE +0 -0
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-0.2.1.dist-info}/top_level.txt +0 -0
|
@@ -25,97 +25,109 @@ def matter_Esym_fig( pname, micro_mbs, pheno_models, band ):
|
|
|
25
25
|
#
|
|
26
26
|
print(f'Plot name: {pname}')
|
|
27
27
|
#
|
|
28
|
+
matter = 'Esym'
|
|
29
|
+
#
|
|
28
30
|
fig, axs = plt.subplots(1,2)
|
|
29
31
|
#fig.tight_layout() # Or equivalently, "plt.tight_layout()"
|
|
30
32
|
fig.subplots_adjust(left=0.10, bottom=0.12, right=None, top=0.9, wspace=0.05, hspace=0.3 )
|
|
31
33
|
#
|
|
32
34
|
axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
33
|
-
axs[0].set_ylabel(r'$e_\text{sym}(
|
|
34
|
-
axs[0].set_xlim([0, 0.
|
|
35
|
+
axs[0].set_ylabel(r'$e_\text{sym}(n_\text{nuc})$')
|
|
36
|
+
axs[0].set_xlim([0, 0.34])
|
|
35
37
|
axs[0].set_ylim([0, 60])
|
|
36
38
|
#
|
|
37
39
|
axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
38
40
|
#axs[1].set_ylabel(r'$e_{sym}(n)$')
|
|
39
|
-
axs[1].set_xlim([0, 0.
|
|
41
|
+
axs[1].set_xlim([0, 0.34])
|
|
40
42
|
axs[1].set_ylim([0, 60])
|
|
41
43
|
axs[1].tick_params('y', labelleft=False)
|
|
42
44
|
#
|
|
43
45
|
mb_check = []
|
|
44
|
-
k = 0
|
|
45
46
|
#
|
|
46
|
-
for mb in micro_mbs:
|
|
47
|
+
for kmb,mb in enumerate(micro_mbs):
|
|
47
48
|
#
|
|
48
49
|
models, models_lower = nuda.matter.micro_esym_models_mb( mb )
|
|
49
50
|
#
|
|
50
51
|
for model in models:
|
|
51
52
|
#
|
|
52
|
-
|
|
53
|
+
micro = nuda.matter.setupMicroEsym( model = model )
|
|
54
|
+
if nuda.env.verb: micro.print_outputs( )
|
|
55
|
+
#
|
|
56
|
+
check = nuda.matter.setupCheck( eos = micro, band = band )
|
|
57
|
+
#
|
|
58
|
+
if check.isInside:
|
|
59
|
+
lstyle = 'solid'
|
|
60
|
+
else:
|
|
61
|
+
lstyle = 'dashed'
|
|
53
62
|
#
|
|
54
|
-
if
|
|
63
|
+
if micro.esym is not None:
|
|
55
64
|
print('mb:',mb,'model:',model)
|
|
56
65
|
if mb in mb_check:
|
|
57
|
-
if
|
|
58
|
-
if
|
|
59
|
-
axs[0].errorbar(
|
|
66
|
+
if micro.marker:
|
|
67
|
+
if micro.err:
|
|
68
|
+
axs[0].errorbar( micro.den, micro.esym, yerr=micro.esym_err, marker=micro.marker, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
60
69
|
else:
|
|
61
|
-
axs[0].plot(
|
|
70
|
+
axs[0].plot( micro.den, micro.esym, marker=micro.marker, linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
62
71
|
else:
|
|
63
|
-
if
|
|
64
|
-
axs[0].errorbar(
|
|
72
|
+
if micro.err:
|
|
73
|
+
axs[0].errorbar( micro.den, micro.esym, yerr=micro.esym_err, marker=micro.marker, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
65
74
|
else:
|
|
66
|
-
axs[0].plot(
|
|
75
|
+
axs[0].plot( micro.den, micro.esym, marker=micro.marker, linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
67
76
|
else:
|
|
68
77
|
mb_check.append(mb)
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
axs[0].errorbar( esym.den, esym.esym, yerr=esym.esym_err, marker=esym.marker, linestyle=None, label=mb, errorevery=esym.every, color=nuda.param.col[k] )
|
|
78
|
+
if micro.marker:
|
|
79
|
+
if micro.err:
|
|
80
|
+
axs[0].errorbar( micro.den, micro.esym, yerr=micro.esym_err, marker=micro.marker, linestyle=lstyle, label=mb, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
73
81
|
else:
|
|
74
|
-
axs[0].plot(
|
|
82
|
+
axs[0].plot( micro.den, micro.esym, marker=micro.marker, linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
75
83
|
else:
|
|
76
|
-
if
|
|
77
|
-
axs[0].errorbar(
|
|
84
|
+
if micro.err:
|
|
85
|
+
