npcpy 1.2.21__py3-none-any.whl → 1.2.23__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- npcpy/data/load.py +1 -1
- npcpy/ft/diff.py +110 -1
- npcpy/ft/ge.py +115 -1
- npcpy/ft/model_ensembler.py +357 -0
- npcpy/ft/rl.py +360 -1
- npcpy/ft/sft.py +229 -0
- npcpy/ft/usft.py +128 -0
- npcpy/gen/response.py +2 -2
- npcpy/llm_funcs.py +1 -1
- npcpy/memory/command_history.py +23 -0
- npcpy/memory/memory_processor.py +27 -11
- npcpy/sql/ai_function_tools.py +257 -0
- npcpy/sql/database_ai_adapters.py +186 -0
- npcpy/sql/database_ai_functions.py +163 -0
- npcpy/sql/sql_model_compiler.py +156 -0
- {npcpy-1.2.21.dist-info → npcpy-1.2.23.dist-info}/METADATA +147 -1
- {npcpy-1.2.21.dist-info → npcpy-1.2.23.dist-info}/RECORD +20 -14
- {npcpy-1.2.21.dist-info → npcpy-1.2.23.dist-info}/WHEEL +0 -0
- {npcpy-1.2.21.dist-info → npcpy-1.2.23.dist-info}/licenses/LICENSE +0 -0
- {npcpy-1.2.21.dist-info → npcpy-1.2.23.dist-info}/top_level.txt +0 -0
npcpy/data/load.py
CHANGED
|
@@ -132,7 +132,7 @@ def load_file_contents(file_path, chunk_size=None):
|
|
|
132
132
|
elif file_ext in ['XLS', 'XLSX']:
|
|
133
133
|
df = load_excel(file_path)
|
|
134
134
|
full_content = df.to_string()
|
|
135
|
-
elif file_ext in ['TXT', 'MD', 'PY', 'JSX', 'TSX', 'TS', 'JS', 'JSON', 'SQL', 'NPC', 'JINX', 'LINE', 'YAML']:
|
|
135
|
+
elif file_ext in ['TXT', 'MD', 'PY', 'JSX', 'TSX', 'TS', 'JS', 'JSON', 'SQL', 'NPC', 'JINX', 'LINE', 'YAML', 'DART', 'JAVA']:
|
|
136
136
|
full_content = load_txt(file_path)
|
|
137
137
|
elif file_ext == 'JSON':
|
|
138
138
|
data = load_json(file_path)
|
npcpy/ft/diff.py
CHANGED
|
@@ -1 +1,110 @@
|
|
|
1
|
-
# finetuning diffuser models
|
|
1
|
+
# finetuning diffuser models
|
|
2
|
+
try:
|
|
3
|
+
import torch
|
|
4
|
+
import torch.nn as nn
|
|
5
|
+
import torch.nn.functional as F
|
|
6
|
+
from torch.utils.data import DataLoader, Dataset as TorchDataset
|
|
7
|
+
from transformers import CLIPTextModel, CLIPTokenizer
|
|
8
|
+
except:
|
|
9
|
+
torch = None
|
|
10
|
+
nn = None
|
|
11
|
+
F = None
|
|
12
|
+
DataLoader = None
|
|
13
|
+
TorchDataset = None
|
|
14
|
+
CLIPTextModel = None
|
|
15
|
+
CLIPTokenizer = None
|
|
16
|
+
import math
|
|
17
|
+
from dataclasses import dataclass, field
|
|
18
|
+
from typing import List, Optional, Callable
|
|
19
|
+
import numpy as np
|
|
20
|
+
from PIL import Image
|
|
21
|
+
import os
|
|
22
|
+
from tqdm import tqdm
|
|
23
|
+
import gc
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
@dataclass
|
|
27
|
+
class DiffusionConfig:
|
|
28
|
+
image_size: int = 128
|
|
29
|
+
channels: int = 256
|
|
30
|
+
time_emb_dim: int = 128
|
|
31
|
+
timesteps: int = 1000
|
|
32
|
+
beta_start: float = 1e-4
|
|
33
|
+
beta_end: float = 0.02
|
|
34
|
+
num_epochs: int = 100
|
|
35
|
+
batch_size: int = 4
|
|
36
|
+
learning_rate: float = 1e-5
|
|
37
|
+
checkpoint_frequency: int = 1000
|
|
38
|
+
output_dir: str = "diffusion_model"
|
