npcpy 1.0.26__py3-none-any.whl → 1.2.32__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- npcpy/__init__.py +0 -7
- npcpy/data/audio.py +16 -99
- npcpy/data/image.py +43 -42
- npcpy/data/load.py +83 -124
- npcpy/data/text.py +28 -28
- npcpy/data/video.py +8 -32
- npcpy/data/web.py +51 -23
- npcpy/ft/diff.py +110 -0
- npcpy/ft/ge.py +115 -0
- npcpy/ft/memory_trainer.py +171 -0
- npcpy/ft/model_ensembler.py +357 -0
- npcpy/ft/rl.py +360 -0
- npcpy/ft/sft.py +248 -0
- npcpy/ft/usft.py +128 -0
- npcpy/gen/audio_gen.py +24 -0
- npcpy/gen/embeddings.py +13 -13
- npcpy/gen/image_gen.py +262 -117
- npcpy/gen/response.py +615 -415
- npcpy/gen/video_gen.py +53 -7
- npcpy/llm_funcs.py +1869 -437
- npcpy/main.py +1 -1
- npcpy/memory/command_history.py +844 -510
- npcpy/memory/kg_vis.py +833 -0
- npcpy/memory/knowledge_graph.py +892 -1845
- npcpy/memory/memory_processor.py +81 -0
- npcpy/memory/search.py +188 -90
- npcpy/mix/debate.py +192 -3
- npcpy/npc_compiler.py +1672 -801
- npcpy/npc_sysenv.py +593 -1266
- npcpy/serve.py +3120 -0
- npcpy/sql/ai_function_tools.py +257 -0
- npcpy/sql/database_ai_adapters.py +186 -0
- npcpy/sql/database_ai_functions.py +163 -0
- npcpy/sql/model_runner.py +19 -19
- npcpy/sql/npcsql.py +706 -507
- npcpy/sql/sql_model_compiler.py +156 -0
- npcpy/tools.py +183 -0
- npcpy/work/plan.py +13 -279
- npcpy/work/trigger.py +3 -3
- npcpy-1.2.32.dist-info/METADATA +803 -0
- npcpy-1.2.32.dist-info/RECORD +54 -0
- npcpy/data/dataframes.py +0 -171
- npcpy/memory/deep_research.py +0 -125
- npcpy/memory/sleep.py +0 -557
- npcpy/modes/_state.py +0 -78
- npcpy/modes/alicanto.py +0 -1075
- npcpy/modes/guac.py +0 -785
- npcpy/modes/mcp_npcsh.py +0 -822
- npcpy/modes/npc.py +0 -213
- npcpy/modes/npcsh.py +0 -1158
- npcpy/modes/plonk.py +0 -409
- npcpy/modes/pti.py +0 -234
- npcpy/modes/serve.py +0 -1637
- npcpy/modes/spool.py +0 -312
- npcpy/modes/wander.py +0 -549
- npcpy/modes/yap.py +0 -572
- npcpy/npc_team/alicanto.npc +0 -2
- npcpy/npc_team/alicanto.png +0 -0
- npcpy/npc_team/assembly_lines/test_pipeline.py +0 -181
- npcpy/npc_team/corca.npc +0 -13
- npcpy/npc_team/foreman.npc +0 -7
- npcpy/npc_team/frederic.npc +0 -6
- npcpy/npc_team/frederic4.png +0 -0
- npcpy/npc_team/guac.png +0 -0
- npcpy/npc_team/jinxs/automator.jinx +0 -18
- npcpy/npc_team/jinxs/bash_executer.jinx +0 -31
- npcpy/npc_team/jinxs/calculator.jinx +0 -11
- npcpy/npc_team/jinxs/edit_file.jinx +0 -96
- npcpy/npc_team/jinxs/file_chat.jinx +0 -14
- npcpy/npc_team/jinxs/gui_controller.jinx +0 -28
- npcpy/npc_team/jinxs/image_generation.jinx +0 -29
- npcpy/npc_team/jinxs/internet_search.jinx +0 -30
- npcpy/npc_team/jinxs/local_search.jinx +0 -152
- npcpy/npc_team/jinxs/npcsh_executor.jinx +0 -31
- npcpy/npc_team/jinxs/python_executor.jinx +0 -8
- npcpy/npc_team/jinxs/screen_cap.jinx +0 -25
- npcpy/npc_team/jinxs/sql_executor.jinx +0 -33
- npcpy/npc_team/kadiefa.npc +0 -3
- npcpy/npc_team/kadiefa.png +0 -0
- npcpy/npc_team/npcsh.ctx +0 -9
- npcpy/npc_team/npcsh_sibiji.png +0 -0
- npcpy/npc_team/plonk.npc +0 -2
- npcpy/npc_team/plonk.png +0 -0
- npcpy/npc_team/plonkjr.npc +0 -2
- npcpy/npc_team/plonkjr.png +0 -0
- npcpy/npc_team/sibiji.npc +0 -5
- npcpy/npc_team/sibiji.png +0 -0
- npcpy/npc_team/spool.png +0 -0
- npcpy/npc_team/templates/analytics/celona.npc +0 -0
- npcpy/npc_team/templates/hr_support/raone.npc +0 -0
- npcpy/npc_team/templates/humanities/eriane.npc +0 -4
- npcpy/npc_team/templates/it_support/lineru.npc +0 -0
- npcpy/npc_team/templates/marketing/slean.npc +0 -4
- npcpy/npc_team/templates/philosophy/maurawa.npc +0 -0
- npcpy/npc_team/templates/sales/turnic.npc +0 -4
- npcpy/npc_team/templates/software/welxor.npc +0 -0
- npcpy/npc_team/yap.png +0 -0
- npcpy/routes.py +0 -958
- npcpy/work/mcp_helpers.py +0 -357
- npcpy/work/mcp_server.py +0 -194
- npcpy-1.0.26.data/data/npcpy/npc_team/alicanto.npc +0 -2
- npcpy-1.0.26.data/data/npcpy/npc_team/alicanto.png +0 -0
- npcpy-1.0.26.data/data/npcpy/npc_team/automator.jinx +0 -18
- npcpy-1.0.26.data/data/npcpy/npc_team/bash_executer.jinx +0 -31