axs[0].errorbar( micro.den, micro.esym, yerr=micro.esym_err, marker=micro.marker, linestyle=lstyle, label=mb, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
78
86
|
else:
|
|
79
|
-
axs[0].plot(
|
|
80
|
-
|
|
81
|
-
|
|
87
|
+
axs[0].plot( micro.den, micro.esym, marker=micro.marker, linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
88
|
+
# end of model
|
|
89
|
+
# end of mb
|
|
82
90
|
axs[0].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
|
|
83
91
|
axs[0].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
|
|
84
92
|
axs[0].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
|
|
85
93
|
axs[0].text(0.05,5,'microscopic models',fontsize='10')
|
|
86
|
-
#axs[0].legend(loc='upper left',fontsize='8', ncol=3)
|
|
87
94
|
#
|
|
88
95
|
model_check = []
|
|
89
|
-
k = 0
|
|
90
96
|
#
|
|
91
|
-
for model in pheno_models:
|
|
97
|
+
for kmodel,model in enumerate(pheno_models):
|
|
92
98
|
#
|
|
93
99
|
params, params_lower = nuda.matter.pheno_params( model = model )
|
|
94
100
|
#
|
|
95
101
|
for param in params:
|
|
96
102
|
#
|
|
97
|
-
|
|
103
|
+
pheno = nuda.matter.setupPhenoEsym( model = model, param = param )
|
|
104
|
+
if nuda.env.verb: pheno.print_outputs( )
|
|
98
105
|
#
|
|
99
|
-
|
|
106
|
+
check = nuda.matter.setupCheck( eos = pheno, band = band )
|
|
107
|
+
#
|
|
108
|
+
if check.isInside:
|
|
109
|
+
lstyle = 'solid'
|
|
110
|
+
else:
|
|
111
|
+
lstyle = 'dashed'
|
|
112
|
+
#
|
|
113
|
+
if pheno.esym is not None:
|
|
100
114
|
print('model:',model,' param:',param)
|
|
101
115
|
if model in model_check:
|
|
102
|
-
axs[1].plot(
|
|
116
|
+
axs[1].plot( pheno.den, pheno.esym, linestyle=lstyle, color=nuda.param.col[kmodel] )
|
|
103
117
|
else:
|
|
104
118
|
model_check.append(model)
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
#axs[1].plot( esym.den, esym.esym, label=esym.label )
|
|
109
|
-
if nuda.env.verb: esym.print_outputs( )
|
|
119
|
+
axs[1].plot( pheno.den, pheno.esym, linestyle=lstyle, color=nuda.param.col[kmodel], label=model )
|
|
120
|
+
# end of param
|
|
121
|
+
# end of model
|
|
110
122
|
axs[1].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
|
|
111
123
|
axs[1].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
|
|
112
124
|
axs[1].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
|
|
113
125
|
axs[1].text(0.05,5,'phenomenological models',fontsize='10')
|
|
126
|
+
#
|
|
114
127
|
#axs[1].legend(loc='upper left',fontsize='8', ncol=2)
|
|
115
128
|
#axs[0,1].legend(loc='upper left',fontsize='xx-small', ncol=2)
|
|
116
129
|
fig.legend(loc='upper left',bbox_to_anchor=(0.2,1.0),columnspacing=2,fontsize='8',ncol=4,frameon=False)
|
|
117
130
|
#
|
|
118
|
-
#plt.tight_layout()
|
|
119
131
|
if pname is not None:
|
|
120
132
|
plt.savefig(pname, dpi=200)
|
|
121
133
|
plt.close()
|
|
@@ -0,0 +1,83 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import matplotlib.pyplot as plt
|
|
3
|
+
|
|
4
|
+
import nucleardatapy as nuda
|
|
5
|
+
|
|
6
|
+
def matter_cs2_fig( pname, micro_models, pheno_models, band ):
|
|
7
|
+
"""
|
|
8
|
+
Plot nuclear chart (N versus Z).\
|
|
9
|
+
The plot is 1x1 with:\
|
|
10
|
+
[0]: nuclear chart.
|
|
11
|
+
|
|
12
|
+
:param pname: name of the figure (*.png)
|
|
13
|
+
:type pname: str.
|
|
14
|
+
:param table: table.
|
|
15
|
+
:type table: str.
|
|
16
|
+
:param version: version of table to run on.
|
|
17
|
+
:type version: str.
|
|
18
|
+
:param theo_tables: object instantiated on the reference band.
|
|
19
|
+
:type theo_tables: object.
