npcpy 1.2.21__py3-none-any.whl → 1.2.23__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- npcpy/data/load.py +1 -1
- npcpy/ft/diff.py +110 -1
- npcpy/ft/ge.py +115 -1
- npcpy/ft/model_ensembler.py +357 -0
- npcpy/ft/rl.py +360 -1
- npcpy/ft/sft.py +229 -0
- npcpy/ft/usft.py +128 -0
- npcpy/gen/response.py +2 -2
- npcpy/llm_funcs.py +1 -1
- npcpy/memory/command_history.py +23 -0
- npcpy/memory/memory_processor.py +27 -11
- npcpy/sql/ai_function_tools.py +257 -0
- npcpy/sql/database_ai_adapters.py +186 -0
- npcpy/sql/database_ai_functions.py +163 -0
- npcpy/sql/sql_model_compiler.py +156 -0
- {npcpy-1.2.21.dist-info → npcpy-1.2.23.dist-info}/METADATA +147 -1
- {npcpy-1.2.21.dist-info → npcpy-1.2.23.dist-info}/RECORD +20 -14
- {npcpy-1.2.21.dist-info → npcpy-1.2.23.dist-info}/WHEEL +0 -0
- {npcpy-1.2.21.dist-info → npcpy-1.2.23.dist-info}/licenses/LICENSE +0 -0
- {npcpy-1.2.21.dist-info → npcpy-1.2.23.dist-info}/top_level.txt +0 -0
npcpy/gen/response.py
CHANGED
|
@@ -475,9 +475,9 @@ def get_litellm_response(
|
|
|
475
475
|
pdf_data = load_pdf(attachment)
|
|
476
476
|
if pdf_data is not None:
|
|
477
477
|
if prompt:
|
|
478
|
-
prompt += f"\n\nContent from PDF: {os.path.basename(attachment)}\n{pdf_data
|
|
478
|
+
prompt += f"\n\nContent from PDF: {os.path.basename(attachment)}\n{pdf_data}..."
|
|
479
479
|
else:
|
|
480
|
-
prompt = f"Content from PDF: {os.path.basename(attachment)}\n{pdf_data
|
|
480
|
+
prompt = f"Content from PDF: {os.path.basename(attachment)}\n{pdf_data}..."
|
|
481
481
|
|
|
482
482
|
except Exception:
|
|
483
483
|
pass
|
npcpy/llm_funcs.py
CHANGED
|
@@ -1015,7 +1015,7 @@ def execute_multi_step_plan(
|
|
|
1015
1015
|
|
|
1016
1016
|
step_outputs = []
|
|
1017
1017
|
current_messages = messages.copy()
|
|
1018
|
-
render_markdown(f"### Plan for Command: {command[100
|
|
1018
|
+
render_markdown(f"### Plan for Command: {command[:100]}")
|
|
1019
1019
|
for action in planned_actions:
|
|
1020
1020
|
step_info = json.dumps({'action': action.get('action', ''),
|
|
1021
1021
|
'explanation': str(action.get('explanation',''))[0:10]+'...'})
|
npcpy/memory/command_history.py
CHANGED
|
@@ -619,6 +619,29 @@ class CommandHistory:
|
|
|
619
619
|
}
|
|
620
620
|
|
|
621
621
|
return self._execute_returning_id(stmt, params)
|
|
622
|
+
def get_memories_for_scope(
|
|
623
|
+
self,
|
|
624
|
+
npc: str,
|
|
625
|
+
team: str,
|
|
626
|
+
directory_path: str,
|
|
627
|
+
status: Optional[str] = None
|
|
628
|
+
) -> List[Dict]:
|
|
629
|
+
|
|
630
|
+
query = """
|
|
631
|
+
SELECT id, initial_memory, final_memory,
|
|
632
|
+
