nucleardatapy 0.2.0__py3-none-any.whl → 0.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nucleardatapy/crust/setup_crust.py +46 -1
- nucleardatapy/data/crust/2018-PCPFDDG-BSK22.dat +83 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK24.dat +74 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK25.dat +130 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK26.dat +81 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-SM.dat +11 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-beta0.2.dat +11 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-beta0.4.dat +11 -0
- nucleardatapy/data/nuclei/masses/Theory/2023-BSkG3.txt +0 -4
- nucleardatapy/data/nuclei/masses/Theory/2025-BSkG4.txt +0 -1
- nucleardatapy/eos/setup_am.py +43 -31
- nucleardatapy/eos/setup_am_Beq.py +18 -12
- nucleardatapy/eos/setup_am_Leq.py +53 -47
- nucleardatapy/fig/__init__.py +15 -2
- nucleardatapy/fig/crust_setupCrust_fig.py +3 -3
- nucleardatapy/fig/eos_setupAMBeq_fig.py +866 -49
- nucleardatapy/fig/eos_setupAMLeq_fig.py +185 -53
- nucleardatapy/fig/eos_setupAM_e_asy_lep_fig.py +125 -0
- nucleardatapy/fig/eos_setupAM_e_asy_nuc_fig.py +115 -0
- nucleardatapy/fig/eos_setupAM_e_asy_tot_fig.py +117 -0
- nucleardatapy/fig/eos_setupAM_e_fig.py +173 -0
- nucleardatapy/fig/hnuc_setupRE1LExp_fig.py +1 -1
- nucleardatapy/fig/matter_ENM_fig.py +50 -41
- nucleardatapy/fig/matter_ESM_fig.py +60 -39
- nucleardatapy/fig/matter_Esym_fig.py +48 -36
- nucleardatapy/fig/matter_cs2_fig.py +83 -0
- nucleardatapy/fig/matter_preNM_fig.py +146 -0
- nucleardatapy/fig/matter_preSM_fig.py +144 -0
- nucleardatapy/fig/matter_setupFFGNuc_fig.py +2 -1
- nucleardatapy/fig/matter_setupMicroEsym_fig.py +50 -19
- nucleardatapy/fig/matter_setupMicro_band_fig.py +1 -0
- nucleardatapy/fig/matter_setupMicro_effmass_fig.py +59 -4
- nucleardatapy/fig/matter_setupMicro_fig.py +81 -79
- nucleardatapy/fig/matter_setupPhenoEsym_fig.py +28 -26
- nucleardatapy/fig/matter_setupPheno_fig.py +34 -24
- nucleardatapy/fig/nuc_setupBEExp_chart_fig.py +275 -0
- nucleardatapy/fig/nuc_setupBEExp_fig.py +225 -70
- nucleardatapy/fig/nuc_setupBETheo_fig.py +316 -0
- nucleardatapy/fig/nuc_setupISGMRExp_fig.py +59 -0
- nucleardatapy/fig/nuc_setupRchExp_fig.py +139 -0
- nucleardatapy/fig/nuc_setupRchTheo_fig.py +142 -0
- nucleardatapy/fig/nuc_setupRnpExp_fig.py +120 -0
- nucleardatapy/fig/nuc_setupRnpTheo_fig.py +134 -0
- nucleardatapy/hnuc/__init__.py +3 -3
- nucleardatapy/matter/__init__.py +1 -0
- nucleardatapy/matter/setup_check.py +97 -0
- nucleardatapy/matter/setup_ffg.py +15 -8
- nucleardatapy/matter/setup_micro.py +144 -79
- nucleardatapy/matter/setup_micro_band.py +6 -1
- nucleardatapy/matter/setup_micro_effmass.py +55 -2
- nucleardatapy/matter/setup_micro_esym.py +37 -30
- nucleardatapy/matter/setup_micro_gap.py +3 -3
- nucleardatapy/matter/setup_micro_lp.py +18 -17
- nucleardatapy/matter/setup_pheno.py +2 -2
- nucleardatapy/matter/setup_pheno_esym.py +13 -13
- nucleardatapy/nuc/__init__.py +2 -2
- nucleardatapy/nuc/setup_be_exp.py +90 -90
- nucleardatapy/nuc/setup_be_theo.py +112 -100
- nucleardatapy/nuc/setup_rch_exp.py +49 -6
- nucleardatapy/nuc/setup_rch_theo.py +72 -3
- nucleardatapy/nuc/{setup_nskin_exp.py → setup_rnp_exp.py} +58 -65
- nucleardatapy/nuc/{setup_nskin_theo.py → setup_rnp_theo.py} +34 -39
- nucleardatapy-0.2.1.dist-info/METADATA +521 -0
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-0.2.1.dist-info}/RECORD +86 -65
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-0.2.1.dist-info}/WHEEL +1 -1