|
|
20
|
+
|
|
21
|
+
"""
|
|
22
|
+
#
|
|
23
|
+
print(f'Plot name: {pname}')
|
|
24
|
+
#
|
|
25
|
+
fig, axs = plt.subplots(1,2)
|
|
26
|
+
fig.tight_layout() # Or equivalently, "plt.tight_layout()"
|
|
27
|
+
fig.subplots_adjust(left=0.10, bottom=0.12, right=None, top=0.98, wspace=0.3, hspace=0.3 )
|
|
28
|
+
#
|
|
29
|
+
axs[0].set_xlabel(r'n (fm$^{-3}$)')
|
|
30
|
+
axs[0].set_ylabel(r'$c_{s,NM}^2(n)$')
|
|
31
|
+
axs[0].set_xlim([0, 0.3])
|
|
32
|
+
axs[0].set_ylim([0, 0.5])
|
|
33
|
+
#
|
|
34
|
+
axs[1].set_xlabel(r'n (fm$^{-3}$)')
|
|
35
|
+
axs[1].set_ylabel(r'$c_{s,NM}^2(n)$')
|
|
36
|
+
axs[1].set_xlim([0, 0.3])
|
|
37
|
+
axs[1].set_ylim([0, 0.5])
|
|
38
|
+
#
|
|
39
|
+
for model in micro_models:
|
|
40
|
+
#
|
|
41
|
+
mic = nuda.matter.setupMicro( model = model )
|
|
42
|
+
if mic.nm_cs2 is not None:
|
|
43
|
+
print('model:',model)
|
|
44
|
+
if mic.marker:
|
|
45
|
+
if mic.err:
|
|
46
|
+
axs[0].errorbar( mic.nm_den, mic.nm_cs2, yerr=mic.nm_cs2_err, marker=mic.marker, linestyle=None, label=mic.label, errorevery=mic.every )
|
|
47
|
+
else:
|
|
48
|
+
axs[0].plot( mic.nm_den, mic.nm_cs2, marker=mic.marker, linestyle=None, label=mic.label, markevery=mic.every )
|
|
49
|
+
else:
|
|
50
|
+
if mic.err:
|
|
51
|
+
axs[0].errorbar( mic.nm_den, mic.nm_cs2, yerr=mic.nm_cs2_err, marker=mic.marker, linestyle=mic.linestyle, label=mic.label, errorevery=mic.every )
|
|
52
|
+
else:
|
|
53
|
+
axs[0].plot( mic.nm_den, mic.nm_cs2, marker=mic.marker, linestyle=mic.linestyle, label=mic.label, markevery=mic.every )
|
|
54
|
+
if nuda.env.verb: mic.print_outputs( )
|
|
55
|
+
#axs[0].fill_between( band.den, y1=(band.pre-band.pre_std), y2=(band.pre+band.pre_std), color=band.color, alpha=band.alpha, visible=True )
|
|
56
|
+
#axs[0].plot( band.den, (band.pre-band.pre_std), color='k', linestyle='dashed' )
|
|
57
|
+
#axs[0].plot( band.den, (band.pre+band.pre_std), color='k', linestyle='dashed' )
|
|
58
|
+
axs[0].text(0.01,0.4,'microscopic models',fontsize='10')
|
|
59
|
+
axs[0].legend(loc='upper left',fontsize='8', ncol=3)
|
|
60
|
+
#
|
|
61
|
+
for model in pheno_models:
|
|
62
|
+
#
|
|
63
|
+
params, params_lower = nuda.matter.pheno_params( model = model )
|
|
64
|
+
#
|
|
65
|
+
for param in params:
|
|
66
|
+
#
|
|
67
|
+
pheno = nuda.matter.setupPheno( model = model, param = param )
|
|
68
|
+
if pheno.nm_pre is not None:
|
|
69
|
+
print('model:',model,' param:',param)
|
|
70
|
+
#pheno.label=None
|
|
71
|
+
axs[1].plot( pheno.nm_den, pheno.nm_cs2, label=pheno.label )
|
|
72
|
+
if nuda.env.verb: pheno.print_outputs( )
|
|
73
|
+
#axs[1].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
|
|
74
|
+
#axs[1].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
|
|
75
|
+
#axs[1].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
|
|
76
|
+
axs[1].text(0.01,0.4,'phenomenological models',fontsize='10')
|
|
77
|
+
#axs[1].legend(loc='upper left',fontsize='8', ncol=2)
|
|
78
|
+
#axs[0,1].legend(loc='upper left',fontsize='xx-small', ncol=2)
|
|
79
|
+
#
|
|
80
|
+
if pname is not None:
|
|
81
|
+
plt.savefig(pname, dpi=200)
|
|
82
|
+
plt.close()
|
|
83
|
+
#
|
|
@@ -0,0 +1,146 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import matplotlib.pyplot as plt
|
|
3
|
+
|
|
4
|
+
import nucleardatapy as nuda
|
|
5
|
+
|
|
6
|
+
def matter_preNM_fig( pname, micro_mbs, pheno_models, band ):
|
|
7
|
+
"""
|
|
8
|
+
Plot nucleonic pressure in NM.\
|
|
9
|
+
The plot is 1x2 with:\
|
|
10
|
+
[0,0]: E/A versus den (micro). [0,1]: E/A versus den (pheno).\
|
|
11
|
+
|
|
12
|
+
:param pname: name of the figure (*.png)
|
|
13
|
+
:type pname: str.
|
|
14
|
+
:param micro_mbs: many-body (mb) approach considered.