- npcpy-1.0.26.data/data/npcpy/npc_team/calculator.jinx +0 -11
- npcpy-1.0.26.data/data/npcpy/npc_team/celona.npc +0 -0
- npcpy-1.0.26.data/data/npcpy/npc_team/corca.npc +0 -13
- npcpy-1.0.26.data/data/npcpy/npc_team/edit_file.jinx +0 -96
- npcpy-1.0.26.data/data/npcpy/npc_team/eriane.npc +0 -4
- npcpy-1.0.26.data/data/npcpy/npc_team/file_chat.jinx +0 -14
- npcpy-1.0.26.data/data/npcpy/npc_team/foreman.npc +0 -7
- npcpy-1.0.26.data/data/npcpy/npc_team/frederic.npc +0 -6
- npcpy-1.0.26.data/data/npcpy/npc_team/frederic4.png +0 -0
- npcpy-1.0.26.data/data/npcpy/npc_team/guac.png +0 -0
- npcpy-1.0.26.data/data/npcpy/npc_team/gui_controller.jinx +0 -28
- npcpy-1.0.26.data/data/npcpy/npc_team/image_generation.jinx +0 -29
- npcpy-1.0.26.data/data/npcpy/npc_team/internet_search.jinx +0 -30
- npcpy-1.0.26.data/data/npcpy/npc_team/kadiefa.npc +0 -3
- npcpy-1.0.26.data/data/npcpy/npc_team/kadiefa.png +0 -0
- npcpy-1.0.26.data/data/npcpy/npc_team/lineru.npc +0 -0
- npcpy-1.0.26.data/data/npcpy/npc_team/local_search.jinx +0 -152
- npcpy-1.0.26.data/data/npcpy/npc_team/maurawa.npc +0 -0
- npcpy-1.0.26.data/data/npcpy/npc_team/npcsh.ctx +0 -9
- npcpy-1.0.26.data/data/npcpy/npc_team/npcsh_executor.jinx +0 -31
- npcpy-1.0.26.data/data/npcpy/npc_team/npcsh_sibiji.png +0 -0
- npcpy-1.0.26.data/data/npcpy/npc_team/plonk.npc +0 -2
- npcpy-1.0.26.data/data/npcpy/npc_team/plonk.png +0 -0
- npcpy-1.0.26.data/data/npcpy/npc_team/plonkjr.npc +0 -2
- npcpy-1.0.26.data/data/npcpy/npc_team/plonkjr.png +0 -0
- npcpy-1.0.26.data/data/npcpy/npc_team/python_executor.jinx +0 -8
- npcpy-1.0.26.data/data/npcpy/npc_team/raone.npc +0 -0
- npcpy-1.0.26.data/data/npcpy/npc_team/screen_cap.jinx +0 -25
- npcpy-1.0.26.data/data/npcpy/npc_team/sibiji.npc +0 -5
- npcpy-1.0.26.data/data/npcpy/npc_team/sibiji.png +0 -0
- npcpy-1.0.26.data/data/npcpy/npc_team/slean.npc +0 -4
- npcpy-1.0.26.data/data/npcpy/npc_team/spool.png +0 -0
- npcpy-1.0.26.data/data/npcpy/npc_team/sql_executor.jinx +0 -33
- npcpy-1.0.26.data/data/npcpy/npc_team/test_pipeline.py +0 -181
- npcpy-1.0.26.data/data/npcpy/npc_team/turnic.npc +0 -4
- npcpy-1.0.26.data/data/npcpy/npc_team/welxor.npc +0 -0
- npcpy-1.0.26.data/data/npcpy/npc_team/yap.png +0 -0
- npcpy-1.0.26.dist-info/METADATA +0 -827
- npcpy-1.0.26.dist-info/RECORD +0 -139
- npcpy-1.0.26.dist-info/entry_points.txt +0 -11
- /npcpy/{modes → ft}/__init__.py +0 -0
- {npcpy-1.0.26.dist-info → npcpy-1.2.32.dist-info}/WHEEL +0 -0
- {npcpy-1.0.26.dist-info → npcpy-1.2.32.dist-info}/licenses/LICENSE +0 -0
- {npcpy-1.0.26.dist-info → npcpy-1.2.32.dist-info}/top_level.txt +0 -0
|
@@ -1,181 +0,0 @@
|
|
|
1
|
-
import pandas as pd
|
|
2
|
-
from sqlalchemy import create_engine
|
|
3
|
-
import os
|
|
4
|
-
|
|
5
|
-
# Sample market events data
|
|
6
|
-
market_events_data = {
|
|
7
|
-
"datetime": [
|
|
8
|
-
"2023-10-15 09:00:00",
|
|
9
|
-
"2023-10-16 10:30:00",
|
|
10
|
-
"2023-10-17 11:45:00",
|
|
11
|
-
"2023-10-18 13:15:00",
|
|
12
|
-
"2023-10-19 14:30:00",
|
|
13
|
-
],
|
|
14
|
-
"headline": [
|
|
15
|
-
"Stock Market Rallies Amid Positive Economic Data",
|
|
16
|
-
"Tech Giant Announces New Product Line",
|
|
17
|
-
"Federal Reserve Hints at Interest Rate Pause",
|
|
18
|
-
"Oil Prices Surge Following Supply Concerns",
|
|
19
|
-
"Retail Sector Reports Record Q3 Earnings",
|
|
20
|
-
],
|
|
21
|
-
}
|
|
22
|
-
|
|
23
|
-
# Create a DataFrame
|
|
24
|
-
market_events_df = pd.DataFrame(market_events_data)
|
|
25
|
-
|
|
26
|
-
# Define database path relative to user's home directory
|
|
27
|
-
db_path = os.path.expanduser("~/npcsh_history.db")
|
|
28
|
-
|
|
29
|
-
# Create a connection to the SQLite database
|
|
30
|
-
engine = create_engine(f"sqlite:///{db_path}")
|
|
31
|
-
with engine.connect() as connection:
|
|
32
|
-
# Write the data to a new table 'market_events', replacing existing data
|
|
33
|
-
market_events_df.to_sql(
|
|
34
|
-
"market_events", con=connection, if_exists="replace", index=False
|
|
35
|
-
)
|
|
36
|
-
|
|
37
|
-
print("Market events have been added to the database.")