- nucleardatapy/fig/eos_setupAM_fig.py +0 -81
- nucleardatapy-0.2.0.dist-info/METADATA +0 -115
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-AM.dat → 2006-BHF-Av18-E2A-AM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-NM.dat → 2006-BHF-Av18-E2A-NM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-SM.dat → 2006-BHF-Av18-E2A-SM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-Esym2-SM.dat → 2006-BHF-Av18-Esym2-SM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-NM-FreeSpectrum.dat → 2006-BHF-Av18-GAP-NM-FreeSpectrum.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-NM-SelfEnergy.dat → 2006-BHF-Av18-GAP-NM-SelfEnergy.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-SM-FreeSpectrum.dat → 2006-BHF-Av18-GAP-SM-FreeSpectrum.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-SM-SelfEnergy.dat → 2006-BHF-Av18-GAP-SM-SelfEnergy.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-NM-DHSL59.dat → 2019-MBPT-NM-DHSL59.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-NM-DHSL69.dat → 2019-MBPT-NM-DHSL69.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-SM-DHSL59.dat → 2019-MBPT-SM-DHSL59.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-SM-DHSL69.dat → 2019-MBPT-SM-DHSL69.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2023-MBPT-NM.csv → 2020-MBPT-NM.csv} +0 -0
- /nucleardatapy/data/matter/micro/{2023-MBPT-SM.csv → 2020-MBPT-SM.csv} +0 -0
- /nucleardatapy/data/nuclei/{nskin → rnp}/208Pb.dat +0 -0
- /nucleardatapy/data/nuclei/{nskin → rnp}/48Ca.dat +0 -0
- /nucleardatapy/hnuc/{setup_be1L_exp.py → setup_re1L_exp.py} +0 -0
- /nucleardatapy/hnuc/{setup_be1Xi_exp.py → setup_re1Xi_exp.py} +0 -0
- /nucleardatapy/hnuc/{setup_be2L_exp.py → setup_re2L_exp.py} +0 -0
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-0.2.1.dist-info/licenses}/LICENSE +0 -0
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-0.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,117 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import matplotlib.pyplot as plt
|
|
3
|
+
|
|
4
|
+
import nucleardatapy as nuda
|
|
5
|
+
|
|
6
|
+
def eos_setupAM_e_asy_tot_fig( pname, micro_mbs, pheno_models, asy, band ):
|
|
7
|
+
"""
|
|
8
|
+
Plot nuclear chart (N versus Z).\
|
|
9
|
+
The plot is 1x2 with:\
|
|
10
|
+
[0]: nuclear chart.
|
|
11
|
+
|
|
12
|
+
:param pname: name of the figure (*.png)
|
|
13
|
+
:type pname: str.
|
|
14
|
+
:param table: table.
|
|
15
|
+
:type table: str.
|
|
16
|
+
:param version: version of table to run on.
|
|
17
|
+
:type version: str.
|
|
18
|
+
:param theo_tables: object instantiated on the reference band.
|
|
19
|
+
:type theo_tables: object.
|
|
20
|
+
|
|
21
|
+
"""
|
|
22
|
+
#
|
|
23
|
+
print(f'Plot name: {pname}')
|
|
24
|
+
#
|
|
25
|
+
fig, axs = plt.subplots(1,2)
|
|
26
|
+
fig.subplots_adjust(left=0.10, bottom=0.12, right=None, top=0.90, wspace=0.05, hspace=0.3 )
|
|
27
|
+
#
|
|
28
|
+
axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
29
|
+
axs[0].set_ylabel(r'$E_\text{tot}/A$')
|
|
30
|
+
axs[0].set_xlim([0, 0.28])
|
|
31
|
+
axs[0].set_ylim([-10, 35])
|
|
32
|
+
#
|
|
33
|
+
axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
34
|
+
#axs[1].set_ylabel(r'$E/A$')
|
|
35
|
+
axs[1].set_xlim([0, 0.28])
|
|
36
|
+
axs[1].set_ylim([-10, 35])
|
|
37
|
+
axs[1].tick_params('y', labelleft=False)
|
|
38
|
+
#
|
|
39
|
+
mb_check = []
|
|
40
|
+
#
|
|
41
|
+
for kmb,mb in enumerate(micro_mbs):
|
|
42
|
+
#
|
|
43
|
+
print('mb:',mb,kmb)