|
|
15
|
+
:type micro_mbs: str.
|
|
16
|
+
:param pheno_models: models to run on.
|
|
17
|
+
:type pheno_models: array of str.
|
|
18
|
+
:param band: object instantiated on the reference band.
|
|
19
|
+
:type band: object.
|
|
20
|
+
|
|
21
|
+
"""
|
|
22
|
+
#
|
|
23
|
+
print(f'Plot name: {pname}')
|
|
24
|
+
#
|
|
25
|
+
p_den = 0.32
|
|
26
|
+
p_cen = 23.0
|
|
27
|
+
p_std = 14.5
|
|
28
|
+
p_micro_cen = 15.0
|
|
29
|
+
p_micro_std = 6.5
|
|
30
|
+
p_pheno_cen = 23.0
|
|
31
|
+
p_pheno_std = 14.5
|
|
32
|
+
#
|
|
33
|
+
fig, axs = plt.subplots(1,2)
|
|
34
|
+
#fig.tight_layout() # Or equivalently, "plt.tight_layout()"
|
|
35
|
+
fig.subplots_adjust(left=0.10, bottom=0.12, right=None, top=0.9, wspace=0.05, hspace=0.3 )
|
|
36
|
+
#
|
|
37
|
+
axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
38
|
+
axs[0].set_ylabel(r'$p_\text{NM}(n_\text{nuc})$')
|
|
39
|
+
axs[0].set_xlim([0, 0.35])
|
|
40
|
+
axs[0].set_ylim([-2, 45])
|
|
41
|
+
#
|
|
42
|
+
axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
43
|
+
#axs[1].set_ylabel(r'$e_{sym}(n)$')
|
|
44
|
+
axs[1].set_xlim([0, 0.35])
|
|
45
|
+
axs[1].set_ylim([-2, 45])
|
|
46
|
+
axs[1].tick_params('y', labelleft=False)
|
|
47
|
+
#
|
|
48
|
+
mb_check = []
|
|
49
|
+
#
|
|
50
|
+
for kmb,mb in enumerate(micro_mbs):
|
|
51
|
+
#
|
|
52
|
+
models, models_lower = nuda.matter.micro_models_mb( mb )
|
|
53
|
+
#
|
|
54
|
+
for model in models:
|
|
55
|
+
#
|
|
56
|
+
micro = nuda.matter.setupMicro( model = model )
|
|
57
|
+
if nuda.env.verb: micro.print_outputs( )
|
|
58
|
+
#
|
|
59
|
+
check = nuda.matter.setupCheck( eos = micro, band = band )
|
|
60
|
+
#
|
|
61
|
+
if check.isInside:
|
|
62
|
+
lstyle = 'solid'
|
|
63
|
+
else:
|
|
64
|
+
lstyle = 'dashed'
|
|
65
|
+
#continue
|
|
66
|
+
#
|
|
67
|
+
print('model:',model)
|
|
68
|
+
print('err:',micro.p_err)
|
|
69
|
+
print('den:',micro.nm_den)
|
|
70
|
+
print('pre:',micro.nm_pre)
|
|
71
|
+
print('pre_err:',micro.nm_pre_err)
|
|
72
|
+
if micro.nm_pre is not None:
|
|
73
|
+
print('mb:',mb,'model:',model)
|
|
74
|
+
if mb in mb_check:
|
|
75
|
+
if micro.marker:
|
|
76
|
+
if micro.p_err:
|
|
77
|
+
axs[0].errorbar( micro.nm_den, micro.nm_pre, yerr=micro.nm_pre_err, marker=micro.marker, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
78
|
+
else:
|
|
79
|
+
axs[0].plot( micro.nm_den, micro.nm_pre, marker=micro.marker, linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
80
|
+
else:
|
|
81
|
+
if micro.p_err:
|
|
82
|
+
axs[0].errorbar( micro.nm_den, micro.nm_pre, yerr=micro.nm_pre_err, marker=micro.marker, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
83
|
+
else:
|
|
84
|
+
axs[0].plot( micro.nm_den, micro.nm_pre, marker=micro.marker, linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
85
|
+
else:
|
|
86
|
+
mb_check.append(mb)
|
|
87
|
+
if micro.marker:
|
|
88
|
+
if micro.p_err:
|
|
89
|
+
axs[0].errorbar( micro.nm_den, micro.nm_pre, yerr=micro.nm_pre_err, marker=micro.marker, linestyle=lstyle, label=mb, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
90
|
+
else:
|
|
91
|
+
axs[0].plot( micro.nm_den, micro.nm_pre, marker=micro.marker, linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
92
|
+
else:
|
|
93
|
+
if micro.p_err:
|
|
94
|
+