|
39
|
+
use_clip: bool = True
|
|
40
|
+
num_channels: int = 1
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
class SinusoidalPositionEmbeddings(nn.Module):
|
|
44
|
+
|
|
45
|
+
def __init__(self, dim):
|
|
46
|
+
super().__init__()
|
|
47
|
+
self.dim = dim
|
|
48
|
+
|
|
49
|
+
def forward(self, time):
|
|
50
|
+
device = time.device
|
|
51
|
+
half_dim = self.dim // 2
|
|
52
|
+
embeddings = math.log(10000) / (half_dim - 1)
|
|
53
|
+
embeddings = torch.exp(
|
|
54
|
+
torch.arange(half_dim, device=device) * -embeddings
|
|
55
|
+
)
|
|
56
|
+
embeddings = time[:, None] * embeddings[None, :]
|
|
57
|
+
embeddings = torch.cat(
|
|
58
|
+
(embeddings.sin(), embeddings.cos()),
|
|
59
|
+
dim=-1
|
|
60
|
+
)
|
|
61
|
+
return embeddings
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
class SimpleUNet(nn.Module):
|
|
65
|
+
|
|
66
|
+
def __init__(
|
|
67
|
+
self,
|
|
68
|
+
image_size=128,
|
|
69
|
+
channels=256,
|
|
70
|
+
time_emb_dim=128,
|
|
71
|
+
num_channels=1
|
|
72
|
+
):
|
|
73
|
+
super().__init__()
|
|
74
|
+
|
|
75
|
+
self.image_size = image_size
|
|
76
|
+
|
|
77
|
+
self.time_mlp = nn.Sequential(
|
|
78
|
+
SinusoidalPositionEmbeddings(time_emb_dim),
|
|
79
|
+
nn.Linear(time_emb_dim, time_emb_dim * 4),
|
|
80
|
+
nn.GELU(),
|
|
81
|
+
nn.Linear(time_emb_dim * 4, channels),
|
|
82
|
+
)
|
|
83
|
+
|
|
84
|
+
self.text_mlp = nn.Sequential(
|
|
85
|
+
nn.Linear(768, time_emb_dim),
|
|
86
|
+
nn.GELU(),
|
|
87
|
+
nn.Linear(time_emb_dim, time_emb_dim),
|
|
88
|
+
nn.GELU(),
|
|
89
|
+
nn.Linear(time_emb_dim, channels),
|
|
90
|
+
)
|
|
91
|
+
|
|
92
|
+
self.conv_in = nn.Conv2d(num_channels, channels, 1, padding=0)
|
|
93
|
+
|
|
94
|
+
self.down1 = nn.Sequential(
|
|
95
|
+
nn.Conv2d(channels, channels * 2, 4, 2, 1),
|
|
96
|
+
nn.GroupNorm(8, channels * 2),
|
|
97
|
+
nn.GELU(),
|
|
98
|
+
)
|
|
99
|
+
|
|
100
|
+
self.down2 = nn.Sequential(
|
|
101
|
+
nn.Conv2d(channels * 2, channels * 4, 4, 2, 1),
|
|
102
|
+
nn.GroupNorm(8, channels * 4),
|
|
103
|
+
nn.GELU(),
|
|
104
|
+
)
|
|
105
|
+
|
|
106
|
+
self.down3 = nn.Sequential(
|
|
107
|
+
nn.Conv2d(channels * 4, channels * 8, 4, 2, 1),
|
|
108
|
+
nn.GroupNorm(8, channels * 8),
|
|
109
|
+
nn.GELU(),
|
|
110
|
+
)
|
npcpy/ft/ge.py
CHANGED
|
@@ -1 +1,115 @@
|
|
|
1
|
-
|
|
1
|
+
import random
|
|
2
|
+
from dataclasses import dataclass
|
|
3
|
+
from typing import Callable, Optional, List
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
@dataclass
|
|
7
|
+
class GAConfig:
|
|
8
|
+
population_size: int = 20
|
|
9
|
+
mutation_rate: float = 0.15
|
|
10
|
+
crossover_rate: float = 0.7
|
|
11
|
+
tournament_size: int = 3
|
|
12
|
+
elitism_count: int = 2
|
|
13
|
+
generations: int = 50
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class GeneticEvolver:
|
|
17
|
+
"""
|
|
18
|
+
Generic GA that takes fitness, mutation, crossover
|
|
19
|
+
and initialization functions to evolve any population