|
|
38
|
-
|
|
39
|
-
email_data = {
|
|
40
|
-
"datetime": [
|
|
41
|
-
"2023-10-10 10:00:00",
|
|
42
|
-
"2023-10-11 11:00:00",
|
|
43
|
-
"2023-10-12 12:00:00",
|
|
44
|
-
"2023-10-13 13:00:00",
|
|
45
|
-
"2023-10-14 14:00:00",
|
|
46
|
-
],
|
|
47
|
-
"subject": [
|
|
48
|
-
"Meeting Reminder",
|
|
49
|
-
"Project Update",
|
|
50
|
-
"Invoice Attached",
|
|
51
|
-
"Weekly Report",
|
|
52
|
-
"Holiday Notice",
|
|
53
|
-
],
|
|
54
|
-
"sender": [
|
|
55
|
-
"alice@example.com",
|
|
56
|
-
"bob@example.com",
|
|
57
|
-
"carol@example.com",
|
|
58
|
-
"dave@example.com",
|
|
59
|
-
"eve@example.com",
|
|
60
|
-
],
|
|
61
|
-
"recipient": [
|
|
62
|
-
"bob@example.com",
|
|
63
|
-
"carol@example.com",
|
|
64
|
-
"dave@example.com",
|
|
65
|
-
"eve@example.com",
|
|
66
|
-
"alice@example.com",
|
|
67
|
-
],
|
|
68
|
-
"body": [
|
|
69
|
-
"Don't forget the meeting tomorrow at 10 AM.",
|
|
70
|
-
"The project is progressing well, see attached update.",
|
|
71
|
-
"Please find your invoice attached.",
|
|
72
|
-
"Here is the weekly report.",
|
|
73
|
-
"The office will be closed on holidays, have a great time!",
|
|
74
|
-
],
|
|
75
|
-
}
|
|
76
|
-
|
|
77
|
-
# Create a DataFrame
|
|
78
|
-
emails_df = pd.DataFrame(email_data)
|
|
79
|
-
|
|
80
|
-
# Define database path relative to user's home directory
|
|
81
|
-
db_path = os.path.expanduser("~/npcsh_history.db")
|
|
82
|
-
|
|
83
|
-
# Create a connection to the SQLite database
|
|
84
|
-
engine = create_engine(f"sqlite:///{db_path}")
|
|
85
|
-
with engine.connect() as connection:
|
|
86
|
-
# Write the data to a new table 'emails', replacing existing data
|
|
87
|
-
emails_df.to_sql("emails", con=connection, if_exists="replace", index=False)
|
|
88
|
-
|
|
89
|
-
print("Sample emails have been added to the database.")
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
from npcpy.npc_compiler import PipelineRunner
|
|
93
|
-
import os
|
|
94
|
-
|
|
95
|
-
pipeline_runner = PipelineRunner(
|
|
96
|
-
pipeline_file="morning_routine.pipe",
|
|
97
|
-
npc_root_dir=os.path.abspath("."), # Use absolute path to parent directory
|
|
98
|
-
db_path="~/npcsh_history.db",
|
|
99
|
-
)
|
|
100
|
-
pipeline_runner.execute_pipeline()
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
import pandas as pd
|
|
104
|
-
from sqlalchemy import create_engine
|
|
105
|
-
import os
|
|
106
|
-
|
|
107
|
-
# Sample data generation for news articles
|
|
108
|
-
news_articles_data = {
|
|
109
|
-
"news_article_id": list(range(1, 21)),
|
|
110
|
-
"headline": [
|
|
111
|
-
"Economy sees unexpected growth in Q4",
|
|
112
|
-
"New tech gadget takes the world by storm",
|
|
113
|
-
"Political debate heats up over new policy",
|
|
114
|
-
"Health concerns rise amid new disease outbreak",
|
|
115
|
-
"Sports team secures victory in last minute",
|
|
116
|
-
"New economic policy introduced by government",
|
|
117
|
-
"Breakthrough in AI technology announced",
|
|
118
|
-
"Political leader delivers speech on reforms",
|
|
119
|
-
"Healthcare systems pushed to limits",
|
|
120
|
-
"Celebrated athlete breaks world record",
|
|
121
|
-
"Controversial economic measures spark debate",
|
|
122
|
-
"Innovative tech startup gains traction",
|
|
123
|
-
"Political scandal shakes administration",
|
|
124
|
-
"Healthcare workers protest for better pay",
|
|
125
|
-
"Major sports event postponed due to weather",
|
|
126
|
-
"Trade tensions impact global economy",
|
|
127
|
-
"Tech company accused of data breach",
|
|
128
|
-
"Election results lead to political upheaval",
|
|
129
|
-
"Vaccine developments offer hope amid pandemic",
|
|
130
|
-
"Sports league announces return to action",
|
|
131
|
-
],
|
|
132
|
-
"content": ["Article content here..." for _ in range(20)],
|
|
133
|
-
"publication_date": pd.date_range(start="1/1/2023", periods=20, freq="D"),
|
|
134
|
-
}
|
|
135
|
-
|
|
136
|
-
# Create a DataFrame
|
|
137
|
-
news_df = pd.DataFrame(news_articles_data)
|
|
138
|
-
|
|
139
|
-
# Define the database path
|
|
140
|
-
db_path = os.path.expanduser("~/npcsh_history.db")
|
|
141
|
-
|
|
142
|
-
# Create a connection to the SQLite database
|
|
143
|
-
engine = create_engine(f"sqlite:///{db_path}")
|
|
144
|
-
with engine.connect() as connection:
|
|
145
|
-
# Write the data to a new table 'news_articles', replacing existing data
|
|
146
|
-
news_df.to_sql("news_articles", con=connection, if_exists="replace", index=False)
|
|
147
|
-
|
|
148
|
-
print("News articles have been added to the database.")