axs[0].errorbar( micro.nm_den, micro.nm_pre, yerr=micro.nm_pre_err, marker=micro.marker, linestyle=lstyle, label=mb, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
95
|
+
else:
|
|
96
|
+
axs[0].plot( enm.nm_den, enm.nm_pre, marker=enm.marker, linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
97
|
+
# end of model
|
|
98
|
+
# end of mb
|
|
99
|
+
axs[0].errorbar( p_den, p_cen, yerr=p_std, color='k' )
|
|
100
|
+
axs[0].errorbar( p_den+0.005, p_micro_cen, yerr=p_micro_std, color='r' )
|
|
101
|
+
axs[0].text(0.02,40,'microscopic models',fontsize='10')
|
|
102
|
+
#
|
|
103
|
+
model_check = []
|
|
104
|
+
#
|
|
105
|
+
for kmodel,model in enumerate(pheno_models):
|
|
106
|
+
#
|
|
107
|
+
params, params_lower = nuda.matter.pheno_params( model = model )
|
|
108
|
+
#
|
|
109
|
+
for param in params:
|
|
110
|
+
#
|
|
111
|
+
pheno = nuda.matter.setupPheno( model = model, param = param )
|
|
112
|
+
if nuda.env.verb: pheno.print_outputs( )
|
|
113
|
+
#
|
|
114
|
+
check = nuda.matter.setupCheck( eos = pheno, band = band )
|
|
115
|
+
#
|
|
116
|
+
if check.isInside:
|
|
117
|
+
lstyle = 'solid'
|
|
118
|
+
else:
|
|
119
|
+
lstyle = 'dashed'
|
|
120
|
+
#continue
|
|
121
|
+
#
|
|
122
|
+
if pheno.nm_pre is not None:
|
|
123
|
+
print('model:',model,' param:',param)
|
|
124
|
+
if model in model_check:
|
|
125
|
+
axs[1].plot( pheno.nm_den, pheno.nm_pre, linestyle=lstyle, color=nuda.param.col[kmodel] )
|
|
126
|
+
else:
|
|
127
|
+
model_check.append(model)
|
|
128
|
+
axs[1].plot( pheno.nm_den, pheno.nm_pre, linestyle=lstyle, color=nuda.param.col[kmodel], label=model )
|
|
129
|
+
# end of param
|
|
130
|
+
# end of model
|
|
131
|
+
axs[1].errorbar( p_den, p_cen, yerr=p_std, color='k' )
|
|
132
|
+
axs[1].errorbar( p_den+0.005, p_pheno_cen, yerr=p_pheno_std, color='r' )
|
|
133
|
+
#axs[1].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
|
|
134
|
+
#axs[1].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
|
|
135
|
+
#axs[1].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
|
|
136
|
+
axs[1].text(0.02,40,'phenomenological models',fontsize='10')
|
|
137
|
+
#
|
|
138
|
+
#axs[1].legend(loc='upper left',fontsize='8', ncol=2)
|
|
139
|
+
#axs[0,1].legend(loc='upper left',fontsize='xx-small', ncol=2)
|
|
140
|
+
fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
|
|
141
|
+
#
|
|
142
|
+
#plt.tight_layout()
|
|
143
|
+
if pname is not None:
|
|
144
|
+
plt.savefig(pname, dpi=200)
|
|
145
|
+
plt.close()
|
|
146
|
+
#
|
|
@@ -0,0 +1,144 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import matplotlib.pyplot as plt
|
|
3
|
+
|
|
4
|
+
import nucleardatapy as nuda
|
|
5
|
+
|
|
6
|
+
def matter_preSM_fig( pname, micro_mbs, pheno_models, band ):
|
|
7
|
+
"""
|
|
8
|
+
Plot nucleonic pressure in SM.\
|
|
9
|
+
The plot is 1x2 with:\
|
|
10
|
+
[0,0]: E/A versus den (micro). [0,1]: E/A versus den (pheno).\
|
|
11
|
+
|
|
12
|
+
:param pname: name of the figure (*.png)
|
|
13
|
+
:type pname: str.
|
|
14
|
+
:param micro_mbs: many-body (mb) approach considered.
|
|
15
|
+
:type micro_mbs: str.
|
|
16
|
+
:param pheno_models: models to run on.
|
|
17
|
+
:type pheno_models: array of str.
|
|
18
|
+
:param band: object instantiated on the reference band.
|
|
19
|
+
:type band: object.
|
|
20
|
+
:param matter: variable `matter`employed to define the band.
|
|
21
|
+
:type matter: str.