|
|
44
|
+
#
|
|
45
|
+
models, models_lower = nuda.matter.micro_esym_models_mb( mb )
|
|
46
|
+
#
|
|
47
|
+
print('models:',models)
|
|
48
|
+
#
|
|
49
|
+
if mb == 'VAR':
|
|
50
|
+
models.remove('1998-VAR-AM-APR-fit')
|
|
51
|
+
models_lower.remove('1998-var-am-apr-fit')
|
|
52
|
+
#
|
|
53
|
+
for model in models:
|
|
54
|
+
#
|
|
55
|
+
micro = nuda.eos.setupAM( model = model, kind = 'micro', asy = asy )
|
|
56
|
+
if nuda.env.verb_output: micro.print_outputs( )
|
|
57
|
+
#
|
|
58
|
+
check = nuda.matter.setupCheck( eos = micro, band = band )
|
|
59
|
+
#
|
|
60
|
+
if check.isInside:
|
|
61
|
+
lstyle = 'solid'
|
|
62
|
+
else:
|
|
63
|
+
lstyle = 'dashed'
|
|
64
|
+
#continue
|
|
65
|
+
#
|
|
66
|
+
if micro.esym is not None:
|
|
67
|
+
print('model:',model)
|
|
68
|
+
if mb in mb_check:
|
|
69
|
+
axs[0].plot( micro.den, micro.e2a_tot, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
70
|
+
else:
|
|
71
|
+
mb_check.append(mb)
|
|
72
|
+
axs[0].plot( micro.den, micro.e2a_tot, marker='o', linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
73
|
+
# end of model
|
|
74
|
+
# end of mb
|
|
75
|
+
#
|
|
76
|
+
axs[0].text(0.02,-8,'microscopic models',fontsize='10')
|
|
77
|
+
axs[0].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
|
|
78
|
+
#
|
|
79
|
+
model_check = []
|
|
80
|
+
#
|
|
81
|
+
for kmodel,model in enumerate(pheno_models):
|
|
82
|
+
#
|
|
83
|
+
params, params_lower = nuda.matter.pheno_esym_params( model = model )
|
|
84
|
+
#
|
|
85
|
+
for param in params:
|
|
86
|
+
#
|
|
87
|
+
pheno = nuda.eos.setupAM( model = model, param = param, kind = 'pheno', asy = asy )
|
|
88
|
+
if nuda.env.verb_output: pheno.print_outputs( )
|
|
89
|
+
#
|
|
90
|
+
check = nuda.matter.setupCheck( eos = pheno, band = band )
|
|
91
|
+
#
|
|
92
|
+
if check.isInside:
|
|
93
|
+
lstyle = 'solid'
|
|
94
|
+
else:
|
|
95
|
+
lstyle = 'dashed'
|
|
96
|
+
#continue
|
|
97
|
+
#
|
|
98
|
+
if pheno.e2a_tot is not None:
|
|
99
|
+
print('model:',model,' param:',param)
|
|
100
|
+
#beta.label=None
|
|
101
|
+
if model in model_check:
|
|
102
|
+
axs[1].plot( pheno.den, pheno.e2a_tot, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
103
|
+
else:
|
|
104
|
+
model_check.append(model)
|
|
105
|
+
axs[1].plot( pheno.den, pheno.e2a_tot, linestyle=lstyle, label=model, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
106
|
+
# end of param
|
|
107
|
+
# end of model
|
|
108
|
+
#
|
|
109
|
+
axs[1].text(0.02,-8,'phenomenological models',fontsize='10')
|
|
110
|
+
axs[1].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
|
|
111
|
+
#
|
|
112
|
+
fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
|
|
113
|
+
#
|
|
114
|
+
if pname is not None:
|
|
115
|
+
plt.savefig(pname, dpi=200)
|
|
116
|
+
plt.close()
|
|
117
|
+
#
|
|
@@ -0,0 +1,173 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import matplotlib.pyplot as plt
|
|
3
|
+
|
|
4
|
+
import nucleardatapy as nuda
|
|
5
|
+
|
|
6
|
+
def eos_setupAM_e_fig( pname, micro_mbs, pheno_models, band ):
|
|
7
|
+
"""
|
|
8
|
+
Plot nuclear chart (N versus Z).\
|
|
9
|
+
The plot is 1x2 with:\
|
|
10
|
+
[0]: nuclear chart.
|
|
11
|
+
|
|
12
|
+
:param pname: name of the figure (*.png)
|
|
13
|
+
:type pname: str.
|
|
14
|
+
:param table: table.
|
|
15
|
+
:type table: str.
|
|
16
|
+
:param version: version of table to run on.
|
|
17
|
+
:type version: str.
|
|
18
|
+
:param theo_tables: object instantiated on the reference band.
|
|
19
|
+
:type theo_tables: object.