|
|
149
|
-
|
|
150
|
-
from npcpy.npc_compiler import PipelineRunner
|
|
151
|
-
import os
|
|
152
|
-
|
|
153
|
-
runner = PipelineRunner(
|
|
154
|
-
"./news_analysis.pipe",
|
|
155
|
-
db_path=os.path.expanduser("~/npcsh_history.db"),
|
|
156
|
-
npc_root_dir=os.path.abspath("."),
|
|
157
|
-
)
|
|
158
|
-
results = runner.execute_pipeline()
|
|
159
|
-
|
|
160
|
-
print("\nResults:")
|
|
161
|
-
print("\nClassifications (processed row by row):")
|
|
162
|
-
print(results["classify_news"])
|
|
163
|
-
print("\nAnalysis (processed in batch):")
|
|
164
|
-
print(results["analyze_news"])
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
from npcpy.npc_compiler import PipelineRunner
|
|
168
|
-
import os
|
|
169
|
-
|
|
170
|
-
runner = PipelineRunner(
|
|
171
|
-
"./news_analysis_mixa.pipe",
|
|
172
|
-
db_path=os.path.expanduser("~/npcsh_history.db"),
|
|
173
|
-
npc_root_dir=os.path.abspath("."),
|
|
174
|
-
)
|
|
175
|
-
results = runner.execute_pipeline()
|
|
176
|
-
|
|
177
|
-
print("\nResults:")
|
|
178
|
-
print("\nClassifications (processed row by row):")
|
|
179
|
-
print(results["classify_news"])
|
|
180
|
-
print("\nAnalysis (processed in batch):")
|
|
181
|
-
print(results["analyze_news"])
|
npcpy/npc_team/corca.npc
DELETED
|
@@ -1,13 +0,0 @@
|
|
|
1
|
-
name: corca
|
|
2
|
-
primary_directive: |
|
|
3
|
-
You are corca, a distinguished member of the NPC team.
|
|
4
|
-
Your expertise is in the area of software development and
|
|
5
|
-
you have a kanck for thinking through problems carefully.
|
|
6
|
-
You favor solutions that prioritize simplicity and clarity and
|
|
7
|
-
ought to always consider how some suggestion may increase rather than reduce tech debt
|
|
8
|
-
unnecessarily. Now, the key is in this last term, "unnecessarily".
|
|
9
|
-
You must distinguish carefully and when in doubt, opt to ask for further
|
|
10
|
-
information or clarification with concrete clear options that make it
|
|
11
|
-
easy for a user to choose.
|
|
12
|
-
model: gpt-4o-mini
|
|
13
|
-
provider: openai
|
npcpy/npc_team/foreman.npc
DELETED
|
@@ -1,7 +0,0 @@
|
|
|
1
|
-
name: foreman
|
|
2
|
-
primary_directive: You are the foreman of an NPC team. It is your duty
|
|
3
|
-
to delegate tasks to your team members or to other specialized teams
|
|
4
|
-
in order to complete the project. You are responsible for the
|
|
5
|
-
completion of the project and the safety of your team members.
|
|
6
|
-
model: gpt-4o-mini
|
|
7
|
-
provider: openai
|
npcpy/npc_team/frederic.npc
DELETED
|
@@ -1,6 +0,0 @@
|
|
|
1
|
-
name: frederic
|
|
2
|
-
primary_directive: |
|
|
3
|
-
You are frederic the polar bear. Your job is help users think through problems and
|
|
4
|
-
to provide straightforward ways forward on problems. Cut through the ice
|
|
5
|
-
to get to what matters and keep things simple. You are to respond in a
|
|
6
|
-
witty tone like richard feynman but with the romantic tambor of Frederic Chopin.
|
npcpy/npc_team/frederic4.png
DELETED
|
Binary file
|
npcpy/npc_team/guac.png
DELETED
|
Binary file
|
|
@@ -1,18 +0,0 @@
|
|
|
1
|
-
jinx_name: automator
|
|
2
|
-
description: Issue npc shell requests. Uses one of the NPC macros.