status, timestamp, created_at
|
|
633
|
+
FROM memory_lifecycle
|
|
634
|
+
WHERE npc = :npc AND team = :team AND directory_path = :path
|
|
635
|
+
"""
|
|
636
|
+
params = {"npc": npc, "team": team, "path": directory_path}
|
|
637
|
+
|
|
638
|
+
if status:
|
|
639
|
+
query += " AND status = :status"
|
|
640
|
+
params["status"] = status
|
|
641
|
+
|
|
642
|
+
query += " ORDER BY created_at DESC"
|
|
643
|
+
data =self._fetch_all(query, params)
|
|
644
|
+
return data
|
|
622
645
|
|
|
623
646
|
def search_memory(self, query: str, npc: str = None, team: str = None,
|
|
624
647
|
directory_path: str = None, status_filter: str = None, limit: int = 10):
|
npcpy/memory/memory_processor.py
CHANGED
|
@@ -17,9 +17,7 @@ class MemoryItem:
|
|
|
17
17
|
model: str
|
|
18
18
|
provider: str
|
|
19
19
|
|
|
20
|
-
|
|
21
20
|
def memory_approval_ui(memories: List[Dict]) -> List[Dict]:
|
|
22
|
-
"""Simple CLI interface for memory approval"""
|
|
23
21
|
if not memories:
|
|
24
22
|
return []
|
|
25
23
|
|
|
@@ -29,37 +27,55 @@ def memory_approval_ui(memories: List[Dict]) -> List[Dict]:
|
|
|
29
27
|
for i, memory in enumerate(memories, 1):
|
|
30
28
|
print(f"\n--- Memory {i}/{len(memories)} ---")
|
|
31
29
|
print(f"NPC: {memory['npc']}")
|
|
32
|
-
|
|
30
|
+
content_preview = memory['content'][:200]
|
|
31
|
+
if len(memory['content']) > 200:
|
|
32
|
+
content_preview += '...'
|
|
33
|
+
print(f"Content: {content_preview}")
|
|
33
34
|
|
|
34
35
|
while True:
|
|
35
|
-
choice = input(
|
|
36
|
+
choice = input(
|
|
37
|
+
"(a)pprove, (r)eject, (e)dit, (s)kip | "
|
|
38
|
+
"(A)ll approve, (R)all reject, (S)all skip: "
|
|
39
|
+
).strip().lower()
|
|
36
40
|
|
|
37
41
|
if choice == 'a':
|
|
38
|
-
approvals.append({
|
|
42
|
+
approvals.append({
|
|
43
|
+
"memory_id": memory['memory_id'],
|
|
44
|
+
"decision": "human-approved"
|
|
45
|
+
})
|
|
39
46
|
break
|
|
40
47
|
elif choice == 'r':
|
|
41
|
-
approvals.append({
|
|
48
|
+
approvals.append({
|
|
49
|
+
"memory_id": memory['memory_id'],
|
|
50
|
+
"decision": "human-rejected"
|
|
51
|
+
})
|
|
42
52
|
break
|
|
43
53
|
elif choice == 'e':
|
|
44
54
|
edited = input("Edit memory: ").strip()
|
|
45
55
|
if edited:
|
|
46
56
|
approvals.append({
|
|
47
|
-
"memory_id": memory['memory_id'],
|
|
57
|
+
"memory_id": memory['memory_id'],
|
|
48
58
|
"decision": "human-edited",
|
|
49
59
|
"final_memory": edited
|
|
50
60
|
})
|
|
51
61
|
break
|
|
52
62
|
elif choice == 's':
|
|
53
63
|
break
|
|
54
|
-
elif choice == 'q':
|
|
55
|
-
return approvals
|
|
56
64
|
elif choice == 'A':
|
|
57
|
-
|
|
58
65
|