|
|
20
|
+
|
|
21
|
+
"""
|
|
22
|
+
#
|
|
23
|
+
print(f'Plot name: {pname}')
|
|
24
|
+
#
|
|
25
|
+
fig, axs = plt.subplots(3,2)
|
|
26
|
+
fig.subplots_adjust(left=0.10, bottom=0.12, right=None, top=0.9, wspace=0.05, hspace=0.05 )
|
|
27
|
+
#
|
|
28
|
+
#axs[0,0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
29
|
+
axs[0,0].set_ylabel(r'$E_\text{lep}/A$')
|
|
30
|
+
axs[0,0].set_xlim([0, 0.28])
|
|
31
|
+
axs[0,0].set_ylim([-2, 38])
|
|
32
|
+
axs[0,0].tick_params('x', labelbottom=False)
|
|
33
|
+
#
|
|
34
|
+
#axs[0,1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
35
|
+
axs[0,1].set_xlim([0, 0.28])
|
|
36
|
+
axs[0,1].set_ylim([-2, 38])
|
|
37
|
+
axs[0,1].tick_params('y', labelleft=False)
|
|
38
|
+
axs[0,1].tick_params('x', labelbottom=False)
|
|
39
|
+
#
|
|
40
|
+
#axs[1,0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
41
|
+
axs[1,0].set_ylabel(r'$E_\text{nuc}/A$')
|
|
42
|
+
axs[1,0].set_xlim([0, 0.28])
|
|
43
|
+
axs[1,0].set_ylim([-10, 30])
|
|
44
|
+
axs[1,0].tick_params('x', labelbottom=False)
|
|
45
|
+
#
|
|
46
|
+
#axs[1,1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
47
|
+
axs[1,1].set_xlim([0, 0.28])
|
|
48
|
+
axs[1,1].set_ylim([-10, 30])
|
|
49
|
+
axs[1,1].tick_params('y', labelleft=False)
|
|
50
|
+
axs[1,1].tick_params('x', labelbottom=False)
|
|
51
|
+
#
|
|
52
|
+
axs[2,0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
53
|
+
axs[2,0].set_ylabel(r'$E_\text{tot}/A$')
|
|
54
|
+
axs[2,0].set_xlim([0, 0.28])
|
|
55
|
+
axs[2,0].set_ylim([-2, 38])
|
|
56
|
+
#
|
|
57
|
+
axs[2,1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
58
|
+
axs[2,1].set_xlim([0, 0.28])
|
|
59
|
+
axs[2,1].set_ylim([-2, 38])
|
|
60
|
+
axs[2,1].tick_params('y', labelleft=False)
|
|
61
|
+
#
|
|
62
|
+
# fix the asymmetry parameters
|
|
63
|
+
#
|
|
64
|
+
asys = [ 0.6, 0.8 ]
|
|
65
|
+
#
|
|
66
|
+
mb_check = []
|
|
67
|
+
model_check = []
|
|
68
|
+
#
|
|
69
|
+
for asy in asys:
|
|
70
|
+
#
|
|
71
|
+
print('asy:',asy)
|
|
72
|
+
#
|
|
73
|
+
for kmb,mb in enumerate(micro_mbs):
|
|
74
|
+
#
|
|
75
|
+
print('mb:',mb,kmb)
|
|
76
|
+
#
|
|
77
|
+
models, models_lower = nuda.matter.micro_esym_models_mb( mb )
|
|
78
|
+
#models, models_lower = nuda.matter.micro_models_mb( mb )
|
|
79
|
+
#
|
|
80
|
+
print('models:',models)
|
|
81
|
+
#
|
|
82
|
+
if mb == 'VAR':
|
|
83
|
+
models.remove('1998-VAR-AM-APR-fit')
|
|
84
|
+
models_lower.remove('1998-var-am-apr-fit')
|
|
85
|
+
#
|
|
86
|
+
for model in models:
|
|
87
|
+
#
|
|
88
|
+
micro = nuda.eos.setupAM( model = model, kind = 'micro', asy = asy )
|
|
89
|
+
if nuda.env.verb_output: micro.print_outputs( )
|
|
90
|
+
#
|
|
91
|
+
check = nuda.matter.setupCheck( eos = micro, band = band )
|
|
92
|
+
#
|
|
93
|
+
if check.isInside:
|
|
94
|
+
lstyle = 'solid'
|
|
95
|
+
else:
|
|
96
|
+
lstyle = 'dashed'
|
|
97
|
+
continue
|
|
98
|
+
#
|
|
99
|
+
if micro.e2a_lep is not None:
|
|
100
|
+
if mb in mb_check:
|
|
101
|
+
print('model:',model)
|
|
102
|
+
print('den:',micro.den)
|
|
103
|
+
print('e2a_lep:',micro.e2a_lep)
|
|
104
|
+
axs[0,0].plot( micro.den, micro.e2a_lep, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
105
|
+
axs[1,0].plot( micro.den, micro.e2a_nuc, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
106
|
+
axs[2,0].plot( micro.den, micro.e2a_tot, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
107
|
+
else:
|
|
108
|
+
mb_check.append(mb)
|
|
109
|
+
print('mb:',mb)
|
|
110
|
+
print('model:',model)
|
|
111
|
+
print('den:',micro.den)
|
|
112
|
+
print('e2a_lep:',micro.e2a_lep)
|
|
113
|
+
axs[0,0].plot( micro.den, micro.e2a_lep, marker='o', linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
114
|
+