|
|
3
|
-
inputs:
|
|
4
|
-
- request
|
|
5
|
-
- type
|
|
6
|
-
steps:
|
|
7
|
-
- engine: "python"
|
|
8
|
-
code: |
|
|
9
|
-
type = '{{type}}'
|
|
10
|
-
request = '{{request}}'
|
|
11
|
-
if type == 'plan':
|
|
12
|
-
from npcpy.work.plan import execute_plan_command
|
|
13
|
-
output = execute_plan_command(request, npc=npc)
|
|
14
|
-
elif type == 'trigger':
|
|
15
|
-
from npcpy.work.trigger import execute_trigger_command
|
|
16
|
-
output = execute_trigger_command(request, npc=npc)
|
|
17
|
-
else:
|
|
18
|
-
raise ValueError("Invalid type. Must be 'plan' or 'trigger'.")
|
|
@@ -1,31 +0,0 @@
|
|
|
1
|
-
jinx_name: bash_executor
|
|
2
|
-
description: Execute bash queries.
|
|
3
|
-
inputs:
|
|
4
|
-
- bash_command
|
|
5
|
-
- user_request
|
|
6
|
-
steps:
|
|
7
|
-
- engine: python
|
|
8
|
-
code: |
|
|
9
|
-
import subprocess
|
|
10
|
-
import os
|
|
11
|
-
cmd = '{{bash_command}}' # Properly quote the command input
|
|
12
|
-
def run_command(cmd):
|
|
13
|
-
process = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
14
|
-
stdout, stderr = process.communicate()
|
|
15
|
-
if stderr:
|
|
16
|
-
print(f"Error: {stderr.decode('utf-8')}")
|
|
17
|
-
return stderr
|
|
18
|
-
return stdout
|
|
19
|
-
result = run_command(cmd)
|
|
20
|
-
output = result.decode('utf-8')
|
|
21
|
-
|
|
22
|
-
- engine: natural
|
|
23
|
-
code: |
|
|
24
|
-
|
|
25
|
-
Here is the result of the bash command:
|
|
26
|
-
```
|
|
27
|
-
{{ output }}
|
|
28
|
-
```
|
|
29
|
-
This was the original user request: {{ user_request }}
|
|
30
|
-
|
|
31
|
-
Please provide a response accordingly.
|
|
@@ -1,96 +0,0 @@
|
|
|
1
|
-
jinx_name: file_editor
|
|
2
|
-
description: Examines a file, determines what changes are needed, and applies those
|
|
3
|
-
changes.
|
|
4
|
-
inputs:
|
|
5
|
-
- file_path
|
|
6
|
-
- edit_instructions
|
|
7
|
-
- backup: true
|
|
8
|
-
steps:
|
|
9
|
-
- name: "edit_file"
|
|
10
|
-
engine: "python"
|
|
11
|
-
code: |
|
|
12
|
-
import os
|
|
13
|
-
from npcpy.llm_funcs import get_llm_response
|
|
14
|
-
|
|
15
|
-
# Get inputs
|
|
16
|
-
file_path = os.path.expanduser("{{ file_path }}")
|
|
17
|
-
edit_instructions = "{{ edit_instructions }}"
|
|
18
|
-
backup_str = "{{ backup }}"
|
|
19
|
-
create_backup = backup_str.lower() not in ('false', 'no', '0', '')
|
|
20
|
-
|
|
21
|
-
# Read file content
|
|
22
|
-
with open(file_path, 'r') as f:
|
|
23
|
-
original_content = f.read()
|
|
24
|
-
|
|
25
|
-
# Create backup if requested
|
|
26
|
-
if create_backup:
|
|
27
|
-
backup_path = file_path + ".bak"
|
|
28
|
-
with open(backup_path, 'w') as f:
|
|
29
|
-
f.write(original_content)
|
|
30
|
-
|
|
31
|
-
# Make the prompt for the LLM
|
|
32
|
-
prompt = """You are a code editing assistant. Analyze this file and make the requested changes.
|
|
33
|
-
|
|
34
|
-
File content:
|
|
35
|
-
""" + original_content + """
|
|
36
|
-
|
|
37
|
-
Edit instructions: """ + edit_instructions + """
|
|
38
|
-
|
|
39
|
-
Return a JSON object with these fields:
|
|
40
|
-
1. "modifications": An array of modification objects, where each object has:
|
|
41
|
-
- "type": One of "replace", "insert_after", "insert_before", or "delete"
|
|
42
|
-
- "target": For "insert_after" and "insert_before", the text to insert after/before
|
|
43
|
-
For "delete", the text to delete
|
|
44
|
-
- "original": For "replace", the text to be replaced
|
|
45
|
-
- "replacement": For "replace", the text to replace with
|
|
46
|
-
- "insertion": For "insert_after" and "insert_before", the text to insert
|
|
47
|
-
2. "explanation": Brief explanation of the changes made
|
|
48
|
-
"""
|
|
49
|
-
print('getting llm response')
|
|
50
|
-
# Get the LLM response with JSON formatting
|
|
51
|
-
response = get_llm_response(prompt, model=npc.model, provider=npc.provider, npc=npc, format="json")
|
|
52
|
-
|
|
53
|
-
result = response.get("response", {})
|
|
54
|
-
modifications = result.get("modifications", [])
|
|
55
|
-
explanation = result.get("explanation", "No explanation provided")
|
|
56
|
-
|
|
57
|
-
# Apply modifications
|
|
58
|
-
updated_content = original_content
|
|
59
|
-
changes_applied = 0
|
|
60
|
-
|
|
61
|
-
for mod in modifications:
|
|
62
|
-
print(mod)
|
|
63
|
-
mod_type = mod.get("type")
|
|
64
|
-
|
|
65
|
-
if mod_type == "replace":
|
|
66
|
-
original = mod.get("original")
|
|
67
|
-
replacement = mod.get("replacement")
|
|
68
|
-
if original in updated_content:
|
|
69
|
-
updated_content = updated_content.replace(original, replacement)
|
|
70
|
-
changes_applied += 1
|
|
71
|
-
|
|
72
|
-
elif mod_type == "insert_after":
|
|
73
|
-
target = mod.get("target")
|
|
74
|
-
insertion = mod.get("insertion")
|
|
75
|
-
if target in updated_content:
|
|
76
|
-
updated_content = updated_content.replace(target, target + insertion)
|
|
77
|
-
changes_applied += 1
|
|
78
|
-
|
|
79
|
-
elif mod_type == "insert_before":
|
|
80
|
-
target = mod.get("target")
|
|
81
|
-
insertion = mod.get("insertion")
|
|
82
|
-
if target in updated_content:
|
|
83
|
-
updated_content = updated_content.replace(target, insertion + target)
|
|
84
|
-
changes_applied += 1
|
|
85
|
-
|
|
86
|
-
elif mod_type == "delete":
|
|
87
|
-
target = mod.get("target")
|
|
88
|
-
if target in updated_content:
|
|
89
|
-
updated_content = updated_content.replace(target, "")
|
|
90
|
-
changes_applied += 1
|
|
91
|
-
|
|
92
|
-
# Write the updated content
|
|
93
|
-
with open(file_path, 'w') as f:
|
|
94
|
-
f.write(updated_content)
|
|
95
|
-
|
|
96
|
-
output = "Applied " + str(changes_applied) + " changes to " + file_path + "\n\n" + explanation
|
|
@@ -1,14 +0,0 @@
|
|
|
1
|
-
jinx_name: file_chat
|
|
2
|
-
description: Enter spool mode with a list of files that will be loaded in automatically
|
|
3
|
-
for rag for user responses.