for remaining_memory in memories[i-1:]:
|
|
59
66
|
approvals.append({
|
|
60
|
-
"memory_id": remaining_memory['memory_id'],
|
|
67
|
+
"memory_id": remaining_memory['memory_id'],
|
|
61
68
|
"decision": "human-approved"
|
|
62
69
|
})
|
|
63
70
|
return approvals
|
|
71
|
+
elif choice == 'R':
|
|
72
|
+
for remaining_memory in memories[i-1:]:
|
|
73
|
+
approvals.append({
|
|
74
|
+
"memory_id": remaining_memory['memory_id'],
|
|
75
|
+
"decision": "human-rejected"
|
|
76
|
+
})
|
|
77
|
+
return approvals
|
|
78
|
+
elif choice == 'S':
|
|
79
|
+
return approvals
|
|
64
80
|
|
|
65
81
|
return approvals
|
|
@@ -0,0 +1,257 @@
|
|
|
1
|
+
import json
|
|
2
|
+
from typing import Dict, Any, List, Optional
|
|
3
|
+
|
|
4
|
+
class SQLToolCallResponse:
|
|
5
|
+
"""
|
|
6
|
+
Represents a structured response with tool calling capabilities
|
|
7
|
+
that can be generated and processed within SQL
|
|
8
|
+
"""
|
|
9
|
+
@staticmethod
|
|
10
|
+
def generate_tool_call_prompt(
|
|
11
|
+
prompt: str,
|
|
12
|
+
tools: List[Dict[str, Any]],
|
|
13
|
+
model: str = 'snowflake-arctic'
|
|
14
|
+
) -> str:
|
|
15
|
+
"""
|
|
16
|
+
Generate a prompt that instructs the model to use tools
|
|
17
|
+
|
|
18
|
+
:param prompt: Original user prompt
|
|
19
|
+
:param tools: List of available tools/functions
|
|
20
|
+
:param model: AI model to use
|
|
21
|
+
:return: Formatted prompt for tool-aware generation
|
|
22
|
+
"""
|
|
23
|
+
tool_descriptions = [
|
|
24
|
+
f"Tool: {tool.get('name', 'unnamed')}\n"
|
|
25
|
+
f"Description: {tool.get('description', 'No description')}\n"
|
|
26
|
+
f"Parameters: {json.dumps(tool.get('parameters', {}))}"
|
|
27
|
+
for tool in tools
|
|
28
|
+
]
|
|
29
|
+
|
|
30
|
+
return f"""
|
|
31
|
+
You are an AI assistant capable of using the following tools:
|
|
32
|
+
|
|
33
|
+
{"\n\n".join(tool_descriptions)}
|
|
34
|
+
|
|
35
|
+
User Prompt: {prompt}
|
|
36
|
+
|
|
37
|
+
IMPORTANT INSTRUCTIONS:
|
|
38
|
+
1. Carefully analyze the user's request
|
|
39
|
+
2. Determine which tool(s) are most appropriate
|
|
40
|
+
3. Generate a structured JSON response with:
|
|
41
|
+
- tool_calls: List of tool invocations
|
|
42
|
+
- final_response: Your overall response to the user
|
|
43
|
+
4. ONLY use tools that are directly relevant
|
|
44
|
+
5. Format the output as a valid JSON object
|
|
45
|
+
|
|
46
|
+
Output Format:
|
|
47
|
+
{{
|
|
48
|
+
"tool_calls": [
|
|
49
|
+
{{
|
|
50
|
+
"tool_name": "tool_name",
|
|
51
|
+
"parameters": {{...}}
|
|
52
|
+
}}
|
|
53
|
+
],
|
|
54
|
+
"final_response": "Optional explanation or summary"
|
|
55
|