|
|
20
|
+
"""
|
|
21
|
+
def __init__(
|
|
22
|
+
self,
|
|
23
|
+
fitness_fn: Callable,
|
|
24
|
+
mutate_fn: Callable,
|
|
25
|
+
crossover_fn: Callable,
|
|
26
|
+
initialize_fn: Callable,
|
|
27
|
+
config: Optional[GAConfig] = None
|
|
28
|
+
):
|
|
29
|
+
self.fitness_fn = fitness_fn
|
|
30
|
+
self.mutate_fn = mutate_fn
|
|
31
|
+
self.crossover_fn = crossover_fn
|
|
32
|
+
self.initialize_fn = initialize_fn
|
|
33
|
+
self.config = config or GAConfig()
|
|
34
|
+
self.population = []
|
|
35
|
+
self.history = []
|
|
36
|
+
|
|
37
|
+
def initialize_population(self):
|
|
38
|
+
self.population = [
|
|
39
|
+
self.initialize_fn()
|
|
40
|
+
for _ in range(self.config.population_size)
|
|
41
|
+
]
|
|
42
|
+
|
|
43
|
+
def evaluate_population(self) -> List[float]:
|
|
44
|
+
return [
|
|
45
|
+
self.fitness_fn(individual)
|
|
46
|
+
for individual in self.population
|
|
47
|
+
]
|
|
48
|
+
|
|
49
|
+
def tournament_select(self, fitness_scores: List[float]):
|
|
50
|
+
indices = random.sample(
|
|
51
|
+
range(len(self.population)),
|
|
52
|
+
self.config.tournament_size
|
|
53
|
+
)
|
|
54
|
+
tournament_fitness = [fitness_scores[i] for i in indices]
|
|
55
|
+
winner_idx = indices[
|
|
56
|
+
tournament_fitness.index(max(tournament_fitness))
|
|
57
|
+
]
|
|
58
|
+
return self.population[winner_idx]
|
|
59
|
+
|
|
60
|
+
def evolve_generation(self):
|
|
61
|
+
fitness_scores = self.evaluate_population()
|
|
62
|
+
|
|
63
|
+
sorted_pop = sorted(
|
|
64
|
+
zip(self.population, fitness_scores),
|
|
65
|
+
key=lambda x: x[1],
|
|
66
|
+
reverse=True
|
|
67
|
+
)
|
|
68
|
+
|
|
69
|
+
new_population = [
|
|
70
|
+
ind for ind, _ in sorted_pop[:self.config.elitism_count]
|
|
71
|
+
]
|
|
72
|
+
|
|
73
|
+
while len(new_population) < self.config.population_size:
|
|
74
|
+
parent1 = self.tournament_select(fitness_scores)
|
|
75
|
+
parent2 = self.tournament_select(fitness_scores)
|
|
76
|
+
|
|
77
|
+
if random.random() < self.config.crossover_rate:
|
|
78
|
+
child = self.crossover_fn(parent1, parent2)
|
|
79
|
+
else:
|
|
80
|
+
child = parent1
|
|
81
|
+
|
|
82
|
+
if random.random() < self.config.mutation_rate:
|
|
83
|
+
child = self.mutate_fn(child)
|
|
84
|
+
|
|
85
|
+
new_population.append(child)
|
|
86
|
+
|
|
87
|
+
self.population = new_population[:self.config.population_size]
|
|
88
|
+
|
|
89
|
+
best_fitness = max(fitness_scores)
|
|
90
|
+
avg_fitness = sum(fitness_scores) / len(fitness_scores)
|
|
91
|
+
|
|
92
|
+
return {
|
|
93
|
+
'best_fitness': best_fitness,
|
|
94
|
+
'avg_fitness': avg_fitness,
|
|
95
|
+
'best_individual': sorted_pop[0][0]
|
|
96
|
+
}
|
|
97
|
+
|
|
98
|
+
def run(self, generations: Optional[int] = None):
|
|
99
|
+
if not self.population:
|
|
100
|
+
self.initialize_population()
|
|
101
|
+
|
|
102
|
+
gens = generations or self.config.generations
|
|
103
|
+
|
|
104
|
+
for gen in range(gens):
|
|
105
|
+