axs[1,0].plot( micro.den, micro.e2a_nuc, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
115
|
+
axs[2,0].plot( micro.den, micro.e2a_tot, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
116
|
+
# end of model
|
|
117
|
+
# end of mb
|
|
118
|
+
#
|
|
119
|
+
for kmodel,model in enumerate(pheno_models):
|
|
120
|
+
#
|
|
121
|
+
params, params_lower = nuda.matter.pheno_esym_params( model = model )
|
|
122
|
+
#
|
|
123
|
+
for param in params:
|
|
124
|
+
#
|
|
125
|
+
pheno = nuda.eos.setupAM( model = model, param = param, kind = 'pheno', asy = asy )
|
|
126
|
+
if nuda.env.verb_output: pheno.print_outputs( )
|
|
127
|
+
#
|
|
128
|
+
check = nuda.matter.setupCheck( eos = pheno, band = band )
|
|
129
|
+
#
|
|
130
|
+
if check.isInside:
|
|
131
|
+
lstyle = 'solid'
|
|
132
|
+
else:
|
|
133
|
+
lstyle = 'dashed'
|
|
134
|
+
continue
|
|
135
|
+
#
|
|
136
|
+
if pheno.e2a_lep is not None:
|
|
137
|
+
print('model:',model,' param:',param)
|
|
138
|
+
if model in model_check:
|
|
139
|
+
axs[0,1].plot( pheno.den, pheno.e2a_lep, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
140
|
+
axs[1,1].plot( pheno.den, pheno.e2a_nuc, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
141
|
+
axs[2,1].plot( pheno.den, pheno.e2a_tot, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
142
|
+
else:
|
|
143
|
+
model_check.append(model)
|
|
144
|
+
axs[0,1].plot( pheno.den, pheno.e2a_lep, linestyle=lstyle, label=model, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
145
|
+
axs[1,1].plot( pheno.den, pheno.e2a_nuc, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
146
|
+
axs[2,1].plot( pheno.den, pheno.e2a_tot, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
147
|
+
# end of param
|
|
148
|
+
# end of model
|
|
149
|
+
#
|
|
150
|
+
axs[0,0].text(0.02,0,'microscopic models',fontsize='10')
|
|
151
|
+
axs[0,1].text(0.02,0,'phenomenological models',fontsize='10')
|
|
152
|
+
#
|
|
153
|
+
axs[0,0].text(0.1,30,r'$\delta=0.6$',fontsize='10')
|
|
154
|
+
axs[0,1].text(0.1,30,r'$\delta=0.6$',fontsize='10')
|
|
155
|
+
axs[0,0].text(0.1,13,r'$\delta=0.8$',fontsize='10')
|
|
156
|
+
axs[0,1].text(0.1,13,r'$\delta=0.8$',fontsize='10')
|
|
157
|
+
#
|
|
158
|
+
axs[1,0].text(0.1,-2,r'$\delta=0.6$',fontsize='10')
|
|
159
|
+
axs[1,1].text(0.1,-2,r'$\delta=0.6$',fontsize='10')
|
|
160
|
+
axs[1,0].text(0.1,7,r'$\delta=0.8$',fontsize='10')
|
|
161
|
+
axs[1,1].text(0.1,7,r'$\delta=0.8$',fontsize='10')
|
|
162
|
+
#
|
|
163
|
+
axs[2,0].text(0.1,27,r'$\delta=0.6$',fontsize='10')
|
|
164
|
+
axs[2,1].text(0.1,27,r'$\delta=0.6$',fontsize='10')
|
|
165
|
+
axs[2,0].text(0.1,15,r'$\delta=0.8$',fontsize='10')
|
|
166
|
+
axs[2,1].text(0.1,15,r'$\delta=0.8$',fontsize='10')
|
|
167
|
+
#
|
|
168
|
+
fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
|
|
169
|
+
#
|
|
170
|
+
if pname is not None:
|
|
171
|
+
plt.savefig(pname, dpi=200)
|
|
172
|
+
plt.close()
|
|
173
|
+
#
|
|
@@ -23,96 +23,105 @@ def matter_ENM_fig( pname, micro_mbs, pheno_models, band ):
|
|
|
23
23
|
print(f'Plot name: {pname}')
|
|
24
24
|
#
|
|
25
25
|
fig, axs = plt.subplots(1,2)
|
|
26
|
-
#fig.tight_layout() # Or equivalently, "plt.tight_layout()"
|
|
27
26
|
fig.subplots_adjust(left=0.10, bottom=0.12, right=None, top=0.9, wspace=0.05, hspace=0.3 )
|
|
28
27
|
#
|
|
29
28
|
axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
30
|
-
axs[0].set_ylabel(r'$e_\text{NM}(
|
|
31
|
-
axs[0].set_xlim([0, 0.
|
|
32
|
-
axs[0].set_ylim([0,
|
|
29
|
+
axs[0].set_ylabel(r'$e_\text{NM}(n_\text{nuc})$')
|
|
30
|
+
axs[0].set_xlim([0, 0.34])
|
|
31
|
+
axs[0].set_ylim([0, 35])
|
|
33
32
|
#
|
|
34
33
|
axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
35
34
|
#axs[1].set_ylabel(r'$e_{sym}(n)$')
|
|
36
|
-
axs[1].set_xlim([0, 0.