|
|
22
|
+
|
|
23
|
+
"""
|
|
24
|
+
#
|
|
25
|
+
print(f'Plot name: {pname}')
|
|
26
|
+
#
|
|
27
|
+
p_den = 0.32
|
|
28
|
+
p_cen = 11.5
|
|
29
|
+
p_std = 5.5
|
|
30
|
+
p_micro_cen = 9.0
|
|
31
|
+
p_micro_std = 3.0
|
|
32
|
+
p_pheno_cen = 14.5
|
|
33
|
+
p_pheno_std = 2.5
|
|
34
|
+
#
|
|
35
|
+
fig, axs = plt.subplots(1,2)
|
|
36
|
+
#fig.tight_layout() # Or equivalently, "plt.tight_layout()"
|
|
37
|
+
fig.subplots_adjust(left=0.10, bottom=0.12, right=None, top=0.9, wspace=0.05, hspace=0.3 )
|
|
38
|
+
#
|
|
39
|
+
axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
40
|
+
axs[0].set_ylabel(r'$p_\text{SM}(n_\text{nuc})$')
|
|
41
|
+
axs[0].set_xlim([0, 0.35])
|
|
42
|
+
axs[0].set_ylim([-2, 45])
|
|
43
|
+
#
|
|
44
|
+
axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
45
|
+
#axs[1].set_ylabel(r'$e_{sym}(n)$')
|
|
46
|
+
axs[1].set_xlim([0, 0.35])
|
|
47
|
+
axs[1].set_ylim([-2, 45])
|
|
48
|
+
axs[1].tick_params('y', labelleft=False)
|
|
49
|
+
#
|
|
50
|
+
mb_check = []
|
|
51
|
+
#
|
|
52
|
+
for kmb,mb in enumerate(micro_mbs):
|
|
53
|
+
#
|
|
54
|
+
models, models_lower = nuda.matter.micro_models_mb( mb )
|
|
55
|
+
#
|
|
56
|
+
for model in models:
|
|
57
|
+
#
|
|
58
|
+
micro = nuda.matter.setupMicro( model = model )
|
|
59
|
+
if nuda.env.verb: micro.print_outputs( )
|
|
60
|
+
#
|
|
61
|
+
check = nuda.matter.setupCheck( eos = micro, band = band )
|
|
62
|
+
#
|
|
63
|
+
if check.isInside:
|
|
64
|
+
lstyle = 'solid'
|
|
65
|
+
else:
|
|
66
|
+
lstyle = 'dashed'
|
|
67
|
+
#continue
|
|
68
|
+
#
|
|
69
|
+
print('model:',model)
|
|
70
|
+
print('err:',micro.p_err)
|
|
71
|
+
print('den:',micro.sm_den)
|
|
72
|
+
print('pre:',micro.sm_pre)
|
|
73
|
+
print('pre_err:',micro.sm_pre_err)
|
|
74
|
+
if micro.sm_pre is not None:
|
|
75
|
+
print('mb:',mb,'model:',model)
|
|
76
|
+
if mb in mb_check:
|
|
77
|
+
if micro.marker:
|
|
78
|
+
if micro.p_err:
|
|
79
|
+
axs[0].errorbar( micro.sm_den, micro.sm_pre, yerr=micro.sm_pre_err, marker=micro.marker, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
80
|
+
else:
|
|
81
|
+
axs[0].plot( micro.sm_den, micro.sm_pre, marker=micro.marker, linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
82
|
+
else:
|
|
83
|
+
if micro.p_err:
|
|
84
|
+
axs[0].errorbar( micro.sm_den, micro.sm_pre, yerr=micro.sm_pre_err, marker=micro.marker, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
85
|
+
else:
|
|
86
|
+
axs[0].plot( micro.sm_den, micro.sm_pre, marker=micro.marker, linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
87
|
+
else:
|
|
88
|
+
mb_check.append(mb)
|
|
89
|
+
if micro.marker:
|
|
90
|
+
if micro.p_err:
|
|
91
|
+
axs[0].errorbar( esm.sm_den, micro.sm_pre, yerr=micro.sm_pre_err, marker=micro.marker, linestyle=lstyle, label=mb, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
92
|
+
else:
|
|
93
|
+
axs[0].plot( micro.sm_den, micro.sm_pre, marker=micro.marker, linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
94
|
+
else:
|
|
95
|
+
if micro.p_err:
|
|
96
|
+
axs[0].errorbar( micro.sm_den, micro.sm_pre, yerr=micro.sm_pre_err, marker=micro.marker, linestyle=lstyle, label=mb, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
97
|
+
else:
|
|
98
|
+
axs[0].plot( micro.sm_den, esm.sm_pre, marker=esm.marker, linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
99
|
+
# end of model
|
|
100
|
+
# end of mb
|
|
101
|
+
axs[0].errorbar( p_den, p_cen, yerr=p_std, color='k' )
|
|
102
|
+
axs[0].errorbar( p_den+0.005, p_micro_cen, yerr=p_micro_std, color='r' )
|
|
103
|
+
axs[0].text(0.02,40,'microscopic models',fontsize='10')
|
|
104
|
+
#
|
|
105
|
+
model_check = []
|
|
106
|
+
#
|
|