gen_stats = self.evolve_generation()
|
|
106
|
+
self.history.append(gen_stats)
|
|
107
|
+
|
|
108
|
+
if gen % 10 == 0:
|
|
109
|
+
print(
|
|
110
|
+
f"Gen {gen}: "
|
|
111
|
+
f"Best={gen_stats['best_fitness']:.3f}, "
|
|
112
|
+
f"Avg={gen_stats['avg_fitness']:.3f}"
|
|
113
|
+
)
|
|
114
|
+
|
|
115
|
+
return self.history[-1]['best_individual']
|
|
@@ -0,0 +1,357 @@
|
|
|
1
|
+
import time
|
|
2
|
+
import copy
|
|
3
|
+
import random
|
|
4
|
+
from dataclasses import dataclass, field
|
|
5
|
+
from typing import List, Dict, Any, Optional
|
|
6
|
+
from npcpy.llm_funcs import get_llm_response
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
from npcpy.ft.sft import predict_sft, load_sft_model
|
|
10
|
+
except:
|
|
11
|
+
pass
|
|
12
|
+
|
|
13
|
+
@dataclass
|
|
14
|
+
class ModelGene:
|
|
15
|
+
"""
|
|
16
|
+
Represents a specialized model with trigger patterns
|
|
17
|
+
and confidence threshold
|
|
18
|
+
"""
|
|
19
|
+
sft_path: Optional[str] = None
|
|
20
|
+
rl_path: Optional[str] = None
|
|
21
|
+
base_model: str = "Qwen/Qwen3-0.6B"
|
|
22
|
+
specialization: str = "general"
|
|
23
|
+
trigger_patterns: List[str] = field(default_factory=list)
|
|
24
|
+
confidence_threshold: float = 0.7
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def generate_trigger_patterns(specialization: str) -> List[str]:
|
|
28
|
+
"""
|
|
29
|
+
Generate trigger patterns for a given specialization domain
|
|
30
|
+
"""
|
|
31
|
+
patterns = {
|
|
32
|
+
'math': ['calculate', 'solve', 'equation', 'number'],
|
|
33
|
+
'code': ['function', 'class', 'bug', 'debug', 'code'],
|
|
34
|
+
'creative': ['story', 'poem', 'creative', 'imagine'],
|
|
35
|
+
'factual': ['what is', 'who is', 'when did', 'where is'],
|
|
36
|
+
'analysis': ['analyze', 'compare', 'evaluate', 'assess']
|
|
37
|
+
}
|
|
38
|
+
|
|
39
|
+
return patterns.get(specialization, ['general'])
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
def create_model_genome(
|
|
43
|
+
specializations: List[str],
|
|
44
|
+
base_model: str = "Qwen/Qwen3-0.6B"
|
|
45
|
+
) -> List[ModelGene]:
|
|
46
|
+
"""
|
|
47
|
+
Initialize a genome of specialized models
|
|
48
|
+
"""
|
|
49
|
+
genome = []
|
|
50
|
+
|
|
51
|
+
for spec in specializations:
|
|
52
|
+
gene = ModelGene(
|
|
53
|
+
base_model=base_model,
|
|
54
|
+
specialization=spec,
|
|
55
|
+
trigger_patterns=generate_trigger_patterns(spec),
|
|
56
|
+
confidence_threshold=random.uniform(0.6, 0.9)
|
|
57
|
+
)
|
|
58
|
+
genome.append(gene)
|
|
59
|
+
|
|
60
|
+
return genome
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
def mutate_model_genome(
|
|
64
|
+
genome: List[ModelGene],
|
|
65
|
+
mutation_type: str = 'random'
|
|
66
|
+
) -> List[ModelGene]:
|
|
67
|
+
"""
|
|
68
|
+
Apply genetic mutation to model genome
|
|
69
|
+
"""
|
|
70
|
+
new_genome = copy.deepcopy(genome)
|
|
71
|
+
|
|
72
|
+
mutations = [
|
|
73
|
+
'adjust_threshold',
|
|
74
|
+