+
}}
|
|
56
|
+
"""
|
|
57
|
+
|
|
58
|
+
@staticmethod
|
|
59
|
+
def parse_tool_calls_sql(tool_call_json: str) -> Dict[str, Any]:
|
|
60
|
+
"""
|
|
61
|
+
Parse tool calls within SQL, with error handling
|
|
62
|
+
|
|
63
|
+
:param tool_call_json: JSON string of tool calls
|
|
64
|
+
:return: Parsed tool call dictionary
|
|
65
|
+
"""
|
|
66
|
+
try:
|
|
67
|
+
parsed = json.loads(tool_call_json)
|
|
68
|
+
return {
|
|
69
|
+
'tool_calls': parsed.get('tool_calls', []),
|
|
70
|
+
'final_response': parsed.get('final_response', '')
|
|
71
|
+
}
|
|
72
|
+
except json.JSONDecodeError:
|
|
73
|
+
return {
|
|
74
|
+
'tool_calls': [],
|
|
75
|
+
'final_response': 'Error parsing tool calls'
|
|
76
|
+
}
|
|
77
|
+
|
|
78
|
+
class SnowflakeSQLToolCaller:
|
|
79
|
+
"""
|
|
80
|
+
Snowflake-specific tool calling implementation
|
|
81
|
+
"""
|
|
82
|
+
@staticmethod
|
|
83
|
+
def generate_tool_call_sql(
|
|
84
|
+
prompt: str,
|
|
85
|
+
tools: List[Dict[str, Any]],
|
|
86
|
+
model: str = 'snowflake-arctic'
|
|
87
|
+
) -> str:
|
|
88
|
+
"""
|
|
89
|
+
Generate a SQL function that performs tool calling
|
|
90
|
+
|
|
91
|
+
:param prompt: User prompt
|
|
92
|
+
:param tools: Available tools
|
|
93
|
+
:param model: AI model to use
|
|
94
|
+
:return: SQL function definition
|
|
95
|
+
"""
|
|
96
|
+
tool_call_prompt = SQLToolCallResponse.generate_tool_call_prompt(
|
|
97
|
+
prompt, tools, model
|
|
98
|
+
)
|
|
99
|
+
|
|
100
|
+
return f"""
|
|
101
|
+
WITH ai_response AS (
|
|
102
|
+
SELECT SNOWFLAKE.CORTEX.COMPLETE(
|
|
103
|
+
model => '{model}',
|
|
104
|
+
prompt => '{tool_call_prompt}'
|
|
105
|
+
) AS response_json
|
|
106
|
+
),
|
|
107
|
+
parsed_response AS (
|
|
108
|
+
SELECT
|
|
109
|
+
response_json,
|
|
110
|
+
PARSE_JSON(response_json) AS parsed_json
|
|
111
|
+
FROM ai_response
|
|
112
|
+
),
|
|
113
|
+
tool_calls AS (
|
|
114
|
+
SELECT
|
|
115
|
+
elem.tool_name,
|
|
116
|
+
elem.parameters
|
|
117
|
+
FROM parsed_response,
|
|
118
|
+
LATERAL FLATTEN(input => parsed_json:tool_calls) elem
|
|
119
|
+
)
|
|
120
|
+
SELECT
|
|
121
|
+
response_json,
|
|
122
|
+
tool_calls.tool_name,
|
|
123
|
+
tool_calls.parameters
|
|
124
|
+
FROM parsed_response
|
|
125
|
+
LEFT JOIN tool_calls ON 1=1
|
|
126
|
+
"""
|
|
127
|
+
|
|
128
|
+
class BigQuerySQLToolCaller:
|
|
129
|
+
"""
|
|
130
|
+
BigQuery-specific tool calling implementation
|
|
131
|
+
"""
|
|
132
|
+
@staticmethod
|
|
133
|
+
def generate_tool_call_sql(
|
|
134
|
+
prompt: str,
|
|
135
|
+
tools: List[Dict[str, Any]],
|
|
136
|
+
model: str = 'text-bison'
|
|
137
|
+
) -> str:
|
|
138
|
+
"""
|
|
139
|
+
Generate a BigQuery ML function for tool calling
|
|
140
|
+
|
|
141
|
+
:param prompt: User prompt
|
|
142
|
+
:param tools: Available tools
|
|
143
|
+
:param model: AI model to use
|
|
144
|
+
:return: SQL function definition
|
|
145
|
+
"""
|
|
146
|
+
tool_call_prompt = SQLToolCallResponse.generate_tool_call_prompt(
|
|
147
|
+
prompt, tools, model
|
|
148
|
+
)
|
|
149
|
+
|
|
150
|
+
return f"""
|
|
151
|
+
ML.PREDICT(
|
|
152
|
+
MODEL `{model}`,
|
|
153
|
+
(
|
|
154
|
+
SELECT '{tool_call_prompt}' AS prompt
|
|
155
|
+
)
|
|
156
|
+
)
|
|
157
|
+
"""
|
|
158
|
+
|
|
159
|
+
class SQLToolCallOrchestrator:
|
|
160
|
+
"""
|
|
161
|
+
Orchestrates tool calling across different SQL databases
|
|
162
|
+
"""
|
|
163
|
+
@staticmethod
|
|
164
|
+
def generate_tool_calls(
|
|
165
|
+
engine_type: str,
|
|
166
|
+
prompt: str,
|
|
167
|
+
tools: List[Dict[str, Any]],
|
|
168
|
+
model: Optional[str] = None
|
|
169
|
+
) -> str:
|
|
170
|
+
"""
|
|
171
|
+
Generate appropriate SQL for tool calling
|
|
172
|
+
|
|
173
|
+
:param engine_type: Type of SQL database
|
|
174
|
+
:param prompt: User prompt
|
|
175
|
+
:param tools: Available tools
|
|
176
|
+
:param model: Optional model override
|
|
177
|
+
:return: SQL for tool calling
|
|
178
|
+
"""
|
|
179
|
+
model_map = {
|
|
180
|
+
'snowflake': 'snowflake-arctic',
|
|
181
|
+
'bigquery': 'text-bison'
|
|
182
|
+
}
|
|
183
|
+
|
|
184
|
+
model = model or model_map.get(engine_type.lower(), 'snowflake-arctic')
|
|
185
|
+
|
|
186
|
+
if engine_type.lower() == 'snowflake':
|
|
187
|
+
return SnowflakeSQLToolCaller.generate_tool_call_sql(
|
|
188
|
+
prompt, tools, model
|
|
189
|
+
)
|
|
190
|
+
elif engine_type.lower() == 'bigquery':
|
|
191
|
+
return BigQuerySQLToolCaller.generate_tool_call_sql(
|
|
192
|
+
prompt, tools, model
|
|
193
|
+
)
|
|
194
|
+
else:
|
|
195
|
+
raise ValueError(f"Unsupported engine type: {engine_type}")
|
|
196
|
+
|
|
197
|
+
# Example integration with ModelCompiler
|
|
198
|
+
def _execute_ai_agent_sql(
|
|
199
|
+
self,
|
|
200
|
+
prompt: str,
|
|
201
|
+
tools: List[Dict[str, Any]]
|
|
202
|
+
) -> Dict[str, Any]:
|
|
203
|
+
"""
|
|
204
|
+
Execute an AI agent entirely within SQL
|
|
205
|
+
|
|
206
|
+
:param prompt: User prompt
|
|
207
|
+
:param tools: Available tools
|
|
208
|
+
:return: Tool call results
|
|
209
|
+
"""
|
|
210
|
+
engine_type = self.engine.dialect.name.lower()
|
|
211
|
+
|
|
212
|
+
try:
|
|
213
|
+
tool_call_sql = SQLToolCallOrchestrator.generate_tool_calls(
|
|
214
|
+
engine_type, prompt, tools
|
|
215
|
+
)
|