|
|
4
|
-
inputs:
|
|
5
|
-
- files_list
|
|
6
|
-
steps:
|
|
7
|
-
- engine: python
|
|
8
|
-
code: |
|
|
9
|
-
from npcpy.modes.spool import enter_spool_mode
|
|
10
|
-
|
|
11
|
-
files_list = {{files_list}}
|
|
12
|
-
output = enter_spool_mode(
|
|
13
|
-
files = files_list
|
|
14
|
-
)
|
|
@@ -1,28 +0,0 @@
|
|
|
1
|
-
jinx_name: gui_controller
|
|
2
|
-
description: Controls Guis by issuuing keyboard commands and key presses at certain
|
|
3
|
-
locations.
|
|
4
|
-
inputs:
|
|
5
|
-
- query
|
|
6
|
-
- provider: ''
|
|
7
|
-
steps:
|
|
8
|
-
- engine: "python"
|
|
9
|
-
code: |
|
|
10
|
-
from npcpy.data.web import search_web
|
|
11
|
-
from npcpy.npc_sysenv import NPCSH_SEARCH_PROVIDER
|
|
12
|
-
query = "{{ query }}"
|
|
13
|
-
provider = '{{ provider }}'
|
|
14
|
-
if provider.strip() != '':
|
|
15
|
-
results = search_web(query, num_results=5, provider = provider)
|
|
16
|
-
else:
|
|
17
|
-
results = search_web(query, num_results=5, provider = NPCSH_SEARCH_PROVIDER)
|
|
18
|
-
|
|
19
|
-
print('QUERY in jinx', query)
|
|
20
|
-
results = search_web(query, num_results=5, provider = NPCSH_SEARCH_PROVIDER)
|
|
21
|
-
print('RESULTS in jinx', results)
|
|
22
|
-
- engine: "natural"
|
|
23
|
-
code: |
|
|
24
|
-
Using the following information extracted from the web:
|
|
25
|
-
|
|
26
|
-
{{ results }}
|
|
27
|
-
|
|
28
|
-
Answer the users question: {{ query }}
|
|
@@ -1,29 +0,0 @@
|
|
|
1
|
-
jinx_name: image_generation_jinx
|
|
2
|
-
description: 'Generates images based on a text prompt.'
|
|
3
|
-
inputs:
|
|
4
|
-
- prompt
|
|
5
|
-
- output_name
|
|
6
|
-
- model: runwayml/stable-diffusion-v1-5
|
|
7
|
-
- provider: diffusers
|
|
8
|
-
steps:
|
|
9
|
-
- engine: "python"
|
|
10
|
-
code: |
|
|
11
|
-
image_prompt = '{{prompt}}'.strip()
|
|
12
|
-
from npcpy.llm_funcs import gen_image
|
|
13
|
-
# Generate the image
|
|
14
|
-
pil_image = gen_image(
|
|
15
|
-
image_prompt,
|
|
16
|
-
npc=npc,
|
|
17
|
-
model='{{model}}', # You can adjust the model as needed
|
|
18
|
-
provider='{{provider}}'
|
|
19
|
-
)
|
|
20
|
-
if pil_image:
|
|
21
|
-
image_generated = True
|
|
22
|
-
else:
|
|
23
|
-
image_generated = False
|
|
24
|
-
# save the image
|
|
25
|
-
output_name = '{{output_name}}'
|
|
26
|
-
pil_image.save(f'{output_name}.png')
|
|
27
|
-
# open the image to display it
|
|
28
|
-
pil_image.show()
|
|
29
|
-
output = output_name
|
|
@@ -1,30 +0,0 @@
|
|
|
1
|
-
jinx_name: internet_search
|
|
2
|
-
description: Searches the web for information based on a query in order to verify
|
|
3
|
-
timiely details (e.g. current events) or to corroborate information in uncertain
|
|
4
|
-
situations. Should be mainly only used when users specifically request a search,
|
|
5
|
-
otherwise an LLMs basic knowledge should be sufficient.