'add_trigger',
|
|
75
|
+
'remove_gene',
|
|
76
|
+
'duplicate_gene'
|
|
77
|
+
]
|
|
78
|
+
|
|
79
|
+
if mutation_type == 'random':
|
|
80
|
+
mutation_type = random.choice(mutations)
|
|
81
|
+
|
|
82
|
+
if mutation_type == 'adjust_threshold':
|
|
83
|
+
gene = random.choice(new_genome)
|
|
84
|
+
gene.confidence_threshold += random.uniform(-0.1, 0.1)
|
|
85
|
+
gene.confidence_threshold = max(
|
|
86
|
+
0.5,
|
|
87
|
+
min(0.95, gene.confidence_threshold)
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
elif mutation_type == 'add_trigger':
|
|
91
|
+
gene = random.choice(new_genome)
|
|
92
|
+
new_trigger = f"pattern_{random.randint(1, 100)}"
|
|
93
|
+
if new_trigger not in gene.trigger_patterns:
|
|
94
|
+
gene.trigger_patterns.append(new_trigger)
|
|
95
|
+
|
|
96
|
+
elif mutation_type == 'remove_gene' and len(new_genome) > 1:
|
|
97
|
+
new_genome.pop(random.randint(0, len(new_genome) - 1))
|
|
98
|
+
|
|
99
|
+
elif mutation_type == 'duplicate_gene':
|
|
100
|
+
gene = random.choice(new_genome)
|
|
101
|
+
new_gene = copy.deepcopy(gene)
|
|
102
|
+
new_gene.specialization = f"{gene.specialization}_variant"
|
|
103
|
+
new_genome.append(new_gene)
|
|
104
|
+
|
|
105
|
+
return new_genome
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
def crossover_model_genomes(
|
|
109
|
+
genome1: List[ModelGene],
|
|
110
|
+
genome2: List[ModelGene]
|
|
111
|
+
) -> List[ModelGene]:
|
|
112
|
+
"""
|
|
113
|
+
Crossover two model genomes to create child genome
|
|
114
|
+
"""
|
|
115
|
+
if not genome1 or not genome2:
|
|
116
|
+
return genome1 or genome2
|
|
117
|
+
|
|
118
|
+
split = random.randint(1, min(len(genome1), len(genome2)) - 1)
|
|
119
|
+
|
|
120
|
+
child = genome1[:split] + genome2[split:]
|
|
121
|
+
|
|
122
|
+
return child
|
|
123
|
+
|
|
124
|
+
|
|
125
|
+
def evaluate_model_genome(
|
|
126
|
+
genome: List[ModelGene],
|
|
127
|
+
test_cases: List[Dict[str, Any]],
|
|
128
|
+
router: 'ResponseRouter'
|
|
129
|
+
) -> float:
|
|
130
|
+
"""
|
|
131
|
+
Evaluate fitness of a model genome based on accuracy,
|
|
132
|
+
speed and efficiency
|
|
133
|
+
"""
|
|
134
|
+
correct = 0
|
|
135
|
+
total_time = 0
|
|
136
|
+
fast_responses = 0
|
|
137
|
+
|
|
138
|
+
for test_case in test_cases:
|
|
139
|
+
result = router.route_query(
|
|
140
|
+
test_case['query'],
|
|
141
|
+
genome,
|
|
142
|
+
test_case.get('ground_truth')
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
if result['correct']:
|
|
146
|
+
correct += 1
|
|
147
|
+
|
|
148
|
+
total_time += result['response_time']
|
|
149
|
+
|
|
150
|
+
if result['used_fast_path']:
|
|
151
|
+
fast_responses += 1
|
|
152
|
+
|
|
153
|
+
accuracy = correct / len(test_cases)
|
|
154
|
+
speed_bonus = fast_responses / len(test_cases)
|
|
155
|
+
efficiency = 1.0 / (total_time / len(test_cases))
|
|
156
|
+
|
|
157
|
+
fitness = (
|
|
158
|
+
accuracy * 0.6 +
|
|
159
|
+
speed_bonus * 0.2 +
|
|
160