|
|
37
|
-
axs[1].set_ylim([0,
|
|
35
|
+
axs[1].set_xlim([0, 0.34])
|
|
36
|
+
axs[1].set_ylim([0, 35])
|
|
38
37
|
axs[1].tick_params('y', labelleft=False)
|
|
39
38
|
#
|
|
40
39
|
mb_check = []
|
|
41
|
-
k = 0
|
|
42
40
|
#
|
|
43
|
-
for mb in micro_mbs:
|
|
41
|
+
for kmb,mb in enumerate(micro_mbs):
|
|
44
42
|
#
|
|
45
43
|
models, models_lower = nuda.matter.micro_models_mb( mb )
|
|
46
44
|
#
|
|
47
45
|
for model in models:
|
|
48
46
|
#
|
|
49
|
-
|
|
47
|
+
micro = nuda.matter.setupMicro( model = model )
|
|
48
|
+
if nuda.env.verb: micro.print_outputs( )
|
|
50
49
|
#
|
|
51
|
-
|
|
50
|
+
check = nuda.matter.setupCheck( eos = micro, band = band )
|
|
51
|
+
#
|
|
52
|
+
if check.isInside:
|
|
53
|
+
lstyle = 'solid'
|
|
54
|
+
else:
|
|
55
|
+
lstyle = 'dashed'
|
|
56
|
+
#
|
|
57
|
+
if micro.nm_e2a is not None:
|
|
52
58
|
print('mb:',mb,'model:',model)
|
|
53
59
|
if mb in mb_check:
|
|
54
|
-
if
|
|
55
|
-
if
|
|
56
|
-
axs[0].errorbar(
|
|
60
|
+
if micro.marker:
|
|
61
|
+
if micro.e_err:
|
|
62
|
+
axs[0].errorbar( micro.nm_den, micro.nm_e2a, yerr=micro.nm_e2a_err, marker=micro.marker, markevery=micro.every, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
57
63
|
else:
|
|
58
|
-
axs[0].plot(
|
|
64
|
+
axs[0].plot( micro.nm_den, micro.nm_e2a, marker=micro.marker, markevery=micro.every, linestyle=lstyle, color=nuda.param.col[kmb] )
|
|
59
65
|
else:
|
|
60
|
-
if
|
|
61
|
-
axs[0].errorbar(
|
|
66
|
+
if micro.e_err:
|
|
67
|
+
axs[0].errorbar( micro.nm_den, micro.nm_e2a, yerr=micro.nm_e2a_err, marker=micro.marker, markevery=micro.every, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
62
68
|
else:
|
|
63
|
-
axs[0].plot(
|
|
69
|
+
axs[0].plot( micro.nm_den, micro.nm_e2a, marker=micro.marker, markevery=micro.every, linestyle=lstyle, color=nuda.param.col[kmb] )
|
|
64
70
|
else:
|
|
65
71
|
mb_check.append(mb)
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
axs[0].errorbar( enm.nm_den, enm.nm_e2a, yerr=enm.nm_e2a_err, marker=enm.marker, linestyle=None, label=mb, errorevery=enm.every, color=nuda.param.col[k] )
|
|
72
|
+
if micro.marker:
|
|
73
|
+
if micro.e_err:
|
|
74
|
+
axs[0].errorbar( micro.nm_den, micro.nm_e2a, yerr=micro.nm_e2a_err, marker=micro.marker, markevery=micro.every, linestyle=lstyle, label=mb, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
70
75
|
else:
|
|
71
|
-
axs[0].plot(
|
|
76
|
+
axs[0].plot( micro.nm_den, micro.nm_e2a, marker=micro.marker, markevery=micro.every, linestyle=lstyle, label=mb, color=nuda.param.col[kmb] )
|
|
72
77
|
else:
|
|
73
|
-
if
|
|
74
|
-
axs[0].errorbar(
|
|
78
|
+
if micro.e_err:
|
|
79
|
+
axs[0].errorbar( micro.nm_den, micro.nm_e2a, yerr=micro.nm_e2a_err, marker=micro.marker, markevery=micro.every, linestyle=lstyle, label=mb, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
75
80
|
else:
|
|
76
|
-
axs[0].plot(
|
|
77
|
-
|
|
78
|
-
|
|
81
|
+
axs[0].plot( micro.nm_den, micro.nm_e2a, marker=micro.marker, markevery=micro.every, linestyle=lstyle, label=mb, color=nuda.param.col[kmb] )
|
|
82
|
+
# end model
|
|
83
|
+
# end mb
|
|
79
84
|
axs[0].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
|
|
80
85
|
axs[0].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
|
|
81
86
|
axs[0].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
|
|
82
|
-
axs[0].text(0.
|
|
83
|
-
#axs[0].legend(loc='upper left',fontsize='8', ncol=3)
|
|
87
|
+
axs[0].text(0.06,2,'microscopic models',fontsize='10')
|
|
84
88
|
#
|
|
85
89
|
model_check = []
|
|
86
|
-
k = 0
|
|
87
90
|
#
|
|
88
|
-
for model in pheno_models:
|
|
91
|
+
for kmodel,model in enumerate(pheno_models):
|
|
89
92
|
#
|
|
90
93
|
params, params_lower = nuda.matter.pheno_params( model = model )
|
|
91
94
|
#
|
|
92
95
|
for param in params:
|
|
93
96
|
#
|
|
94
|
-
|
|
97
|
+
pheno = nuda.matter.setupPheno( model = model, param = param )
|
|
98
|
+
if nuda.env.verb: pheno.print_outputs( )
|
|
99
|
+
#
|
|
100
|
+
check = nuda.matter.setupCheck( eos = pheno, band = band )
|
|
95
101
|
#
|
|
96
|
-
if
|
|
102
|
+
if check.isInside:
|
|
103
|
+
lstyle = 'solid'
|
|
104
|
+
else:
|
|
105
|
+
lstyle = 'dashed'
|
|
106
|
+
#
|
|
107
|
+
if pheno.nm_e2a is not None:
|
|
97
108
|
print('model:',model,' param:',param)
|
|
98
109
|
if model in model_check:
|
|
99
|
-
axs[1].plot(
|
|
110
|
+
axs[1].plot( pheno.nm_den, pheno.nm_e2a, linestyle=lstyle, color=nuda.param.col[kmodel] )
|
|
100
111
|
else:
|
|
101
112
|
model_check.append(model)
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
#axs[1].plot( esym.den, esym.esym, label=esym.label )
|
|
106
|
-
if nuda.env.verb: esym.print_outputs( )
|
|
113
|
+
axs[1].plot( pheno.nm_den, pheno.nm_e2a, linestyle=lstyle, color=nuda.param.col[kmodel], label=model )
|
|
114
|
+
# end param
|
|
115
|
+
# end model
|
|
107
116
|
axs[1].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
|
|
108
117
|
axs[1].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
|
|
109
118
|
axs[1].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
|
|
110
|
-
axs[1].text(0.