|
|
6
|
-
inputs:
|
|
7
|
-
- query
|
|
8
|
-
- provider: ''
|
|
9
|
-
steps:
|
|
10
|
-
- engine: "python"
|
|
11
|
-
code: |
|
|
12
|
-
from npcpy.data.web import search_web
|
|
13
|
-
from npcpy.npc_sysenv import NPCSH_SEARCH_PROVIDER
|
|
14
|
-
query = "{{ query }}"
|
|
15
|
-
provider = '{{ provider }}'
|
|
16
|
-
if provider.strip() != '':
|
|
17
|
-
results = search_web(query, num_results=5, provider = provider)
|
|
18
|
-
else:
|
|
19
|
-
results = search_web(query, num_results=5, provider = NPCSH_SEARCH_PROVIDER)
|
|
20
|
-
|
|
21
|
-
print('QUERY in jinx', query)
|
|
22
|
-
results = search_web(query, num_results=5, provider = NPCSH_SEARCH_PROVIDER)
|
|
23
|
-
print('RESULTS in jinx', results)
|
|
24
|
-
- engine: "natural"
|
|
25
|
-
code: |
|
|
26
|
-
Using the following information extracted from the web:
|
|
27
|
-
|
|
28
|
-
{{ results }}
|
|
29
|
-
|
|
30
|
-
Answer the users question: {{ query }}
|
|
@@ -1,152 +0,0 @@
|
|
|
1
|
-
jinx_name: local_search`
|
|
2
|
-
description: 'Searches files in current and downstream directories to find items related
|
|
3
|
-
to the user''s query using fuzzy matching.
|
|
4
|
-
|
|
5
|
-
Returns only relevant snippets (10 lines around matches) to avoid including too
|
|
6
|
-
much irrelevant content.
|
|
7
|
-
|
|
8
|
-
Intended for fuzzy searches, not for understanding file sizes.'
|
|
9
|
-
inputs:
|
|
10
|
-
- query
|
|
11
|
-
- summarize: false
|
|
12
|
-
- file_filter: none
|
|
13
|
-
- depth: 2
|
|
14
|
-
- fuzzy_threshold: 70
|
|
15
|
-
steps:
|
|
16
|
-
- engine: python
|
|
17
|
-
code: |
|
|
18
|
-
# Search parameters are directly available
|
|
19
|
-
query = "{{ query }}"
|
|
20
|
-
file_filter = "{{ file_filter | default('None') }}"
|
|
21
|
-
if isinstance(file_filter, str) and file_filter.lower() == 'none':
|
|
22
|
-
file_filter = None
|
|
23
|
-
max_depth = {{ depth | default(2) }}
|
|
24
|
-
fuzzy_threshold = {{ fuzzy_threshold | default(70) }}
|
|
25
|
-
|
|
26
|
-
import os
|
|
27
|
-
import fnmatch
|
|
28
|
-
from pathlib import Path
|
|
29
|
-
from thefuzz import fuzz # Fuzzy string matching library
|
|
30
|
-
|
|
31
|
-
def find_files(file_filter=None, max_depth=2):
|
|
32
|
-
default_extensions = ['.py', '.txt', '.md',
|
|
33
|
-
'.json', '.yml', '.yaml',
|
|
34
|
-
'.log', '.csv', '.html',
|
|
35
|
-
'.js', '.css']
|
|
36
|
-
matches = []
|
|
37
|
-
root_path = Path('.').resolve() # Resolve to absolute path
|
|
38
|
-
|
|
39
|
-
# First, check files in the current directory
|
|
40
|
-
for path in root_path.iterdir():
|
|
41
|
-
if path.is_file():
|
|
42
|
-
# Skip hidden files
|
|
43
|
-
if path.name.startswith('.'):
|
|
44
|
-
continue
|
|
45
|
-
|
|
46
|
-
# If no filter specified, include files with default extensions
|
|
47
|
-
if file_filter is None:
|
|
48
|
-
if path.suffix in default_extensions:
|
|
49
|
-
matches.append(str(path))
|
|
50
|
-
else:
|
|
51
|
-
# If filter specified, check if file matches the filter
|
|
52
|
-
filters = [file_filter] if isinstance(file_filter, str) else file_filter
|
|
53
|
-
for f in filters:
|
|
54
|
-
if (fnmatch.fnmatch(path.name, f) or
|
|
55
|
-
fnmatch.fnmatch(str(path), f'*{f}*')):
|
|
56
|
-
matches.append(str(path))
|
|
57
|
-
break
|
|
58
|
-
|
|
59
|
-
# Then, check subdirectories with depth control
|
|
60
|
-
for path in root_path.rglob('*'):
|
|
61
|
-
# Skip hidden folders and common directories to ignore
|
|
62
|
-
if '/.' in str(path) or '__pycache__' in str(path) or '.git' in str(path) or 'node_modules' in str(path) or 'venv' in str(path):
|
|
63
|
-
continue
|
|
64
|
-
|
|
65
|
-
# Skip if we've gone too deep
|
|
66
|
-
relative_depth = len(path.relative_to(root_path).parts)
|
|
67
|
-
if relative_depth > max_depth:
|
|
68
|
-
continue
|
|
69
|
-
|
|
70
|
-
if path.is_file():
|
|
71
|
-
# If no filter specified, include files with default extensions
|
|
72
|
-
if file_filter is None:
|
|
73
|
-
if path.suffix in default_extensions:
|
|
74
|
-
matches.append(str(path))
|
|
75
|
-
else:
|
|
76
|
-
# If filter specified, check if file matches the filter
|
|
77
|
-
filters = [file_filter] if isinstance(file_filter, str) else file_filter
|
|
78
|
-
for f in filters:
|
|
79
|
-
if (fnmatch.fnmatch(path.name, f) or
|
|
80
|
-
fnmatch.fnmatch(str(path), f'*{f}*')):