|
+
efficiency * 0.2
|
|
161
|
+
)
|
|
162
|
+
|
|
163
|
+
return fitness
|
|
164
|
+
|
|
165
|
+
|
|
166
|
+
class ResponseRouter:
|
|
167
|
+
"""
|
|
168
|
+
Routes queries through fast path, ensemble or full reasoning
|
|
169
|
+
based on confidence thresholds
|
|
170
|
+
"""
|
|
171
|
+
def __init__(
|
|
172
|
+
self,
|
|
173
|
+
fast_threshold: float = 0.8,
|
|
174
|
+
ensemble_threshold: float = 0.6
|
|
175
|
+
):
|
|
176
|
+
self.fast_threshold = fast_threshold
|
|
177
|
+
self.ensemble_threshold = ensemble_threshold
|
|
178
|
+
self.response_cache = {}
|
|
179
|
+
|
|
180
|
+
def route_query(
|
|
181
|
+
self,
|
|
182
|
+
query: str,
|
|
183
|
+
genome: List[ModelGene],
|
|
184
|
+
ground_truth: Optional[str] = None
|
|
185
|
+
) -> Dict[str, Any]:
|
|
186
|
+
"""
|
|
187
|
+
Route query through system 1 fast path,
|
|
188
|
+
ensemble or system 2 reasoning
|
|
189
|
+
"""
|
|
190
|
+
start_time = time.time()
|
|
191
|
+
|
|
192
|
+
fast_response = self._try_fast_path(query, genome)
|
|
193
|
+
|
|
194
|
+
if fast_response and fast_response['confidence'] > (
|
|
195
|
+
self.fast_threshold
|
|
196
|
+
):
|
|
197
|
+
response_time = time.time() - start_time
|
|
198
|
+
|
|
199
|
+
return {
|
|
200
|
+
'response': fast_response['answer'],
|
|
201
|
+
'confidence': fast_response['confidence'],
|
|
202
|
+
'used_fast_path': True,
|
|
203
|
+
'response_time': response_time,
|
|
204
|
+
'correct': (
|
|
205
|
+
ground_truth is None or
|
|
206
|
+
self._check_correctness(
|
|
207
|
+
fast_response['answer'],
|
|
208
|
+
ground_truth
|
|
209
|
+
)
|
|
210
|
+
)
|
|
211
|
+
}
|
|
212
|
+
|
|
213
|
+
ensemble_response = self._try_ensemble(query, genome)
|
|
214
|
+
|
|
215
|
+
if ensemble_response['confidence'] > (
|
|
216
|
+
self.ensemble_threshold
|
|
217
|
+
):
|
|
218
|
+
response_time = time.time() - start_time
|
|
219
|
+
|
|
220
|
+
return {
|
|
221
|
+
'response': ensemble_response['answer'],
|
|
222
|
+
'confidence': ensemble_response['confidence'],
|
|
223
|
+
'used_fast_path': False,
|
|
224
|
+
'used_ensemble': True,
|
|
225
|
+
'response_time': response_time,
|
|
226
|
+
'correct': (
|
|
227
|
+
ground_truth is None or
|
|
228
|
+
self._check_correctness(
|
|
229
|
+
ensemble_response['answer'],
|
|
230
|
+
ground_truth
|
|
231
|
+
)
|
|
232
|
+
)
|
|
233
|
+
}
|
|
234
|
+
|
|
235
|
+
full_response = self._full_reasoning(query)
|
|
236
|
+
response_time = time.time() - start_time
|
|
237
|
+
|
|
238
|
+
return {
|
|
239
|
+
'response': full_response,
|
|
240
|
+
'confidence': 0.5,
|
|
241
|
+
'used_fast_path': False,
|
|
242
|
+
'used_ensemble': False,
|
|
243
|
+
'response_time': response_time,
|
|
244
|
+
'correct': (
|
|
245
|
+
ground_truth is None or
|
|
246
|
+
self._check_correctness(
|
|
247
|
+
full_response,
|
|
248
|
+
ground_truth
|
|
249
|
+
)
|
|
250
|
+
)
|
|
251
|
+
}
|
|
252
|
+
|
|
253
|
+
def _try_fast_path(
|
|
254
|
+
self,
|
|
255
|
+