|
|
119
|
+
axs[1].text(0.06,2,'phenomenological models',fontsize='10')
|
|
120
|
+
#
|
|
111
121
|
#axs[1].legend(loc='upper left',fontsize='8', ncol=2)
|
|
112
122
|
#axs[0,1].legend(loc='upper left',fontsize='xx-small', ncol=2)
|
|
113
123
|
fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
|
|
114
124
|
#
|
|
115
|
-
#plt.tight_layout()
|
|
116
125
|
if pname is not None:
|
|
117
126
|
plt.savefig(pname, dpi=200)
|
|
118
127
|
plt.close()
|
|
@@ -23,96 +23,117 @@ def matter_ESM_fig( pname, micro_mbs, pheno_models, band ):
|
|
|
23
23
|
print(f'Plot name: {pname}')
|
|
24
24
|
#
|
|
25
25
|
fig, axs = plt.subplots(1,2)
|
|
26
|
-
#fig.tight_layout() # Or equivalently, "plt.tight_layout()"
|
|
27
26
|
fig.subplots_adjust(left=0.10, bottom=0.12, right=None, top=0.9, wspace=0.05, hspace=0.3 )
|
|
28
27
|
#
|
|
29
28
|
axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
30
|
-
axs[0].set_ylabel(r'$e_\text{SM}(
|
|
31
|
-
axs[0].set_xlim([0, 0.
|
|
32
|
-
axs[0].set_ylim([-
|
|
29
|
+
axs[0].set_ylabel(r'$e_\text{SM}(n_\text{nuc})$')
|
|
30
|
+
axs[0].set_xlim([0, 0.34])
|
|
31
|
+
axs[0].set_ylim([-22, 5])
|
|
33
32
|
#
|
|
34
33
|
axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
35
34
|
#axs[1].set_ylabel(r'$e_{sym}(n)$')
|
|
36
|
-
axs[1].set_xlim([0, 0.
|
|
37
|
-
axs[1].set_ylim([-
|
|
35
|
+
axs[1].set_xlim([0, 0.34])
|
|
36
|
+
axs[1].set_ylim([-22, 5])
|
|
38
37
|
axs[1].tick_params('y', labelleft=False)
|
|
39
38
|
#
|
|
40
39
|
mb_check = []
|
|
41
|
-
k = 0
|
|
42
40
|
#
|
|
43
|
-
for mb in micro_mbs:
|
|
41
|
+
for kmb,mb in enumerate(micro_mbs):
|
|
44
42
|
#
|
|
45
43
|
models, models_lower = nuda.matter.micro_models_mb( mb )
|
|
46
44
|
#
|
|
47
45
|
for model in models:
|
|
48
46
|
#
|
|
49
|
-
|
|
47
|
+
micro = nuda.matter.setupMicro( model = model )
|
|
48
|
+
if nuda.env.verb: micro.print_outputs( )
|
|
50
49
|
#
|
|
51
|
-
|
|
50
|
+
check = nuda.matter.setupCheck( eos = micro, band = band )
|
|
51
|
+
#
|
|
52
|
+
if check.isInside:
|
|
53
|
+
lstyle = 'solid'
|
|
54
|
+
else:
|
|
55
|
+
lstyle = 'dashed'
|
|
56
|
+
#
|
|
57
|
+
if micro.sm_e2a is not None:
|
|
52
58
|
print('mb:',mb,'model:',model)
|
|
53
59
|
if mb in mb_check:
|
|
54
|
-
if
|
|
55
|
-
|
|
56
|
-
|
|
60
|
+
if micro.marker:
|
|
61
|
+
print('with marker 1:',micro.marker)
|
|
62
|
+
if micro.e_err:
|
|
63
|
+
print('with error',micro.e_err)
|
|
64
|
+
axs[0].errorbar( micro.sm_den, micro.sm_e2a, yerr=micro.sm_e2a_err, marker=micro.marker, markevery=micro.every, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
57
65
|
else:
|
|
58
|
-
|
|
66
|
+
print('with no error',micro.e_err)
|
|
67
|
+
axs[0].plot( micro.sm_den, micro.sm_e2a, marker=micro.marker, markevery=micro.every, linestyle=lstyle, color=nuda.param.col[kmb] )
|
|
59
68
|
else:
|
|
60
|
-
|
|
61
|
-
|
|
69
|
+
print('with no marker',micro.marker)
|
|
70
|
+
if micro.e_err:
|
|
71
|
+
print('with error',micro.e_err)
|
|
72
|
+
axs[0].errorbar( micro.sm_den, micro.sm_e2a, yerr=micro.sm_e2a_err, marker=micro.marker, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
62
73
|
else:
|
|
63
|
-
|
|
74
|
+
print('with no error',micro.e_err)
|
|
75
|
+
axs[0].plot( micro.sm_den, micro.sm_e2a, marker=micro.marker, linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
64
76
|
else:
|
|
65
77
|
mb_check.append(mb)
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
if
|
|
69
|
-
|
|
78
|
+
if micro.marker:
|
|
79
|
+
print('with marker 2:',micro.marker)
|
|
80
|
+
if micro.e_err:
|
|
81
|
+
print('with error',micro.e_err)
|
|
82
|
+
axs[0].errorbar( micro.sm_den, micro.sm_e2a, yerr=micro.sm_e2a_err, marker=micro.marker, markevery=micro.every, linestyle=lstyle, label=mb, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
70
83
|
else:
|
|
71
|
-
|
|
84
|
+
print('with no error',micro.e_err)
|
|
85
|
+
axs[0].plot( micro.sm_den, micro.sm_e2a, marker=micro.marker, markevery=micro.every, linestyle=lstyle, label=mb, color=nuda.param.col[kmb] )
|
|
72
86
|
else:
|
|
73
|
-
|
|
74
|
-
|
|
87
|
+
print('with no marker',micro.marker)
|
|
88
|
+
if micro.e_err:
|
|
89
|
+
print('with error',micro.e_err)
|
|
90
|
+
axs[0].errorbar( micro.sm_den, micro.sm_e2a, yerr=micro.sm_e2a_err, marker=micro.marker, linestyle=lstyle, label=mb, errorevery=micro.every, color=nuda.param.col[kmb] )
|
|
75
91
|
else:
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
92
|
+
print('with no error',micro.e_err)
|
|
93
|
+
axs[0].plot( micro.sm_den, micro.sm_e2a, marker=micro.marker, linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
94
|
+
# end of model
|
|
95
|
+
# end of mb
|
|
79
96
|
axs[0].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
|
|
80
97
|
axs[0].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
|
|
81
98
|
axs[0].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
|
|
82
99
|
axs[0].text(0.03,2,'microscopic models',fontsize='10')
|
|
83
|
-
#axs[0].legend(loc='upper left',fontsize='8', ncol=3)
|
|
84
100
|
#
|
|
85
101
|
model_check = []
|
|
86
|
-
k = 0
|
|
87
102
|
#
|
|
88
|
-
for model in pheno_models:
|
|
103
|
+
for kmodel,model in enumerate(pheno_models):
|
|
89
104
|
#
|
|
90
105
|
params, params_lower = nuda.matter.pheno_params( model = model )
|
|
91
106
|
#
|
|
92
107
|
for param in params:
|
|
93
108
|
#
|
|
94
|
-
|
|
109
|
+
pheno = nuda.matter.setupPheno( model = model, param = param )
|
|
110
|
+
if nuda.env.verb: pheno.print_outputs( )
|
|
111
|
+
#
|
|
112
|
+
check = nuda.matter.setupCheck( eos = pheno, band = band )
|
|
95
113
|
#
|
|
96
|
-
if
|
|
114
|
+
if check.isInside:
|
|
115
|
+
lstyle = 'solid'
|
|
116
|
+
else:
|
|
117
|
+
lstyle = 'dashed'
|
|
118
|
+
#
|
|
119
|
+
if pheno.sm_e2a is not None:
|
|
97
120
|
print('model:',model,' param:',param)
|
|
98
121
|
if model in model_check:
|
|
99
|
-
axs[1].plot(
|
|
122
|
+
axs[1].plot( pheno.sm_den, pheno.sm_e2a, linestyle=lstyle, color=nuda.param.col[kmodel] )
|
|
100
123
|
else:
|
|
101
124
|
model_check.append(model)
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
#axs[1].plot( esym.den, esym.esym, label=esym.label )
|
|
106
|
-
if nuda.env.verb: esym.print_outputs( )
|
|
125
|
+
axs[1].plot( pheno.sm_den, pheno.sm_e2a, linestyle=lstyle, color=nuda.param.col[kmodel], label=model )
|
|
126
|
+
# end of param
|
|
127
|
+
# end of model
|
|
107
128
|
axs[1].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
|
|
108
129
|
axs[1].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
|
|
109
130
|
axs[1].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
|
|
110
131
|
axs[1].text(0.03,2,'phenomenological models',fontsize='10')
|
|
132
|
+
#
|
|
111
133
|
#axs[1].legend(loc='upper left',fontsize='8', ncol=2)
|
|
112
134
|
#axs[0,1].legend(loc='upper left',fontsize='xx-small', ncol=2)
|
|
113
135
|
fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=4,frameon=False)
|
|
114
136
|
#
|
|
115
|
-
#plt.tight_layout()
|
|
116
137
|
if pname is not None:
|
|
117
138
|
plt.savefig(pname, dpi=200)
|
|
118
139
|
plt.close()
|