|
216
|
+
|
|
217
|
+
# Execute the SQL and process results
|
|
218
|
+
df = pd.read_sql(tool_call_sql, self.engine)
|
|
219
|
+
|
|
220
|
+
# Process tool calls and generate final response
|
|
221
|
+
tool_calls = self._process_sql_tool_calls(df)
|
|
222
|
+
|
|
223
|
+
return {
|
|
224
|
+
'tool_calls': tool_calls,
|
|
225
|
+
'final_response': df['final_response'].iloc[0] if not df.empty else ''
|
|
226
|
+
}
|
|
227
|
+
|
|
228
|
+
except Exception as e:
|
|
229
|
+
return {
|
|
230
|
+
'tool_calls': [],
|
|
231
|
+
'final_response': f"Error in SQL tool calling: {str(e)}"
|
|
232
|
+
}
|
|
233
|
+
|
|
234
|
+
def _process_sql_tool_calls(self, df: pd.DataFrame) -> List[Dict[str, Any]]:
|
|
235
|
+
"""
|
|
236
|
+
Process tool calls from SQL result DataFrame
|
|
237
|
+
|
|
238
|
+
:param df: DataFrame containing tool call results
|
|
239
|
+
:return: List of processed tool calls
|
|
240
|
+
"""
|
|
241
|
+
processed_calls = []
|
|
242
|
+
|
|
243
|
+
for _, row in df.iterrows():
|
|
244
|
+
tool_name = row.get('tool_name')
|
|
245
|
+
parameters = row.get('parameters')
|
|
246
|
+
|
|
247
|
+
if tool_name and parameters:
|
|
248
|
+
# Execute the tool using existing tool calling mechanism
|
|
249
|
+
tool_result = self._execute_tool(tool_name, parameters)
|
|
250
|
+
|
|
251
|
+
processed_calls.append({
|
|
252
|
+
'tool_name': tool_name,
|
|
253
|
+
'parameters': parameters,
|
|
254
|
+
'result': tool_result
|
|
255
|
+
})
|
|
256
|
+
|
|
257
|
+
return processed_calls
|
|
@@ -0,0 +1,186 @@
|
|
|
1
|
+
import sqlalchemy
|
|
2
|
+
from typing import Dict, Any, Optional, Callable
|
|
3
|
+
import textwrap
|
|
4
|
+
|
|
5
|
+
class DatabaseAIAdapter:
|
|
6
|
+
"""
|
|
7
|
+
Base class for database-specific AI function adapters
|
|
8
|
+
"""
|
|
9
|
+
def __init__(self, engine: sqlalchemy.engine.base.Engine):
|
|
10
|
+
self.engine = engine
|
|
11
|
+
self.dialect = self._get_dialect()
|
|
12
|
+
|
|
13
|
+
def _get_dialect(self) -> str:
|
|
14
|
+
"""Determine the specific database dialect"""
|
|
15
|
+
dialect_map = {
|
|
16
|
+
'postgresql': 'postgresql',
|
|
17
|
+
'mysql': 'mysql',
|
|
18
|
+
'mssql': 'mssql',
|
|
19
|
+
'sqlite': 'sqlite',
|
|
20
|
+
'snowflake': 'snowflake'
|
|
21
|
+
}
|
|
22
|
+
return dialect_map.get(self.engine.dialect.name.lower(), 'unknown')
|
|
23
|
+
|
|
24
|
+
def generate_ai_function(self, function_type: str, prompt: str, **kwargs) -> str:
|
|
25
|
+
"""
|
|
26
|
+
Generate AI function implementation based on database type
|
|
27
|
+
|
|
28
|
+
:param function_type: Type of AI function (generate_text, summarize, etc.)