107
|
+
for kmodel,model in enumerate(pheno_models):
|
|
108
|
+
#
|
|
109
|
+
params, params_lower = nuda.matter.pheno_params( model = model )
|
|
110
|
+
#
|
|
111
|
+
for param in params:
|
|
112
|
+
#
|
|
113
|
+
pheno = nuda.matter.setupPheno( model = model, param = param )
|
|
114
|
+
if nuda.env.verb: pheno.print_outputs( )
|
|
115
|
+
#
|
|
116
|
+
check = nuda.matter.setupCheck( eos = pheno, band = band )
|
|
117
|
+
#
|
|
118
|
+
if check.isInside:
|
|
119
|
+
lstyle = 'solid'
|
|
120
|
+
else:
|
|
121
|
+
lstyle = 'dashed'
|
|
122
|
+
#continue
|
|
123
|
+
#
|
|
124
|
+
if pheno.sm_pre is not None:
|
|
125
|
+
print('model:',model,' param:',param)
|
|
126
|
+
if model in model_check:
|
|
127
|
+
axs[1].plot( pheno.sm_den, pheno.sm_pre, linestyle=lstyle, color=nuda.param.col[kmodel] )
|
|
128
|
+
else:
|
|
129
|
+
model_check.append(model)
|
|
130
|
+
axs[1].plot( pheno.sm_den, pheno.sm_pre, linestyle=lstyle, color=nuda.param.col[kmodel], label=model )
|
|
131
|
+
# end of param
|
|
132
|
+
# end of model
|
|
133
|
+
axs[1].errorbar( p_den, p_cen, yerr=p_std, color='k' )
|
|
134
|
+
axs[1].errorbar( p_den+0.005, p_pheno_cen, yerr=p_pheno_std, color='r' )
|
|
135
|
+
axs[1].text(0.02,40,'phenomenological models',fontsize='10')
|
|
136
|
+
#
|
|
137
|
+
#axs[1].legend(loc='upper left',fontsize='8', ncol=2)
|
|
138
|
+
#axs[0,1].legend(loc='upper left',fontsize='xx-small', ncol=2)
|
|
139
|
+
fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
|
|
140
|
+
#
|
|
141
|
+
if pname is not None:
|
|
142
|
+
plt.savefig(pname, dpi=200)
|
|
143
|
+
plt.close()
|
|
144
|
+
#
|
|
@@ -1,7 +1,8 @@
|
|
|
1
1
|
|
|
2
2
|
import numpy as np
|
|
3
|
+
import matplotlib as mpl
|
|
3
4
|
import matplotlib.pyplot as plt
|
|
4
|
-
|
|
5
|
+
mpl.use("Agg") # Use a non-interactive backend
|
|
5
6
|
import nucleardatapy as nuda
|
|
6
7
|
|
|
7
8
|
def matter_setupFFGNuc_EP_fig( pname, mss = [ 1.0 ], den = np.linspace(0.01,0.35,10), kfn = np.linspace(0.5,2.0,10) ):
|
|
@@ -3,7 +3,7 @@ import matplotlib.pyplot as plt
|
|
|
3
3
|
|
|
4
4
|
import nucleardatapy as nuda
|
|
5
5
|
|
|
6
|
-
def matter_setupMicroEsym_fig( pname,
|
|
6
|
+
def matter_setupMicroEsym_fig( pname, mbs, band ):
|
|
7
7
|
"""
|
|
8
8
|
Plot nuclear chart (N versus Z).\
|
|
9
9
|
The plot is 1x2 with:\
|
|
@@ -34,7 +34,7 @@ def matter_setupMicroEsym_fig( pname, models, band ):
|
|
|
34
34
|
axs[0,1].set_ylim([0, 50])
|
|
35
35
|
#
|
|
36
36
|
axs[1,0].set_ylabel(r'$E_\mathrm{sym}/E_\mathrm{sym, FFG, NR}$')
|
|
37
|
-
axs[1,0].set_xlabel(r'
|
|
37
|
+
axs[1,0].set_xlabel(r'$n_\mathrm{nuc}$ (fm$^{-3}$)')
|
|
38
38
|
axs[1,0].set_xlim([0, 0.3])
|
|
39
39
|
axs[1,0].set_ylim([1, 4])
|
|
40
40
|
#
|
|
@@ -42,27 +42,58 @@ def matter_setupMicroEsym_fig( pname, models, band ):
|
|
|
42
42
|
axs[1,1].set_xlim([0.5, 2.0])
|
|
43
43
|
axs[1,1].set_ylim([1, 4])
|
|
44
44
|
#
|
|
45
|
-
|
|
45
|
+
mb_check = []
|
|
46
|
+
#
|
|
47
|
+
for kmb,mb in enumerate(mbs):
|
|
46
48
|
#
|
|
47
|
-
|
|
48
|
-
esym = nuda.matter.setupMicroEsym( model = model )
|
|
49
|
+
models, models_lower = nuda.matter.micro_models_mb( mb )
|
|
49
50
|
#
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
51
|
+
for model in models:
|
|
52
|
+
#
|
|
53
|
+
print('in Sample: model',model)
|
|
54
|
+
#
|
|
55
|
+
micro = nuda.matter.setupMicroEsym( model = model )
|
|
56
|
+
if nuda.env.verb: micro.print_outputs( )
|
|
57
|
+
#
|
|
58
|
+
micro = nuda.matter.setupMicroEsym( model = model )
|
|
59
|
+
if nuda.env.verb_output: micro.print_outputs( )
|
|
60
|
+
#
|
|
61
|
+
check = nuda.matter.setupCheck( eos = micro, band = band )
|
|
62
|
+
#
|
|
63
|
+