query: str,
|
|
256
|
+
genome: List[ModelGene]
|
|
257
|
+
) -> Optional[Dict[str, Any]]:
|
|
258
|
+
"""
|
|
259
|
+
Try fast system 1 gut reaction using pattern matching
|
|
260
|
+
"""
|
|
261
|
+
query_lower = query.lower()
|
|
262
|
+
|
|
263
|
+
for gene in genome:
|
|
264
|
+
if any(
|
|
265
|
+
pattern in query_lower
|
|
266
|
+
for pattern in gene.trigger_patterns
|
|
267
|
+
):
|
|
268
|
+
if gene.sft_path:
|
|
269
|
+
model, tokenizer = load_sft_model(gene.sft_path)
|
|
270
|
+
|
|
271
|
+
response = predict_sft(
|
|
272
|
+
model,
|
|
273
|
+
tokenizer,
|
|
274
|
+
query,
|
|
275
|
+
temperature=0.1
|
|
276
|
+
)
|
|
277
|
+
|
|
278
|
+
return {
|
|
279
|
+
'answer': response,
|
|
280
|
+
'confidence': gene.confidence_threshold
|
|
281
|
+
}
|
|
282
|
+
|
|
283
|
+
return None
|
|
284
|
+
|
|
285
|
+
def _try_ensemble(
|
|
286
|
+
self,
|
|
287
|
+
query: str,
|
|
288
|
+
genome: List[ModelGene]
|
|
289
|
+
) -> Dict[str, Any]:
|
|
290
|
+
"""
|
|
291
|
+
Try ensemble voting across specialized models
|
|
292
|
+
"""
|
|
293
|
+
responses = []
|
|
294
|
+
|
|
295
|
+
for gene in genome:
|
|
296
|
+
if gene.sft_path or gene.rl_path:
|
|
297
|
+
model_path = gene.rl_path or gene.sft_path
|
|
298
|
+
|
|
299
|
+
model, tokenizer = load_sft_model(model_path)
|
|
300
|
+
|
|
301
|
+
response = predict_sft(
|
|
302
|
+
model,
|
|
303
|
+
tokenizer,
|
|
304
|
+
query,
|
|
305
|
+
temperature=0.3
|
|
306
|
+
)
|
|
307
|
+
|
|
308
|
+
responses.append({
|
|
309
|
+
'answer': response,
|
|
310
|
+
'weight': gene.confidence_threshold
|
|
311
|
+
})
|
|
312
|
+
|
|
313
|
+
if not responses:
|
|
314
|
+
return {'answer': '', 'confidence': 0.0}
|
|
315
|
+
|
|
316
|
+
best_response = max(responses, key=lambda x: x['weight'])
|
|
317
|
+
|
|
318
|
+
avg_confidence = sum(
|
|
319
|
+
r['weight'] for r in responses
|
|
320
|
+
) / len(responses)
|
|
321
|
+
|
|
322
|
+
return {
|
|
323
|
+
'answer': best_response['answer'],
|
|
324
|
+
'confidence': avg_confidence
|
|
325
|
+
}
|
|
326
|
+
|
|
327
|
+
def _full_reasoning(
|
|
328
|
+
self,
|
|
329
|
+
query: str,
|
|
330
|
+
model: str = "qwen3:1.7b",
|
|
331
|
+
provider: str = "ollama"
|
|
332
|
+
) -> str:
|
|
333
|
+
"""
|
|
334
|
+
Fall back to full system 2 reasoning
|
|
335
|
+
"""
|
|
336
|
+
response = get_llm_response(
|
|
337
|
+
query,
|
|
338
|
+
model=model,
|
|
339
|
+
provider=provider
|
|
340
|
+
)
|
|
341
|
+
|
|
342
|
+
return response.get('response', '')
|
|
343
|
+
|
|
344
|
+
def _check_correctness(
|
|
345
|
+
self,
|
|
346
|
+
response: str,
|
|
347
|
+
ground_truth: str
|
|
348
|
+
) -> bool:
|
|
349
|
+
"""
|
|
350
|
+
Check if response matches ground truth
|
|
351
|
+
"""
|
|
352
|
+
response_lower = response.lower().strip()
|
|
353
|
+
truth_lower = ground_truth.lower().strip()
|
|
354
|
+
|
|
355
|
+
return response_lower == truth_lower or (
|
|
356
|
+
truth_lower in response_lower
|
|
357
|
+
)
|