|
|
29
|
+
:param prompt: Input prompt
|
|
30
|
+
:param kwargs: Additional parameters
|
|
31
|
+
:return: SQL implementation of AI function
|
|
32
|
+
"""
|
|
33
|
+
adapter_method = getattr(self, f'_{self.dialect}_{function_type}', None)
|
|
34
|
+
|
|
35
|
+
if adapter_method:
|
|
36
|
+
return adapter_method(prompt, **kwargs)
|
|
37
|
+
|
|
38
|
+
# Fallback to generic implementation
|
|
39
|
+
return self._generic_ai_function(function_type, prompt, **kwargs)
|
|
40
|
+
|
|
41
|
+
def _generic_ai_function(self, function_type: str, prompt: str, **kwargs) -> str:
|
|
42
|
+
"""
|
|
43
|
+
Generic fallback implementation using Python-based AI processing
|
|
44
|
+
"""
|
|
45
|
+
# Create a temporary table-based approach for AI function simulation
|
|
46
|
+
return textwrap.dedent(f'''
|
|
47
|
+
WITH ai_input AS (
|
|
48
|
+
SELECT '{prompt}' AS input_text
|
|
49
|
+
)
|
|
50
|
+
SELECT
|
|
51
|
+
CASE
|
|
52
|
+
WHEN '{function_type}' = 'generate_text' THEN
|
|
53
|
+
'Generated text based on: ' || input_text
|
|
54
|
+
WHEN '{function_type}' = 'summarize' THEN
|
|
55
|
+
'Summary of: ' || input_text
|
|
56
|
+
WHEN '{function_type}' = 'analyze_sentiment' THEN
|
|
57
|
+
CASE
|
|
58
|
+
WHEN input_text LIKE '%good%' OR input_text LIKE '%great%' THEN 'positive'
|
|
59
|
+
WHEN input_text LIKE '%bad%' OR input_text LIKE '%terrible%' THEN 'negative'
|
|
60
|
+
ELSE 'neutral'
|
|
61
|
+
END
|
|
62
|
+
ELSE input_text
|
|
63
|
+
END AS ai_result
|
|
64
|
+
FROM ai_input
|
|
65
|
+
''')
|
|
66
|
+
|
|
67
|
+
def _postgresql_generate_text(self, prompt: str, **kwargs) -> str:
|
|
68
|
+
"""
|
|
69
|
+
PostgreSQL-specific text generation using pgai extension
|
|
70
|
+
Requires: CREATE EXTENSION IF NOT EXISTS pgai;
|
|
71
|
+
"""
|
|
72
|
+
return textwrap.dedent(f'''
|
|
73
|
+
SELECT pgai.generate_text(
|
|
74
|
+
model => 'openai-gpt-3.5-turbo',
|
|
75
|
+
prompt => '{prompt}'
|
|
76
|
+
) AS generated_text
|
|
77
|
+
''')
|
|
78
|
+
|
|
79
|
+
def _mysql_generate_text(self, prompt: str, **kwargs) -> str:
|
|
80
|
+
"""
|
|
81
|
+
MySQL-specific text generation
|
|
82
|
+
Uses a custom table-based approach with external AI call simulation
|
|
83
|
+
"""
|
|
84
|
+
return textwrap.dedent(f'''
|
|
85
|
+
WITH ai_input AS (
|
|
86
|
+
SELECT '{prompt}' AS input_text
|
|
87
|
+
)
|
|
88
|
+
SELECT
|
|
89
|
+
CONCAT('Generated text based on: ', input_text) AS generated_text
|
|
90
|
+
FROM ai_input
|
|
91
|
+
''')
|
|
92
|
+
|
|
93
|
+
def _mssql_generate_text(self, prompt: str, **kwargs) -> str:
|
|
94
|
+
"""
|
|
95
|
+
MSSQL-specific text generation
|
|
96
|
+
Uses a CLR integration or external call simulation
|
|
97
|
+
"""
|
|
98
|
+
return textwrap.dedent(f'''
|
|
99
|
+
WITH ai_input AS (
|
|
100
|
+
SELECT '{prompt}' AS input_text
|
|
101
|
+
)
|
|
102
|
+
SELECT
|
|
103
|
+
CONCAT('Generated text based on: ', input_text) AS generated_text
|
|
104
|
+
FROM ai_input
|
|
105
|
+
''')
|
|
106
|
+
|
|
107
|
+
def _postgresql_summarize(self, text: str, **kwargs) -> str:
|
|
108
|
+
"""PostgreSQL summarization implementation"""
|
|
109
|
+
return textwrap.dedent(f'''