|
|
81
|
-
matches.append(str(path))
|
|
82
|
-
break
|
|
83
|
-
|
|
84
|
-
return matches
|
|
85
|
-
|
|
86
|
-
# Find and load files
|
|
87
|
-
files = find_files(file_filter, max_depth)
|
|
88
|
-
|
|
89
|
-
# Process documents
|
|
90
|
-
relevant_chunks = []
|
|
91
|
-
for file_path in files:
|
|
92
|
-
with open(file_path, 'r', encoding='utf-8') as f:
|
|
93
|
-
lines = f.readlines() # Read file as lines
|
|
94
|
-
if lines:
|
|
95
|
-
# Join lines into a single string for fuzzy matching
|
|
96
|
-
content = ''.join(lines)
|
|
97
|
-
match_score = fuzz.partial_ratio(query.lower(), content.lower())
|
|
98
|
-
if match_score >= fuzzy_threshold:
|
|
99
|
-
# Find the best matching line
|
|
100
|
-
best_line_index = -1
|
|
101
|
-
best_line_score = 0
|
|
102
|
-
for i, line in enumerate(lines):
|
|
103
|
-
line_score = fuzz.partial_ratio(query.lower(), line.lower())
|
|
104
|
-
if line_score > best_line_score:
|
|
105
|
-
best_line_score = line_score
|
|
106
|
-
best_line_index = i
|
|
107
|
-
|
|
108
|
-
# Extract 10 lines around the best matching line
|
|
109
|
-
if best_line_index != -1:
|
|
110
|
-
start = max(0, best_line_index - 5) # 5 lines before
|
|
111
|
-
end = min(len(lines), best_line_index + 6) # 5 lines after
|
|
112
|
-
snippet = ''.join(lines[start:end])
|
|
113
|
-
relevant_chunks.append({
|
|
114
|
-
'path': file_path,
|
|
115
|
-
'snippet': snippet,
|
|
116
|
-
'ext': Path(file_path).suffix.lower(),
|
|
117
|
-
'score': match_score
|
|
118
|
-
})
|
|
119
|
-
|
|
120
|
-
# Sort results by match score (highest first)
|
|
121
|
-
relevant_chunks.sort(key=lambda x: x['score'], reverse=True)
|
|
122
|
-
|
|
123
|
-
# Format results
|
|
124
|
-
if relevant_chunks:
|
|
125
|
-
context_text = "Here are the most relevant code sections:\n\n"
|
|
126
|
-
for chunk in relevant_chunks:
|
|
127
|
-
file_path = chunk['path'].replace('./', '')
|
|
128
|
-
context_text += f"File: {file_path} (match score: {chunk['score']})\n"
|
|
129
|
-
context_text += f"```{chunk['ext'][1:] if chunk['ext'] else ''}\n"
|
|
130
|
-
context_text += f"{chunk['snippet'].strip()}\n"
|
|
131
|
-
context_text += "```\n\n"
|
|
132
|
-
else:
|
|
133
|
-
context_text = "No relevant code sections found.\n"
|
|
134
|
-
|
|
135
|
-
output = context_text
|
|
136
|
-
|
|
137
|
-
- engine: natural
|
|
138
|
-
code: |
|
|
139
|
-
{% if summarize %}
|
|
140
|
-
You are a helpful coding assistant.
|
|
141
|
-
Please help with this query:
|
|
142
|
-
|
|
143
|
-
`{{ query }}`
|
|
144
|
-
|
|
145
|
-
The user is attempting to carry out a local search. This search returned the following results:
|
|
146
|
-
|
|
147
|
-
`{{ results }}`
|
|
148
|
-
|
|
149
|
-
Please analyze the code sections above and provide a clear, helpful response that directly addresses the query.
|
|
150
|
-
If you reference specific files or code sections in your response, indicate which file they came from.
|
|
151
|
-
Make sure to explain your reasoning and how the provided code relates to the query.
|
|
152
|
-
{% endif %}
|
|
@@ -1,31 +0,0 @@
|
|
|
1
|
-
jinx_name: npcsh_executor
|
|
2
|
-
description: Issue npc shell requests. Uses one of the NPC macros.
|
|
3
|
-
inputs:
|
|
4
|
-
- request
|
|
5
|
-
steps:
|
|
6
|
-
- name: 'get_command_help'
|
|
7
|
-
engine: 'python'
|
|
8
|
-
code: |
|
|
9
|
-
from npcpy.routes import router, get_help_text
|
|
10
|
-
router_info = get_help_text()
|
|
11
|
-
output = router_info
|
|
12
|
-
- name: 'generate_npc_command'
|
|
13
|
-
engine: 'natural'
|
|
14
|
-
code: |
|
|
15
|
-
Based on the output: {{output}}
|
|
16
|
-
|
|
17
|
-
generate a npcsh command that can be executed to satisfy this user request:
|
|
18
|
-
{{request}}
|
|
19
|
-
Do not include any other comments, Your response should only be
|
|
20
|
-
|
|
21
|
-
the command string verbatim like '/<command> args --kwargs
|
|
22
|
-
- name: 'run command'
|
|
23
|
-
engine: 'python'
|
|
24
|
-
code: |
|
|
25
|
-
from npcpy.modes.npcsh import execute_slash_command
|
|
26
|
-
from npcpy.modes._state import initial_state
|
|
27
|
-
|
|
28
|
-
llm_response = '{{generate_npc_command}}'
|
|
29
|
-
llm_response = llm_response[1:]
|
|
30
|
-
response = execute_slash_command(llm_response, None, initial_state, False)
|
|
31
|
-
output = response[1]
|