if check.isInside:
|
|
64
|
+
lstyle = 'solid'
|
|
57
65
|
else:
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
66
|
+
lstyle = 'dashed'
|
|
67
|
+
#
|
|
68
|
+
if micro.esym is not None:
|
|
69
|
+
#if '2024-BHF' in model and (kmb % 4 != 0.0): continue
|
|
70
|
+
if mb in mb_check:
|
|
71
|
+
if micro.esym_err is None:
|
|
72
|
+
axs[0,0].plot( micro.den, micro.esym, marker=micro.marker, markevery=micro.every, linestyle=lstyle, color=nuda.param.col[kmb] )
|
|
73
|
+
axs[0,1].plot( micro.kf, micro.esym, marker=micro.marker, markevery=micro.every, linestyle=lstyle, color=nuda.param.col[kmb] )
|
|
74
|
+
axs[1,0].plot( micro.den, micro.esym/nuda.esymffg_nr(micro.kf), marker=micro.marker, markevery=micro.every, linestyle=lstyle, color=nuda.param.col[kmb] )
|
|
75
|
+
axs[1,1].plot( micro.kf, micro.esym/nuda.esymffg_nr(micro.kf), marker=micro.marker, markevery=micro.every, linestyle=lstyle, color=nuda.param.col[kmb] )
|
|
76
|
+
else:
|
|
77
|
+
axs[0,0].errorbar( micro.den, micro.esym, yerr=micro.esym_err, marker=micro.marker, markevery=micro.every, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
78
|
+
axs[0,1].errorbar( micro.kf, micro.esym, yerr=micro.esym_err, marker=micro.marker, markevery=micro.every, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
79
|
+
axs[1,0].errorbar( micro.den, micro.esym/nuda.esymffg_nr(micro.kf), yerr=micro.esym_err/nuda.esymffg_nr(micro.kf), marker=micro.marker, markevery=micro.every, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
80
|
+
axs[1,1].errorbar( micro.kf, micro.esym/nuda.esymffg_nr(micro.kf), yerr=micro.esym_err/nuda.esymffg_nr(micro.kf), marker=micro.marker, markevery=micro.every, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
81
|
+
else:
|
|
82
|
+
mb_check.append(mb)
|
|
83
|
+
if micro.esym_err is None:
|
|
84
|
+
axs[0,0].plot( micro.den, micro.esym, marker=micro.marker, markevery=micro.every, linestyle=lstyle, color=nuda.param.col[kmb], label=mb )
|
|
85
|
+
axs[0,1].plot( micro.kf, micro.esym, marker=micro.marker, markevery=micro.every, linestyle=lstyle, color=nuda.param.col[kmb] )
|
|
86
|
+
axs[1,0].plot( micro.den, micro.esym/nuda.esymffg_nr(micro.kf), marker=micro.marker, markevery=micro.every, linestyle=lstyle, color=nuda.param.col[kmb] )
|
|
87
|
+
axs[1,1].plot( micro.kf, micro.esym/nuda.esymffg_nr(micro.kf), marker=micro.marker, markevery=micro.every, linestyle=lstyle, color=nuda.param.col[kmb] )
|
|
88
|
+
else:
|
|
89
|
+
axs[0,0].errorbar( micro.den, micro.esym, yerr=micro.esym_err, marker=micro.marker, markevery=micro.every, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb], label=mb )
|
|
90
|
+
axs[0,1].errorbar( micro.kf, micro.esym, yerr=micro.esym_err, marker=micro.marker, markevery=micro.every, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
91
|
+
axs[1,0].errorbar( micro.den, micro.esym/nuda.esymffg_nr(micro.kf), yerr=micro.esym_err/nuda.esymffg_nr(micro.kf), marker=micro.marker, markevery=micro.every, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
92
|
+
axs[1,1].errorbar( micro.kf, micro.esym/nuda.esymffg_nr(micro.kf), yerr=micro.esym_err/nuda.esymffg_nr(micro.kf), marker=micro.marker, markevery=micro.every, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
93
|
+
|
|
63
94
|
#
|
|
64
|
-
axs[0,0].plot(
|
|
65
|
-
axs[0,1].plot(
|
|
95
|
+
axs[0,0].plot( micro.den, nuda.esymffg_nr(micro.kf), linestyle='dotted' )
|
|
96
|
+
axs[0,1].plot( micro.kf, nuda.esymffg_nr(micro.kf), linestyle='dotted' )
|
|
66
97
|
|
|
67
98
|
axs[0,0].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
|
|
68
99
|
axs[0,0].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed', visible=True )
|