|
|
110
|
+
SELECT pgai.summarize(
|
|
111
|
+
text => '{text}',
|
|
112
|
+
max_length => 100
|
|
113
|
+
) AS summary
|
|
114
|
+
''')
|
|
115
|
+
|
|
116
|
+
def _postgresql_analyze_sentiment(self, text: str, **kwargs) -> str:
|
|
117
|
+
"""PostgreSQL sentiment analysis implementation"""
|
|
118
|
+
return textwrap.dedent(f'''
|
|
119
|
+
SELECT
|
|
120
|
+
CASE
|
|
121
|
+
WHEN pgai.sentiment_score('{text}') > 0 THEN 'positive'
|
|
122
|
+
WHEN pgai.sentiment_score('{text}') < 0 THEN 'negative'
|
|
123
|
+
ELSE 'neutral'
|
|
124
|
+
END AS sentiment
|
|
125
|
+
''')
|
|
126
|
+
|
|
127
|
+
class AIFunctionRouter:
|
|
128
|
+
"""
|
|
129
|
+
Routes AI function calls to appropriate database-specific adapters
|
|
130
|
+
"""
|
|
131
|
+
@staticmethod
|
|
132
|
+
def route_ai_function(engine: sqlalchemy.engine.base.Engine,
|
|
133
|
+
function_type: str,
|
|
134
|
+
prompt: str,
|
|
135
|
+
**kwargs) -> str:
|
|
136
|
+
"""
|
|
137
|
+
Route AI function to appropriate database adapter
|
|
138
|
+
|
|
139
|
+
:param engine: SQLAlchemy database engine
|
|
140
|
+
:param function_type: Type of AI function
|
|
141
|
+
:param prompt: Input prompt
|
|
142
|
+
:param kwargs: Additional parameters
|
|
143
|
+
:return: SQL implementation of AI function
|
|
144
|
+
"""
|
|
145
|
+
adapter = DatabaseAIAdapter(engine)
|
|
146
|
+
return adapter.generate_ai_function(function_type, prompt, **kwargs)
|
|
147
|
+
|
|
148
|
+
# Example integration with existing ModelCompiler
|
|
149
|
+
def _execute_ai_model(self, sql: str, model: SQLModel) -> pd.DataFrame:
|
|
150
|
+
"""
|
|
151
|
+
Enhanced method to use AI function adapters
|
|
152
|
+
"""
|
|
153
|
+
from npcpy.sql.database_ai_adapters import AIFunctionRouter
|
|
154
|
+
|
|
155
|
+
# Existing code to determine source and engine
|
|
156
|
+
source_pattern = r'FROM\s+(\\w+)\\.(\\w+)'
|
|
157
|
+
matches = re.findall(source_pattern, sql)
|
|
158
|
+
|
|
159
|
+
if matches:
|
|
160
|
+
source_name, table_name = matches[0]
|
|
161
|
+
engine = self._get_engine(source_name)
|
|
162
|
+
|
|
163
|
+
# Modify SQL to use database-specific AI functions
|
|
164
|
+
for func_name, params in model.ai_functions.items():
|
|
165
|
+
try:
|
|
166
|
+
# Route AI function through adapter
|
|
167
|
+
native_func_call = AIFunctionRouter.route_ai_function(
|
|
168
|
+
engine,
|
|
169
|
+
func_name,
|
|
170
|
+
text=params.get('column', ''),
|
|
171
|
+
**{k: v for k, v in params.items() if k != 'column'}
|
|
172
|
+
)
|
|
173
|
+
|
|
174
|
+
# Replace the NQL function with native/adapted function
|
|
175
|
+
sql = sql.replace(
|
|
176
|
+
f"nql.{func_name}({params.get('column', '')})",
|
|
177
|
+
native_func_call
|
|
178
|
+
)
|
|
179
|
+
except Exception as e:
|
|
180
|
+
# Fallback to original method if transformation fails
|
|
181
|
+
print(f"Warning: AI function adaptation failed: {e}. Falling back to default.")
|
|
182
|
+
|
|
183
|
+
return pd.read_sql(sql.replace(f"{source_name}.", ""), engine)
|
|
184
|
+
|
|
185
|
+
# Fallback to existing AI model execution
|
|
186
|
+
return super()._execute_ai_model(sql, model)
|